
Abstract

This report presents the effect of neutron displacement damage (NDD) on the UC1843B-SP device. The results show that devices remained within datasheet specifications up to $1 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$. At 5×10^{12} and 1 $\times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$ some specifications went outside the range specified in the datasheet. A sample size of nine units was exposed to radiation testing per (MIL-STD-883, Method 1017 for Neutron Irradiation) and an additional unirradiated sample device was used for correlation. All devices used in the experiment were from lot date code 1828B. Electrical testing was performed at Texas Instruments before and after neutron irradiation using the production test program for UC1843B-SP.

Contents

1 Overview ... 2

Appendix A Test Results ... 6
List of Figures
1 UC1843B-SP Device .. 2

List of Tables

1 Overview Information.. 2
2 Neutron Irradiation Conditions .. 3
3 UC1843B-SP Spec Table.. 4

Trademarks

All trademarks are the property of their respective owners.

1 Overview

The UC1843B-SP is a current mode PWM controller. Start-up current is specified to be less than 0.5 mA and oscillator discharge is trimmed to 8.3 mA . During UVLO, the output stage can sink at least 10 mA at less than 1.2 V for VCC over 5 V . The devices are offered in an ultra small, thermally enhanced 10-pin ceramic flatpack package.
General device information and testing conditions are listed in Table 1.
Table 1. Overview Information

TI Part Number	UC1843B-SP
Device Function	Current Mode PWM Controller
Die Name	SMEXARC1843VLS
Technology	JI1
A/T Lot Number / Date Code	1828 B
Unbiased Quantity Tested	9
Exposure Facility	VPT Rad
Neutron Fluence (1-MeV equivalent)	$1.0 \times 10^{12}, 5.0 \times 10^{12}, 1.0 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$
Irradiation Temperature	$25^{\circ} \mathrm{C}$

TI may provide technical, applications or design advice, quality characterization, and reliability data or service providing these items shall not expand or otherwise affect TI's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from Semiconductor Products and no obligation or liability shall arise from TI's provision of such items.

Figure 1. UC1843B-SP Device

2 Test Procedures

The UC1843B-SP was electrically pre-tested using the production automated test equipment program. General test procedures were IAW MIL-STD-883, Method 1017 for Neutron Irradiation of UC1843B-SP.

Table 2. Neutron Irradiation Conditions

Group	Sample Qty	Neutron Fluence (n/cm ${ }^{\mathbf{2}}$)	Bias
A	3	1.0×10^{12}	Unbiased
B	3	5.0×10^{12}	Unbiased
C	3	1.0×10^{13}	Unbiased

3 Facility

Devices were exposed via fast neutron irradiation (FNI) at the University of Massachusetts's Lowell Research Reactor (UMLRR). The facility is designed to give a fast flux level $\geq 1011 \mathrm{n} / \mathrm{cm}^{2}-\mathrm{s}$, with relatively low thermal fluence and gamma dose rates. Samples with a cross-sectional area as large as 30 $\mathrm{cm}(12 \mathrm{in}) \times 30 \mathrm{~cm}$ (12 in) and up to $15-\mathrm{cm}(6-\mathrm{in})$ thick can be irradiated. The fast neutron flux is designed to be nearly uniform over the $30-\mathrm{cm}(12-\mathrm{in}) \times 30-\mathrm{cm}(12-\mathrm{in})$ area facing the core, and the fast fluence variation through the sample thickness is minimized via a single 180° rotation of the sample canister at the midpoint of the irradiation period. The FNI facility offers a significantly larger sample volume than previously available within the University of Massachusetts Lowell Research Reactor (UMLRR).
The fluences are calculated based on $1-\mathrm{MeV}$ equivalences.
Detailed information of the radiation facility is available at the following link:
www.uml.edu/docs/FNI\ Brochure_tcm18-90375.pdf

4 Results

At 5.0×10^{12} and $1.0 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$, some parametric measurements failed to remain within the range specified in the datasheet. All parametric measurements remained well within the UC1843B-SP Class V, radiation hardened current-mode PWM controller limits for $1.0 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2}$ levels. The devices were no longer functional after exposure to 5.0×10^{12} and $1.0 \times 10^{13} \mathrm{n} / \mathrm{cm}^{2}$ level when tested in the ATE. The full parameter list and graphs are found in Appendix A.
Table 3 lists the UC1843B-SP specification compliance matrix.

Table 3. UC1843B-SP Spec Table

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	TEST NUMBER
REFERENCE						
Output voltage	$\mathrm{TJ}=25^{\circ} \mathrm{C}, \mathrm{IO}=1 \mathrm{~mA}$	4.85	5	5.1	V	1010.1, 1010.2
Line regulation	VIN $=12$ to 25 V		6	20	mV	1010.3
Load regulation	$1 \mathrm{O}=1$ to 20 mA		6	25	mV	1010.4
Output noise voltage	$10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}, \mathrm{TJ}=25^{\circ} \mathrm{C}$		50		uV	1010.7
Short-circuit output current		-30	-100	-180	mA	1010.6
OSCILLATOR						
Initial accuracy	$\mathrm{TJ}=25^{\circ} \mathrm{C}(4)$	47	52	57	kHz	1015.1, 1015.2
Voltage stability	$\mathrm{VCC}=12$ to 25 V		0.2\%	1\%		1015.3
Discharge current	V pin $4=2 \mathrm{~V}(5)$, $\mathrm{TJ}=25^{\circ} \mathrm{C}$	7.8	8.3	8.8	mA	1015.7
Discharge current	V pin $4=2 \mathrm{~V}(5)$, $\mathrm{TJ}=$ Full range	7.5		8.8		1015.7
ERROR AMPLIFIER						
Input voltage	$\mathrm{VComp}=2.5 \mathrm{~V}$	2.45	2.50	2.55	V	1020.1
Input bias current			-0.3	-1	uA	$\begin{gathered} 1020.6,1020.7, \\ 1020.8 \end{gathered}$
Open-loop voltage gain	$\mathrm{VO}=2$ to 4 V	65	90		dB	1020.9
PSRR	$\mathrm{VCC}=12$ to 25 V	60	70		dB	1020.10
Output sink current	$\mathrm{VFB}=2.7 \mathrm{~V}$, VComp $=1.1 \mathrm{~V}$	2	6		mA	1020.5
Output source current	$\mathrm{VFB}=2.3 \mathrm{~V}, \mathrm{VComp}=5 \mathrm{~V}$	-0.5	-0.8		mA	1020.4
High-level output voltage	$\mathrm{VFB}=2.3 \mathrm{~V}, \mathrm{RL}=15 \mathrm{k} \Omega$ to ground	5	6		V	1020.2
Low-level output voltage	$\mathrm{VFB}=2.7 \mathrm{~V}, \mathrm{RL}=15 \mathrm{k} \Omega$ to VREF		0.7	1.1	V	1020.3
CURRENT SENSE						
Gain(6) (7)		2.85	3	3.15	V/V	1025.2
Maximum input signal	$\mathrm{VComp}=5 \mathrm{~V}(6)$	0.9	1	1.1	V	1025.3
Input bias current			-2	-10	uA	1025.1
Delay to output	VISENSE $=0$ to $2 \mathrm{~V}(2)$		150	300	ns	1025.4
OUTPUT						
Output low-level voltage	ISINK = 20 mA		0.1	0.4	V	1030.6
	ISINK = 200 mA		1.5	2.2		1030.7
Output high-level voltage	ISOURCE $=-20 \mathrm{~mA}$	13	13.5		V	1030.1,
	ISOURCE $=-200 \mathrm{~mA}$	12	13.5			1030.2
Rise time	$\mathrm{CL}=1 \mathrm{nF}, \mathrm{TJ}=25^{\circ} \mathrm{C}(2)$		50	150	ns	1030.9
Fall time	$\mathrm{CL}=1 \mathrm{nF}, \mathrm{TJ}=25^{\circ} \mathrm{C}$ (2)		50	150	ns	1030.10
UVLO saturation	$\mathrm{VCC}=5 \mathrm{~V}$, ISINK $=10 \mathrm{~mA}$		0.7	1.2	V	1030.5
UNDERVOLTAGE LOCKOUT						
Start threshold		7.8	8.4	9	V	1035.1
Minimum operation voltage after turnon		7	7.6	8.2	V	1035.2

伿 Texas
INSTRUMENTS

Table 3. UC1843B-SP Spec Table (continued)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	TEST NUMBER
PWM						
Maximum duty cycle		94\%	96\%	100\%		1030.11, 1030.12
Minimum duty cycle				0\%		1030.13
TOTAL STANDBY CURRENT						
Start-up current			0.3	0.5	mA	1005.1
Operating supply current	VFB $=$ VISENSE $=0 \mathrm{~V}$		11	17	mA	1005.2, 1005.3
VCC Zener voltage	ICC $=25 \mathrm{~mA}$	30	34		V	1035.4

Test Results

Delta Threshold
10.00\%

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

NDD Report
Device Name

1030.12_Max DC @ vCC=30V

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

