TI Designs: TIDA-00160

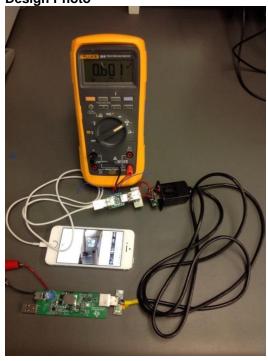
USB Automotive Infotainment Charge Port Controller with Linear Cable Compensation - Controller Driven

System Description

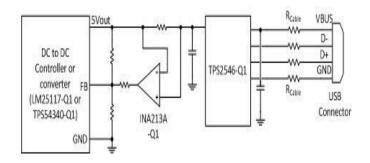
This TI Designs provides detailed data for evaluating and verifying a USB Charger, which uses a USB charge controller, a buck controller and a shunt amplifier. It simulates an Automotive USB Charging device that offers Short-to-Battery protection. With the help of the shunt amplifier, the design aims to compensate the effects on Vdroop when the smartphone/tablet is connected to the USB charger using a cable that is roughly 2-3 meters long. The internal FET in the USB charge controller reduces the part count and solution size.

Featured Applications

- Automotive Infotainment, USB charging, hubs
- Cell Phone / Smart Phone / Tablet Chargers


Design Resources

- Block Diagram and Schematic
- Test Data
- Gerber Files
- Design Files
- Bill of Materials


Design Features

- Compliance with almost all major smartphone/tablet manufacturers is supported due to:
 - Programmable current limit up to 3A
 - BC 1.2 compliant devices being supported
 - D+/D- divider modes of 2.7V/2.7V and 1.2V
- Drop in and BOM Compatible with TPS2543-Q1
- The TI devices in this design are AEC-Q100 qualified
- Supports CDP/SDP Auto switch for small industry standard footprint based devices

Block Diagram

Jump start system design and speed time to market

Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports by experts with deep system and product knowledge. Designs span TI's portfolio of analog, embedded processor and connectivity products and supports a board range of applications including industrial, automotive, medical, consumer, and more. To explore the designs, go to http://www.ti.com/tidesigns

TI Designs: TIDA-00160

USB Automotive Infotainment Charge Port Controller with Linear Cable Compensation - Controller Driven

Associated Part Numbers

Part Number	Part Description	EVM Link
TPS2546-Q1	USB Charging Port Power	Click Here
INA213A-Q1	Switch & Controller with Load Detect Feature. Voltage Output, High or Low Side Measurement Bi-Directional	Click Here
	Zero-Drift Series Current Shunt Monitor	
LM25117-Q1	Wide Input Range Synchronous Buck Controller with Analog Current Monitor	Click Here
TPD2E001-Q1	Low-Capacitance 2-Channel	Click Here
	±15-kV ESD-Protection Array	

Design Considerations and Test Data:

1. Design Considerations

- An attempt to build a charger module in the passenger seat of a car throws up quite a few challenges, the foremost of which being the linear droop caused in the Output voltage when a long cable is used (black cable in the picture below for example).
- 2. This TI design successfully solves the issue with the help of a current shunt monitor and a buck controller.
- 3. This design continously provides a linear increase in Output current viz.-a-viz the Output voltage.
- 4. The use of a Buck controller adds further stability to the design.

Comprehensive designs include schematics or block diagrams, BOMs, design files and test reports by experts with deep system and product knowledge. Designs span TI's portfolio of analog, embedded processor and connectivity products and supports a board range of applications including industrial, automotive, medical, consumer, and more. To explore the designs, go to http://www.ti.com/tidesigns

TI Designs: TIDA-00160

USB Automotive Infotainment Charge Port Controller with Linear Cable Compensation - Controller Driven

2. Quick Start Guide

- 1. Connect 12Vdc (nominal) power to connector J6. Verify that LED indicator D3 is illuminated.
- 2. In order to measure performance:
- 3. Connect the desired USB load to J3.
 - a.) without cable compensation, place a shunt jumper on J2.
 - b.) with cable compensation, make sure there is no shunt jumper on J2.
- The circuit will provide regulated 5Vdc power to the load connected to J3. Measurement of the voltage at the load will show the feature that the cable resistive losses are compensated.

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.