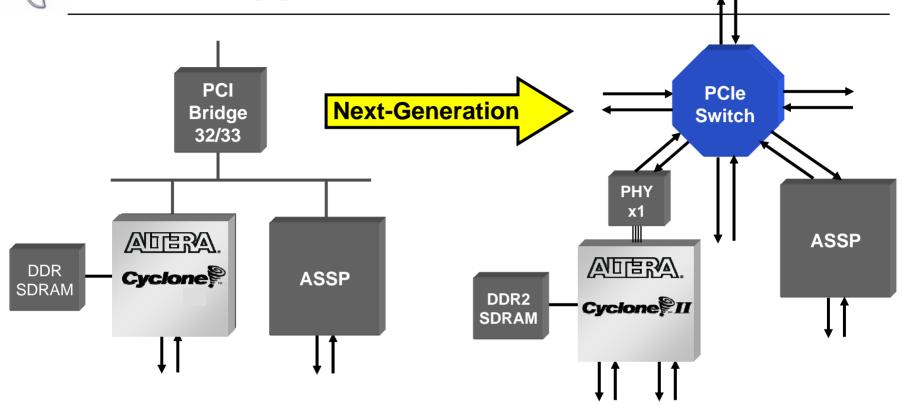


XIO1100 x1 PCIe PHY

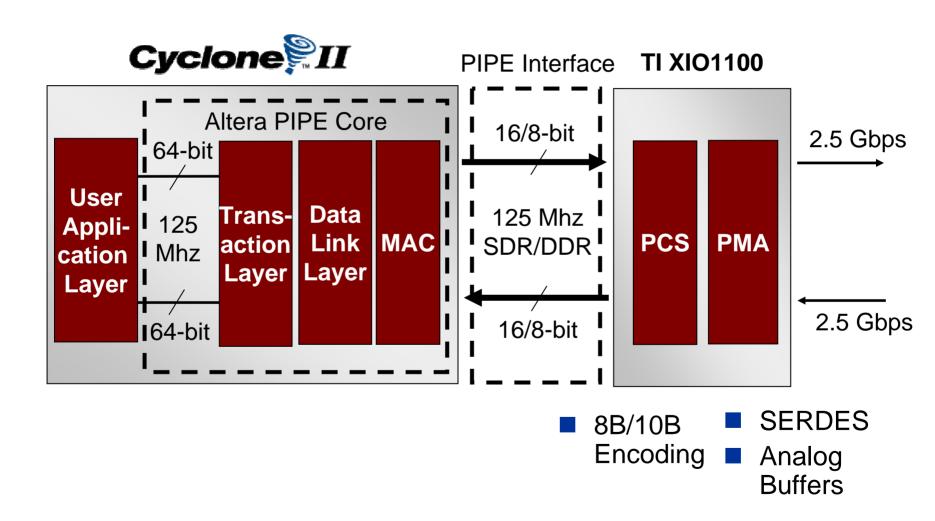
XIO1100 - x1 Discrete PHY

Part Number	<u>Package</u>	<u>Samples</u>	<u>MP</u>
XIO1100	100 pins	4Q05	April-06
Dev Board		April 06	

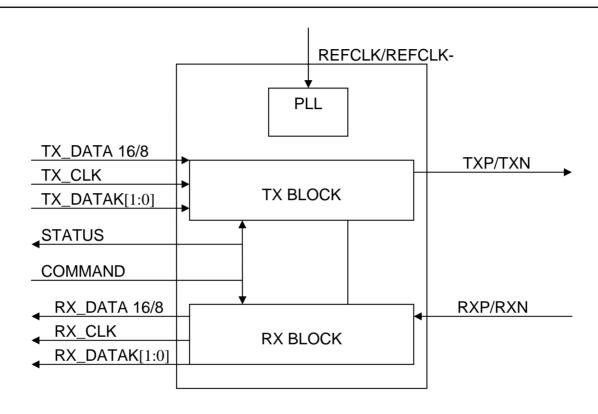

Discrete x1 PCI Express 1.1 Compliant PHY

- Meets tighter jitter requirements in 1.1 specification
- 8/16 bit parallel interface based on Intel PIPE specification
 - Enhancement of supporting source synchronous clocking on both the Tx and Rx paths that eases board Layout Constraints
 - 125 MHz Data Clock with DDR data
- Support for multiple PCI Express reference clocks
 - 100 MHz Differential
 - 125 MHz Single-Ended
- Supports enhanced low power states by turning off clock in L1
- •TI PCI-Express Bridge (XIO2000) and PCI-Express 1394a (XIO2200) based on this technology

^{*} Sample/Production date subject to change.


FPGA Applications

- Replace PCI Bridge Hierarchy With PCI Express Fabric
- Time-to-Market With Custom Endpoint Design in FPGA
 - Increased Performance & Scalability
 - Reduced Cost vs. System Performance



Altera TI x1 PCle Solution

XIO1100 BLOCK DIAGRAM

Standard Features of PHY

- 2.5Gb/s data rate
- Utilize 8 or 16-bit parallel interface
- Data/Clock recovery

- 8b/10b encode/decode and error indication
- Receiver Detection
- Supports compliance pattern transmission
- Supports Polarity Inversion of RXP/RXN.

XIO1100 PIPE SUMMARY

- PIPE is a standard defined by Intel Corp.
- XIO1100 uses a modified version of Intel Pipe Interface.
 - Source-Synchronous Clocking (RXCLK & TXCLK) to help in PCB implementations.
- Selectable 8-bit or 16-bit parallel interface.
- High-Speed PCB design techniques must be employed (125MHz and 250MHz frequencies).
 - Match trace lengths
 - Match impedance and eliminate/reduce impedance discontinuities (stubs, transitions thru vias, etc...).
- Model the transmission lines
 - IBIS models available for XIO1100

Altera-TI x1 PCle Demo Board

XIO1100 Value Proposition

- XIO1100 is TI's third generation PHY
 - Passed PCI SIG Workshop #49 v1.0a and v1.1
 Compliance
 - Proven PCI Express compatibility and interoperability
 - XIO1100 base design used in TI's PCI Express compliant devices XIO2000A and XIO2200A (PCIe Integrator list, also included in PCI SIG ExpressCard based Gold Suite tests)
- Flexible MAC interface
 - Selectable 8 or 16-bit parallel interface
 - 16-bit: 125MHz rising-edge clocked
 - 8-bit: 125MHz rising and falling-edge clocked (DDR).
 - Source Synchronous Clocking, i.e. both RX path and TX path have a dedicated clock (TXCLK and RXCLK)
- Support for two PCI Express reference clocks
 - 100 MHz Differential for normal system clock designs
 - 125 MHz Single-Ended for asynchronous clocking designs

XIO1100 Milestone

Deliverables	Target Completion Date	
Preliminary Datasheet with Final Pinout	Now (contact factory or your regional TI sales office)	
Demonstration Board	Now	
Final Datasheet	April 06	
Samples	Now	
Dev Kit	April 06	
Plugfest (Altera-TI Solution)	PASSED v1.0a and v1.1 Compliance	
MP	April 06	