ABSTRACT
The MSP430™ ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing innovators to increase performance at lowered energy budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at much lower power. The ultra low-power architecture of the MSP430FR5969-SP showcases seven low-power modes, optimized to achieve power efficient distributed telemetry/housekeeping systems. The integrated mixed-signal features of the MSP430FR5969-SP make it ideally suited for distributed telemetry applications in next-generation spacecraft. The strong immunity to single-event latch-up (SEL) and total ionizing dose (TID), enable the device to be used in a variety of space and radiation environments.

Contents
1 Device Introduction .. 1
2 MSP430FR5969-SP Production Flow .. 2
3 Device Qualification .. 3
4 Outgas Report ... 5

Trademarks
All trademarks are the property of their respective owners.

1 Device Introduction
MSP430FR5969-SP is a Radiation Hardness Assured (RHA) device in plastic package which allow this device to be use in a space application. The device was verified immune to 72 Mev·cm²/mg at 125°C for single event latchup. Each Fab lot was tested according to MIL-STD-883 for Radiation Lot Acceptance Tested (RLAT) up to 50 krad(Si) and each Assembly and Test lot will go thru MLS flow as shown in Section 2. To ensure the quality of MSP430FR5969-SP, it is qualified with MLS qualification requirement, which will be explained in Section 3.
2 MSP430FR5969-SP Production Flow

This section discusses the MLS production flow for assembly and test.

- Die Mount Roughened NiPd/Au Leadframe
- Wire Bond - Gold Wire
- Mold Compound
- X-Ray Sample AQL = 0.005% one mold per shot
- Symbol Traceability from one Fab lot/Assembly/Test lot
- Temperature Cycle - 100% 20 Cycles -55°C to +125°C
- Pre Burn-in +25°C Electrical Test – 100%
- 100% Dynamic monitored Burn-in 125°C – 240 hours
- Post Burn-in 1+25°C Electrical Test – 100%
- +25°C Electrical Lot Accept
- Post Burn-in 2+105°C Electrical Test – 100%
- +105°C Electrical Lot Accept
- Split 22 units for RLAT per Fab lot
- RLAT for High Dose Rate 20-kRad
- Radiation Lot Acceptance Testing (RLAT)
- Dry Bake = 150°C / 8 hours
- Visual Inspection – 100%
- Lead/Ball Automated Visual Inspection Lot Accept
- Dry Pack – MSL 3 / 260°C
- Ship out with QCI Documentation
- Split 50 units for Assemble Lot level Qual
- 22 units each for Temp cycle – 500 cycles
 And Unbiased Heat 150 hours
 Post Stress CSAM
- Quality Lot Accept
3 Device Qualification

This section discusses the initial and lot level qualification.

Texas Instruments MLS Products Reliability Report

Device Type/Device Family: MSP430FR5969-SP
Package Type: 48/QFN/QFP
Wafer Fabrication Facility: DMOS5
Assembly/Test Facility: CLARK/AT/PHI/TAI

Biased Life Test

Test Method: JESD22-A108
Test Condition: 125°C / 1000 hours or equivalent
Sample Size: 77
Rejects: 0
Activation Energy (eV):
Equivalent Device Hours: 1000 hours or equivalent
Failure Rate (FIT)*:

*Derated to +55°C with a 60% Confidence Level

Note: Data for MLS products is specific to device technology and foundry. For this reason the FIT rate above may differ from TI's external web page. This does not reflect a difference in quality but only a difference in sample size.

Package Related Tests

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Referenced Method</th>
<th>Sample Size</th>
<th>Rejects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biased HAST</td>
<td>130°C / 85% / 96 hours</td>
<td>JESD22-A110</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Unbiased HAST</td>
<td>130°C / 85% / 96 hours</td>
<td>JESD22-A102</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>-55°C to +125°C (200, 700, 1000°C)</td>
<td>JESD22-A104</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

* Preconditioning per JEDEC Std. 22, Method A112/A113
Initial Product Qualification

The subject Enhanced Plastic device, device family, and/or package family have passed Texas Instruments product qualification as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Referenced Method</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Characterization</td>
<td>TI Data Sheet</td>
<td>N/A</td>
<td>3 lot(s)/30 Units</td>
</tr>
<tr>
<td>Electrostatic Discharge Sensitivity</td>
<td>CDM</td>
<td>JESD22-C101</td>
<td>3 Units/voltage</td>
</tr>
<tr>
<td>Physical Dimensions</td>
<td>TI Data Sheet</td>
<td>EIAJESD22- B100</td>
<td>N/A</td>
</tr>
<tr>
<td>Thermal Impedance</td>
<td>Theta-JA on board</td>
<td>EIAJESD51</td>
<td>Per Pin-Package</td>
</tr>
<tr>
<td>Bias Life Test</td>
<td>125°C / 1000 hours or equivalent</td>
<td>JESD22-A108</td>
<td>77 units</td>
</tr>
<tr>
<td>Bias Life Test with precycling</td>
<td>125°C / 1000 hours or equivalent</td>
<td>JESD22-A108</td>
<td>77 units</td>
</tr>
<tr>
<td>Biased HAST</td>
<td>130°C / 85% / 96 hours</td>
<td>JESD22-A110</td>
<td>77 units</td>
</tr>
<tr>
<td>Unbiased HAST</td>
<td>130°C / 85% / 96 hours</td>
<td>JESD22-A110</td>
<td>77 units</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>-55°C to +125°C (200, 700, 1000°C Cyc)</td>
<td>JESD22-A104</td>
<td>77 units</td>
</tr>
<tr>
<td>Moisture Sensitivity</td>
<td>Surface Mount Only</td>
<td>J-STD-020-A</td>
<td>12 units</td>
</tr>
<tr>
<td>FRAM Low Voltage-Low Temperature Characterization</td>
<td>-55°C, Vmin Write / 105°C drop / -55°C, Vmin Read</td>
<td>N/A</td>
<td>10 units</td>
</tr>
<tr>
<td>Electromigration</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic FRAM endurance</td>
<td>25°C, 2 bytes 1e13 cycles</td>
<td>N/A</td>
<td>12 units</td>
</tr>
<tr>
<td>Intrinsic FRAM endurance</td>
<td>125°C, 2 bytes 1e13 cycles</td>
<td>N/A</td>
<td>12 units</td>
</tr>
<tr>
<td>Intrinsic FRAM endurance</td>
<td>105°C, 2 bytes 1e13 cycles</td>
<td>N/A</td>
<td>12 units</td>
</tr>
<tr>
<td>No-Read FRAM Retention</td>
<td>175°C / 750°, 1000° hours</td>
<td>N/A</td>
<td>120 units</td>
</tr>
<tr>
<td>FRAM Retention/Imprint with 105°C pre-cycling</td>
<td>150°C SS Bake (168, 500, 1000 Hrs) With DS Depolanzation @105°C (30min)</td>
<td>N/A</td>
<td>77 units</td>
</tr>
<tr>
<td>Visual Quality Reliability Inspection</td>
<td>Post -700TC</td>
<td>N/A</td>
<td>14 units</td>
</tr>
<tr>
<td>Visual Quality Reliability Inspection</td>
<td>Post -96hr uHAST</td>
<td>N/A</td>
<td>14 units</td>
</tr>
<tr>
<td>X-ray</td>
<td>Post Temp Cycle</td>
<td>N/A</td>
<td>5 units</td>
</tr>
</tbody>
</table>

* Preconditioning per JEDEC Std. 22, Method A112/A113
4 Outgas Report

Outgasing was performed on 5 units of MSP430FR5969-SP. A total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% were used as screening levels for rejection of spacecraft materials. The outgas test was performed in a vacuum environment of less than 5×10^{-5} torr according to ASTM E 595, for a duration of 24 hours, at 125°C. The TML, CVCM, and the amount of Water Vapor Recovered (WVR) were measured after the test.

RESULTS

The following tables list the results of the testing:

<table>
<thead>
<tr>
<th>Sample</th>
<th>TML (%)</th>
<th>CVCM (%)</th>
<th>WVR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/N MSP430 FR5969-MLS</td>
<td>0.06</td>
<td><0.01</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Quality and Reliability Data Disclaimer

The attached quality and reliability information is specific to the TI Enhanced Plastic product family of plastic encapsulated commercial-off-the-shelf (COTS) semiconductor products and components. Due to possible differences in product assembly and test baselines, this information is NOT APPLICABLE to TI standard, industrial, or automotive catalog commercial products.

Plastic encapsulated TI semiconductor devices are not designed and are not warranted to be suitable for use in some military applications and/or military environments. Use of plastic encapsulated TI semiconductor devices in military applications and/or military environments, in lieu of hermetically sealed ceramic devices, is understood to be fully at the risk of Buyer.

Quality and reliability data provided by Texas Instruments is intended to be an estimate of product performance based upon history only. It does not imply that any performance levels reflected in such data can be met if the product is operated outside the conditions expressly stated in the latest published data sheet for a device.

Existing industry standards for plastic encapsulated microcircuit qualification and reliability monitors are based upon historical data, experiments, and field experience with the use of these devices in commercial and industrial applications. The applicability of these standards in determining the suitability for use and safety performance in military and aerospace applications has not been established. Due to the multiple variations in field operating conditions, a component manufacturer can only base estimates of product life on models and the results of package and die level qualification.

The buyer’s use of this data, and all consequences of such use, is solely the buyer’s responsibility. Buyer assumes full responsibility to perform sufficient engineering and additional qualification testing in order to properly evaluate the buyer’s application and determine whether a candidate device is suitable for use in that application. The information provided by TI shall not be considered sufficient grounds on which to base any such determination.

THIS INFORMATION IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL TI OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION, EVEN IF TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS INFORMATION SHOULD NOT BE USED TO ASSIST IN THE PRACTICE OF "UPRATING" OR "UPSCREENING" DEVICES FOR USE BEYOND THEIR RATED LIMITS.

TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI’s warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from TI’s provision of such items.

Quality and Reliability Data copyright © 2011, Texas Instruments Incorporated, all rights reserved.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated