Design Guide: TIDA-080010 3.6-Megapixel 3D Printer Reference Design

Description

This reference design features the DLP[®] Pico[®] Products 0.3-inch 3.6 megapixel near-UV digital micromirror device (DMD) chipset for 3D printers. The design incorporates the DLP300S or DLP301S 2560 x 1440 (WQHD) DMD, DLPC1438 display controller, and the DLPA2005 PMIC/LED driver. The DLPC1438 3D print controller supports reliable operation of the DLP300S and DLP301S digital micromirror devices (DMDs) for DLP 3D Printer applications. The DLPC1438 controller provides a convenient interface between user electronics and the DMD to enable fast, high resolution, reliable DLP 3Dprinters.

Resources

TIDA-080010
DLP300S
DLPC1438
DLPA2005

Design Folder Product Folder Product Folder Product Folder

Ask our TI E2E[™] support experts

Features

- Digital controller for DLP300S and DLP301S (0.3inch 3.6-megapixel) DMDs
- 3D Printing Features:
 - Linear gamma modes optimized for optimizing illumination uniformity and grayscale printing
 - Programmable layer exposure time
 - 8-bit monochrome gray scale output
- System Features:
 - Front-end FPGA with low-cost SPI data input interface
 - Actuator control
 - I²C control of device configuration
 - Programmable LED current control
- Operation optimized for reliable performance in DLP 3D printer applications
- Pair with DLPA2000, DLPA2005, DLPA3000 or DLPA3005 PMIC (power management integrated circuit) and LED driver

Applications

TI DLP 3D Printer

Submit Document Feedback

1 System Description

The DLPC1438 3D print controller supports reliable operation of the DLP300S and DLP301S digital micromirror devices (DMDs) for DLP 3D Printer applications. The DLPC1438 controller provides a convenient interface between user electronics and the DMD to enable fast, high resolution, reliable DLP 3D printers. Get started with TI DLP light-control technology page to learn how to get started with the DLP300S. The DLP advanced light control resources on ti.com accelerate time to market, which include reference designs, optical modules manufactures, and DLP design network partners. This reference design provides developers the ability to quickly implement a compact 3D Printer using DLP300S DMD coupled with the DLPC1438 controller and DLPA2005 PMIC/LED driver.

2 System Overview

This reference design features the DLPC1438 display controller for 3D printers and the DLPA2005 PMIC/LED driver. This reference design provides a connection to drive the DLP300S or DLP301S DMD devices. The DLP1438 chipset requires an FPGA between the DLP display controller and the front-end processor for image processing purposes. The System controller commands the DLPC1438 via an I²C bus. Frame data is sent from the System controller to the FPGA via a SPI bus.

2.1 Block Diagram

Figure 2-1. DLPC1438 Reference Design Block Diagram

	· · · · · · · · · · · · · · · · · · ·
Jumpers	Connectors, Headers, Switches
J1	FPGA JTAG CONNECTION
J2	DLPC JTAG CONNECTION
J3	DLPC FLASH PROGRAMMING HEADER
J4	SPIO TESTPOINTS
J5	FPGA SPI INPUT
J6	FPGA SPI TESTPOINTS
J7	PDATA CONTROL TESTPOINTS
J8	DMD CONNECTION
J9	PDATA TESTPOINTS
J10	DLPC SPI1 TESTPOINTS
J11	FPGA FLASH PROGRAMMING HEADER
J12	FPGA FLASH PROGRAMMING TESTPOINTS
J13	5V JUMPER
J14	ILLUMINATION POWER
J15	1.8V JUMPER
J16	5V FAN POWER
J17	1.2V JUMPER
J18	THERMISTOR
J19	DAC ACTUATOR CONNECTION
J20	3.3V JUMPER
J21	DAC ACTUATOR SIGNALS
J22	H-BRIDGE ACTUATOR SIGNALS
J23	FPGA/FRONTEND TESTPOINTS
J24	H-BRIDGE ACTUATOR CONNECTION
J25	EXT VIN ON/OFF CONNECTION
J26	FPGA TSTMUX
J27	FPGA TSTMUX
J28	EXT PROJ_ON CONNECTION
J29	IICO EXT CONNECTION
J30	UNUSED DLPC GPIO
J31	DLPC TSTPT ACCESS
JPWR1	PWR IN 14V-20V
JPWR2	ALTERNATE PWR IN 14V-20V
SW1	ENABLES POWER IN
SW2	PROJ_ON (turns system on and off)

Table 2-1. Connectors, Jumpers, Headers, Switches

2.2 Design Considerations

See the following application notes for consideration in DLP system design:

- TI DLP® PICO™ System Overview: Optical Module Specifications
- TI DLP® System Design: Brightness Requirements and Tradeoffs

2.3 General Layout Recommendations

The layout guidelines listed in this design guide are subsets of the guidelines included in the component data sheets. For more information, refer to the *DLPC1438 Digital Controller*, *DLP300S DMD*, and *DLPA2005 PMIC and LED Driver IC Data* data sheets.

2.3.1 DLPC3436 Layout Guidelines

2.3.1.1 PLL Power Layout

Follow these recommended guidelines to achieve acceptable controller performance for the internal PLL. The DLPC1438 controller contains two internal PLLs which have dedicated analog supplies (VDD_PLLM, VSS_PLLM, VDD_PLLD, and VSS_PLLD). At a minimum, isolate the VDD_PLLx power and VSS_PLLx ground pins using a simple passive filter consisting of two series ferrite beads and two shunt capacitors (to widen the spectrum of noise absorption). TI recommends that one capacitor be 0.1 μ F and one be 0.01 μ F. Place all four components as close to the controller as possible. Keep the leads of the high-frequency capacitors as short as possible. Connect both capacitors from VDD_PLLM to VSS_PLLM and VDD_PLLD to VSS_PLLD on the controller side of the ferrite beads. Select ferrite beads with these characteristics:

- DC resistance less than 0.40 Ω
- Impedance at 10 MHz equal to or greater than 180 Ω
- Impedance at 100 MHz equal to or greater than 600 Ω

The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog signals. Therefore, VDD_PLLM and VDD_PLLD must be a single trace from the DLPC3436 controller to both capacitors and then through the series ferrites to the power source. Make the power and ground traces as short as possible, parallel to each other, and as close as possible to each other.

Figure 2-2. PLL Filter Layout

2.3.1.2 I2C Interface Performance

Both DLPC3436 I²C interface ports support a 100-kHz baud rate. By definition, I²C transactions operate at the speed of the slowest device on the bus, thus there is no requirement to match the speed grade of all devices in the system.

2.3.1.3 DMD Control and Sub-LVDS Signals

Table 2-2. Maximum Pin-to-Pin PCB Interconnect Recommendations			
	SIGNAL INTERCONNECT TOPOLOGY		
DMD BUS SIGNAL ^{(1) (2)}	SINGLE-BOARD SIGNAL ROUTING LENGTH	MULTI-BOARD SIGNAL ROUTING LENGTH	UNIT
DMD_HS_CLK_P DMD_HS_CLK_N	6.0 (152.4)	See ⁽³⁾	in (mm)
DMD_HS_WDATA_A_P DMD_HS_WDATA_A_N			
DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N			
DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N	6.0	See ⁽³⁾	in (mm)
DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N			
DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N	(152.4)		
DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N			
DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N			
DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N			
DMD_LS_CLK	6.5 (165.1)	See ⁽³⁾	in (mm)
DMD_LS_WDATA	6.5 (165.1)	See ⁽³⁾	in (mm)
DMD_LS_RDATA	6.5 (165.1)	See ⁽³⁾	in (mm)
DMD_DEN_ARSTZ	7.0 (177.8)	See ⁽³⁾	in (mm)

a ta Din DCD Interconnect Decommondations

Maximum signal routing length includes escape routing. (1)

Multi-board DMD routing length is more restricted due to the impact of the connector. (2)

(3) Due to PCB variations, these recommendations cannot be defined. The best practice is for any board design to SPICE simulate with the controller IBIS model (found under the Tools & Software tab of the controller web page) to make sure routing lengths do not violate signal requirements.

SIGNAL GROUP LENGTH MATCHING ⁽¹⁾ ⁽²⁾ ⁽³⁾				
INTERFACE	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH ⁽⁴⁾	UNIT
	DMD_HS_WDATA_A_P DMD_HS_WDATA_A_N		.K_P ±1.0 .K_N (±25.4)	in (mm)
	DMD_HS_WDATA_B_P DMD_HS_WDATA_B_N			
	DMD_HS_WDATA_C_P DMD_HS_WDATA_C_N			
DMD ⁽⁵⁾ DMD ⁽⁵⁾ DMD_HS DMD_HS DMD_HS DMD_HS DMD_HS DMD_HS DMD_HS DMD_HS	DMD_HS_WDATA_D_P DMD_HS_WDATA_D_N	DMD_HS_CLK_P DMD_HS_CLK_N		
	DMD_HS_WDATA_E_P DMD_HS_WDATA_E_N			
	DMD_HS_WDATA_F_P DMD_HS_WDATA_F_N			
	DMD_HS_WDATA_G_P DMD_HS_WDATA_G_N			
	DMD_HS_WDATA_H_P DMD_HS_WDATA_H_N			
DMD	DMD_HS_WDATA_x_P	DMD_HS_WDATA_x_N	±0.025 (±0.635)	in (mm)
DMD	DMD_HS_CLK_P	DMD_HS_CLK_N	±0.025 (±0.635)	in (mm)
DMD	DMD_LS_WDATA DMD_LS_RDATA	DMD_LS_CLK	±0.2 (±5.08)	in (mm)
DMD	DMD_DEN_ARSTZ	N/A	N/A	in (mm)

Table 2-3. High-Speed PCB Signal Routing Matching Requirements SIGNAL GROUP LENGTH MATCHING⁽¹⁾ ⁽²⁾ ⁽³⁾

(1) The length matching values apply to PCB routing lengths only. Internal package routing mismatch associated with the DLPC34xx controller or the DMD require no additional consideration.

(2) Training is applied to DMD HS data lines. This is why the defined matching requirements are slightly relaxed compared to the LS data lines.

(3) DMD LS signals are single ended.

(4) Mismatch variance for a signal group is always with respect to the reference signal.

(5) DMD HS data lines are differential, thus these specifications are pair-to-pair.

Table 2-4. Signal Requirements				
PARAMETER	REFERENCE	REQUIREMENT		
	DMD_LS_WDATA	Required		
	DMD_LS_CLK	Required		
Source series termination	DMD_DEN_ARSTZ	Acceptable		
	DMD_LS_RDATA	Required		
	DMD_HS_WDATA_x_y	Not acceptable		
	DMD_HS_CLK_y	Not acceptable		
	DMD_LS_WDATA	Not acceptable		
	DMD_LS_CLK	Not acceptable		
Endpoint termination	DMD_DEN_ARSTZ	Not acceptable		
	DMD_LS_RDATA	Not acceptable		
	DMD_HS_WDATA_x_y	Not acceptable		
	DMD_HS_CLK_y	Not acceptable		
	DMD_LS_WDATA	68 Ω ±10%		
	DMD_LS_CLK	68 Ω ±10%		
DCR impodence	DMD_DEN_ARSTZ	68 Ω ±10%		
	DMD_LS_RDATA	68 Ω ±10%		
	DMD_HS_WDATA_x_y	100 Ω ±10%		
	DMD_HS_CLK_y	100 Ω ±10%		
	DMD_LS_WDATA	SDR (single data rate) referenced to DMD_LS_DCLK		
	DMD_LS_CLK	SDR referenced to DMD_LS_DCLK		
	DMD_DEN_ARSTZ	SDR		
Signal type	DMD_LS_RDATA	SDR referenced to DMD_LS_DLCK		
	DMD_HS_WDATA_x_y	sub-LVDS		
	DMD_HS_CLK_y	sub-LVDS		

2.3.1.4 Layout Layer Changes

- Single-ended signals: Minimize the number of layer changes.
- Differential signals: Individual differential pairs can be routed on different layers. Make sure that the signals of a given pair do not change layers.

2.3.1.5 Stubs

Avoid using stubs.

2.3.1.6 Terminations

- DMD_HS differential signals require no external termination resistors.
- Make sure the DMD_LS_CLK and DMD_LS_WDATA signal paths include a 43-Ω series termination resistor located as close as possible to the corresponding controller pins.
- Make sure the DMD_LS_RDATA signal path includes a 43-Ω series termination resistor located as close as possible to the corresponding DMD pin.
- The DMD_DEN_ARSTZ pin requires no series resistor.

2.3.1.7 Routing Vias

- The number of vias on DMD_HS signals must be minimized.
- Any and all vias on DMD_HS signals must be located as close to the controller as possible.
- The number of vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be minimized and in the best circumstance not exceed two.
- Any and all vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be located as close to the controller as possible.

2.3.2 FPGA DDR2 SDRAM Interface Routing

The FPGA to DDR2 SDRAM interface is based on a 400-MHz DDR clock rate. The Intel[®] Cyclone[®] IV E FPGA (EP4CE15M9C7N) to an Alliance DDR2 SDRAM (AS4C64M8D2-25BIN) interface diagram is shown in Figure 2-3 and the recommended interface layout guidelines are defined in Table 2-5.

Figure 2-3. FPGA-DDR2 Interface

Table 2-5. Recommended FPGA-DDR2 PCB Matching and Trace Delays

GROUP	GROUP NAME	LENGTH MATCH WITHIN GROUP	LENGTH MATCH TO OTHER SIGNALS	ADDITIONAL ROUTING REQUIREMENTS
MEM_ADDR[13:0], MEM_BA[2:0], MEM_CASn, MEM_RASn, MEM_WEn, MEM_ODT MEM_CKE, MEM_CSn	Addr/Cntl Group	WITHIN GROUP ±50 ps	0 ps to 15 ps less than MEM_CLK and MEM_CLK_N	$50 \ \Omega$ - place termination at DDR2 end of trace - maximum length 250 ps - minimum length 200 ps
MEM_DQ[7:0], MEM_DM, MEM_DQS	Data Group	WITHIN GROUP ±10 ps	MEM_CLK, MEM_CLK_N ±10 ps	50 Ω - use inner layer - route on same layer - place termination at FPGA end of trace - max length 250 ps - min length 200 ps
MEM_CLK, MEM_CLK_N	CLK Group	WITHIN GROUP ±2 ps	MEM_DQS ±2 ps Must be 0 ps to 15 ps longer than ADDR & CNTL Group	100 differential - minimize trace on outer layer - use inner layer - max length 250 ps - min length 200 ps

PCB routing best practices:

- Use inner PCB layers when possible
- Route DDR_DQ(7:0), MEM_DM and DDR_DQS on the same layers

2.3.3 DLPA2005 Layout Recommendations

2.3.3.1 Layout Guidelines

As for all chips with switching power supplies, the layout is an important step in the design, especially in the case of high peak currents and high switching frequencies. If the layout is not carefully done, the regulators can show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current paths and for the power ground tracks. Input capacitors, output capacitors, and place inductors as close as possible to the IC.

Figure 2-4 shows an example layout that has critical parts placed as close as possible to the pins. Following are recommendations for the components:

- **R1** is RLIM and is connected through a wide trace (low resistance) to the system ground. Star connect the analog ground at pin 5 to the point where RLIM is connected to the system ground. Aim on a wide and low-ohmic trace as well, although this one is less critical (tens of mA).
- L1 is the big inductor for the VLED that is connected through two wide traces to the pins.
- **C4** the decoupling capacitors for the VLED. Place C4 as close as possible to the part and directly connect C4 to ground.
- L3/C20 are components used for the VCORE BUCK. L3 is placed close to the pin and connected with a wide trace to the part. C20 is placed directly beside the inductor and connected to the PGND pin.
- L2 This inductor is part of the DMD reset regulators and is also placed as close as possible to the DLPA2005 using wide PCB traces.

Figure 2-4. Example Layout of DLPA2005

2.3.3.3 Thermal Considerations

An important consequence of the efficiency numbers shown in Figure 2-5 is that it enables to perform DLPA2005 thermal calculations. Since the efficiency is not 100%, power is dissipated in the DLPA2005 chip. Due to that dissipation, die temperature rises. For reliability reasons, is good to aim for as low as possible die temperatures. Using a heat sink and airflow are efficient means to keep die temperature reasonably low. In cases that airflow and or a heat sink are or is not feasible, the system designer must specifically pay attention to the thermal design. The die temperature for regular operation needs to remain below 120°C.

Figure 2-5. Measured Typical Power Converter Efficiency as a Function of ILED for Several Supply Voltages (V_{OUTmax} = 4.8 V for Each Supply)

In the following, an example is given of such a thermal calculation. The calculation starts with summarizing all blocks in the DLPA2005 that dissipate. The buck-boost converter supplying the LED power is the main source of dissipation. For illustrating purposes, we assume this buck-boost converter to be the only block that dissipates significantly. For the example assume: VOUT = 4.8 V (for all three LEDs), IOUT = 2.4 A and VIN = 5 V. From Figure 2-5 it can be derived that the related efficiency equals about $n_{eff} = 88\%$.

The power dissipated by the DLPA2005 is then given by:

$$P_{DISS} = P_{IN} - P_{OUT} = P_{OUT} \left(\frac{100\%}{\eta_{eff}} - 1 \right) = 4.8V \cdot 2.4A \cdot \left(\frac{100\%}{88\%} - 1 \right) = 1.6W$$
(1)

The rise of die temperature due to this power dissipation can be calculated using the thermal resistance from junction to ambient, \Box JA=27.9°C/W. This calculation yields:

$$T_{JUNCTION} = T_{AMBIENT} + P_{DISS} \cdot \theta_{JA} = 25^{\circ}C + 1.6W \cdot 27.9^{\circ}C / W = 69.6^{\circ}C$$
(2)

It is also possible to calculate the maximum allowable ambient temperature to prevent surpassing the maximum die temperature. Assume again the dissipation of PDISS=1.6W. The maximum ambient temperature that is allowed is then given by:

$$T_{AMBIENT-max} = T_{JUNCTION-max} - P_{DISS} \cdot \theta_{JA} = 120^{\circ}C - 1.6W \cdot 27.9^{\circ}C / W = 75.4^{\circ}C$$
(3)

It is again stressed that for proper calculations, the total power dissipation of the DLPA2005 needs to be taken into account. Also, if components that are close to the DLPA2005 also dissipate a significant amount of power, the (local) ambient temperature can be higher than the ambient temperature of the system.

If calculations show that the die temperature can surpass the maximum specified value, two basic options exist:

- Adding a heat sink with or without airflow. This reduces 0_{JA} yielding lower die temperature.
- Lowering the dissipation in the DLPA2005 implying lowering the maximum allowable LED current.

2.3.4 DMD Flex Cable Interface Layout Guidelines

The DLP300S DMD is connected to a PCB or a flex circuit using an interposer. For additional layout guidelines regarding length matching, impedance, and so on, see the *DLPC1438 Digital Controller data sheet*. For layout guidelines for the DLP300S DMD or DLP301S see the related data sheet.

Some layout guidelines for routing to the DLP300S or DLP301S DMD include:

- Match lengths for the LS_WDATA and LS_CLK signals.
- Minimize vias, layer changes, and turns for the HS bus signals.
- Minimum of two 100-nF (25 V) capacitors one close to V_{BIAS} pin.
- Minimum of two 100-nF (25 V) capacitors one close to each V_{RST} pin.
- Minimum of two 220-nF (25 V) capacitors one close to each V_{OFS} pin.
- Minimum of four 100-nF (6.3 V) capacitors two close to each side of the DMD.

2.4 Highlighted Products

This chipset reference design guide draws upon figures and content from several other published documents related to the DLP300S and DLP301S DLP chipsets. For a list of these documents, see Section 4.3

3 Hardware

3.1 Hardware Requirements

1. Power up the DLPC1438 Reference Design by applying an external DC power supply (14–20 V DC) to the JPWR1 connector.

External Power Supply Requirements:

- Nominal Output Voltage: 14–20 V DC
- Minimum Output Current: 3 A; Maximum Output Current: 4 A
- Efficiency Level: VI

Note

TI recommends using an external power supply that complies with applicable regional safety standards such as UL, CSA, VDE, CCC, PSE, and so forth.

2. SW1 enables power into the system. When engaged LED D12 (green) turns on. SW2 drives PROJ_ON and when engaged turns on LED D17 (green). With SW1 and SW2 in the on positions the system boots (The DLP300S or DLP301S DMD must be connected for system boot to complete.).

There are several indicator LEDs on the DLPC1438 Reference Design, and the LEDs are defined in Table 3-1.

Table 3-1. LEDs on the DLPC1438 Reference Design

LED REFERENCE	SIGNAL INDICATION	DECSCRIPTION
D5	HOST_IRQ	ON during DLPC1438 boot, OFF when projector is running. Indication of DLPC1438 boot-up completed and ready to receive commands
D17	PROJ_ON	PROJ_ON signal is HIGH
D4	INIT_DONE	ON when FPGA initialization is completed. OFF indicates that the FPGA is in RESET or a configuration error occurred.
D3	CONF_DONE	ON when FPGA configuration is completed.
D9	P5V	Input voltage 5 V applied

4 Design and Documentation Support

4.1 Design Files

4.1.1 Schematics

To download the schematics, see the design files at TIDA-080010.

4.1.2 BOM

To download the bill of materials (BOM), see the design files at TIDA-080010.

4.1.3 Layout Files

To download the bill of materials (BOM), see the design files at TIDA-080010.

4.1.4 Mechanical Files

To download the bill of materials (BOM), see the design files at TIDA-080010.

4.2 Software and FPGA code

DLPC1438 firmware and FPGA code can be downloaded from the TI website.

4.3 Documentation Support

- 1. Texas Instruments, DLPC1438 Digital Controller for TI DLP® 3D Printers Data Sheet
- 2. Texas Instruments, DLP300S 0.3-Inch 3.6-Megapixel DMD for Low Cost TI DLP® 3D Printers Data Sheet
- 3. Texas Instruments, DLPA2005 Power Management and LED/Lamp Driver IC Data Sheet

4.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

4.5 Trademarks

TI E2E[™] are trademarks of Texas Instruments.

DLP® and Pico® are registered trademarks of Texas Instruments.

Intel[®] and Cyclone[®] are registered trademarks of Intel.

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated