
TI TECH DAYS

MMWAVE-SDK deep dive Easy evaluation and development of mmWave systems with software development kit

Nitin Sakhuja - Industrial mmWave Radar Applications

MMWAVE-SDK deep dive

TI's MMWAVE-SDK (MilliMeter Wave Software Development Kit) is a unified software platform for the TI mmWave Sensing Portfolio, providing easy setup and fast out-of-the-box access to evaluation and development.

This training provides an overview of the MMWAVE-SDK 3.x architecture and the various building blocks such as Data Processing Units (DPUs) and Data Processing Chains(DPCs). It also provides a deeper look into the components with software execution flows accompanied with source code references from the MMWAVE-SDK Out of Box Demo point cloud processing chain.

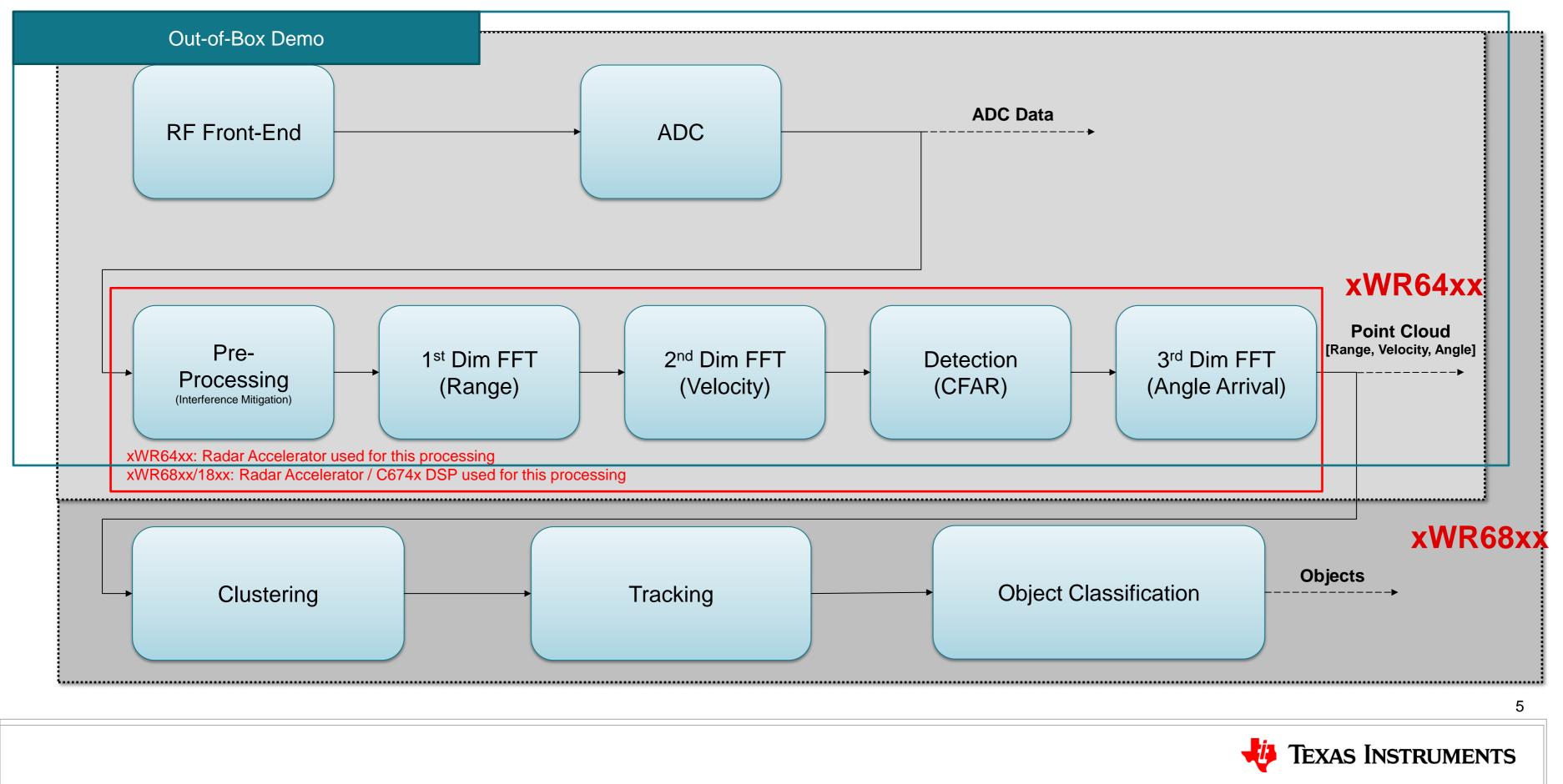
We also present some example applications where the Out of box point cloud detection chain is extended to develop more complex mmWave applications such as Long Range People Detection and Tracking Demo, Traffic Monitoring Demo and Area Scanner Demo.

What you'll learn:

- TI MMWAVE-SDK architecture and it's various building blocks such as DPCs and DPUs
- Understand DPM, DPC and DPU execution flows e.g. initialization and runtime operation using source code references
- Developing custom components to extend the out of box processing chain and available examples.

s and DPUs ime operation using source code references and available examples.

Agenda

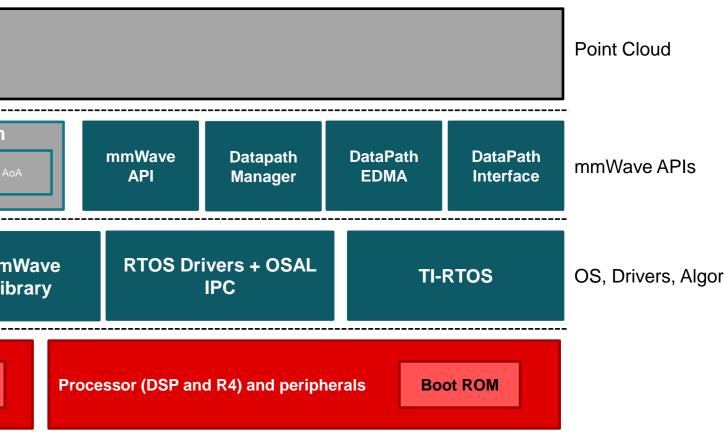

- MMWAVE-SDK
 - Architecture overview
 - Data path design
- Data path deep dive
 - Initialization
 - Configuration
 - Execution (Runtime view)
- DPUs and DPCs in MMWAVE-SDK 3.x
 - DPUs: Range, Static-Clutter removal, Doppler, CFAR-CA and AoA
 - DPCs: HWA and DSP based object detection chains
- Software development and debugging
 - Development resources
 - MMWAVE-SDK debugging
- Extending SDK architecture for advanced applications
 - Considerations for developing custom DPUs and DPCs
 - Custom DPUs and DPCs in Industrial Toolbox
 - Demo: Long Range People Tracking and, Traffic Monitoring
 - Demo: Area Scanner and, Automated Doors and Gates

MMWAVE-SDK - Architecture Overview

mmWave signal processing

mmWave SDK contents

- Building blocks
 - RTOS, Drivers, and RadarSS firmware
 - Scalable data processing blocks and chains to work on HWA or DSP
 - Layered / API based Radar analog front end (AFE) programming
 - Pre-built software blocks and chains for basic FMCW Radar signal processing
 - Catalog of mmWave signal processing algorithms optimized for C674x DSPs including tracker
 - Package for high-security (HS) devices to enable programming encryption keys and encrypt/authenticate program binaries
- Demonstrations and examples
 - TI RTOS based
 - Out of box demo with easy configurability via TI Cloud-based or offline GUI
 - Representation of point cloud and benchmarking data from demo via GUI
- Documentation
 - Associated tools: <u>Code Composer Studio</u>, <u>TI-RTOS</u>, <u>Uniflash</u>
 - Available at http://www.ti.com/tool/MMWAVE-SDK



mmWave SDK architecture

Main highlights:

- Foundational components for SOC enablement – RTOS, Drivers, mmWaveLink, mmWaveLib
- RF Front-end completely abstracted using mmWaveLink
- mmWave API simplifies device integration of mmWaveLink
- Data path layer is an abstraction over existing driver APIs in the data flow
- Separation of data processing units and chain from the application
- Simpler application that does the instantiation of the Datapath layer

TI mmWave Applica	ation Demo
Datapath Proc	cessing Chair
Range Doppler	CFAR
 mmWave Link	mr L
Analog front-end	BSS Firmware

MMWAVE-SDK – Datapath Design

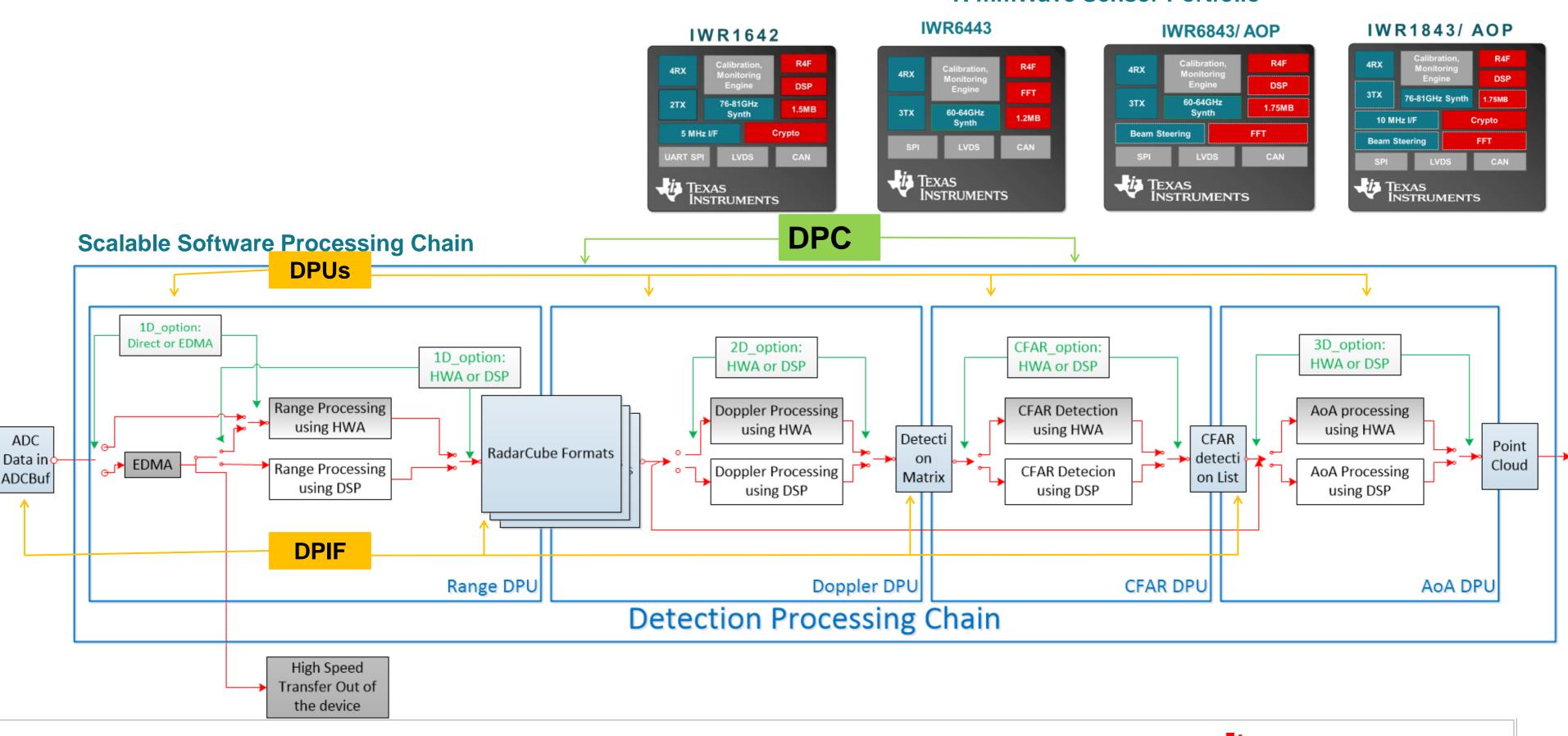
Datapath Layer Design

• DPM: Datapath manager

- Foundation layer that enables the "scalability" aspect of the architecture.
- DPIF: Standard Interface points in the Detection chain are defined
 - Input ADC data, Radar Cube, Detection Matrix, Point cloud
- DPUs: Data Translating function(s) from one interface point to the other are called "Data Processing Units"
 - Range Processing (ADC data to Radar Cube)
 - Doppler Processing (Radar Cube to Detection Matrix)
 - CFAR and AoA (Detection Matrix to Point Cloud)

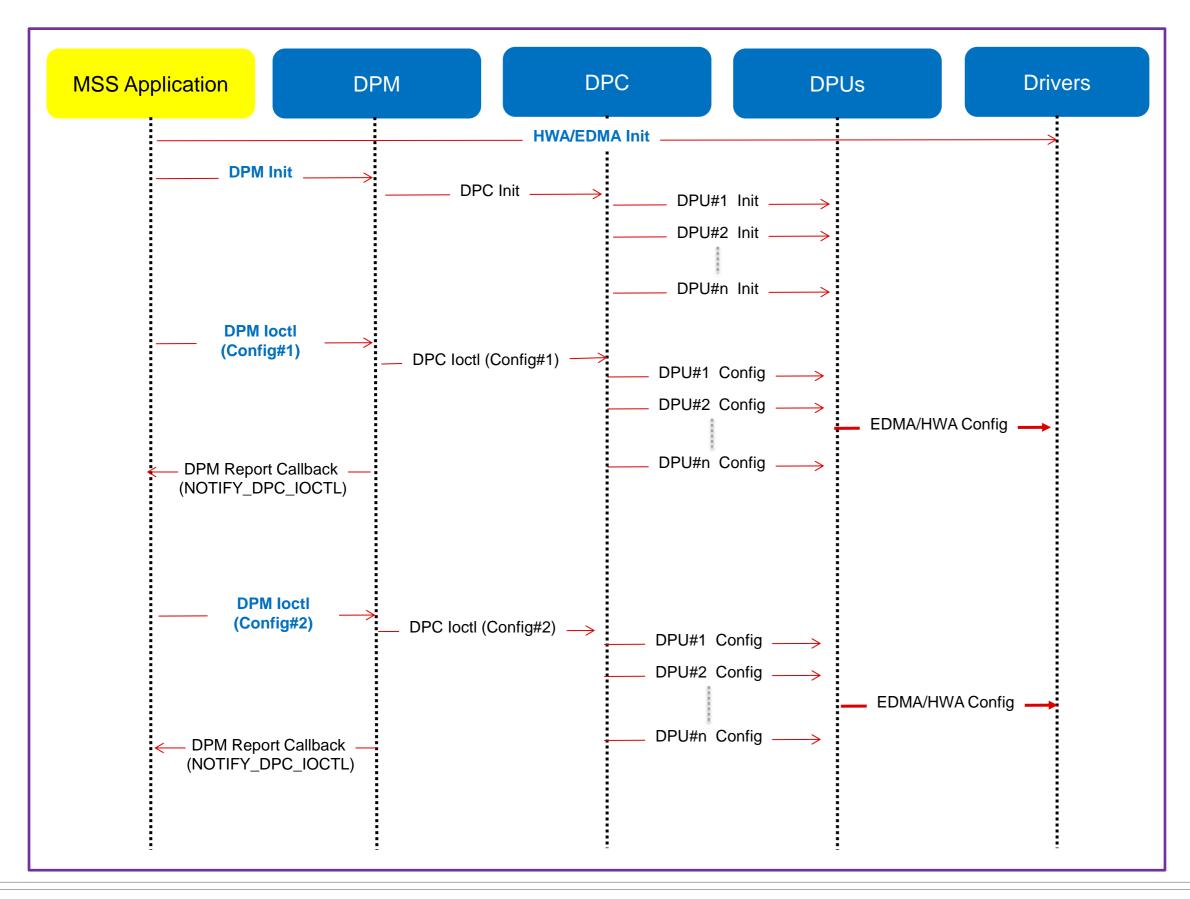
• DPC: Data Processing Chain

- Chain of "data processing units" is called a data processing Chain.
 Ex: Detection DPC (ADC to Point Cloud).
- This conforms to the DPM dictated API definition

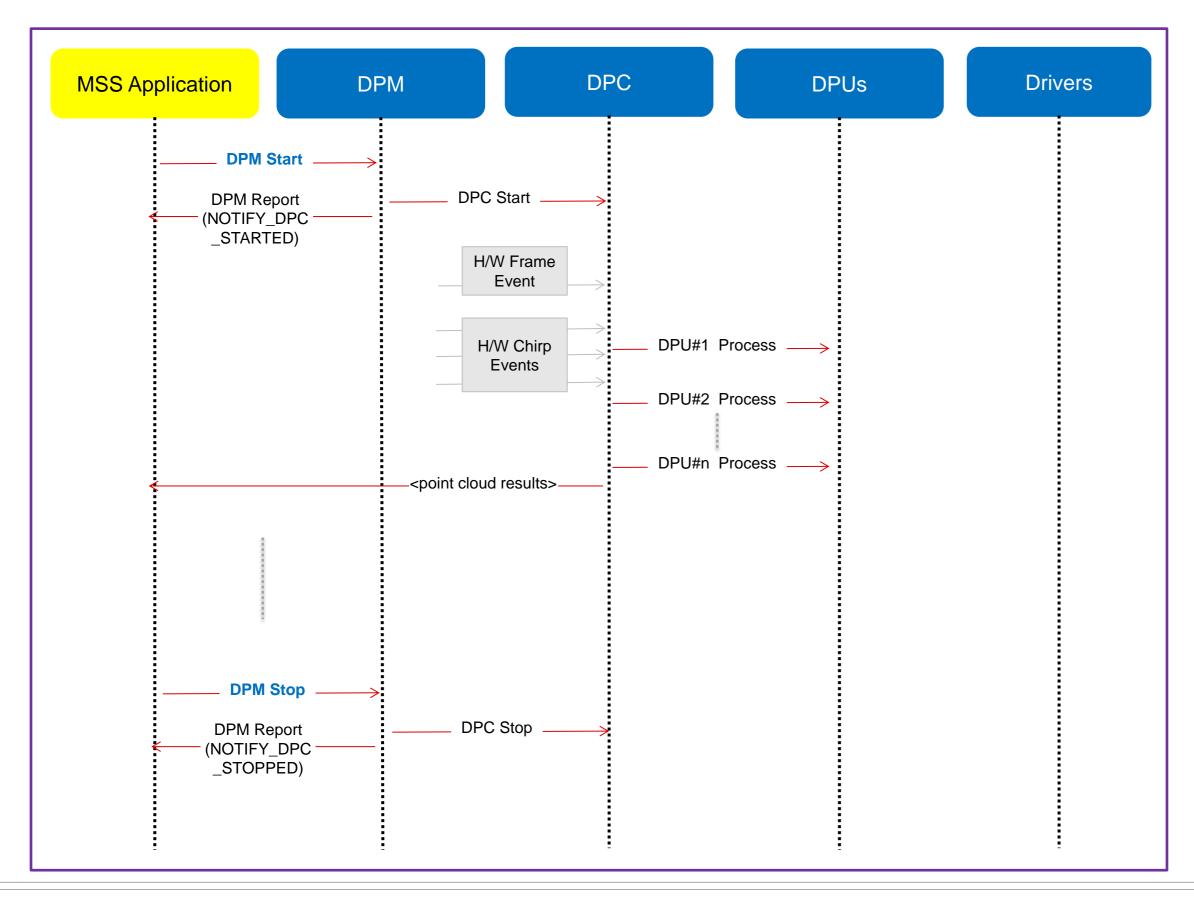

Ran

D

mmWave Application					
DataPath Manager (DPM)					
Datapath Processing Chain (DPC)					
Ige dpu	StaticClutter Removal DPU	Dopp DP		CFAR DPU	AoA DPU
DataPath EDMA (DPEDMA)			Da	ataPath Interfa	ce (DPIF)

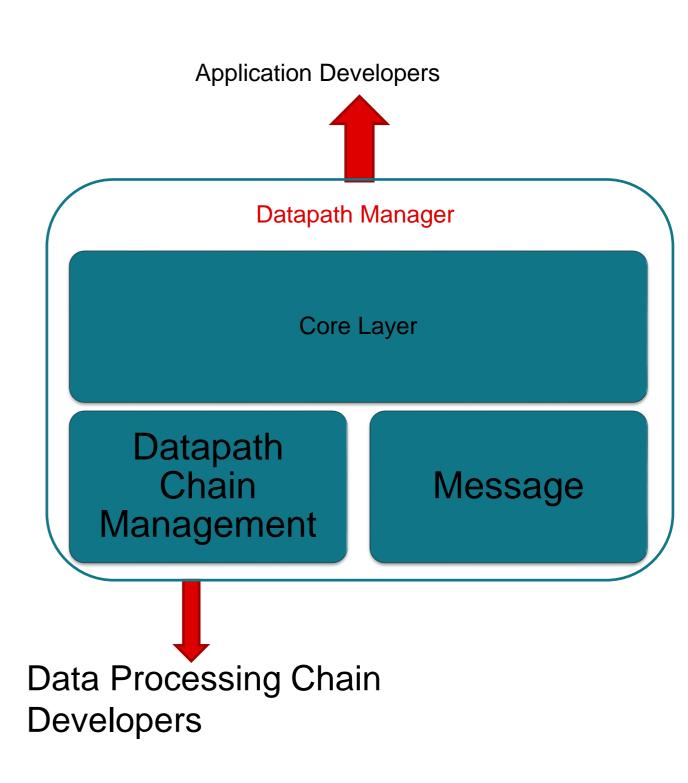

Scalable SW Chain

TI mmWave Sensor Portfolio


Typical call flow (1/2)

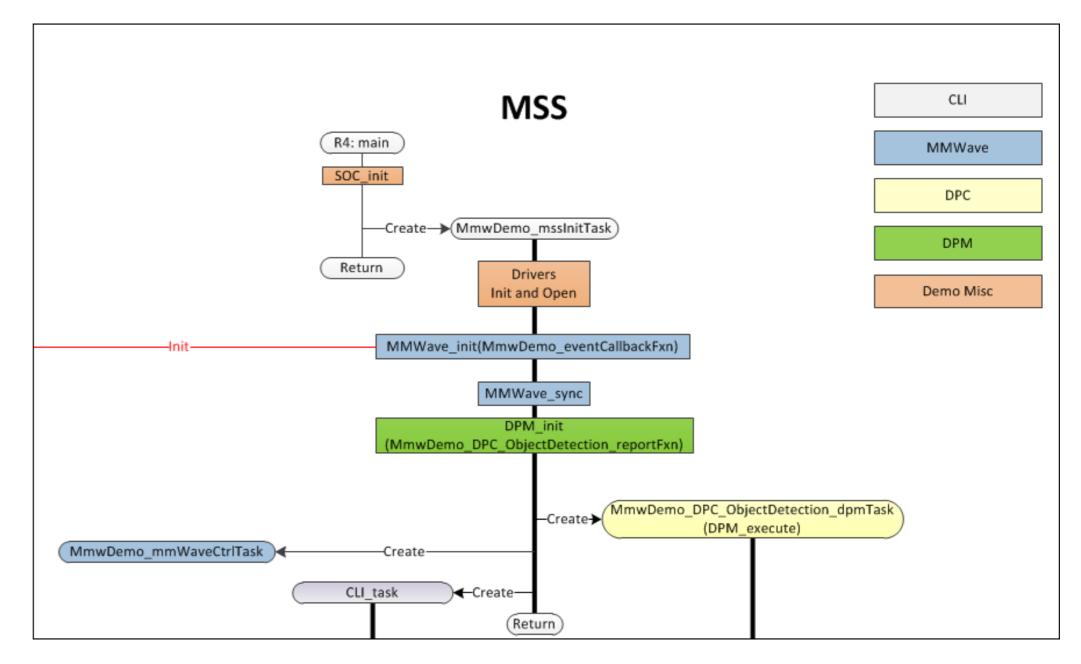
Config#1 and Config#2 are shown as examples here on how a config can be split into multiple shorrter structures as needed by a DPC. It is not mandatory to split into two. On the contrary, config can be split into even more smaller structures.

Typical call flow (2/2)



Data path deep dive

DPM: Datapath Manager


- Modular SW Architecture which provides an abstraction between the "Datapath Processing Chain" and the customer application.
 - Main task context which encapsulates the execution of DPC and DPUs
 - Application code instantiates DPM at start-up and registers a DPC.
- Provides a well-defined API
 - Exposed to the application to interface with the DPM
 - Exposed to the "*Data processing chain" developers* to be able to write their own code.
- Messaging mechanism
 - Send/Receive Configuration
 - Extends to Multiple-Thread/Core
 - Synchronized execution (No critical section required)
 - Response Mechanism with error code passing
- <u>Reporting mechanism</u> which allows applications to be notified about the status of the DPM/Datapath Processing Chain.

DPM Initialization

- Application code creates ulletand initializes a DPM instance using the DPM_init function
- Application also creates a **DPM** task

Source: MMWAVE-SDK HTML documentation n.html

C:\ti\mmwave_sdk_03_xx_xx\docs\mmwave_sdk_module_documentatio

DPM Initialization

- Application code creates and initializes a DPM instance using the DPM_init function
- Application also creates a DPM task

	(C:\ti\mmwave_sdk_03_04_00_03\packages\ti\demo\xwr64xx\mmw) - GVIM Tools Syntax Buffers Window Help	
	· · ·	
3230	/* Launch the DPM Task */	
3231	Task_Params_init(&taskParams);	2
232	taskParams.priority = MMWDEMO_DPC_OBJDET_DPM_TASK_PRIORITY;	
233	taskParams.stackSize = 4*1024;	
3234	gMmwMCB.taskHandles.objDetDpmTask = Task_create(MmwDemo_DPC_ObjectDetection_dpmTask, &	taskParams,
235		
236	/ ************************************	

🕻 m	nain.c	(C:\ti\mmwave_sdk_03_04_00_03\packages\ti\demo\xwr64xx\mmw) - GVIM
File	Edit	Tools Syntax Buffers Window Help
2732	2 *	⁴ @b Description
2733		* @n
2734		DPM Execution Task. DPM execute results are processed here:
2735		a) Transmits results through UART port.
2736		b) Updates book-keeping code for timing info.
2737		c) Notifies DPC that results have been exported (using DPC IOCTL command)
2738		
		* @retval
2740		Not Applicable.
2741		<pre>// // // // // // // // // // // // // /</pre>
2742 2743		atic void MmwDemo_DPC_ObjectDetection_dpmTask(UArg arg0, UArg arg1)
2742		int32_t retVal;
2745		DPM Buffer resultBuffer;
2746		DPC_ObjectDetection_ExecuteResultExportedInfo exportInfo;
2747		DPC_ObjectDetection_ExecuteResult *result;
2748	_	
2749	_	while (1)
2756	3	{
2751	L	/* Execute the DPM module: */
2752	2	retVal = DPM_execute (gMmwMCB.dataPathObj.objDetDpmHandle, &resultBuffer);
2753	3	if (retVal < 0) {

ain.c (C:\ti\mr	nwave_s	dk_03_04_	00_03\pack	ages\ti
Edit				Window	
	/**	*****	*****	*****	****
				ion of	
	**	*****	*****	*****	****
	mem	set ((void	*)&objl	DetIr
)	/*	Note	this m	ust be	afte
	*	and e	dma dr	ivers ?	*/
	obj	DetIn:	itPara	ms.hwa	Hand
	for	(edma	aCCIdx	= 0; (edma(
	{				
		objD	etInit	Params	.edma
	}				
	/*	Memory	y rela	ted co	nfig
				ms.L3r	
)	obj	DetIn	itPara	ms.L3r	amCf
	- 1- 2		+ D		

👫 ma

File

202 203

204

208 209

3210 3211 3212

213

214

217 218

219

220 221

3222

3223 224

225

226 227

/* Call-back config */

<pre>/* Setup the configurat</pre>	i
dpmInitCfg.socHandle	
dpmInitCfg.ptrProcChain	C
dpmInitCfg.instanceId	
dpmInitCfg.domain	
dpmInitCfg.reportFxn	
dpmInitCfg.arg	
dpmInitCfg.argSize	

/* Initialize the DPM Module: */ MmwDemo_debugAssert (0); return;

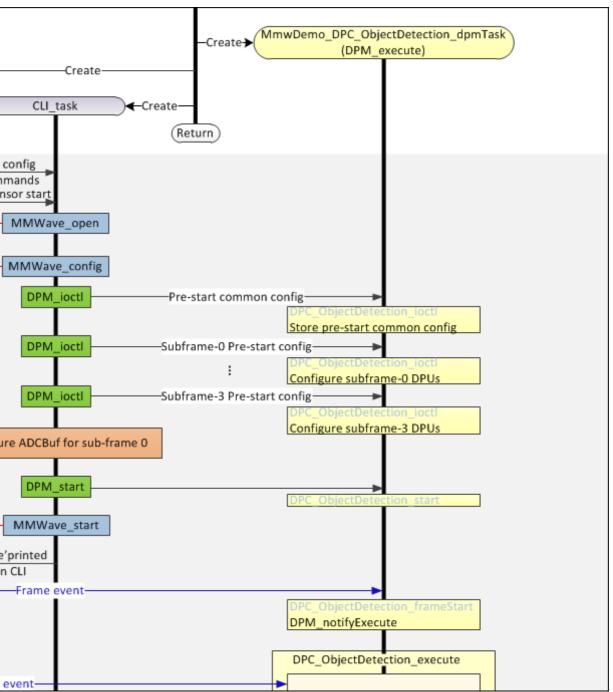
```
i\demo\xwr64xx\mmw) - GVIM
                         DPM Module:
                        nitParams, 0, sizeof(DPC_ObjectDetection_InitParams));
                        r MmwDemo dataPathOpen() above which opens the hwa
                       le = gMmwMCB.dataPathObj.hwaHandle;
                       CCIdx < EDMA_NUM_CC; edmaCCIdx++)
                       aHandle[edmaCCIdx] = gMmwMCB.dataPathObj.edmaHandle[edmaCCIdx];
                        .addr = (void *)&gMmwL3[0];
                        .size = sizeof(gMmwL3);
objDetInitParams.CoreLocalRamCfg.addr = &gDPC_ObjDetTCM[0];
objDetInitParams.CoreLocalRamCfg.size = sizeof(gDPC_ObjDetTCM);
objDetInitParams.processCallBackCfg.processFrameBeginCallBackFxn =
    MmwDemo_DPC_ObjectDetection_processFrameBeginCallBackFxn;
objDetInitParams.processCallBackCfg.processInterFrameBeginCallBackFxn =
   MmwDemo_DPC_ObjectDetection_processInterFrameBeginCallBackFxn;
memset ((void *)&dpmInitCfg, 0, sizeof(DPM_InitCfg));
                       on: */
                          = gMmwMCB.socHandle;
                       fg = &gDPC_ObjectDetectionCfg;
                                                         Pointer to DPC
                          = 0xFEEDFEED;
                          = DPM Domain LOCALIZED;
                          = MmwDemo DPC ObjectDetection reportFxn;
                          = &objDetInitParams;
                          = sizeof(DPC ObjectDetection InitParams);
gMmwMCB.dataPathObj.objDetDpmHandle = DPM_init (&dpmInitCfg, &errCode);
if (gMmwMCB.dataPathObj.objDetDpmHandle == NULL)
    System printf ("Error: Unable to initialize the DPM Module [Error: %d]\n", errCode);
```


DPC: Data Processing Chain

- DPC_xxx_cbChirpAvailable
- DPC_xxx_cbFrameStart

- All external DPC APIs starts with DPC_. DPC unique name follows next (follows coding guidelines).
 - DPC_ObjectDetection_Init
- External Mandatory APIs follows the prototype defined by the "Datapath Manager"
- DPCs have flexibility in defining their own content within the individual structure
- DPC that is split between MSS and DSS will expose two set of APIs - one for MSS and one for DSS. Depending on the functionality split between the two domains, not all APIs need to be implemented on the two domains

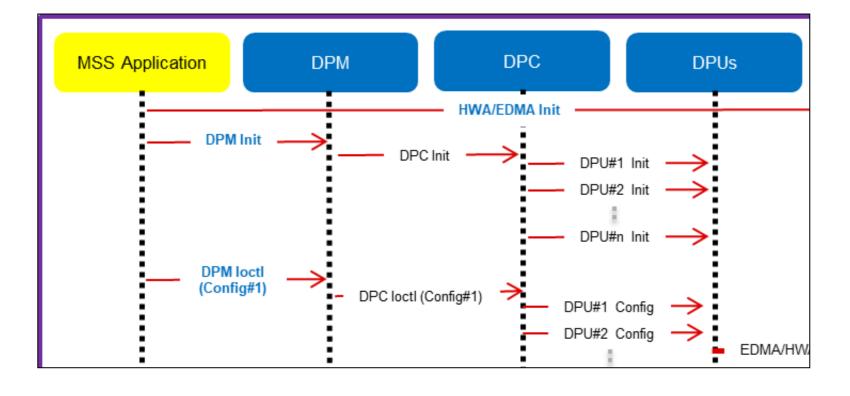
For more details, refer to docs folder in each of the DPCs

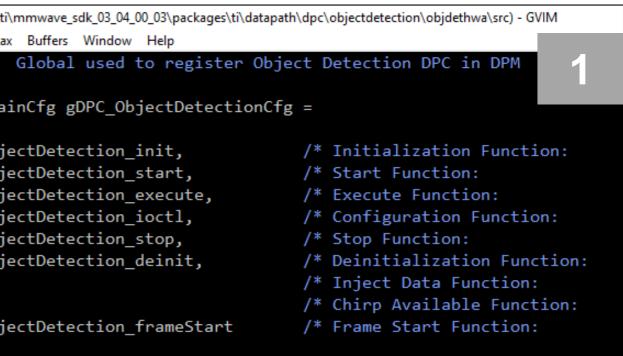


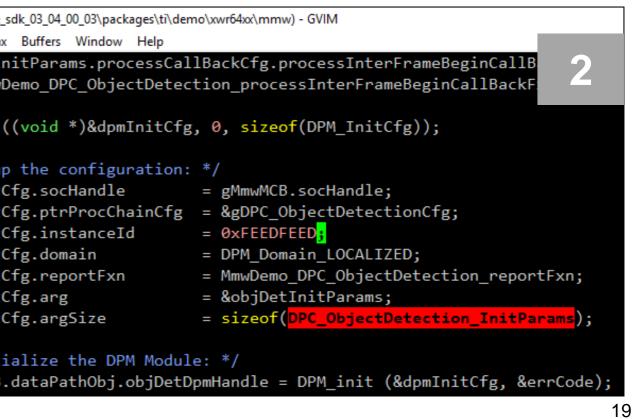
DPC Initialization

- Application registers the DPC with DPM during DPM creation.
- Application calls DPM init which calls the DPC's registered init function
- Application calls DPM_ioctl with different message types
- DPM_ioctl invokes the DPC's registered ioctl function with:
 - Pre-start common config message (common to all subframes) and
 - Sub-frame specific Pre-start config messages.
- DPC handles the messages in the ioctl function and performs the corresponding configuration.

(MmwDemo_mmWaveCtrlTask)
	C
-	CLI com CLI ser
Calib, channel, adcout configurations, RF in the second	nit —
Profile, chirp, frame/advance frame configura	ations-
c	Configu
Sensor Start	
	(Done
	Chier
	-Chirp

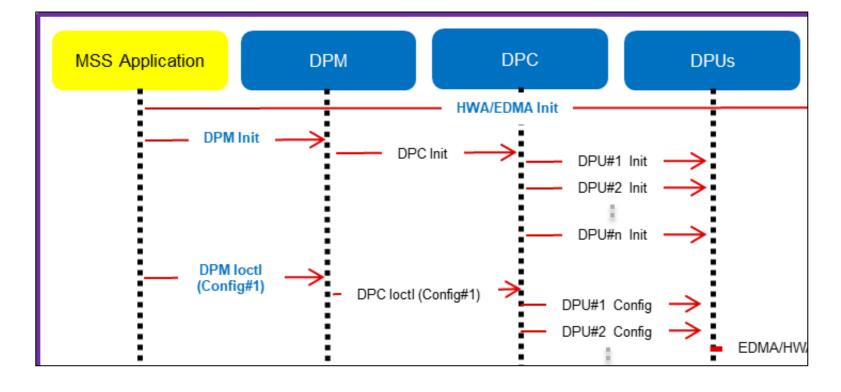

Source: MMWAVE-SDK HTML documentation C:\ti\mmwave_sdk_03_xx_xx\docs\mmwave_sdk_module_documentatio n.html


DPC Initialization

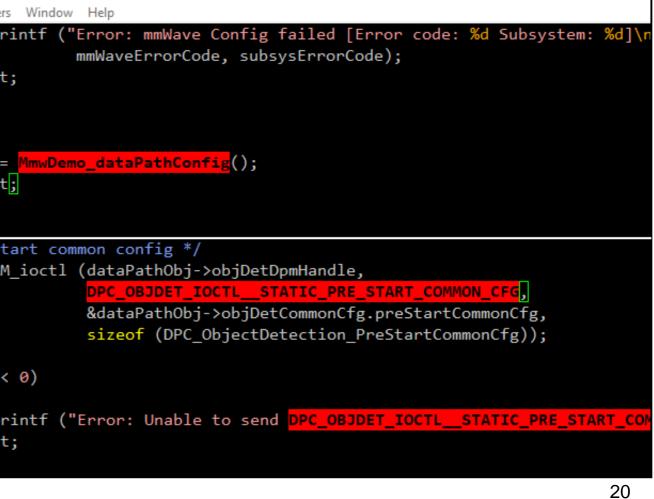

- Application registers the DPC with DPM during DPM creation.
- Application calls DPM init which calls the DPC's registered init function
- Application calls DPM_ioctl with different message types
- DPM_ioctl internally invokes the DPC's registered ioctl function and passes the message to it
- DPC handles the message in the ioctl function and performs the corresponding configuration
- Refer to the call flow below

👫 ob	jectdet	ection	.c (C:\t
		Tools	-
357	*	@bri	ef
358	*/		
359	DPM	_Pro	cCha
360	{		
361		DPC	_Obj
	_	DPC	_Obj
363		DPC	_Obj
364		DPC	_Obj
365		DPC	_Obj
366		DPC	_Obj
367		NUL	L,
368		NUL	L,
369		DPC	_Obj
370	};		
371			
372	/*	@} *	/

况 m	ain.c (C:\ti\m	mwave_
File	Edit	Tools	Syntax
3207	7	obj	DetI
3208	3		Mmwl
3209)		
3210)	men	ıset
3211	L		
3212	2	/*	Setu
3213	3	dpn	Init
3214	ļ.	dpn	Init
3215	5	dpn	Init
3216	5	dpn	Init
3217	7	dpn	Init
3218	3	dpn	Init
3219)	dpn	Init
3220)		
3221	L	/*	Init
3222	2	gMn	wMCB

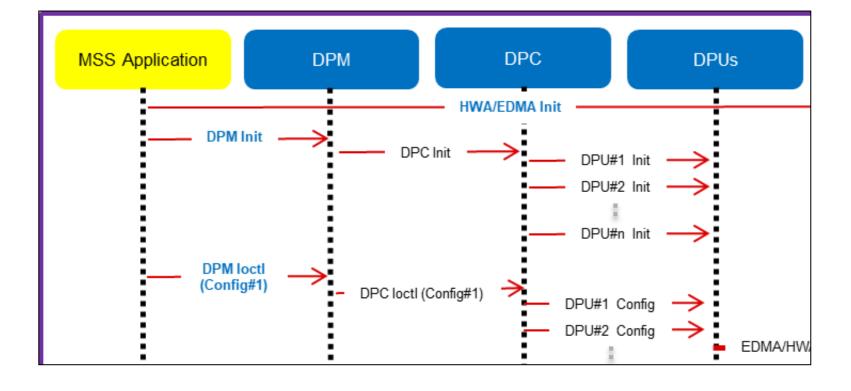


DPC Configuration

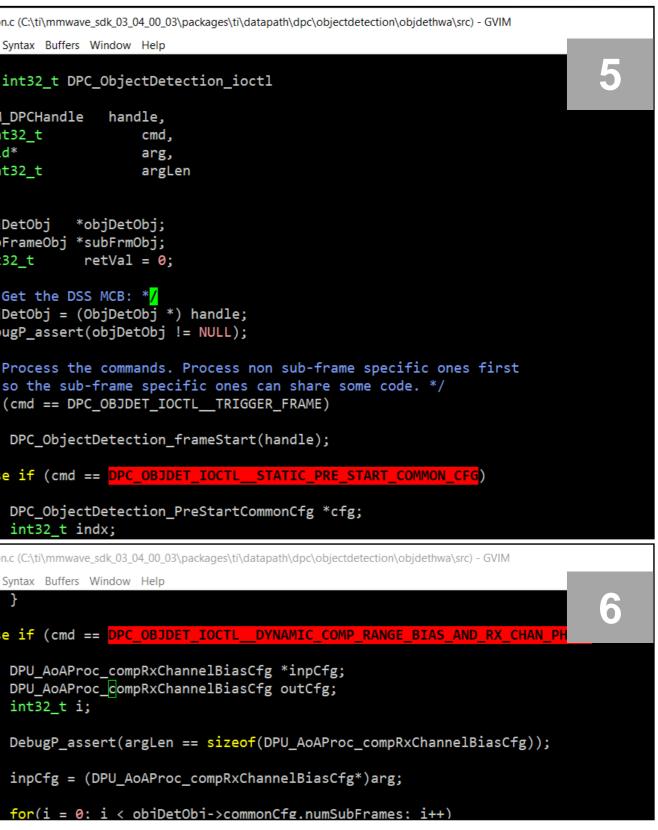

- Application registers the DPC with DPM during DPM creation.
- Application calls DPM init which calls the DPC's registered init function
- Application calls DPM_ioctl with different message types (i.e. commands)
- DPM_ioctl internally invokes the DPC's registered ioctl function and passes the message to it
- DPC handles the message in the ioctl function and performs the corresponding configuration
- Refer to the call flow below

况 r	mmw_cli.c (C:\ti\mmwave_sdk_03_04_00_03\packages\ti\demo\xwr64xx\mmw) - GVIM1	
File	Edit Tools Syntax Buffers Window Help	
125	5	
126	5 {	1
127	<pre>bool doReconfig = true;</pre>	
128	3 int32_t retVal = 0;	
304	<pre>4 /* if MmwDemo_openSensor has non-first time related processing,</pre>	call here ag
305	<pre>/* call sensor config */</pre>	
306		2
307	7 retVal = MmwDemo <mark>_configSensor</mark> ();	
308	3 if(retVal != 0)	

🌃 main.c ((C:\ti\m	nmwave_s	sdk_03_
File Edit	Tools	Syntax	Buffer
1206		Syste	em_pr
1207 3			
1208		goto	exit
1209	}		
1210	els	e	
1211	{		
1212		errCo	
1213		goto	exit
1214	}		
1215			
		DPC p	
	err	Code	= DPN
1574			
1575 4			
1576			
1577		1 0	
1578		(errC	ode <
1579	{	c .	
1580		Syst	
1581	h	goto	exit
1582	}		


_04_00_03\packages\ti\demo\xwr64xx\mmw) - GVIM

DPC Configuration (continued)


- Application registers the DPC with DPM during DPM creation.
- Application calls DPM init which calls the DPC's registered init function
- Application calls DPM_ioctl with different message types
- DPM_ioctl internally invokes the DPC's registered ioctl function and passes the message to it
- DPC handles the message in the ioctl function and performs the corresponding configuration
- Refer to the call flow below

	objecto	detectio	or
File	Edit	Tools	9
235	3 *	/	
235:	l st	atic	
235	2 (
2353 2354	3	DPN	1
2354	4	uir	1
235	5	vo	Ĺ
235	5	uir	
235	7)		
2358	8 {		
2359	9	Obj	jI
236		Sul	5
236:		int	ł
236	2		
2363		/*	(
2364 236	4	ob	jI
236	5	Del	ונ
236	5		
236	7	/* *	
2368	8		
2369	9	if	
237	3	if {	
237:	1		
237	2	} el: {	
237	3	els	5(
2374	4	{	
237	5		
237	5		
	objecto	detectio	or
		Tools	
241	5	}	
241 241 241 241 241 241 241 241	7	} el: {	56
241	8	{	
241	9		
2426	3		
242:	1		

422

423

DPU: Data Processing Units

DPU_xxx_init

•DPU xxx InitParams t errCode Handle

DPU_xxx_config

•DPU Handle

•DPU xxx Config t

•H/W Resources (EDMA, HWA, I/O buffer pointers, Scratch buffer pointers)

•Frame/Sub-frame DPU Static Config (Ex: Num ADC Samples, Chirps/Frame, ADCBuf Config, Data Interface Desc)

•Frame/Sub-frame DPU Dynamic Config (Ex: DC Range Calibration)

•errCode

DPU_xxx_process

•DPU Handle •DPU xxx OutParams t •DPU xxx Stats t •DPU optional specific Params (Ex: isLastChirp) •errCode

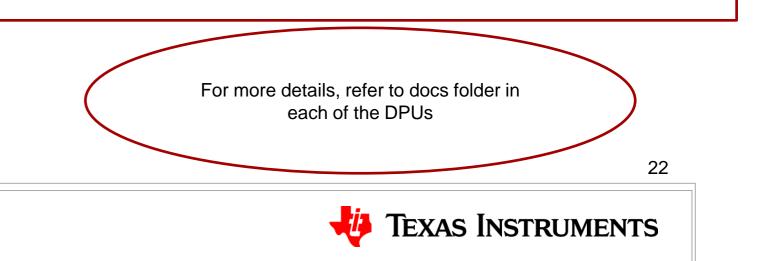
DPU xxx control

•DPU_Handle
·cmd
•args
 argSize
•errCode

DPU_xxx_deinit

•DPU handle •errCode

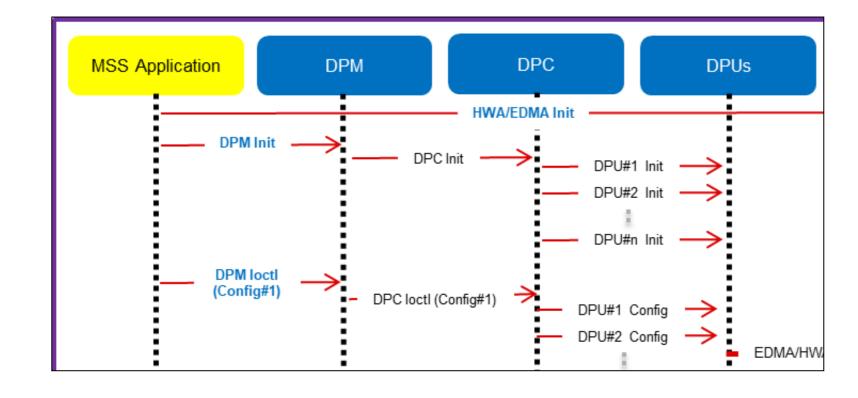
All external DPU APIs start with the prefix DPU_. DPU unique name follows next..Ex: DPU_RangeProcHWA_init


Standard external APIs:

- **Init:** one time initialization of DPU
- **Config:** complete configuration of the DPU: hardware resources, static and dynamic (if supported by DPU)
 - static config: config that is static during ongoing frames
 - dynamic config: config that can be changed from frame to frame but only when process is not ongoing - ideally interframe time after DPC has exported the results for the frame
- Process: the actual processing function of the DPU
- **Control**: ioctl interface that allows higher layer to switch dynamic configuration during interframe time **De-init**: de-initialization of DPU
- •

All memory allocations for I/O buffers and scratch buffers are outside the DPU since mmWave applications rely on memory overlay technique for optimization and that is best handled at application level

All H/W resources must be allocated by application and passed to the DPU. This helps in keeping DPU platform agnostic as well as allows application to share the resources across DPU when DPU processing doesn't overlap in time.


DPUs are OS agnostic and use OSAL APIs for needed OS services.

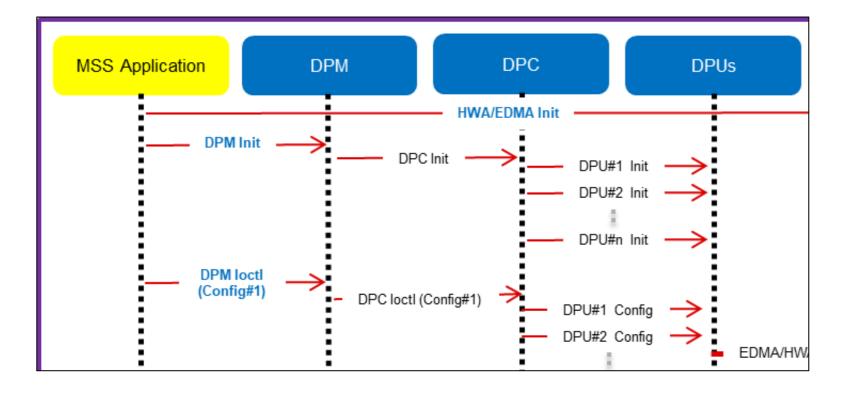
DPU Initialization

Recall from DPC Configuration...

- Application calls DPM init which calls the DPC's registered init function
- DPC_init calls the various DPU init functions in sequence, to create separate DPU instances for the number of sub-frames configured.

• Refer to the call flow below

👫 ol	ojectdetection	
	Edit Tools S	5
2825	*	
2826		
	static [)
2828		
2829	DPM_	
2830	DPM_	
2831	int3	5
2832)	
2833 2834	{	
2834 2835	int3	
	Obj[
2836 2837	Subf	
2838	DPC_ DPU_	
2839	DPU_	
2840	DPU_	
2841	DPU_	
2842	HWA	
2907	rang	
2908	aoal	2
2909	cfar	•
2910	dopp)
2911		
2912	for(ĺ
2913	{	
2914		
2915		
2916		
2917		
2918		
2919		
2920		
2921		
2922		
2923		
2924 2925		
2925		
2926		
2927		
2928		
2929		
2930 2931		
2931		


```
n.c (C:\ti\mmwave_sdk_03_04_00_03\packages\ti\datapath\dpc\objectdetection\objdethwa\src) - GVIM
ntax Buffers Window Help
 rror - <0
               PC_ObjectDetection_init
 M DPCHandle
 landle
                 dpmHandle,
InitCfg*
                 ptrInitCfg,
  t*
                 errCode
  ti;
           *objDetObj = NULL;
          *subFrmObj;
                     tParams *dpcInitParams;
  angeProcHWA_InitParams rangeInitParams;
  DAProcHWA_InitParams aoaInitParams;
CFARCAProcHWA_InitParams cfarInitParams;
 opplerProcHWA_InitParams dopplerInitParams;
 lemInfo
                 hwaMemInfo;
eInitParams.hwaHandle = dpcInitParams->hwaHandle;
nitParams.hwaHandle = dpcInitParams->hwaHandle;
InitParams.hwaHandle = dpcInitParams->hwaHandle;
lerInitParams.hwaHandle = dpcInitParams->hwaHandle;
 = 0; i < RL_MAX_SUBFRAMES; i++)
subFrmObj = &objDetObj->subFrameObj[i];
subFrmObj->dpuRangeObj = DPU_RangeProcHWA_init(&rangeInitParams, errCode);
if (*errCode != 0)
    goto exit;
subFrmObj->dpuStaticClutterObj = DPU_StaticClutterProc_init(errCode);
 f (*errCode != 0)
    goto exit;
subFrmObj->dpuCFARCAObj = DPU_CFARCAProcHWA_init(&cfarInitParams, errCode);
 f 🚺 *annCada
```


DPU Configuration

Recall from DPC Configuration...

- Application calls DPM_ioctl with different message types
- DPM_ioctl internally invokes the DPC's registered ioctl function and passes the message to it
- DPC performs DPU configuration when handling the PRE_START_CFG command
 - The PRE_START_CFG handler calls wrapper functions for each DPU, e.g. DPC_ObjDet_rangeConfig
 - The wrapper allocates the resources required for the DPU and calls the corresponding DPU config function e.g. DPU_RangeProcHWA_config.
- Refer to the call flow below

👫 object	detection.c (C:\ti\	r
File Edit	Tools Syntax I	B
2737		
2738	/	1
2739	/ (
2740	ł	C
2741		
2742		
2743		
2744		
2745		
2746		
2763		
2764		
2765		
2766 2767		
2768		
2769		
2232		
2233	retVal =	
2234		
2235		
2236		
2237	if (retVa	9
1408	hwaCfg->	
1409		
1410	retVal =	
1411	if (retVa	
1412	{	
1413	goto	
1414	}	
1415		
1416	/* store	
1417	* inter * dc na	
1418	ucia	
1419	rangeCfg	
1420	<pre>*cfgSave</pre>	
1421		

mmwave_sdk_03_04_00_03\packages\ti\datapath\dpc\objectdetection\objdethwa\src) - GVIM

Buffers Window Help

```
* Related to pre-start configuration */
ase DPC_OBJDET_IOCTL__STATIC_<mark>PRE_START_CFG</mark>:
```

```
DPC_ObjectDetection_PreStartCfg *cfg;
DPC_ObjectDetection_DPC_IOCTL_preStartCfg_memUsage *memUsage;
MemoryP_Stats statsStart;
MemoryP_Stats statsEnd;
```

```
DPC_ObjDet_rangeConfig(obj->dpuRangeObj, &obj->staticCfg, &obj->dynCfg,
edmaHandle[DPC_OBJDET_DPU_RANGEPROC_EDMA_INST_ID],
&radarCube, CoreLocalRamObj, &hwaWindowOffset,
&rangeCoreLocalRamScratchUsage, &obj->dpuCfg.rangeCfg);
1 != 0)
```

paramSetStartIdx = DPC_OBJDET_DPU_RANGEPROC_PARAMSET_START_IDX;

```
DPU_RangeProcHWA_config(dpuHandle, &rangeCfg);
al != 0)
```

exit;

```
configuration for use in intra-sub-frame processing and
-sub-frame switching, although window will need to be regenerated and
nge sig should not be reset. */
.staticCfg.resetDcRangeSigMeanBuffer = 0;
= rangeCfg;
```


DPIF: Datapath Interface

Input ADC data

- Property
- numADCSamples
- RX interleaved/non-interleaved
- Complex/Real
- Buffer Pointer

Radar Cube

- Property
- Layout RADAR CUBE RANGE DOPPLER RX TX (1)
- Buffer Pointer

Detection Matrix

- Property
- Layout DET MATRIX RANGE DOPPLER (1)
- Buffer Pointer

Point cloud

- Property
- Format XYZV, RAEV
- Float

Point Cloud SideInfo

- Property
- snr
- noiseVal

	110	dpit_adc
		Edit
	108 109	/** * @ * * @
	109	* @
	110	*
	111	
	112	* @
	113	
	114	*/
	115	type
	116	<u>{</u>
	117	
	118	
	119	
	120	
	121	I
	122	
	123	
	124	
	125	}DPI
1		
	12	dpif_poir
	File	Edit 1 * F */
	56 57 58	∽ I ≭/
	57	*/
	50	type
	29	{
	61	/
	61	
	62	
	64	
	65	1
	66	
	67	1
	67 68	-
	69	
	70	
	71	/
	11	
	72	
	72 73	-
	72 73 74	1
	72 73 74 75	1
	72 73 74 75 76	1

🕻 dpif_adcdata.h (C:\ti\mmwave_sdk_03_04_00_03\packages\ti\datapath\dpif) - GVIM

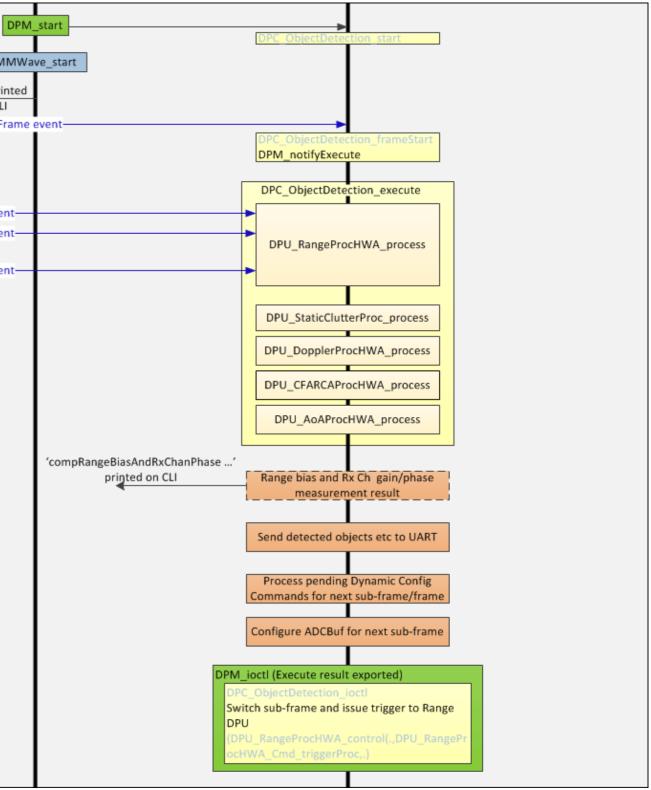
Tools Syntax Buffers Window Help

```
Obrief
ADC Data buffer definition
Adetails
The structure defines the ADC data buffer ,including data property, data size and
edef struct DPIF_ADCBufData_t
/*! @brief ADCBuf data property */
DPIF_ADCBufProperty dataProperty;
/*! @brief ADCBuf buffer size in bytes */
uint32_t dataSize;
/*! @brief ADCBuf data pointer */
void *data;
:F_ADCBufData;
```

ntcloud.h (C:\ti\mmwave_sdk_03_04_00_03\packages\ti\datapath\dpif) - GVIM1

```
Tools Syntax Buffers Window Help
Point cloud definition in Cartesian coordinate system
def struct DPIF_PointCloudCartesian_t
   @brief x - coordinate in meters. This axis is parallel to the sensor plane
           and makes the azimuth plane with y-axis. Positive x-direction is righ
            in the azimuth plane when observed from the sensor towards the scene
            and negative is the opposite direction. */
  loat x;
   @brief y - coordinate in meters. This axis is perpendicular to the
            sensor plane with positive direction from the sensor towards the scen
 loat y;
 *! @brief z - coordinate in meters. This axis is parallel to the sensor plane
            and makes the elevation plane with the y-axis. Positive z direction
            is above the sensor and negative below the sensor */
 loat z;
 *! @brief Doppler velocity estimate in m/s. Positive velocity means target
            is moving away from the sensor and negative velocity means target
            is moving towards the sensor. */
float velocity;
```

79 }DPIF_PointCloudCartesian;


25

TEXAS INSTRUMENTS

- At sensor start: Application calls DPM_start which calls the DPC's pre-registered start function DPC_ObjectDetection_start.
 - The mmw demo does this in the sensorStart CLI command handler function.
- At every frame interrupt: The DPC's preregistered frame start call back function, DPC ObjectDetection frameStart is invoked.
 - **Recall from DPC** init: The DPC's frameStart callback is registered with the DPM during DPC initialization
- This invokes the DPC's registered execute function, e.g. DPC_ObjectDetection_execute
 - Under the hood: The Frame Start handler calls DPM notifyExecute which posts the semaphore for DPM_execute
 - DPM execute then calls the DPC's preregistered execute function.
- DPC_ObjectDetection_execute performs the frame processing and populates the output in DPC_ObjectDetection_ExecuteResult structure and returns.
- Application reads the output structure and sends it over UART. This completes the frame processing.

Sensor Start	N
	'Done'pr
	on Cl
	F
	Chirp eve
	Chirp eve

- At sensor start: Application calls DPM_start which calls the DPC's pre-registered start function DPC_ObjectDetection_start.
 - The mmw demo does this in the sensorStart CLI command handler function.
- At every frame interrupt: The DPC's preregistered frame start call back function, DPC_ObjectDetection_frameStart is invoked.
 - Recall from DPC_init: The DPC's frameStart callback is registered with the DPM during DPC initialization
- This invokes the DPC's registered execute function, e.g. DPC_ObjectDetection_execute
 - Under the hood: The Frame Start handler calls DPM_notifyExecute which posts the semaphore for DPM_execute
 - DPM_execute then calls the DPC's preregistered execute function.
- DPC_ObjectDetection_execute performs the frame processing and populates the output in DPC_ObjectDetection_ExecuteResult structure and returns.
- Application reads the output structure and sends it over UART. This completes the frame processing.

🕻 🖬 🖬	nain.c	(C:\ti\m	nmwave_	sdk_03_04_(
File	Edit	Tools	Syntax	Buffers
1223	*		mmw	demo he
1224	*			
1225	*	@re	tval	0 if n
1226	*/	/		
1227	int	:32_t	MmwD	emo_sta
1228	{			
1229		int	32_t	err
1230		MMW	ave_C	alibrat
1231				
1232		/**	*****	******
1233		*	Data	path ::
1234		**	*****	******
1235		Mmw	Demo_	dataPat

况 r	main.c	(C:\ti\m	nmwave_s	sdk_03_04	L_0
File	Edit	Tools	Syntax	Buffers	
1786	vo	id Mm	wDemo	_dataP	a
1787	7 {				
1788	3	int	32_t (errCod	le
1789)				
1790)	Deb	ugP_lo	og0("A	۱p
1791	L				
1792	2	/*	Confi	gure H	W
1793	3	*	start	of fr	a
1794	Ļ	if	(gMmwl	MCB.su	ıb
1795	5	{			
1796	5		MmwDe	emo_co	n
1797	7	}			
1798	3				
1799)	/*	Start	the D	P
1800)	if	((err	Code =	-
1801		{			

00_03\packages\ti\demo\xwr64xx\mmw) - GVIM

window Help
PathStart (void)
de;
App: Issuing DPM_start\n");
HW LVDS stream for the first sub-frame that will start upon
rame */
ubFrameCfg[0].lvdsStreamCfg.dataFmt != MMW_DEMO_LVDS_STREAM_CFG_DAT

figLVDSHwData(0);

```
M Profile: */
DPM_start(gMmwMCB.dataPathObj.objDetDpmHandle)) < 0)
```


- At sensor start: Application calls DPM_start which calls the DPC's pre-registered start function DPC_ObjectDetection_start.
 - The mmw demo does this in the sensorStart CLI command handler function.
- At every frame interrupt: The DPC's preregistered frame start call back function, DPC ObjectDetection frameStart is invoked.
 - Recall from DPC init: The DPC's frameStart callback is registered with the DPM during DPC initialization
- This invokes the DPC's registered execute function, e.g. DPC_ObjectDetection_execute
 - Under the hood: The Frame Start handler calls DPM notifyExecute which posts the semaphore for DPM_execute
 - DPM_execute then calls the DPC's pre-registered execute function.
- DPC_ObjectDetection_execute performs the frame processing and populates the output in DPC_ObjectDetection_ExecuteResult structure and returns.
- Application reads the output structure and sends it over UART. This completes the frame processing.

🕻 o	bjecto	letectio
		Tools
417	*	/
418	st	atic
419	{	
420		Obj
421		
422		obj
423		
424		Deb
425		
426		
427		/*
428		DPC
429		obj
430		
431		/*
432		if
433		{
i i i i i i i i i i i i i i i i i i i	bjecto	letectio
File	Edit	Tools
832		@re
832 833	* *	@re
832 833 834	* *	@re
832 833 834	* *	@re
832 833 834 835 836	* * */	@re / t32_t
832 833 834 835 836 836	* */ int	@re
832 833 834 835 836 836 837 838	* */ int	@re / t32_t
832 833 834 835 836 836 837 838 839	* *, int (@re / t32_t DPM
832 833 834 835 836 836 837 838	* */ int (@re / t32_t DPM DPM
832 833 834 835 836 837 838 839 840 841	* *, int (@re / t32_t DPM DPM
832 833 834 835 836 837 838 839 840 841 842	* *, int (@re / t32_t DPM DPM Obj Sub
832 833 834 835 836 837 838 839 840 841 842 843	* *, int (@re / t32_t DPM DPM Obj Sub DPL
832 833 834 835 836 837 838 839 840 841 842 843 844	* *, int (@re / DPM DPM Obj Sub DPU DPU
832 833 834 835 836 837 838 839 840 841 842 843 844 845	* *, int (@re / t32_t DPM DPM Obj Sub DPU DPU DPU
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846	* *, int (@re / t32_t DPM DPM Obj Sub DPU DPU DPU
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 846 847	* *, int (@re / t32_t DPM DPM Obj Sub DPU DPU DPU DPU
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848	* *, int (@re / t32_t DPM DPM Obj Sub DPU DPU DPU DPU Int
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 845 846 847 848	* */ int (@re / t32_t DPM DPM DPM DPM DPU DPU DPU DPU DPU tint
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850	* */ int (@re / t32_t DPM DPM Obj Sub DPU DPU DPU DPU DPU int DPO
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 845 846 847 848	* */ int (@re / t32_t DPM DPM DPM DPM DPU DPU DPU DPU DPU tint


```
on.c (C:\ti\mmwave_sdk_03_04_00_03\packa...ti\datapath\dpc\objectdetection\objdethwa\src) - GVIM1
 Syntax Buffers Window Help
 void DPC_ObjectDetection_frameStart (DPM DPCHandle handle)
            *objDetObj = (ObjDetObj *) handle;
DetObj
jDetObj->stats.frameStartTimeStamp = Cycleprofiler_getTimeStamp();
ugP_log2("ObjDet DPC: Frame Start, frameIndx = %d, subFrameIndx = %d\n",
          objDetObj->stats.frameStartIntCounter, objDetObj->subFrameIndx);
Check if previous frame (sub-frame) processing has completed */
 _Objdet_Assert(objDetObj->dpmHandle, (objDetObj->interSubFrameProcToken == 0)
DetObj->interSubFrameProcToken++;
Increment interrupt counter for debugging and reporting purpose */
 (objDetObj->subFrameIndx == 0)
on.c (C:\ti\mmwave_sdk_03_04_00_03\packa...ti\datapath\dpc\objectdetection\objdethwa\src) - GVIM1
 Syntax Buffers Window Help
 tval
 Error - <0
  PC_ObjectDetection_execute
 DPCHandle handle,
 Buffer*
              ptrResult
DetObj *objDetObj;
 FrameObj *subFrmObj;
 RangeProcHWA OutParams outRangeProc;
 _StaticClutterProc_OutParams outStaticClutter;
 DopplerProcHWA_OutParams outDopplerProc;
 CFARCAProcHWA_OutParams outCfarcaProc;
 _AoAProcHWA_OutParams outAoaProc;
32 t retVal;
 ObjectDetection_ExecuteResult *result;
ObjectDetection ProcessCallBackCfg *processCallBack;
32 t i;
```


- At sensor start: Application calls DPM_start which calls the DPC's pre-registered start function DPC_ObjectDetection_start.
 - The mmw demo does this in the sensorStart CLI command handler function.
- At every frame interrupt: The DPC's pre-registered frame start call back function, DPC_ObjectDetection_frameStart is invoked.
 - Recall from DPC init: The DPC's frameStart callback is registered with the DPM during DPC initialization
- This invokes the DPC's registered execute function, e.g. DPC_ObjectDetection_execute
 - Under the hood: The Frame Start handler calls DPM notifyExecute which posts the semaphore for DPM_execute
 - DPM_execute then calls the DPC's preregistered execute function.
- DPC_ObjectDetection_execute performs the frame processing and populates the output in DPC_ObjectDetection_ExecuteResult structure and returns.
- Application reads the output structure and sends it over UART. This completes the frame processing.

1	main.c	(C:\ti\m	nmwave_	sdk_03_04	4_00_03
File	Edit	Tools	Syntax	Buffers	Wine
2735	*		a) T	ransmi	its 1
2736	5 *		b) U	pdates	s boo
2737	*		c) N	otifie	es Di
2738	3 *				
2739	*	@re	tval		
2746) *		Not	Applic	able
2741	*	/			
2742	2 sta	atic	void	MmwDen	no_DI
2743	3 {				
2744	1	int	32_t	re	etVa
2745	5	DPM	_Buff	er re	esul
2746	5	DPC	_Obje	ctDete	ectio
2747	7	DPC	_Obje	ctDete	ectio
2748					
2749		whi	le (1)	
2756		{			
2751				xecute	
2752	2		retV	al = [OPM_e
2834	1				
2835	5			Mn	nwDer
2836	5				
2837	7				
2838	3			/*	
2839	9			X	271
2846	3			X	^k Do:
2841				Я	VV II.
2843)			×	^k tra

3\packages\ti\demo\xwr64xx\mmw) - GVIM dow Help results through UART port. ok-keeping code for timing info. C that results have been exported (using DPC IOCTL command)

'C_ObjectDetection_dpmTask(UArg arg0, UArg arg1)

```
tBuffer;
n ExecuteResultExportedInfo exportInfo;
on_ExecuteResult *result;
```

DPM module: */ execute (gMmwMCB.dataPathObj.objDetDpmHandle, &resultBuffer);

mo_transmitProcessedOutput(gMmwMCB.loggingUartHandle, result, &currSubFrameStats->outputStats);

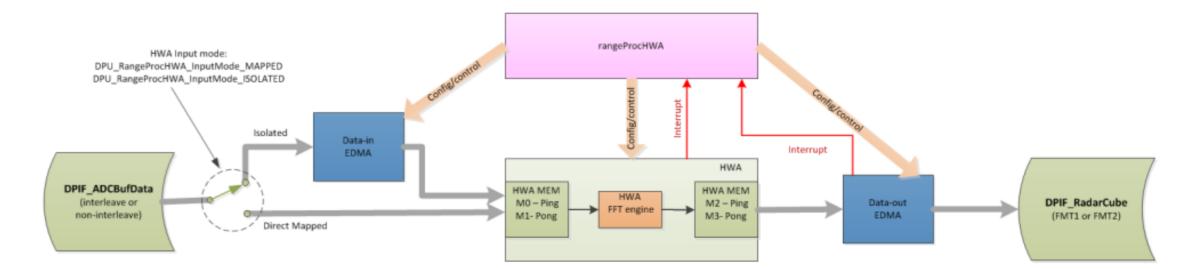
it until s/w session is complete. We expect the LVDS transmission session to be completed by now because the UART transmission ing the wait immediately after starting the transmission above ll serialize the LVDS and UART transfers so it is better to do ransmission (which is blocking call i.e UART transmission is com

- At sensor start: Application calls DPM_start which calls the DPC's pre-registered start function DPC_ObjectDetection_start.
 - The mmw demo does this in the sensorStart CLI command handler function.
- At every frame interrupt: The DPC's pre-registered frame start call back function, DPC_ObjectDetection_frameStart is invoked.
 - Recall from DPC init: The DPC's frameStart callback is registered with the DPM during DPC initialization
- This invokes the DPC's registered execute function, e.g. DPC_ObjectDetection_execute
 - Under the hood: The Frame Start handler calls DPM notifyExecute which posts the semaphore for DPM_execute
 - DPM_execute then calls the DPC's preregistered execute function.
- DPC_ObjectDetection_execute performs the frame processing and populates the output in DPC_ObjectDetection_ExecuteResult structure and returns.
- Application reads the output structure and sends it over UART. This completes the frame processing.

🔏 r	nain.c	(C:\ti\n	nmwave_	sdk_03_04	_00
File	Edit	Tools	Syntax	Buffers	W
2174	*/				
2175	voi	id Mm	wDemo	trans	mi
2176	5				
2177	'				
2178	} {				
2179)	Mmw	Demo_	output	_n
2180)	Mmw	Demo_	GuiMon	iSe
2181		Mmw	Demo_	SubFra	ime
2182	-	uin	t32_t	tlvId	x
2183		uin	t32_t	i;	
2184				numPa	
2185				packe	
2186				paddin	
2187		uin	t16_t	*detM	lat
2188					
2189				output	:_n
2287			Idx =		
2288				detect	
2289		if		iMonSe	
2290		-	(resi	ult-≻n	um
2291		{		•	
2292			UART_	_write	Po
2293					
2294					
2295			1*5		
2296				nd arr	
2297			UARI	_write	PC
2298			+1	dv. L. v	
2299 2300			tlvI	ux++;	
2300		}			
2301		/*	Sond	latact	~
2002			Sena (detect	eu


```
0_03\packages\ti\demo\xwr64xx\mmw) - GVIM
Vindow Help
tProcessedOutput(UART Handle uartHandle,
                  DPC_ObjectDetection_ExecuteResult *result,
                  MmwDemo_output_message_stats
                                                      *timingInfo)
essage header header;
    *pGuiMonSel;
eCfg *subFrameCfg;
  0;
dingBytes;
 en;
MMWDEMO_OUTPUT_MSG_SEGMENT_LEN];
trix = (uint16_t *)result->detMatrix.data;
nessage_tl tl[MMWDEMO_OUTPUT_MSG_MAX];
 Objects */
>detectedObjects == 1) || (pGuiMonSel->detectedObjects == 2) &&
0bjOut > 0)
olling (uartHandle,
       (uint8_t*)&tl[tlvIdx],
       sizeof(MmwDemo_output_message_tl));
 of objects */
olling (uartHandle, (uint8_t*)result->objOut,
       sizeof(DPIF_PointCloudCartesian) * result->numObjOut);
```

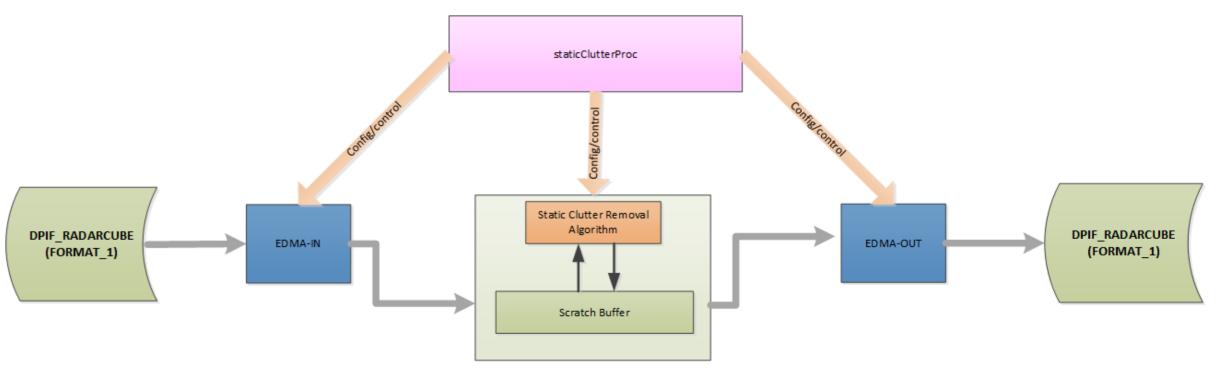
Objects Side Info */



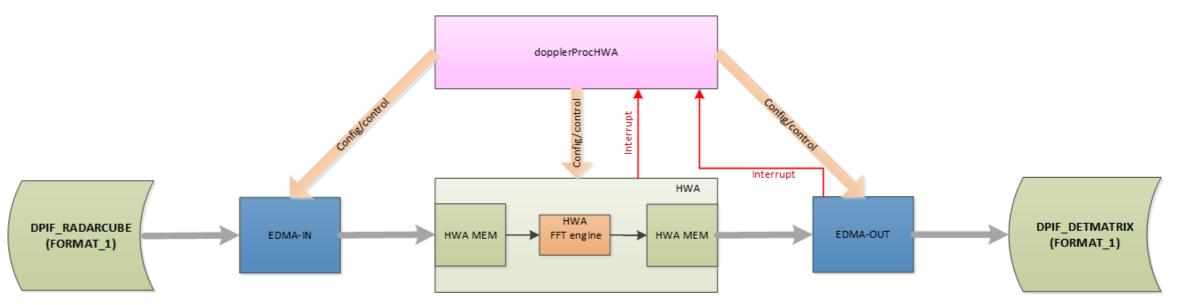
DPUs and DPCs in SDK 3.x

RangeProc DPU

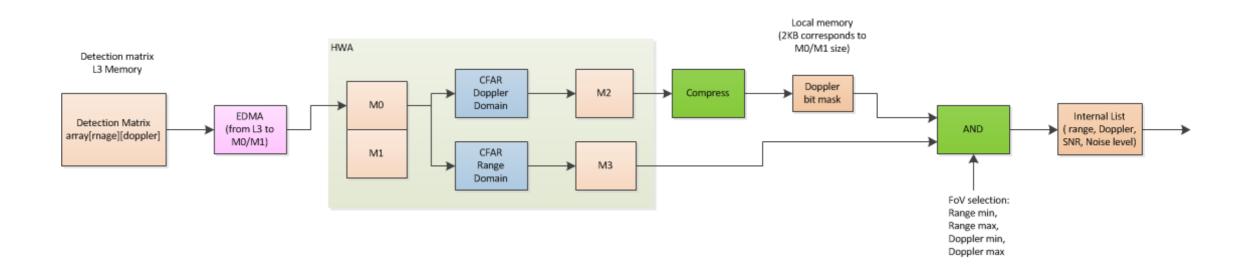
- Purpose: (1D FFT+ DC Range Calib) processing during active frame.
 - Takes ADCBuf as input
 - interleaved or nonInterleaved format
 - Single chirp or multichirp (DSP mode only)
 - Either direct access (HWA mode only) or via EDMA
 - Produces RadarCube in L3 in user requested format (fixed set of formats described in data interface).
 - Performs FFT using HWA or DSP based on configuration.
 - Performs DC range calibration either inline (DSP mode) or at the end of all chirps (HWA mode).
- Supported architecture
 - R4F, C674x
 - Different files for HWA based and S/W based implementation



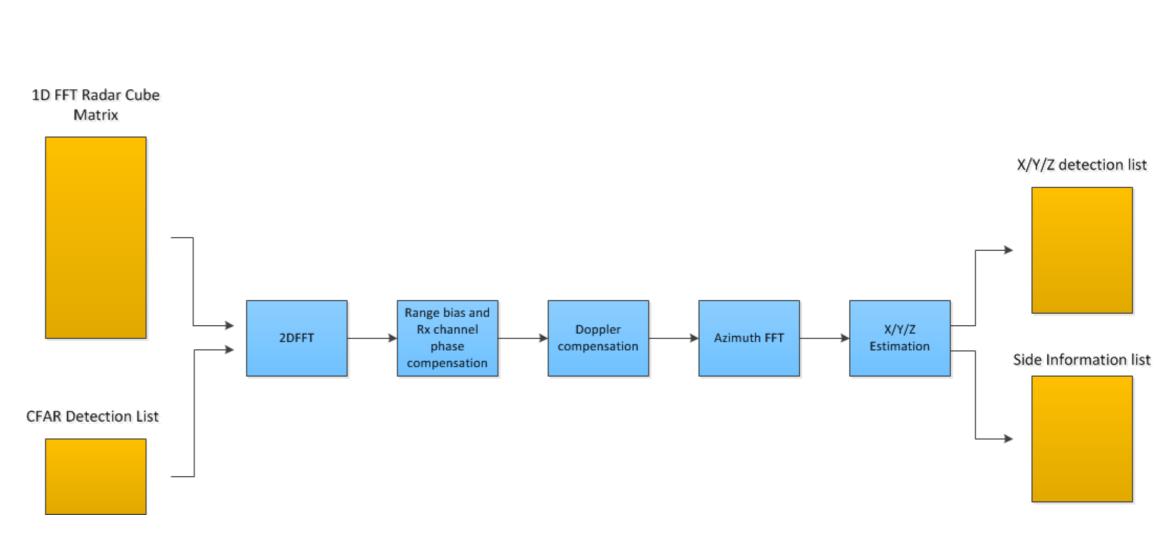
Static Clutter DPU


- Purpose: (Clutter Removal) processing during inter frame.
 - Takes non-transposed formatted 1DOUT Radarcube as input
 - Updates the RadarCube in L3 (keeping the same format)
 - S/W based only
- Supported architecture
 - R4F, C674x

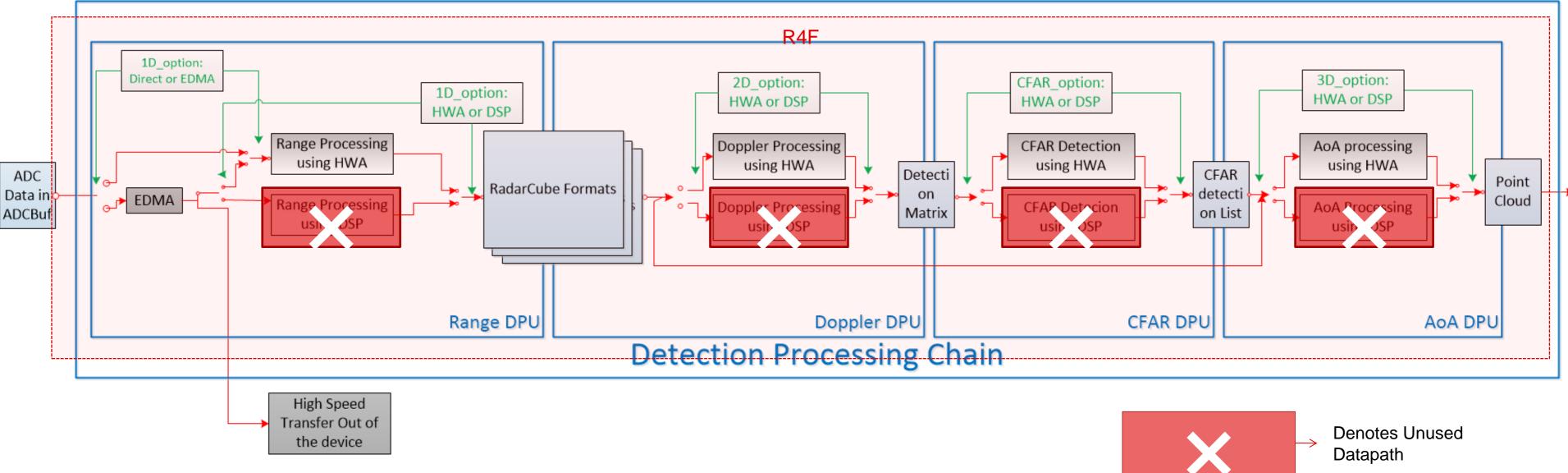
Doppler DPU


- Purpose: (2D FFT + Energy Sum) processing during inter frame.
 - Takes non-transposed formatted 1DOUT Radarcube as input
 - Produces Detection Matrix in L3 in fixed format
 - Performs FFT and Energy Sum using H/W(HWA)
 - S/W(DSP) based implementation would be added in the SDK in future.
- Supported architecture
 - R4F, C674x

CFAR-CA DPU

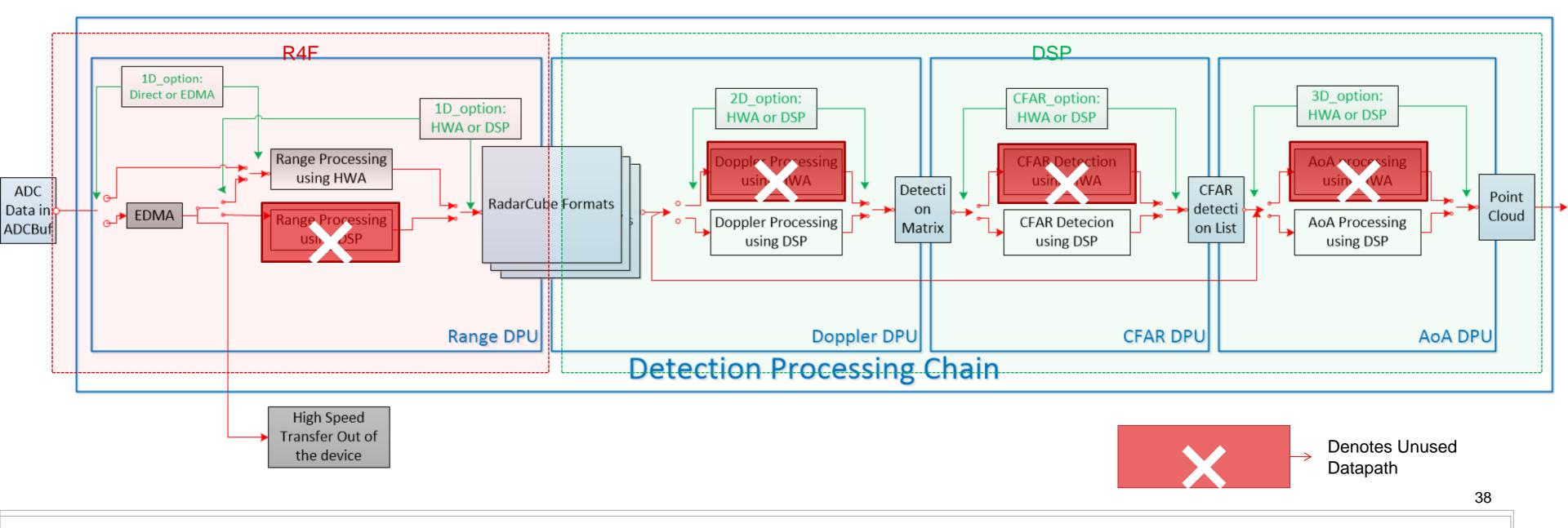

- Purpose: (CFAR-CA +peak grouping) processing during inter frame.
 - User can choose between various CFAR-CA implementation: CFAR-CA, CFAR-CASO, CFAR-CAGO
 - Fixed Point implementation
 - 2 pass implementation: first pass (optional) in Doppler direction and then second pass in Range direction
 - Performs CFAR and PeakGrouping using H/W(HWA)
 - S/W(DSP) based implementation would be added in SDK in future
 - Takes Detection Matrix as input
 - Produces bitmask of peaks and SNR information for AoA.
- Supported architecture
 - R4F, C674x

AoA DPU


- Purpose: (Range/Phase/Doppler compensation + Near field correction + Max Velocity enhancement + AoA + FoV filter) processing during inter frame.
 - Takes non-transposed formatted 1DOUT Radarcube, detection matrix and peak bitmask as input
 - Produces Point Cloud
 - Performs any FFT ops using H/W(HWA)
 - S/W(DSP) based implementation will be added in SDK in future
 - All other processing operations are done using S/W.
 - For R4F based implementation, near field and max velocity algos will not be offered
 - All the processing ops other than AoA
 FFT is optional and driven by user input
- Supported architecture
 - R4F, C674x

xWR64xx OOB Demo Chain (DPC)

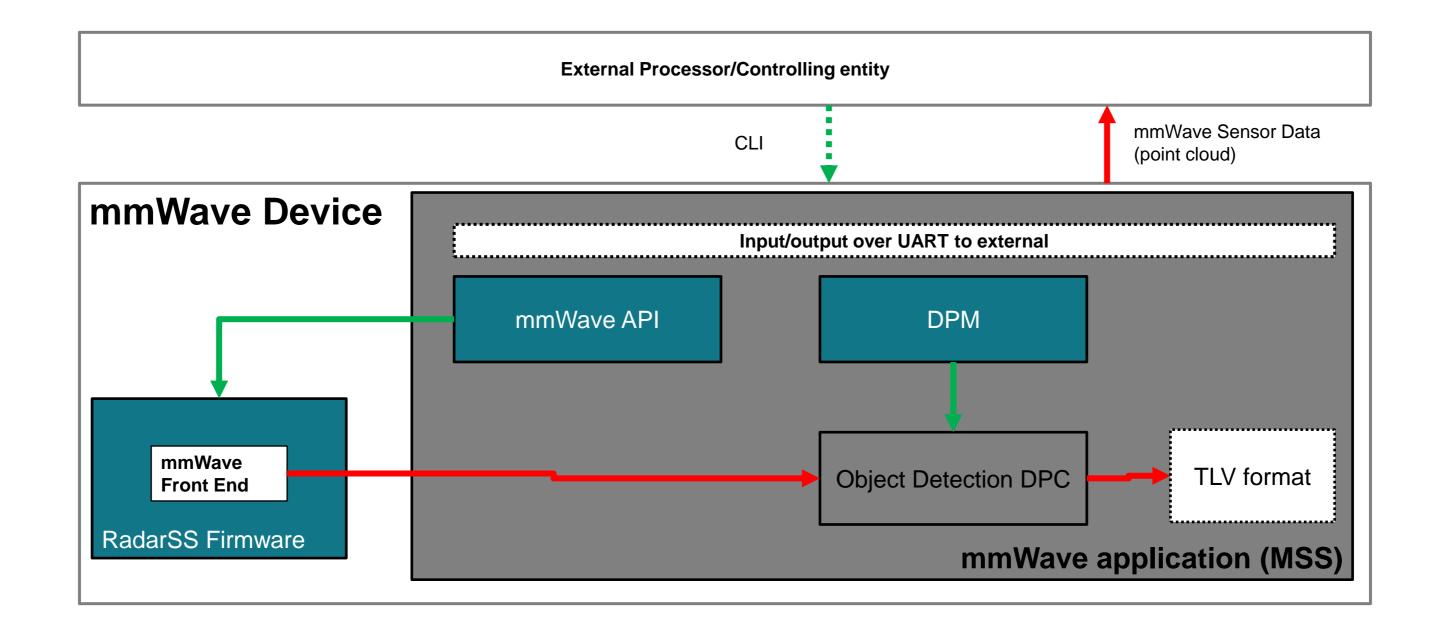
- Detection Processing Chain (DPC) for xWR64xx Out of Box demo.
- Demonstrates Radar Signal Processing using Cortex R4F + HWA ullet
- Also runs on **xWR68xx** (C674x DSP not used)



37

TEXAS INSTRUMENTS

xWR68xx OOB Demo Chain (DPC)


- Detection Processing Chain (DPC) for **xWR68xx** Out of Box demo. ullet
- Demonstrates Radar Signal Processing using Cortex R4F + HWA + C674x DSP ullet
- DSP provides higher performance and frees up R4F for other processing (e.g. Object Tracking) ullet

TEXAS INSTRUMENTS

68xx OOB Demo - Application View

Software Development and Debugging

Software Development Resources

- **Software Development Resources:** The following resources are key to learning about software development for TI processors.
 - **BIOS users guide**: Installed as part of <u>MMWAVE-SDK</u>, it is available in the TI install directory e.g. C:\ti\bios_6_73_01_01\docs\Bios_User_Guide.pdf.
 - This is the one of the best resources for learning about SYSBIOS and software development for TI ulletprocessors.
 - **Linker command files:** Understanding these is fundamental to developing applications for TI RTOS (<u>SYSBIOS</u>). Refer to the following resources:
 - **TI Linker Command File Primer**
 - Advanced Linker Techniques for Convenient and Efficient Memory Usage
- Other helpful resources \bullet
 - <u>Getting Started with Code Composer Studio v7</u>
 - **Debugging Common Application Issues with TI-RTOS**
 - **TI-RTOS Workshop** \bullet
 - Introduction to C6000 Architecture •
 - <u>C6000 Cache Overview (7 of 15)</u>
 - Using C6000 EDMA3 Part 1 (13 of 15)

MMWAVE-SDK Debugging

- Pre-requisites: The user should be familiar with general CCS debugging techniques e.g. running code in CCS, putting breakpoints, observing the values of variables and memories etc. Following resources can be used to ramp-up on these topics if needed.
 - Getting Started with Code Composer Studio v7
 - **Debugging Common Application** Issues with TI-RTOS
- In addition to the above, the user must be familiar with basic procedures for running an MMWAVE application in CCS debug mode. This is explained in the mmWave Industrial Toolbox at the following page:
 - Using CCS Debug for Development

🧉 Using CCS Debug for Devel... 🗡

Using CCS Debug for Development

Using CCS Debug for Development

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .bin files keep changing constantly different image to the device's RAM on every boot.

0. Requirements

- PC with:
 - Recommended OS: Windows 7 or 10
 - Code Composer Studio (version as specified in demo User's Guide)
 - mmWave SDK installed (version as specified in demo User's Guide)

EVM

IWR6843ISK, IWR6843ODS, or IWR6843AOPEVM

IWR1443BOOST, IWR1642BOOST, or IWR1843BC

Note: The IWR6843AOPEVM cannot be used by itself for CCS debug mode. It must be used as an antenna module in conjunction with the MMWAV

1. Flash the CSS debug firmware using Uniflash

The debug binary is provided in the mmWave SDK. Flash the appropriate binary according to the instructions for using UniFlash

• The EVM should already be setup for Flashing Mode according to the appropriate hardware setup guides for your EVM:

	Guide
+ MMWAVEICBOOST Carrier Board	Hardware Setup for Flashing in MMWAVEICBOOST Mode
OOST	Hardware Setup of IWRXXXXBOOST for Flashing Mode

MMWAVE-SDK Debugging

Rebuilding SDK code for debug:

- All MMWAVE-SDK code (drivers, OOB demo application and DPU libs) is built with –O3 optimization, which does not allow single step debugging in the corresponding components.
- In order to enable step debugging in CCS, the –O3 optimization options needs to be removed (or changed to a lower level)
 - Remove the –O3 flag in the SDK common makefile from R4F_CFLAGS and/or C674_CFLAGS directives to change build options for ARM and/or DSP code.
 - Re-build the demo and the desired pre-compiled libs (e.g. drivers, DPUs) separately with the non-optimized configuration to enable debugging.
- A note about DPUs: All DPUs are linked with the application as pre-compiled libs, so just re-building the application/demo code does not re-build the DPU libs automatically. Any DPUs that need to be debugged, should be re-built first with the new build options and then the applications code re-compiled to link with the new DPU lib(s). This applies to the SDK drivers as well.
- Removing optimization may increase the memory requirements and/or break real-time behavior.

SDK Compile flags for Cortex R4F core

i 🖓	mmwa	ve_sdk.r	mak (C:\t	ti∖m
File	Edit	Tools	Syntax	В
111	# Co	ompil	er fl	ag
112	R4F	_CFLA	GS =	
113				
114				
115				
116				
117				
118				

SDK Compile flags for C674x DSP core

	mmwa	ve_sdk.r	mak (C:\t	i∖m
File	Edit	Tools	Syntax	В
207	C674	4_INC	LUDE	_
208				
			er Fl	
	C674	4_CFL	AGS	=
211				
212				
213				
214				

nmwave_sdk_03_04_00_03\packages\ti\common) - GVIM

uffers Window Help

nmwave_sdk_03_04_00_03\packages\ti\common) - GVIM

```
Buffers Window Help
-i$(MMWAVE_SDK_INSTALL_PATH) -i$(C674_CODEGEN_INSTALL_PATH)/include $(
```

```
s for C674 Builds:
-mv6740 --abi=eabi --gcc -g -03 -mf3 -mo --define=SUBSYS_DSS
--define=$(PLATFORM_DEFINE) --define=_LITTLE_ENDIAN --display_error_nu
--define=DebugP_ASSERT_ENABLED --diag_warning=225 --diag_wrap=off
--preproc_with_compile $(C674_INCLUDE) --emit_warnings_as_errors
```


MMWAVE-SDK Debugging

• Disabling Real time asserts:

- If the DPC cannot complete the frame (or sub-frame) processing within the real-time deadline, it raises as assert causing the application to exit
- When step debugging a distributed DPC which runs on both R4F and DSP cores (e.g. in the 68xx point cloud detection chain), this assert should be disabled on both cores in DPC code as shown otherwise application would crash as shown in this CCS console log.
- NOTE: Make sure to re-enable the frame timing assert when running the DPC in non debug mode.

1 🖁	bjecto	letectio	n.c (C:\ti\	mmwave_s
File	Edit	Tools	Syntax	Buffers
418	sta	atic	void	DPC_Obj
419	} {			
420)	Obj	Det0b	j *
421				
422)	obj	Det0b	j-≻stat
423	3			
424	Ļ	Deb	ugP_1	og2("Ob
425	5			obj
426	5			
427	7	/*	Check	if pre
428	8	DPC	_Objd	et_Asse
429)	obj	Det0b	j-≻int∈
430)			

📮 Console 🔀	
iwr6843.ccxml:CIO	
[Cortex_R4_0] **********	*****
Debug: Launching the MMW	Demo
Debug: Launched the Init: Debug: mmWave Control Init	itiali
Debug: mmWave Control Syn [C674X_0] Debug: DPM Modu	
[Cortex_R4_0] Debug: CLI	
Debug: Sending rlRfSetLdo	
================= Heap Memory	
neap nemory	Stats
System Heap(TCMB)	32
	786
localRam(TCMB)	4
========== Heap Memory	Stats
	S
System Heap(L2)	32
L3	786
localRam(L2)	50
localRam(L1)	16
Starting Sensor (issuing	MMWav
{module#9}: "/objdetrar	
xdc.runtime.Error.raise:	

```
sdk_03_04_00_03\packages\ti\datapath\dpc\objectdetection\objdethwa\src) - GVIM
```

```
Window Help
```

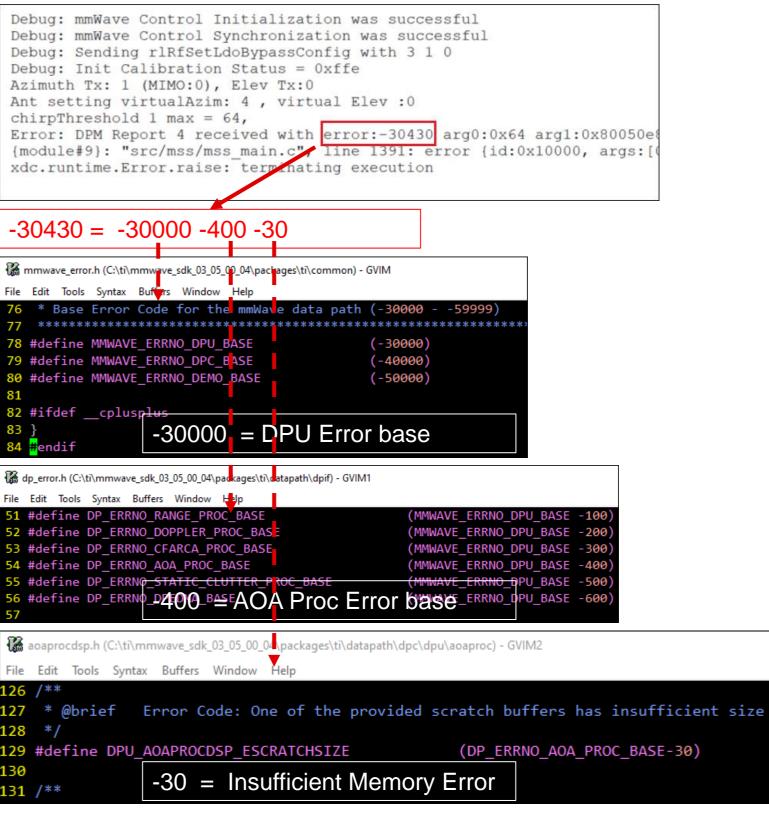
```
ectDetection_frameStart (DPM_DPCHandle handle)
```

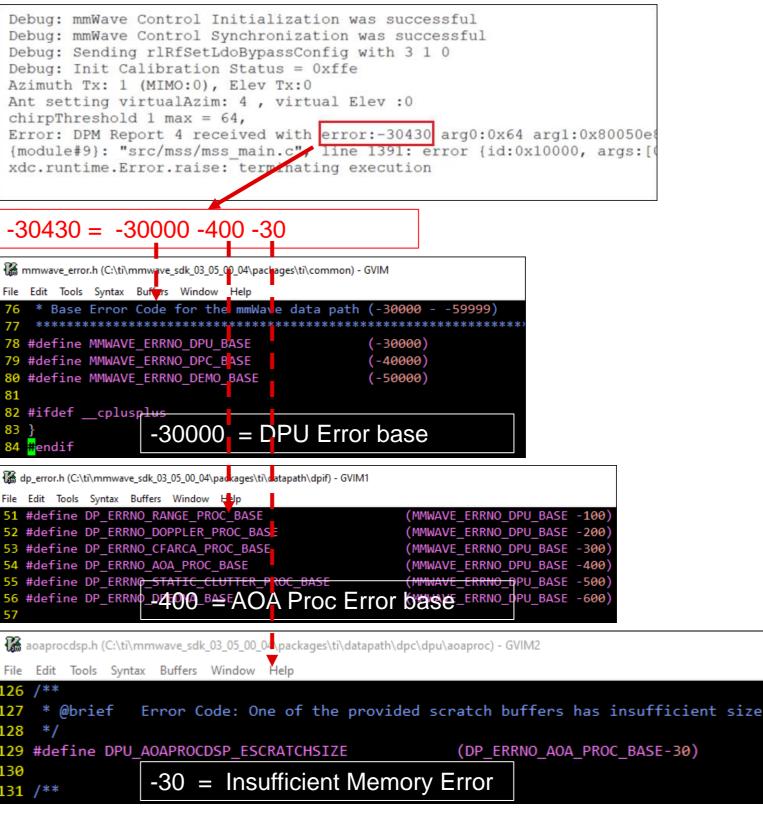
```
objDetObj = (ObjDetObj *) handle;
```

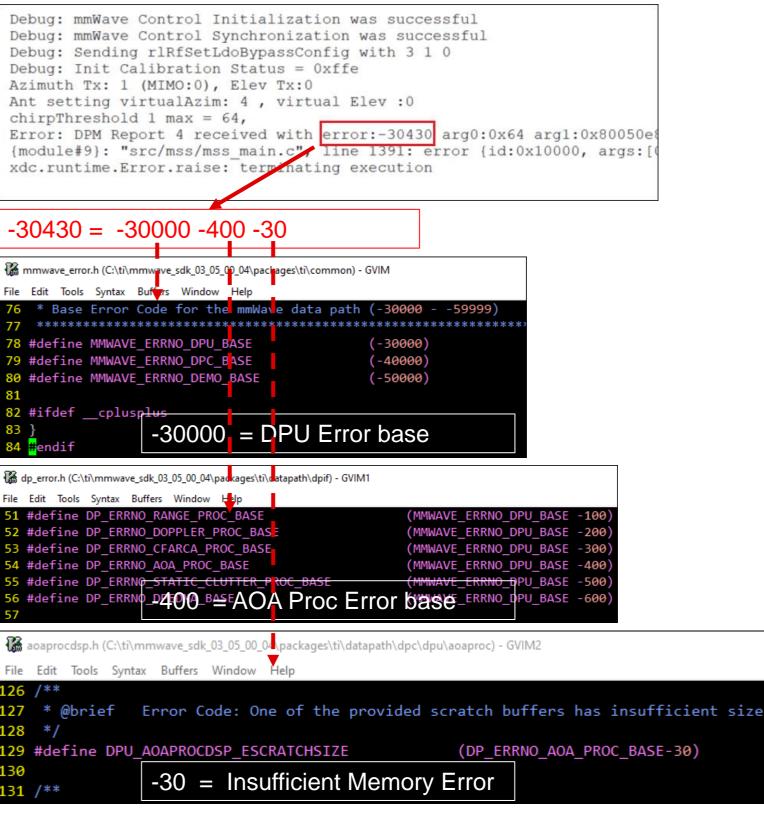
```
:s.frameStartTimeStamp = Cycleprofiler_getTimeStamp();
```

```
ojDet DPC: Frame Start, frameIndx = %d, subFrameIndx = %d\n",
jDetObj->stats.frameStartIntCounter, objDetObj->subFrameIndx);
```

```
evious frame (sub-frame) processing has completed */
ert(objDetObj->dpmHandle, (objDetObj->interSubFrameProcToken == 0)
erSubFrameProcToken++;
```

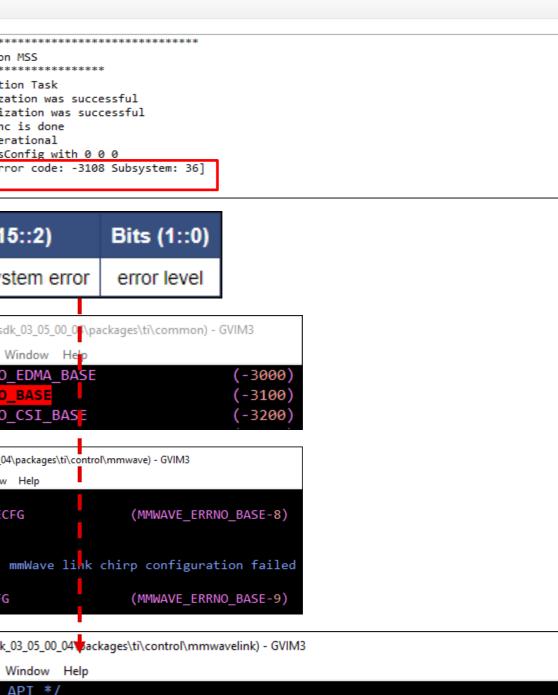

```
******
on MSS
******
ation Task
ization was successful
nization was successful
vnc is done
perational
ssConfig with 0 0 0
5 ===========
Size
           Used
                        Free
                                  DPCUsed
2768
           25840
                        6928
                                     2048
6432
          131072
                       655360
4096
             512
                        3584
s ===============
                                  DPCUsed
Size
           Used
                        Free
2768
           16104
                       16664
6432
            8192
                       778240
0176
           15016
                       35160
6384
            5632
                       10752
ve start)
a.c", line 640: error {id:0x10000, args:[0x1a19c, 0x1a19c]}
inating execution
```




Understanding Error Codes: Datapath Errors

- When demo runs into error conditions, an error code is generated and printed out on CCS console
- The error code is a negative integer e.g. shown in the picture.
- Can be from various sources such as Drivers, Control modules, DPC, DPU or demo (i.e. application)
- Error code defined as: (Module error code base minus Module specific error code)
 - The module error code base values are defined in packages\ti\common\mmwave_error.h.
 - The base error codes for DPC and DPU are define in • packages\ti\datapath\dpif\dp error.h
 - Individual DPU specific error codes defined in the DPU header files •
- **Example:** Parsing the error -30430 shown here ۲
 - The error code is from module with error base "-30000", which indicates it is DPU error
 - Referring to dp error.h, base "-30400" is from AOA Proc.
 - Then find the error code in aoaprocdsp.h for error(-30) which is DPU AOAPROCDSP ESCRATCHSIZE
- **NOTE:** In SDK demos, these error codes are not sent out on UART so the demo must be run in CCS debug mode to get the error code
- Refer to SDK module documentation at the following location (in the SDK install directory) for more details:
 - file:///C:/ti/mmwave sdk 03 05 00 04/packages/ti/demo/xwr68xx/mmw/docs /doxygen/html/index.html#mmwave error

Datapath Errors



Understanding Error Codes: mmWave Errors

- Besides Datapath errors, there is another class of errors known as mmWave module errors.
- These represent errors returned by the RF \bullet Front-End e.g. incorrect profile configuration.
- Defined as a combination of mmWave error, ۲ Susbsystem error and error level as shown.
 - mmwave errors defined in packages\ti\control\mmwave\mmwave.h
 - Subsystem errors defined in • packages\ti\control\mmwavelink for mmwavelink.h
 - Error level represents WARNING or ERROR. •
- **Example:** The error shown in the log here indicates
 - The error is from module(-3100 i.e. mmwave) with • error -8 (MMWAVE_EPROFILECFG)
 - The Subsystem (mmwavelink) error is 36 which is • defined as RL_RET_CODE_PF_START_FREQ_INVAL_IN in mmwavelink.h, which indicates invalid start frequency specified in ProfileCfg API.

mmWave Link errors

ALL /	
_PF_IND_INVAL_IN	(35U) /* PF indx >= 4 */
E_PF_START_FREQ_INVAL_IN	(36U) /* PF freq const is not
	<pre>with[76GHz,81GHz] in limit */</pre>
_PF_IDLE_TIME_INVAL_IN	(37U) /* PF idle time const > 5.24ms */
E_PF_IDLE_TIME_1INVAL_IN	<pre>(38U) /* Maximum DFE spill time (refer</pre>

Texas Instruments

Extending SDK architecture for advanced applications

Developing a Custom Radar Processing Chain

Key considerations for developing a custom mmWave processing chain with SDK 3.x architecture

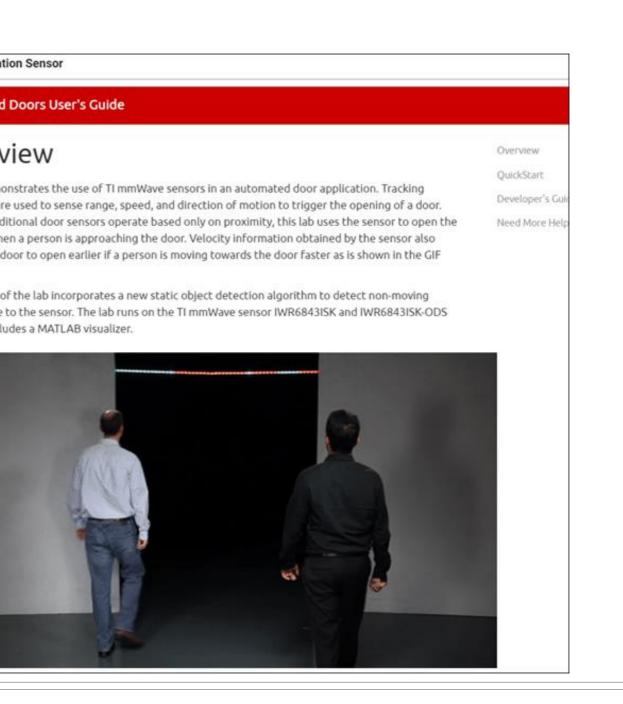
- Understand the data processing chain for the target application and model it in terms of DPC and DPUs \bullet
- Re-use the SDK Out of Box Detection Processing **OR** develop a new Detection Chain •
 - SDK Out of box DPC is a Range-Doppler based processing chain.
 - Lower angular resolution as compared to Range-Azimuth (Capon Beamforming) chain
 - SDK Detection Chain re-used for Long Range People Detection and Area Scanner Demos
 But a Higher resolution Capon Beamforming Detection Chain was developed for Indoor People Counting Demos
 - Range Processing is still re-used irrespective of the rest of the Detection Processing
- Additional processing requirements beyond the OOB point cloud detection •
 - Can the additional processing be added to an existing DPU or do we need to create a new DPU
 - Object Tracking new DPU
 - Static Object Detection new DPU
 - 2D AoA (Angle of Arrival) using DSP Enhancement to existing AoA DPU
- Enhancements needed at the DPC and Application level e.g. \bullet
 - Tracking
 - Beam-steering
 - Static object detection
- Memory and MIPS requirements for the additional processing \bullet

Examples of Custom DPUs and DPCs

New DPUs and DPCs developed in mmWave Industrial Toolbox

- TrackerProc DPU and ObjectDetectionAndTracking DPC •
 - 2D/3D Object tracking using SDK 3.3 Out of Box detection chain
 - Used in the following demos
 - Long Range People detection
 - Traffic Monitoring
 - Area Scanner
 - Automated Doors and Gates
- TrackerProcCapon DPU and Capon3D DPC •
 - 2D/3D Object Tracking using Capon beamforming detection chain
 - Used in the following demos —
 - 3D People Counting Demo Side Mount
 - 3D People Counting Demo Overhead Mount
 - Sense and Direct HVAC Control Demo
- StaticDetProc DPU and StaticObjeDet DPC •
 - 2D/3D Object tracking using SDK 3.3 Out of Box detection chain with added Static detection capability
 - Used in the following demos _
 - Area Scanner
 - Automated Doors and Gates
- Available in Industrial Toolbox 4.x download under • C:\ti\mmwave_industrial_toolbox_4_x_x\labs\common

\leftarrow \rightarrow X (I) Not secure dev.ti.com/tirex/explore/	/node?no	de=/	AlpcYR0KCNPXZRF8U9IYYw_VLy
III Resource Explorer			
	Ŧ	~	↑ Software / mmWave Sensors / I
 mmWave Sensors 		•	68xx ISK_ODS - Door Activat
Automotive Toolbox - 2.9.1			
👻 📑 Industrial Toolbox - 4.2.1			😑 User's Guide
-mmWave at CES 2020-			Release Notes
Read Me			🍄 CCS Project DSS
Release Notes			🍄 CCS Project MSS
Documentation and Resources			
🕨 🖿 Antenna Database			Automated
Certification			
🕨 🖿 Chirp Database			Overv
Experiments			
- 🗖 Labs			This lab demo
🕨 🖿 - Out of Box Demo -			algorithms ar Whereas trad
Area Scanner for Zone Occupancy Detection			door only whe
Automated Doors and Gates			triggers the d
Gesture Recognition			below.
High Accuracy Level Sensing			This version o
Long Range People Detection			objects close
People Counting			EVM and inclu



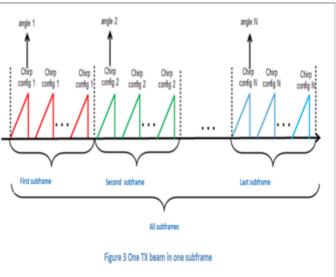
Area Scanner and Automated Doors

- Custom processing chain developed for <u>Area Scanner</u> and <u>Automated Doors</u> Demos. •
- Based on xWR68xx OOB Range-Doppler Detection Chain with addition of 2D AoA using DSP •
- Adds Object Tracking and Static Detection Capabilities ullet

ISK_ODS - Area Scanner	68xx ISK_ODS - Door Activation Sense
68xx Area Scanner Lab User's Guide	Automated Doors U
Overview of 68xx Area Scanner	Overview
This lab demonstrates the use of TI mmWave sensors for Area Scanner applications. The range, velocity, and angle data from mmWave sensors can enable the detection of objects or people as they enter or exit zones of interest.	This lab demonstrates t
Key features in this lab are the static detection and group tracking algorithms:	algorithms are used to Whereas traditional do
 Typically it can be difficult to distinguish static objects of interest that have been left in an area from the static floor or fixtures that are also in the area. Using the static detection algorithm enables the detection of static objects such as boxes, carts, or other equipment that have been left behind while ignoring the permanent static objects that comprise the scene. 	door only when a perso triggers the door to op below.
 With group tracking, the sensor is able to gauge a moving object's trajectory and speed, enabling the area scanner system to predict before a safety zone is breached and to dynamically adjust the system's behavior depending on the object's speed of approach. 	This version of the lab i objects close to the sen EVM and includes a MA
Frame: 38177 Num Frames in Buffer: 1 Dynamic Points: 9 Static Points: 2 Num Tracked Obj:	
E	

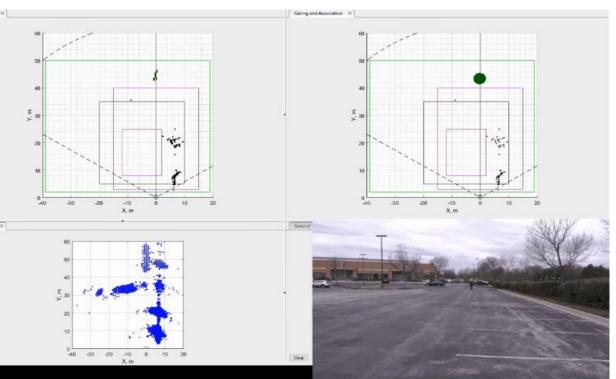
Texas Instruments

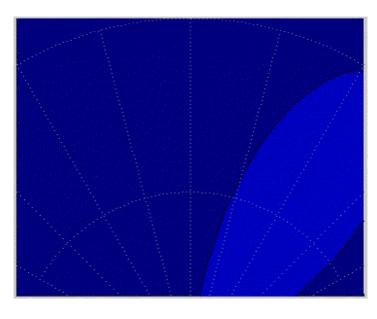
Demo: Long Range Outdoor People Detection and Tracking



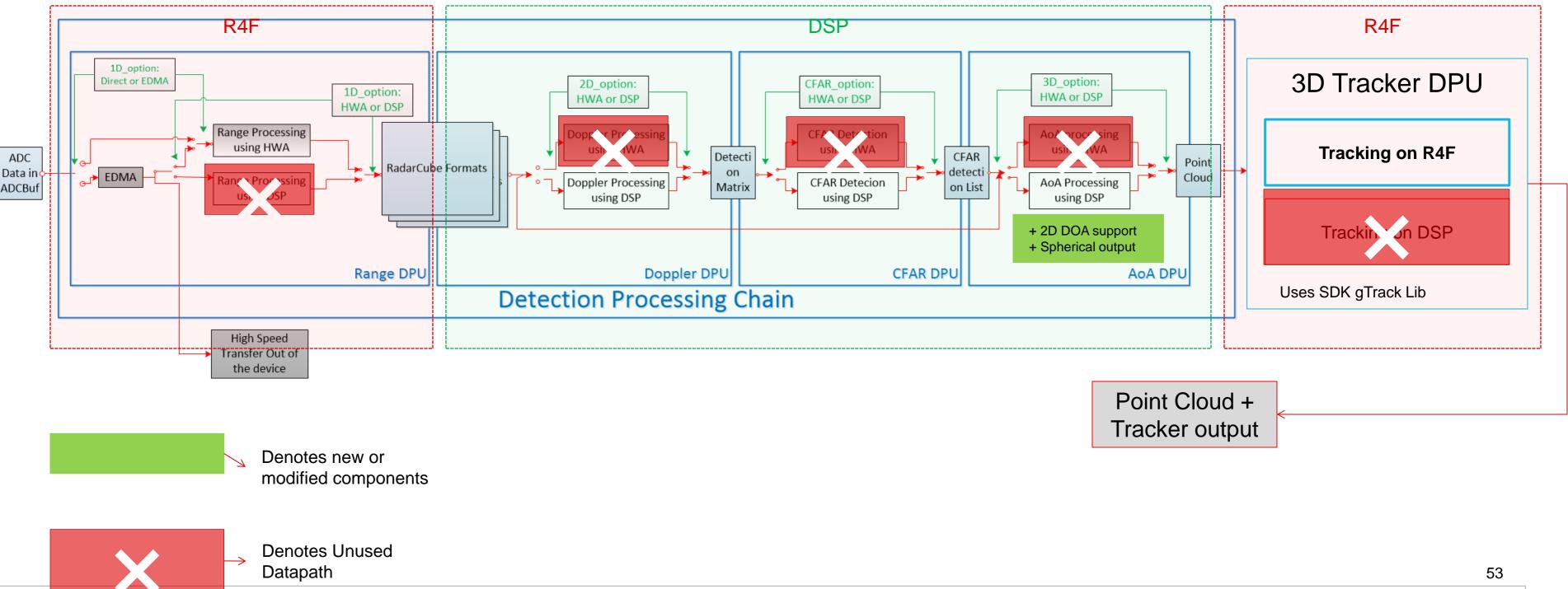
100m People Detection and Tracking

• Features


- SDK 3.3 Range Doppler Detection Chain with Object tracking on R4F
- Tracker DPU developed on top of SDK 3.x
- Runs on IWR6843ISK ES2.0 and IWR1843BOOST
- Supports 2D and 3D tracking
- People tracking tested upto 100m with IWR6843ISK ES2.0 (3TX SIMO)
- Re-used for Traffic Monitoring Demo on IWR1843/6843
- Supports ISK, ODS and AOP antennas (for Indoor applications such as Area Scanner with Static Detection)
 - DSP based AoA DPU modified to add 2D DoA for ODS/AOP
- Built on SDK 3.x OOB Demo
 - Advanced features included for free e.g. Run time CFAR tuning, FoV filtering, ADC data streaming over LVDS.


Frame #: 302		
Detection Points	63, (3)	
Target Count: 1		
In Box Count: [0,	0]	
		1
Chap Configuration 2	1	Cum
Chep Configuration 32 Chep Parameter (Units)	Value	Cum
Chirp Parameter (Units) Stort Frequency (Ghz)	YE	Cam
Chirp Parameter (Units) Start Prequency (Ch2) Stope (Mitstee)	76 7.4810	Cum
Chipp Parameter (Units) Start Prequency (Ghz) Sope (Micros) Samples per chipp	76 7.4810 125	Cun
Chip Parameter (Units) Stort Frequency (Units) Single (Mitchel) Samples per chip Chips per frame	76 7.4810 125 250	Cun
Chip Parameter (Units) Stort Frequency (Chz) Sope (Mictae) Samples per chip Chross per chip Chross per frame Frame duration (ms)	76 7.4810 125 250 33	Cum
Chip Pasemeter (Units) Stort Frequency (Ort) Stops (Missier) Sangles per chip Chirps per frame Frame duration (ms) Sangling rate (Hope)	74810 74810 125 250 33 2.1178	Cum
Chip Parameter (Units) Stef Frequency (Dit) Steps (Micros) Sandes per chip Chips per frame Frame dustion (ms) Sanders (ms) (Mode) Baseder(dit (SHz))	76 7.4810 125 250 25 25 25 25 25 25 25 25 25 25 25 25 25	Cum
Chip Parameter (Units) Start Freebency (OA2) Sopie (Micrae) Sandes per chip Chipa per frane Prane duration (m) Sanding ratio (Moto) Bandwidth (OH1) Range meathlen (m)	76 7,4810 125 250 33 2,1170 0,3000 0,5000	Cum
Chipp Parameter (Unita) Staff Proyectory (Stat) Sopo (Minta) Sanutes per chipp Origos per frame Prane duration (mo) Sanuting rate (Hode) Basitywidth (SHI) Basitywidth (SHI) Velocky modulion (mit)	76 7.4810 125 250 33 2.1819 0.5000 0.5000 0.1247	Cum
Chip Paremeter (Unita) Stati Frequency (Dz) Stape (Micrael Saspie per chip Chris per them Prane duration (mi) Santario (mic) Santario (mic) Range metalitäri (mi) Velochy resolution (mic)	76 7.4810 125 250 33 2.1170 0.5000 0.5000 0.1247 4	Cun
Chipp Parameter (Unita) Staff Proyectory (Stat) Sopo (Minta) Sanutes per chipp Origos per frame Prane duration (mo) Sanuting rate (Hode) Basitywidth (SHI) Basitywidth (SHI) Velocky modulion (mit)	76 7.4810 125 250 33 2.1819 0.5000 0.5000 0.1247	Cum
Chip Paremeter (Unita) Stati Frequency (Dz) Stape (Micrael Saspie per chip Chris per them Prane duration (mi) Santario (mic) Santario (mic) Range metalitäri (mi) Velochy resolution (mic)	76 7.4810 125 250 33 2.1170 0.5000 0.5000 0.1247 4	Cum

Overview



Sub frame based TX Beam Steering

3D Long Range Tracker Chain

4i7

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated