TLC5940 Programming Flow Chart v0.1

9/29/05

DC Input Cycle

- **Use DC EEPROM data?**
 - **YES**: Set DCPRG = High, Set DCPRG = Low.
 - **NO**: Set DC Correction Input (VPRG = High).

- **Set dot correction input (VPRG = High)?**
 - **YES**: Reset Counter = 0.
 - **NO**: Set VPRG = Low, Set FirstCycleFlag = 1.

- **Is VPRG = High?**
 - **YES**: Reset Data_Counter = 0.
 - **NO**: Set BLANK = Low (Turn LED's On).

- **Increment Counter (Counter = Counter +1)?**
 - **YES**: Set DC data to EEPROM?
 - **YES**: Set DCPRG = Low, Set VPRG = 22 Volts.
 - **NO**: Set VPRG = High.
 - **NO**: Pulse XLAT to latch in GS data.

- **Is GSCLK_Counter > 4095?**
 - **YES**: Set BLANK = High.
 - **NO**: Set BLANK to GS Data[Data_Counter].

- **FirstCycleFlag is set to high for first GS cycle after DC input cycle to add one additional SCLK pulse?**
 - **YES**: Pulse SCLK.
 - **NO**: Increment GSCLK_Counter (GSCLK_Counter + 1).

Grayscale Data input cycle combined with Grayscale PWM cycle

- **Data input must be complete before GSCLK_Counter reaches 4096.**
 - Use the following equations to verify that the data input cycle will be completed before the PWM cycle is completed:
 - \(f_{SCLK} \) = minimum serial data frequency
 - \(f_{PWM} \) = frequency of complete Grayscale cycle
 - \(n \) = number of TLC5940 in series

\[
\text{for } f_{SCLK} = 1 \text{ or } \frac{1}{f_{PWM _cycle}} \text{ use: } \frac{1}{192} \times \frac{1}{n} \\
\text{for } f_{SCLK} = 2 \text{ or } \frac{1}{f_{PWM _cycle}} \text{ use: } \frac{1}{192} \times \frac{1}{n} \times \frac{1}{2}
\]

- **Is GSCLK_Counter > n*192-1?**
 - **YES**: Set BLANK = High.
 - **NO**: Set VPRG = Low, Set FirstCycleFlag = 1.

- **Pulse SCLK.**

LOD Check

- **Set Data_Counter = 0.**

- **Is Data_Counter > n*192-1?**
 - **YES**: Set XLAT = High.
 - **NO**: Set BLANK = Low.

- **Increment Data.Counter (Data.Counter + 1).**

- **Pulse GSCLK.**

- **Set BLANK = High.**

Check LOD Function?

- **No**
 - **Set DCPRG = Low.**
 - **Set SCLK = Low.**
 - **Set VPRG = High.**
 - **Set XLAT = Low.**
 - **Set BLANK = High.**

After LOD Check Function the Status Information Data packet is available in the TLC5940 Shift Register. It may be read from the SOUT pin (of the last device in series) during the following GS input cycle.

Data input must be complete before GSCLK_Counter reaches 4096.

Use the following equations to verify that the data input cycle will be completed before the PWM cycle is completed:

\[
f_{SCLK} = \frac{1}{f_{PWM _cycle}} \times \frac{1}{192} \times \frac{1}{n}
\]

- **n** = number of TLC5940 in series

Check LOD Function?

- **Yes**

Use DC EEPROM data?

- **YES**: Set DCPRG = Low.
- **NO**: Set DCPRG = Low.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated