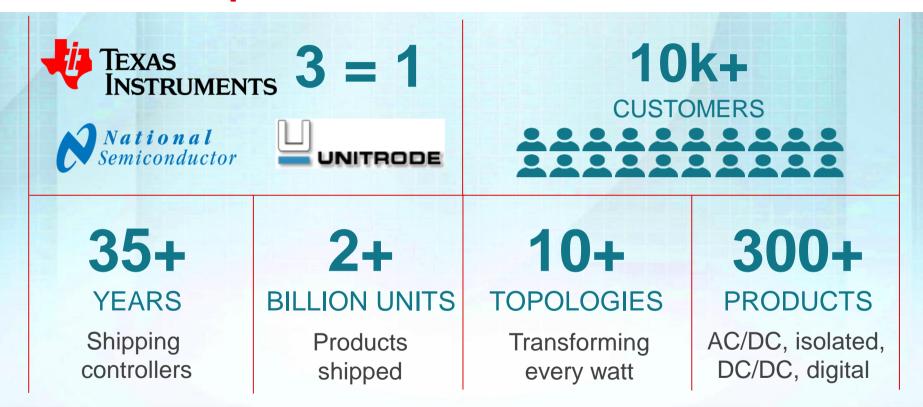
Welcome! Texas Instruments New Product Update

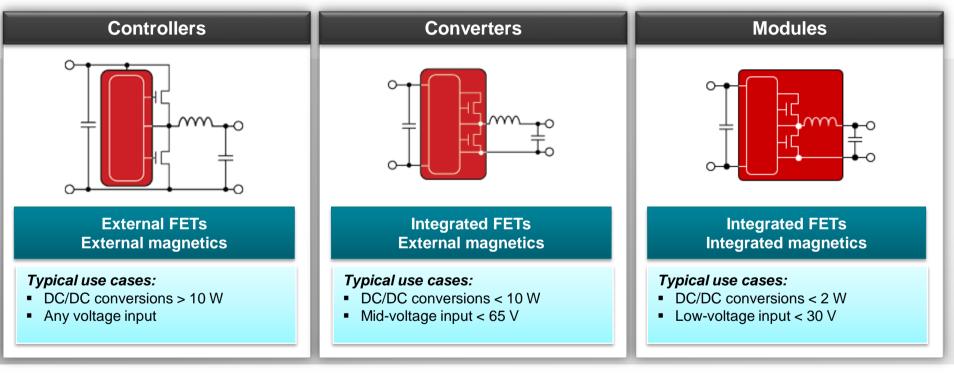
- This webinar will be recorded and available at <u>www.ti.com/npu</u>
- Phone lines will be muted
- Please post questions in the chat or contact your sales person or field applications engineer

New Product Update: Isolated power products for high voltage applications

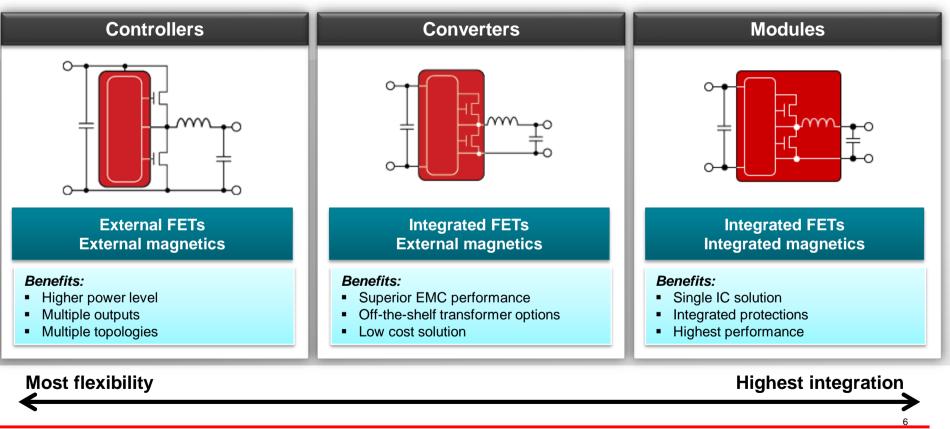
Jake Boydston October 7th, 2021



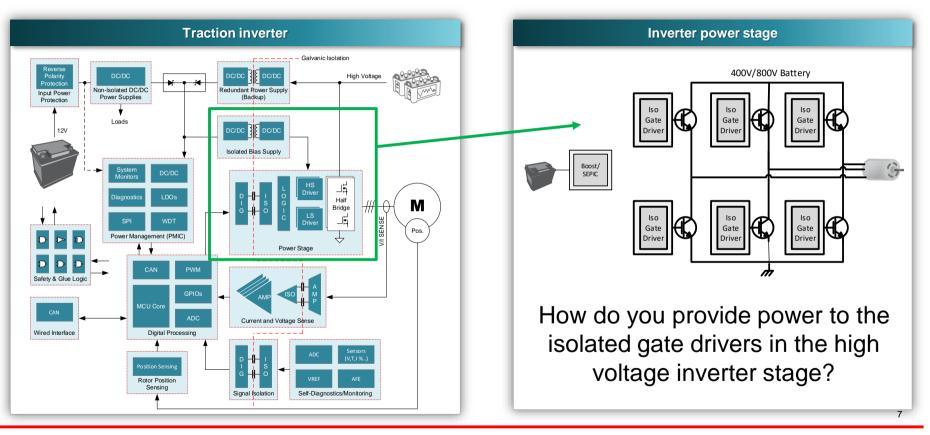
Agenda


- Brief overview of high voltage product types for isolated power
- Trade-offs of common architectures in 3-phase inverter systems
- System benefits of newest products
 - Fixed-frequency PWMs
 - Flyback controllers
 - UCC25800-Q1 low cost transformer driver
 - UCC14240-Q1 dual output DC/DC module

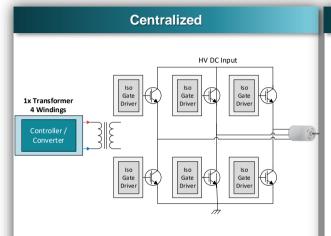
Decades of power



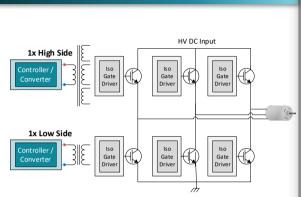
Isolated DC/DC product types



Isolated DC/DC product benefits

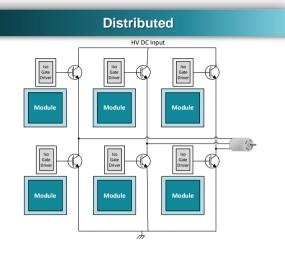


3-phase traction inverter example



Isolated bias architectures comparison

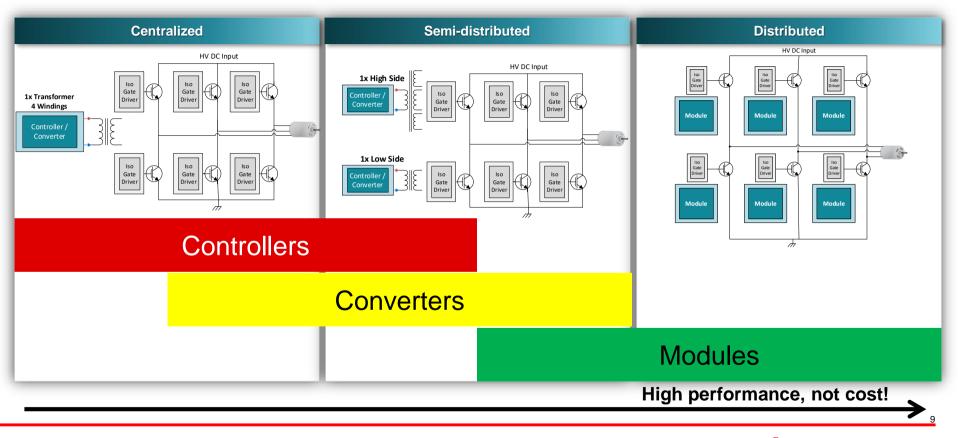
Why choose centralized?


- EMI is not an issue
- Low F_{sw}, dV/dt (e.g. IGBT)
- Low BOM count
- Lowest total cost

Semi-distributed

Why choose semi-distributed?

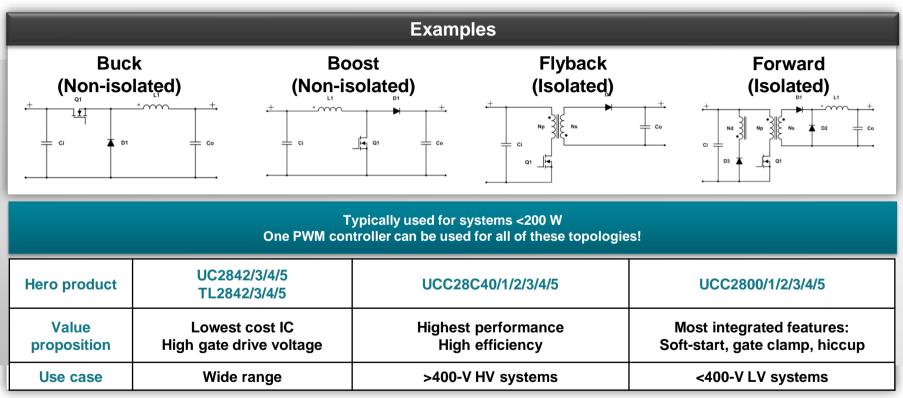
- Optimize EMI performance
- Increased F_{sw}, dV/dt (e.g. SiC, GaN)
- Medium BOM count
- Low cost is still a priority
- Reduce risk of total failure



Why choose distributed?

- Optimize EMI performance
- High F_{sw}, dV/dt (e.g. SiC, GaN)
- Low BOM count
- Power density is a priority
- Lowest risk of total failure

Isolated bias architectures comparison



Controllers overview PWMs & Flybacks

Single-ended PWM products

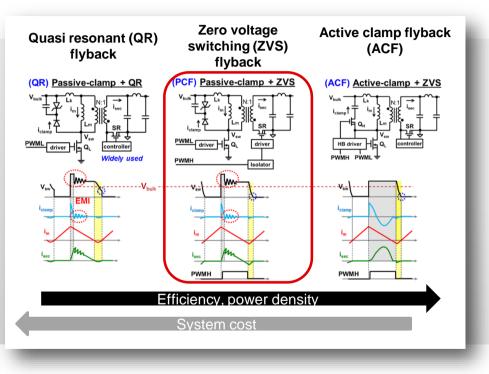
UCC28C4X/UCC38C4X: reference designs

Used for many topologies:

Topology	Reference Design		
Buck	<u>PMP10783</u>		
DUCK	PMP10833		
Boost	PMP30653		
Flyback	PMP1941		
	PMP6716		
	<u>PMP6811</u>		
Flybuck	<u>PMP10834</u>		
SEPIC	<u>PMP5353</u>		

PMP30653: 200-V at 400-mA LED lighting from a 24-V input

- provides a cost effective and precise constant-current regulation
- open LED protector circuitry provides overvoltage protection


Visit https://www.ti.com/reference-designs/

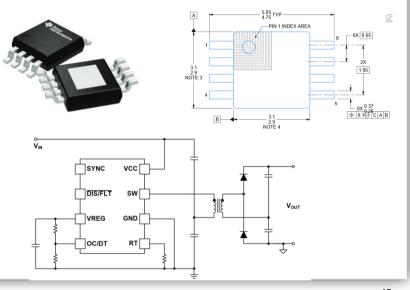
before you begin your next design!

Flyback controllers for 65-W applications

Parameter	UCC28600	UCC28781	UCC28782	UNITS
Control Method	QR	ZVS	ACF	-
Solution Standby Power	35	36	55	mW
Full-load efficiency 15V@ 115VAC	87.1	93.5	94.2	%
Full-load efficiency 15V@ 230VAC	87.9	93.2	93.7	%
Solution volume	274.2	59.4	35.5	сс
Energy Density	0.24	1.08	1.83	W/cc

Converter overview UCC25800-Q1

UCC25800-Q1

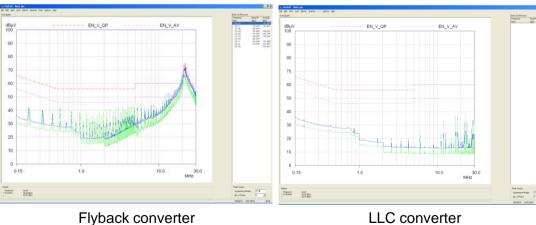

Low cost transformer driver with high performance

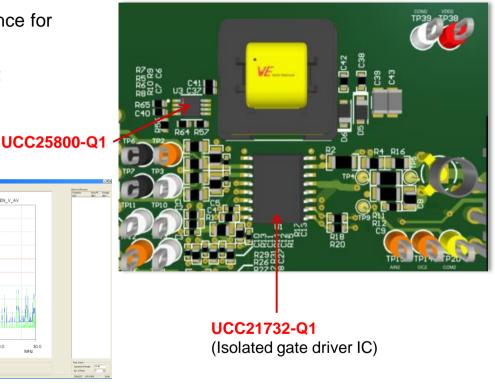
Features

- Operation from 9V to 34V (40V Abs Max)
- 6W from 24V input, Up to 10W from 34V input
- Integrated half-bridge MOSFETs
- Programmable fixed switching frequency up to 1.2MHz
 - 1.2MHz default, resistor settable 100kHz 1MHz
 - Frequency accuracy +/-6% maximum over temperature
 - External SYNC function
- Drive multiple transformers with one UCC25800-Q1
- Automatic dead time adjustment with programmable maximum
- Integrated soft-start
- Disable pin with fault code output
- Two-level over current protection
 - Programmable via external resistor
 - UCC25800A-Q1 is auto retry after over current
 - UCC25800L-Q1 is latch after over current
- Over Temperature Protection
 - 160°C Junction
 - 20°C Hysteresis
- AEC Q100 Qualified

Benefits

- Low common mode noise due to minimal interwinding capacitance in transformer
- Simple design, highly integrated, no bootstrap capacitor
- High switching frequency for smaller size and more robustness





UCC25800-Q1: LLC converter EMI benefits

- Open loop controller with secondary side resonance for tighter regulation
- Lowest Cpri-sec capacitance <2 pF and resonant switching for extremely low CM noise solution
- High CMTI for fast edge rate switching

Transformers for isolated bias supply

	LLC Transformer UCC25800-Q1	Push-Pull Transformer	Three-winding Flyback	Two-winding PSR	Half-Bridge
	Solit Solit Secondary Primary	Pri1* Pri2* Sec1* Sec2* Secondary side windings need thicker insulation	Core Bobbin For the secondary Aux Thick insulation Primary	Core Bobbin Insulator Secondary Primary	Core Bobbin
C _{Pri-Sec}	<2pF	~10pF	~20pF	~20pF	~20pF
СМТІ	>150V/ns	Worse than LLC	Worse than LLC	Much worse than LLC	Much worse than LLC
Cost	1X	>1.15	>1.3X	>1.18X	>1.18X
ЕМІ	Best	Good	Poor	Poor	Poor
Size	13.36mmX10.16mmX8.64mm	8.3mmX12.6mmX4.1mm	13.4mmX11.9mmX8.4mm	9.3mmX10.2mmX10.6mm	9.3mmX10.2mmX10.6mm
Regulation	Good	Good	Better	Best	Good

UCC25800-Q1 EVM measurement data

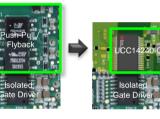
1% load regulation UCC25800-Q1 EVM with LM5156 re-regulator **Predictable startup** of +/- rails UCC25800-Q1 Load Regulation XAS INSTRUMENTS 18 3 18V 18.2 A, 18.1 179 Load Current ma Surpasses CISPR 25 class 5 659280002 **EMI standard Optional components** I M5156-Q1 for 1% load regulation Ref 100.00 dBuV PARAMETER SPECIFICATIONS Input voltage range 6 V - 26 V**Output voltage and current** +18 V / -5 V 2.2 MHz and 500 kHz Switching frequency Isolation Yes, 2500 VAC (1 sec) tart 150 kH Stop 108 MHz Topology SEPIC + Open loop LLC transformer driver dBµV es BW 9 kHz VBW 90 kHz #Dwell Time 50 ms (4.5 kHz) Pass - LLC Board Only with Filter

Module overview UCC14240-Q1

Isolated DC/DC module with integrated transformer Technology shift for isolated gate driver bias supplies

Decades of **bulky transformers** ...

- Bulky prone to vibrations
- · High radiated EMI
- Large footprint & height
- · Difficult to design


Introducing the UCC14240-Q1

- 1.5-W high-efficiency isolated DC/DC power supply
- Industry's smallest, most accurate & easiest-to-use
- Proprietary integrated transformer technology
- · No bulky, noisy transformers

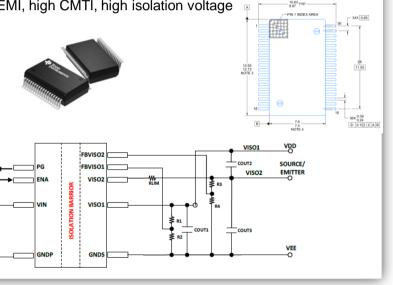
y isolated y

2X smaller PCB area, lower BoM

UCC14240-Q1 basic isolation

3.55mm Height Dual Output Gate Drive Bias w/ Integrated XFMR

Features

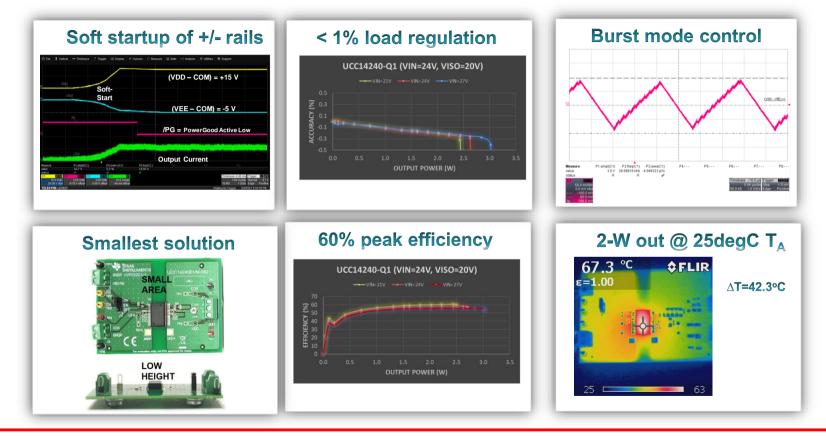

- Isolated power module with integrated transformer
- **3.55-mm height**, 12.8 mm x 10.3 mm with leads (8 mm creepage)
- 1.5W output power at Ta = 105°C
- Input voltage range
 - 24-V nominal
 - 21 V 27 V. 32 V Abs.max
- Dual adjustable output voltages
 - VISO1 to GNDS range 18 V to 25 V
 - VISO2 to GNDS range 2.5 V to VISO1
 - Both < 1.3% accuracy -40°C to 150°C</p>
- 3.5pF primary-to-secondary capacitance with low emissions
- Wide temperature range:
 - Ti: -40 to 150°C
 - Ta: -40 to 125°C
- UVLO, OVLO, PG, soft-start, short-circuit, power-limit, and over temperature protection, CMTI > 150k V/us

Link to Datasheet

- 3rd party certified basic isolation
 - 3k Vrms (60s)
 - 1.2 kVpk working
 - 5k-V surge
- AEC-Q100 auto grade

Benefits

- Integrated solution enables smaller BOM, reduced board space and helps with easier system certification
- High accuracy to reduce size of IGBTs / SiC switches
- Soft start enables minimal overshoot current.
- Low EMI, high CMTI, high isolation voltage



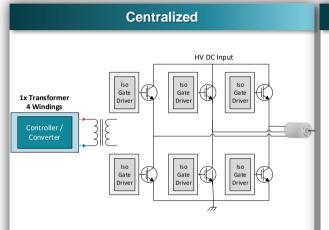

UCC14240-Q1 measurement data

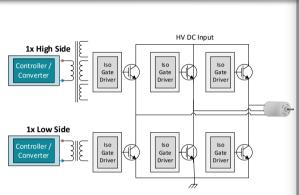
UCC14240-Q1 Simple & small BOM and layout

EVM top

EVM bottom

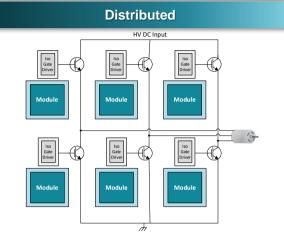
Flipped


Link to Datasheet



Isolated DC/DC summary

Why choose centralized?


- EMI is not an issue
- Low F_{sw}, dV/dt (e.g. IGBT)
- Low BOM count
- Lowest total cost
- PWMs & flyback controllers

Semi-Distributed

Why choose semi-distributed?

- Optimize EMI performance
- Increased F_{sw}, dV/dt (e.g. SiC, GaN)
- Medium BOM count
- Low cost is still a priority
- Reduce risk of total failure
- UCC25800-Q1 converter

Why choose distributed?

- Optimize EMI performance
- High F_{sw}, dV/dt (e.g. SiC, GaN)
- Low BOM count
- Power density is a priority
- · Lowest risk of total failure
- UCC14240-Q1 module

Visit <u>www.ti.com/npu</u>

For more information on the New Product Update series, calendar and archived recordings

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated