DLPC150 Programmer's Guide

User's Guide

Literature Number: DLPU031A March 2015-Revised February 2016

Contents

Prefa	ce			4
1	Interf	ace Pr	otocol	5
	1.1	I ² C Inte	erface	. 5
		1.1.1	I ² C Transaction Structure	. 5
		1.1.2	DLPC150 Data Payload	. 6
		1.1.3	I ² C STOP Condition	. 6
		1.1.4	I ² C Read Transaction Sequence	. 6
		1.1.5	I ² C Write Transaction Sequence	. 7
2	DLPC	C150 Co	ontrol Commands	8
	2.1	Input S	Source Commands	
		2.1.1	Set Input Source Selection Command (0x05)	. 8
		2.1.2	Read Input Source Selection Command (0x06)	. 9
		2.1.3	Parallel Port Interface Commands	
		2.1.4	Test Pattern Commands	13
		2.1.5	Serial Flash Pattern Commands	
	2.2	Image	Control Commands	
		2.2.1	Set Display Size Command (0x12)	
		2.2.2	Read Display Size Command (0x13)	
		2.2.3	Set Image Crop Command (0x10)	
		2.2.4	Read Image Crop Command (0x11)	
		2.2.5	Set Image Freeze Command (0x1A)	
		2.2.6	Read Image Freeze Status Command (0x1B)	
	2.3		Commands	
		2.3.1	Read Short Status Command (0xD0)	
		2.3.2	Read System Status Command (0xD1)	
		2.3.3	Read System Software Version Command (0xD2)	
		2.3.4	Read Communication Status Command (0xD3)	
		2.3.5	GPIO Control	
	2.4	-	ncer Commands	
		2.4.1	Disable Sequencer Command	
		2.4.2	Enable Sequencer Command	
		2.4.3	Stop Sequencer Command	
	0 5	2.4.4	Select Sequencer Vector Command	
	2.5		Pettern Level from Origin Flack Managemeith 40 bit DODESS Data Format (00 F4)	
		2.5.1	Pattern Load from Serial Flash Memory with 16-bit RGB565 Data Format (0xF4)	
		2.5.2	Pattern Streamed through the Parallel Port Interface with 16-bit RGB565 Data Format (0xF5)	
			Pattern Streamed through the Parallel Port Interface with 24-bit RGB888 Data Format (0xF5)	37
		2.5.4	Pattern Streamed through the Parallel Port Interface with External Trigger input and 24-bit RGB888 Data Format (0xF6)	38
Α	I ² C C	ommar	nd Reference Summary	40
	A.1		mmand Reference	
Revis	sion Hi	story		42

List of Figures

1-1.	I ² C Read Transaction Sequence	6
1-2.	I ² C Write Transaction Sequence	7
2-1.	Example of Horizontal Lines Test Pattern	15
2-2.	Example of Vertical Lines Test Pattern	15
2-3.	Example of Diagonal Lines Test Pattern	16
2-4.	Example of Grid Lines Test Pattern	16
2-5.	Example of Checkerboard Test Pattern	17
2-6.	Cropping Rules when Crop Size exceeds Input Size	20
2-7.	Flash Pattern Display Behavior	36
2-8.	16-bit Parallel Port Streaming Pattern Behavior	37
2-9.	24-bit Parallel Port Streaming Pattern Behavior	38
2-10.	24-bit Parallel Port Streaming Pattern with External Trigger Behavior	39

DLPU031A–March 2015–Revised February 2016

Read This First

About This Manual

This document specifies the command and control interface to the DLPC150. It also defines all applicable commands, default settings, and control register bit definitions to communicate with the DLP2010 and DLP2010NIR.

Note that reserved bit fields must be written with zero values.

Related Documents from Texas Instruments

- DLP2010NIR Data Sheet
- DLP2010 Data Sheet
- DLPC150 Data Sheet

If You Need Assistance

See the DLP and MEMS TI E2E Community support forums.

This chapter describes the interface protocol between the DLPC150 and a host processor. The DLPC150 supports an inter-IC control (I^2C) bus host interface protocol.

1.1 I²C Interface

The DLPC150 controller uses the I²C bus to exchange commands and data with a host processor. The I²C bus protocol is a two-wire serial data bus that conforms to the NXP I²C specification, up to 100 kHz. One wire, SCL, serves as a serial clock, while the second wire, SDA, serves as serial data. Several different devices can be connected together in an I²C bus. Each device is software addressable by a unique address. Communication between devices occurs in a simple master-to-slave relationship.

1.1.1 fC Transaction Structure

All I²C transactions are composed of a number of bytes, combined in the following order:

START Condition, Slave Address Byte (Slave Address + R/W Bit), Command Byte, Data Payload (N-Data Bytes), STOP Condition

where N in "N-Data Bytes" varies based on the command. All I²C transactions must start after the HOST_IRQ signal is driven low by the DLPC150.

DLPC150 supports three type of transactions, shown in Table 1-1.

TRANSACTION	SLAVE ADDRESS BYTE		COMMAND BYTE	DATA PAYLOAD	
TYPE	SLAVE ADDRESS	R/W BIT		(N-DATA BYTES)	
Write	0x1B	0	Command Number	Command Parameters	
Read Request	0x1B	0	Command Number	Command Parameters	
Read Response	0x1B	1	—	Command Parameters	

Table 1-1. DLPC150 Transaction Types

1.1.1.1 I²C START Condition

All I²C transactions begin with a START condition. A START condition is defined by a high-to-low transition on the SDA line, while the SCL line is high.

1.1.1.2 DLPC150 Slave Address Byte

The DLPC150 slave address is 0x1B. Because the first 8-bit I²C packet includes the 7-bit slave address appended by a read (high) or write (low) bit, a read command to the DLPC150 concatenates the slave address with a 1. A write command to the DLPC150 concatenates the slave address with a 0. Thus, the DLPC150 first byte packet of an I²C command is 0x37 for read and 0x36 for write command.

1.1.1.3 DLPC150 Command Byte

The DLPC150 command byte corresponds to a command number for the DLPC150.

1.1.2 DLPC150 Data Payload

Each command requires a certain number of parameters. Thus, a command byte is followed by variable length data. These bytes contain the command parameters transmitted, with the most significant byte first.

1.1.3 fC STOP Condition

All I²C transactions end with a STOP condition. A STOP condition is defined by a low-to-high transition on the SDA line while the SCL line is high.

1.1.4 PC Read Transaction Sequence

To issue a DLPC150 command, the host must perform the following steps:

- 1. Host sends a START condition followed by the DLPC150 address with the I²C read/write bit cleared (0x36).
- 2. Host sends a sub-address byte that contains the command of the desired DLPC150 function.
- 3. Host sends a STOP condition.
- 4. Host sends another I²C START condition followed by the DLPC150 address with the I²C read/write bit set (0x37).
- 5. Host repeatedly issues a Read Short Status command until the returned byte is 0x00.
- 6. Host reads the necessary bytes for each command.
- 7. Host issues a STOP condition to terminate the command read access.

1.1.4.1 Example Read Transaction Sequence

An example of a host issuing a read command to DLPC150 is shown in Figure 1-1. In this example, the host writes command 0x06 by transmitting a start condition (S), followed by the DLPC150 address with the read/write bit cleared (0x36), then the parameter 0x06, then a stop condition (P). This is followed by a host reading parameters 0x01 and 0x00 by transmitting a start condition (S), followed by the DLPC150 address with read/write bit set (0x37), then a read of parameters 0x01 and 0x00, then a stop condition (P).

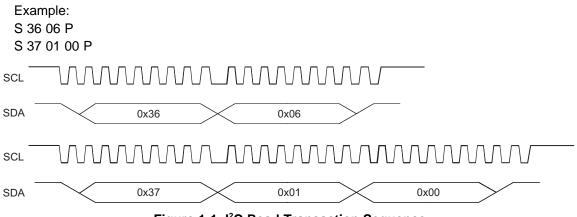
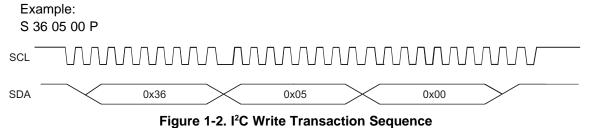


Figure 1-1. I²C Read Transaction Sequence


1.1.5 *PC Write Transaction Sequence*

To issue a command to set a DLPC150 value, the host must perform the following steps:

- 1. Host sends a START condition followed by the DLPC150 address with the I²C read/write bit cleared (0x36).
- 2. Host sends a sub-address byte that contains the command of the desired DLPC150 function.
- 3. Host sends the necessary bytes for the desired DLPC150 function.
- 4. Host issues a STOP condition to terminate the command write access.

1.1.5.1 Example Write Transaction Sequence

An example of a host issuing a write command to DLPC150 is shown in Figure 1-2. In this example, the host issues command 0x05 and writes one byte parameter 0x00 by transmitting a start condition (S), followed by the DLPC150 address with read/write bit cleared (0x36), then the command 0x05, and the value 0x00, then a stop condition (P).

PC Interface

DLPC150 Control Commands

This chapter lists the DLPC150 control commands.

The Reset column in all of the following command tables is the default value after power up. These values may be overwritten after power up.

2.1 Input Source Commands

The Input Source Selection determines the input source for the DLPC150 data display.

2.1.1 Set Input Source Selection Command (0x05)

The Set Input Source Selection Command selects the input source for the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
		Input Source	
		0: Parallel Port	
0	1:0	1: Test Pattern Generator	01h
0	7:2	2: Serial Flash Memory	UIII
		3: Reserved	
		Reserved	

Table 2-1. Input Source Selection Command

The input source supports a set of associated commands that are only applicable to specific input source selections. These associations are also shown in Table 2-2.

Table 2-2. Allowed Input Source Associated Commands by Source

INPUT SOURCE ASSOCIATED COMMANDS	PARALLEL PORT	TEST PATTERN GENERATOR	SERIAL FLASH MEMORY
Parallel Port Data Format Selection Command	Only	N/A	N/A
Parallel Port Input Image Size Command	Only	N/A	N/A
Parallel Port Manual Image Framing Command	Only	N/A	N/A
Parallel Port SYNC Polarity Command	Only	N/A	N/A
Parallel Port Auto Framing Information Command	Only	N/A	N/A
δ Test Pattern Selection Command	N/A	Only	N/A
Serial Flash Memory Selection Command	N/A	N/A	Only
Retrieve Serial Flash Memory Command	N/A	N/A	Special: No state is stored

These commands (except for Retrieve Serial Flash Memory Command) describe the unique characteristics of their associated source. After defining these settings, the DLPC150 stores them for future commands. After selecting an input source through the Set Input Source Selection Command, the DLPC150 will use the previous associated command settings of the selected source. Therefore, the DLPC150 must receive these associated commands when the source is selected, or when the source characteristics for that input source changes.

The source associated commands must be sent prior to sending the Set Input Source Selection Command. Any input source associated commands sent to an input source that is not active will be saved for future application when that source becomes active through a Set Input Source Selection Command. For example, Table 2-3 provides the set of commands to change from Test Pattern Generator to Parallel Port interface input source.

Table 2-3. Example Command Sequence when Changing Input Source from Test Pattern Generator						
to Parallel Port						

ORDER	COMMAND	DESCRIPTION
1	0x36 0x1A 0x01	Image Freeze Command to hide any artifacts while changing input modes
2	0x36 0xF1 0x60 0x22 0x00 0x40 0x01 0x00 0x00 x00	Stop sequencer
3	0x36 0x07 0x43	Set Parallel Port Source Format Selection Command. Note that settings are stored for future use since the input source has not changed from Test Pattern Generator.
4	0x36 0x2E 0x56 0x03 0xE0 0x01	Set Parallel Port Input Image Size Command with 854 (0x0356) columns by 480 (0x01E0) rows. Note that settings are stored for future use since the input source has not changed from Test Pattern Generator.
5	0x36 0xB8 0x01 0x56 0x03 0xE0 0x01	Set Parallel Port Manual Image Framing Command, if required. This command enables manual image framing mode for an image 854 (0x0356) columns by 480 (0x01E0) rows. Note that settings are stored for future use since the input source has not changed from Test Pattern Generator.
6	0x36 0x05 0x00	Set Input Source Selection Command to Parallel Port. Note that the previously Parallel Port stored settings in commands 2 3, and 4 are now applied
7	0x36 0x1A 0x00	Image Unfreeze Command to show the changed image.

The DLPC150 requires the active data size for all parallel port input sources to be specified with the Parallel Port Input Image Size command. In addition, for input image data on the Parallel bus that doesn't provide data framing information, the DLPC150 requires manual framing using the Parallel Port Manual Image Framing command.

When a test pattern is selected, the DLPC150 will generate it at the resolution of the DLP2010 or DLP2010NIR and modify it by the settings specified in the Image Crop Command, and display it at the resolution specified by the Display Size command.

To hide artifacts when selecting an input source, the Image Freeze command and the DLPC150 sequencer must be stopped.

2.1.2 Read Input Source Selection Command (0x06)

The Read Input Source Selection command reports the input source for the DLPC150.

Table 2-4. Read Input Source Selection Command	Table 2-4.	Read Input	Source	Selection	Command
--	------------	------------	--------	-----------	---------

BYTE	BITS	DESCRIPTION	RESET
		Input Source	
		0h: Parallel Port Interface	
0	0 1:0	1h: Test Pattern Generator	0x01
0		2h: Serial Flash Memory	UXUT
		3h: Reserved	
	7:2	Reserved	

Input Source Commands

2.1.3 Parallel Port Interface Commands

2.1.3.1 Set Parallel Port Data Format Selection Command (0x07)

The Set Parallel Port Data Format Selection command specifies the source data type for the Parallel Port interface of the DLPC150. This command is used in conjunction with the Set Input Source Selection command selects the Parallel Port interface as the image source.

The settings for this command are retained until another command overwrites the settings. These settings are automatically applied each time the Parallel Port interface is selected as the input source.

Table 2-5. Set Parallel Port Data Format Selection Command

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0x40: RGB565, 16-bits per pixel	0x43
		0x43: RGB888, 24-bits per pixel	
		0x00-0x39, 0x41-0x42, 0x43-0xFF: Reserved	

2.1.3.2 Read Parallel Port Data Format Selection Command (0x08)

The Read Parallel Port Data Format Selection command reports the source data type for the Parallel Port interface of the DLPC150.

Table 2-6. Read Parallel Port Data Format Selection Command

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0x40: RGB565, 16-bits per pixel	0x43
		0x43: RGB888, 24-bits per pixel	
		0x00-0x39, 0x41-0x42, 0x43-0xFF: Reserved	

2.1.3.3 Set Parallel Port Input Image Size Command (0x2E)

The Set Parallel Port Input Image Size command specifies the data size of the Parallel Port interface input image of the DPLC150. This command is used in conjunction with the Set Input Source Select command. This command specifies the active data size of the input image to the system for the Parallel Port interface when the Set Input Source Select command selects the Parallel Port interface as the image source. When the source data for the parallel interface does not provide an active data framing signal, the user must specify where the active data is located within the frame using the Set Parallel I/F Manual Image Framing command in addition to this command.

The settings for this command are to be retained until changed using this command. These settings will be automatically applied each time the External Video Port is selected.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Pixels per Line (LSByte)	0x56
1	7:0	Pixels per Line (MSByte)	0x03
2	7:0	Lines per Frame (LSByte)	0xE0
3	7:0	Lines per Frame (MSByte)	0x01

Table 2-7. Set Parallel Port Input Image Size Command

The parameter values are to be '1' based, meaning that a value of 854 pixels will specify 854 pixels per line.

The maximum and minimum input values are shown in Table 2-8. Values outside of these ranges will be flagged as an error with an invalid command parameter, and the command will not be executed.

Parameter	Minimum Value	Maximum Value
Input Source Active Pixels per Line	320	1280
Input Source Active Lines per Frame	200	800

Table 2-8. Input Source Limits for Active Data

2.1.3.4 Read Parallel Port Input Image Size Command (0x2F)

The Read Parallel Port Input Image Size command reports the data size of the Parallel Port interface input image of the DLPC150. This command returns the value specified by the Set Parallel Port Input Image Size command.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Pixels per Line (LSByte)	0x56
1	7:0	Pixels per Line (MSByte)	0x03
2	7:0	Lines per Frame (LSByte)	0xE0
3	7:0	Lines per Frame (MSByte)	0x01

The parameter values are to be '1' based, meaning that a value of 854 pixels will specify 854 pixels per line.

2.1.3.5 Set Parallel Port SYNC Polarity Command (0xB6)

The Set Parallel Port SYNC Polarity command specifies the SYNC polarity for the Parallel Port interface of the DLPC150. This command is required whenever the source input is set to the Parallel Port interface. In Automatic mode, the DLPC150 determines the appropriate polarity of the syncs. Manual Parallel Port Sync Polarity mode is available for debugging purposes to override the Parallel Port interface with a specific sync polarity.

BYTE	BITS	DESCRIPTION	RESET
	0	Parallel Port Sync Polarity Mode	
		0: Automatic Mode	
		1: Manual Mode	
	1	Manual Mode – Parallel Port VSYNC Polarity	
0		0: Falling Edge Active (Negative Pulse)	0x00
0		1: Rising Edge Active (Positive Pulse)	0x00
	2	Manual Mode – Parallel Port HSYNC Polarity	-
		0: Falling Edge Active (Negative Pulse)	
		1: Rising Edge Active (Positive Pulse)	
	7:3	Reserved	

Table 2-10. Set Parallel Port SYNC Polarity Command

2.1.3.6 Read Parallel Port SYNC Polarity Command (0xB7)

The Read Parallel Port SYNC Polarity command reports the state of the SYNC polarity for the Parallel Port interface of the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
		Parallel Port VSYNC Polarity	
	0	0: Falling Edge Active (Negative Pulse)	
		1: Rising Edge Active (Positive Pulse)	
0		Parallel Port HSYNC Polarity	0x00
	1	0: Falling Edge Active (Negative Pulse)	
		1: Rising Edge Active (Positive Pulse)	
	7:2	Reserved	

Table 2-11. Read Parallel Port SYNC Polarity Command

2.1.3.7 Set Parallel Port Manual Image Framing Command (0xB8)

The Set Parallel Port Manual Image Framing command specifies the Parallel Port interface manual image framing parameters for the DLPC150. This command is only required when the source data for the Parallel Port interface doesn't provide an active data valid framing signal. However, vertical and horizontal syncs are still required. These framing parameters are referenced to the appropriate sync signal (e.g. start pixel referenced to each horizontal sync). This command is used in conjunction with the Set Video Input Image Size command. The user must enable or disable manual framing as appropriate. If manual framing is specified, it will be used even if an active data valid framing signal is provided with the input, overriding the active data valid signal of the DATAEN_CMD pin.

The settings for this command are retained until another command overwrites the settings. These settings are automatically applied each time the Parallel Port interface is selected as input source.

BYTE	BITS	DESCRIPTION	RESET
	0	0: Disable Parallel Port Manual Image Framing	
0	0	1: Enable Parallel Port Manual Image Framing	0x00
	7:1	Reserved	
1	7:0	Start Pixel (LSByte)	0x00
2	7:0	Start Pixel (MSByte)	0x00
3	7:0	Start Line (LSByte)	0x00
4	7:0	Start Line (MSByte)	0x00

Table 2-12. Set Parallel Port Manual Image Framing Command

The start pixel and line parameters are '1' based, meaning that a value of 1 will specify the first pixel of a line in the first line of the frame.

This function is NOT applicable to BT656 sources. Framing for these sources will be handled automatically by the system.

2.1.3.8 Read Parallel Port Manual Image Framing Command (0xB9)

The Read Parallel Port Manual Image Framing command reports the state of the Parallel Port interface manual image framing parameters for the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
	0	0: Disable Parallel Port Manual Image Framing	
0	0	1: Enable Parallel Port Manual Image Framing	0x00
	7:1	Reserved	
1	7:0	Start Pixel (LSByte)	0x00
2	7:0	Start Pixel (MSByte)	0x00
3	7:0	Start Line (LSByte)	0x00
4	7:0	Start Line (MSByte)	0x00

The start pixel and line parameters are '1' based, meaning that a value of 1 will specify the first pixel of a line in the first line of the frame.

2.1.4 Test Pattern Commands

2.1.4.1 Set Test Pattern Selection Command (0x0B)

The Set Test Pattern Selection command specifies the internal test pattern used by the DLPC150. This command is used in conjunction with the Set Input Source Selection command. This command, shown in Table 2-14, specifies which test pattern is displayed when the Set Input Source Selection command selects Test Pattern Generator as the image source. Test Patterns are created at the resolution of the DLP2010 or DLP2010NIR, 854 columns by 480 rows. However, the resolution can be modified by the Set Image Crop command and are displayed at the resolution specified by the Set Display Size command. The Test Pattern border selection creates a single pixel wide/tall white border around the specified test pattern. As shown in Table 2-15, some test patterns can have a foreground and background color specified.

When a Foreground or Background Color is not used, the bit values will be ignored (See Table 2-16). If both Foreground and Background Color are not used, or when a Parameter Byte (Bytes 2 thru 5) is not used, the byte should not be sent. This is shown in Table 2-17 which shows the number of bytes required based on the specified pattern.

The settings for this command are retained until another command overwrites the settings. These settings are automatically applied each time the Test Pattern Generator is selected as input source.

BYTE	BITS	PATTERN TYPE	DESCRIPTION	RESET
		Pattern Selection	0x0: Solid Field	
			0x1-0x02: Reserved	
			0x3: Horizontal Lines	
	3:0		0x4: Diagonal Lines	
	3.0		0x5: Vertical Lines	0x00
0			0x6: Horizontal & Vertical Grid	
			0x7: Checkerboard	
			0x8-0xF: Reserved	
	6:4		Reserved	
	7	7 Test Pattern Border	0x00: Disabled	
	1	rest rattern bolder	0x01: Enabled]

Table 2-14. Set Test Pattern Selection Command

BYTE	BITS	PATTERN TYPE	DESCRIPTION	RESET
			0x0: Black	
	2:0	Background Color	0x1-0x6: Reserved	
	0x7: White		0x7: White	
4	3		Reserved	0.470
1			0x0: Black	0x70
6:4	6:4	Foreground Color	0x1-0x6: Reserved	
			0x7: White	
	7		Reserved	
2	7:0		Parameter 1 (See Table 2-16)	0x00
3	7:0		Parameter 2 (See Table 2-16)	0x00
4	7:0		Parameter 3 (See Table 2-16)	0x00
5	7:0		Parameter 4 (See Table 2-16)	0x00

Table 2-14. Set Test Pattern Selection Command (continued)

Pattern	Foreground Color	Background Color
Solid Field	Yes	No
Horizontal Lines	Yes	Yes
Vertical Lines	Yes	Yes
Diagonal Lines	Yes	Yes
Grid Lines	Yes	Yes
Checkerboard	Yes	Yes

Table 2-16. Descriptions and Bit Assignments for Parameters 1-4

	Byte 5 (Para	ameter 4)	Byte 4 (Para	ameter 3)	Byte 3 (Para	meter 2)	Byte 3 (Para	yte 3 (Parameter 1)	
Pattern	Description	Bits	Description	Bits	Description	Bits	Description	Bits	
Solid Field	n/a		n/a		n/a		n/a		
Horizontal Lines	n/a		n/a		Background Line Width	8	Foreground Line Width	8	
Vertical Lines	n/a		n/a		Background Line Width	8	Foreground Line Width	8	
Diagonal Lines	n/a		n/a		Vertical Spacing	8	Horizontal Spacing	8	
Grid Lines	Vertical Background Line Width	8	Vertical Foreground Line Width	8	Horizontal Background Line Width	8	Horizontal Foreground Line Width	8	
Checkerboard	Number of Vertical Checkers	3	Number of Vertical Checkers	8	Number of Horizontal Checkers	3	Number of Horizontal Checkers	8	

Table 2-17. Number of Bytes Required based on Pattern Selection

Specified Pattern	Solid Field	Horizontal Lines	Vertical Lines	Diagonal Lines	Grid Lines	Checker board
Number of Bytes Required	2	4	4	4	6	6

The appearance for the Horizontal Lines test pattern is specified using both the Foreground and Background colors. The foreground color is used for the horizontal lines, and the background color is used for the space between the lines. As an example, if the foreground line width = 1, and the background line width = 9, there would be a single pixel horizontal line on every 10th line. An example of a Horizontal Lines pattern is shown in Figure 2-1.

Figure 2-1. Example of Horizontal Lines Test Pattern

The appearance for the Vertical Lines test pattern is specified using both the Foreground and Background colors. The foreground color is used for the vertical lines, and the background color is used for the space between the lines. As an example, if the foreground line width = 1, and the background line width = 9, there would be a single pixel vertical line on every 10th line. An example of a Vertical Lines pattern is shown in Figure 2-2.

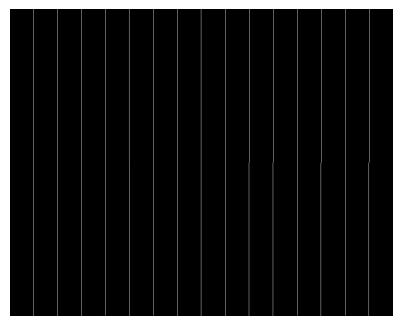


Figure 2-2. Example of Vertical Lines Test Pattern

Input Source Commands

www.ti.com

The appearance for the Diagonal Lines pattern is specified using both the Foreground and Background colors. The foreground color is used for the diagonal lines, and the background color is used for the space between the lines. The line width will always be one pixel. It should be noted that both horizontal and vertical line spacing must use the same value, and are limited to values of 3, 7, 15, 31, 63, 127, 255. Invalid values will result in a communication error with invalid command parameter. An example of a Diagonal Lines pattern is shown in Figure 2-3.

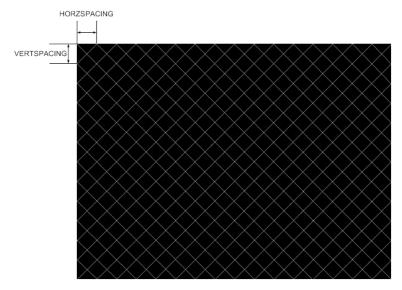


Figure 2-3. Example of Diagonal Lines Test Pattern

The appearance for the Grid Lines pattern is specified using both the Foreground and Background colors. The foreground color is used for the grid lines, and the background color is used for the space between the lines. As an example, if the horizontal foreground line width = 1, and background line width = 9, there would be a single pixel horizontal line on every 10th line. Furthermore, if the vertical foreground line width = 1, and background line width = 9, there would be a single pixel horizontal line width = 9, there would be a single pixel vertical line on every 10th line. An example of a Grid Lines pattern is shown in Figure 2-4.

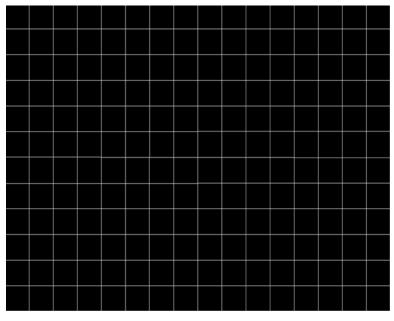


Figure 2-4. Example of Grid Lines Test Pattern

The appearance for the Checkerboard pattern is specified using both the Foreground and Background colors. The foreground color is used for one of the checkers, and the background color is used for the alternating checker. For this pattern, the system will automatically determine the checker size in each direction based on the number of checkers and the size of the DLP2010 or DLP2010NIR. As an example, if the number of horizontal checkers = 4, the number of vertical checkers = 4, and the DMD resolution is 854x480, then the size of the horizontal checkers would be 213 pixels, and the size of the vertical checkers would be 120 pixels (854 pixels / 4 checkers = 213 pixels: 480 pixels / 4 checkers = 120 pixels). An example of a Checkerboard pattern (16 checkers by 12 checkers) is shown in Figure 2-5.

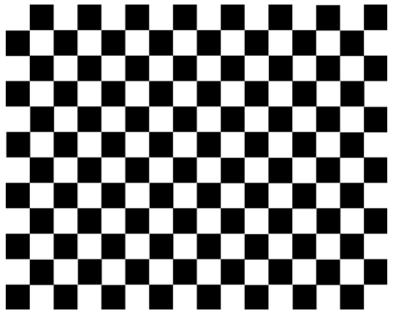


Figure 2-5. Example of Checkerboard Test Pattern

2.1.4.2 Read Test Pattern Selection (0x0C)

The Read Test Pattern Selection command reports the test pattern selected by the DLPC150.

BYTE	BITS	PATTERN TYPE	DESCRIPTION	RESET		
			0x0: Solid Field			
			0x1-0x02: Reserved			
			0x3: Horizontal Lines			
	3:0	Pattern Selection	0x4: Diagonal Lines			
	3.0	Fallen Selection	0x5: Vertical Lines			
0			0x6: Horizontal & Vertical Grid	0x00		
			0x7: Checkerboard			
					0x8-0xF: Reserved	
	6:4	-	Reserved			
	7		0x00: Disabled			
		7 Test Pattern Border	0x01: Enabled			

Table 2-18. Read Test Pattern Selection Command

BYTE	BITS	PATTERN TYPE	DESCRIPTION	RESET
			0x0: Black	
	2:0	Background Color	0x1-0x6: Reserved	
			0x7: White	
4	3		Reserved	0x70
1			0x0: Black	0070
	6:4	6:4 Foreground Color	0x1-0x6: Reserved	
			0x7: White	
	7		Reserved	
2	7:0		Parameter 1 (See Table 2-16)	0x00
3	7:0		Parameter 2 (See Table 2-16)	0x00
4	7:0		Parameter 3 (See Table 2-16)	0x00
5	7:0		Parameter 4 (See Table 2-16)	0x00

Table 2-18. Read Test Pattern Selection Command (continued)

This command returns six bytes. All unneeded bytes (See Table 2-17) will be set to "0".

2.1.5 Serial Flash Pattern Commands

2.1.5.1 Set Serial Flash Pattern Selection Command (0x0D)

The Set Serial Flash Pattern Selection command selects a pattern stored in the serial Flash memory of the DLPC150. This command is used in conjunction with the Set Input Source Selection and the Retrieve Serial Flash Pattern commands. It specifies the serial Flash memory pattern to be displayed by the DLPC150 when the Input Source Selection command selects serial Flash memory as the image source. All image processing settings-image crop, image orientation, display size, serial Flash pattern, and input source-must be set before executing the Retrieve Serial Flash Pattern command.

The settings for this command are retained until another command overwrites the settings. These settings are automatically applied each time the serial Flash memory is selected as the input source.

The availability of patterns in serial Flash memory is limited by the available space in flash memory and by the compression of the pattern. the minimum pattern image size allowed for flash storage is 427×240 , while the maximum image size is the resolution of the DLP2010 or DLP2010NIR, 854×480 .

 Table 2-19. Set Serial Flash Pattern Selection Command

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Pattern Number in DLPC150 Serial Flash Memory	0x00

To display a pattern from serial Flash memory, the steps shown in Table 2-20 are required.

Table 2-20. Example Command Sequence to Display a Pattern from Serial Flash Memory

ORDER	COMMAND	DESCRIPTION
1	0x36 0x1A 0x01	Image Freeze Command to hide any artifacts while changing input modes
2	0x36 0x0D 0x00	Set Serial Flash Pattern Selection Command to select the desired serial Flash memory pattern #0.
3	0x37 0x35	Retrieve Serial Flash Pattern Command to retrieve the pattern.
4	0x36 0x1A 0x00	Image Unfreeze Command to show the changed image.

2.1.5.2 Read Serial Flash Pattern Command (0x0E)

The Read Serial Flash Pattern command reports the pattern selected from the serial Flash memory of the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Pattern Number in DLPC150 Serial Flash Memory	0x00

Table 2-21. Read Serial Flash Pattern Command

2.1.5.3 Retrieve Serial Flash Pattern Command (0x35)

The Retrieve Serial Flash Memory Pattern command starts the DLPC150 process of retrieving a pattern from serial Flash memory. Due to the serial Flash memory interface connection, retrieval of a pattern from flash might take up to 350 ms to complete. Therefore, this command must be completed before subsequent commands are issued.

This command is used in conjunction with the Set Input Source Selection and the Set Serial Flash Pattern Selection commands. All image processing settings-image crop, image orientation, display size, serial Flash pattern, and input source-must be set before executing the Retrieve Serial Flash Pattern command.

This command has no command parameters.

2.2 Image Control Commands

Image control commands determine the display size, crop portion, and freeze of the image or pattern displayed by the DLPC150.

2.2.1 Set Display Size Command (0x12)

The Set Display Size command specifies the starting size of the pattern or image to be displayed by the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Columns or Pixels per Line (LSByte)	0x56
1	7:0	Columns or Pixels per Line (MSByte)	0x03
2	7:0	Rows or Lines per Frame (LSByte)	0xE0
3	7:0	Rows or Lines per Frame (MSByte)	0x01

Table 2-22. Set Display Size Command

The parameter values are '1' based, meaning that a value of 854 pixels will display 854 pixels per line.

2.2.2 Read Display Size Command (0x13)

The Read Display Size command reports the size of the pattern or image displayed by the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Columns or Pixels per Line (LSByte)	0x56
1	7:0	Columns or Pixels per Line (MSByte)	0x03
2	7:0	Rows or Lines per Frame (LSByte)	0xE0
3	7:0	Rows or Lines per Frame (MSByte)	0x01

Table 2-23. Read Display Size Command

The parameter values are '1' based, meaning that a value of 854 pixels will display 854 pixels per line.

2.2.3 Set Image Crop Command (0x10)

The Set Image Crop command specifies which portion of the input image is to be captured and outputted from the cropping function of the DLPC150. This command applies to all input sources: test patterns, serial flash patterns, and Parallel Port interface. Changing the input source does not impact the application of this command.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Capture Start Pixel (LSByte)	0x00
1	7:0	Capture Start Pixel (MSByte)	0x00
2	7:0	Capture Start Line (LSByte)	0x00
3	7:0	Capture Start Line (MSByte)	0x00
4	7:0	Pixels per Line (LSByte)	0xFF
5	7:0	Pixels per Line (MSByte)	0xFF
6	7:0	Lines per Frame (LSByte)	0xFF
7	7:0	Lines per Frame (MSByte)	0xFF

Table 2-24. Set Image Crop Command

The Capture Start parameters for this command are '0' based , meaning that specifying the capture start pixel with a value of zero would specify the first active pixel of a line. However, the Pixel/Line and Lines/Frame parameters are '1' based, meaning that specifying the pixels/line value with a value of 640 would specify 640 pixels to be captured.

If a crop size parameter exceeds the size of the input image, the input image size minus the Capture Start Pixel/Line will be used, as shown in Figure 2-6. Regardless, the crop size parameters returned by the Read Image Crop command will always be the values specified by the Set Image Crop command.

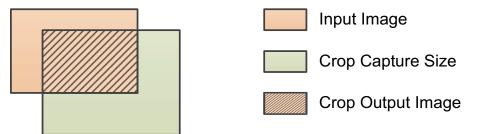


Figure 2-6. Cropping Rules when Crop Size exceeds Input Size

2.2.4 Read Image Crop Command (0x11)

The Read Image Crop command reports the portion of the input image or pattern that is cropped by the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	Capture Start Pixel (LSByte)	0x00
1	7:0	Capture Start Pixel (MSByte)	0x00
2	7:0	Capture Start Line (LSByte)	0x00
3	7:0	Capture Start Line (MSByte)	0x00
4	7:0	Pixels per Line (LSByte)	0xFF
5	7:0	Pixels per Line (MSByte)	0xFF
6	7:0	Lines per Frame (LSByte)	0xFF
7	7:0	Lines per Frame (MSByte)	0xFF

Table 2-25. Read Image Crop Command

All parameters for this command are '1' based, meaning that specifying the capture start pixel with a value of one would specify the first active pixel of a line.

2.2.5 Set Image Freeze Command (0x1A)

The Set Image Freeze command enables or disables the image freeze function of the DLPC150. The DLPC150 allows the image to be frozen to prevent artifacts from being displayed by the DLPC150 during configuration changes. A typical sequence of commands to prevent artifacts from being displayed is:

- 1. Set Image Freeze command to enable freezing the pattern or image on the DLP2010 or DLP2010NIR.
- 2. Send commands that take a long time to process, require data to be loaded from serial Flash memory, or change the frame timing of the system.
- 3. Send Set Image Freeze command to disable freezing the pattern or image on the DLP2010 or DLP2010NIR.

When the image is unfrozen, the DLPC150 displays the most resent input image. Thus input data between the freeze point and the unfreeze point is never displayed.

WARNING

Commands that take a long time to process, require data to be loaded from serial Flash memory, or change the frame timing of the system, have the potential to create artifacts on the DLP2010 or DLP210NIR. The Set Image Freeze command prevents artifacts from being displayef by the DLPC150 during configuration changes.

BYTE	BITS	DESCRIPTION	RESET
0	0	Image Freeze	0x00
		'0': Image Freeze Disabled	
		'1': Image Freeze Enabled	
	7:1	Reserved	

Table 2-26. Set Image Freeze Command

Table 2-27 lists commands that benefit from the use of image freeze.

Table 2-27. Commands that Benefit from Image Freeze

COMMAND	DESCRIPTION	NOTES	
0x05	Set Input Source Selection Command		
0x07	Set Parallel Port Data Format Selection Command	Freeze the image when using this command while the	
0x0B	Set Parallel Port Data Format Selection Command	Parallel Port is set as the input source.	
0x0D	Set Serial Flash Pattern Selection Command	Freeze the image when using this command while the serial Flash memory is set as the input source.	

Table 2-28 and Table 2-29 show examples using image freeze command.

ORDER	COMMAND	DESCRIPTION
1	0x36 0x1A 0x01	Image Freeze Command to hide any artifacts while changing serial Flash parameters
2	0x36 0x10 0x00 0x00 0x00 0x00 0x56 0x03 0xE0 0x01	Set Image Crop Command to set image crop to start at 0, 0 and end at 854, 480.
3	0x36 0x0D 0x00	Set Serial Flash Pattern Selection to pattern 0.
4	0x37 0x35	Retrieve Serial Flash Pattern. Serial Flash Patten 0 will be displayed on the DLP2010 or DLP210NIR regardless of the image freeze setting. However, the unfreeze command must still be executed.
5	wait 350 ms	
6	0x36 0x1A 0x00	Image Unfreeze Command to show the changed image.

Table 2-28. Example Using Image Freeze While Setting Serial Flash Parameters

Table 2-29. Example Using Image Freeze While Setting Test Pattern Generator Parameters

ORDER	COMMAND	DESCRIPTION
1	0x36 0x1A 0x01	Image Freeze Command to hide any artifacts while changing serial Flash parameters
2	0x36 0xF1 0x60 0x22 0x00 0x40 0x01 0x00 0x00 x00	Stop sequencer
3	0x36 0x10 0x00 0x00 0x00 0x00 0x56 0x03 0xE0 0x01	Set Image Crop Command to set image crop to start at 0, 0 and end at 854, 480.
4	0x36 0x0B 0x07 0x70 0x10 0x00 0x0C 0x00	Set Test Pattern Selection to checkboard with 16 horizontal and 12 vertical checkers.
5	0x36 0x05 0x01	Set Input Source Selection to Test Pattern Generator.
6	0x36 0x1A 0x00	Image Unfreeze Command to show the changed image.

2.2.6 Read Image Freeze Status Command (0x1B)

The Read Image Freeze command reports the state of the image freeze function of the DLPC150.

Table 2-30. Read Image Freeze Command

BYTE	BITS	DESCRIPTION	RESET
0	0	Image Freeze	00h
		'0': Image Freeze Disabled	
		'1': Image Freeze Enabled	
	7:1	Reserved	

2.3 Status Commands

2.3.1 Read Short Status Command (0xD0)

The Read Short Status command reports the overall system status summary of the DLPC150. To prevent impacting system performance, the Read Short Status command should only be checked periodically, not continuously.

BYTE	BITS	DESCRIPTION	RESET
		System Initialization	
	0	'0': Not Complete	
		'1': Complete	
		Communication Error	
	1	'0': No Error	
		'1': Error on I2C command interface. Issue Read Communication Status command to find more information about the error.	
	2	Reserved	
		System Error, not including Communication nor Flash error.	
	3	'0': No Error	
0		'1': Error. Issue Read System Status command to find more information about the error.	0x00
	4	Flash Erase Complete	
		'0': Complete	
		'1': Not Complete	
		Flash Error	
	5	0: No Error	
		1: Error	
	6	Reserved	
		Boot/Main Application	
	7	'0': Boot	
		'1': Main	

Table 2-31. Read Short Status Command

Status Commands

2.3.2 Read System Status Command (0xD1)

The Read Status command reports the system status information for the DLPC150. All system status error bits are cleared when the command is executed.

BYTE	Description
0	DMD Interface Status
1	Reserved
2	Reserved
3	Reserved

Table 2-32. System Status Byte 0

BYTE	BITS	DESCRIPTION	RESET
	1	DMD Device Error	
		'0': No Error	
		'1': Error, cannot read DLP2010 or DLP2010NIR Device ID	
		DMD Interface Error	0x00
0		'0': No Error	
0		'1': Error on PMIC setup	
		DMD Training Error	
		ʻ0': No Error	
		'1': Error, data does not specifications	
	7:3	Reserved	

2.3.3 Read System Software Version Command (0xD2)

The Read System Software Version command reports the firmware software version information for the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	DLPC150 Application Software Version – Patch LSByte	0x00
1	7:0	DLPC150 Application Software Version – Patch MSByte	0x00
2	7:0	DLPC150 Application Software Version – Minor	0x00
3	7:0	DLPC150 Application Software Version – Major	0x00

Table 2-33. Read System Software Version Command

2.3.4 Read Communication Status Command (0xD3)

The Read Communication Status command reports the I²C communication status of the DLPC150. This command returns six bytes shown in Table 2-35. For example, the host issues command 0x36 0xD3 0x2 followed by six byte read 0x37 byte1 byte2 byte3 byte4 byte5 byte6.

Table 2-34. Read Communication Status Command Parameter

BYTE	BITS	DESCRIPTION	RESET
0	1:0	0x2: I ² C communication	0x02
	7:2	Reserved	

BYTE	BITS	DESCRIPTION	RESET
1	7:0	Reserved	
2	7:0	Reserved	
3	7:0	Reserved	
4	7:0	Reserved	
5	0	Invalid Command Error. The command number is not recognized.	
		0x0: No Error	
		0x1: Error	
	1	Invalid Command Parameter Value. The parameter value is not recognized or out of range.	
		0x0: No Error	
		0x1: Error	
	2	Command Processing Error.	
		0x0: No Error	
		0x1: Error	
	3	Reserved	
	4	Read Command Error. Host terminated read operation before all the data was read by the host or the host continues to request read data after all the data has been provided.	
		0x0: No Error	
		0x1: Error	
	5	Invalid Number of Command Parameters. Too many or too few command parameters are received. When this error occurs, the command is aborted and the DLPC150 proceed to process the next command. The command number associated with the error is reported in byte 6	
		0x0: No Error	
		0x1: Error	
	6	Bus Timeout by DMD Error. DMD released control of the bus when the timeout value has been exceeded.	
		0x0: No Error	
		0x1: Error	
	7	Reserved	
6	7:0	I ² C command number that produced an invalid number of command parameters error.	

Table 2-35. Communication Status Bytes Returned

2.3.5 GPIO Control

The DLPC150 includes 13 pins with general purpose input and output (GPIO) functionality. Each one of these GPIO pins can be individually programmed to an input or output pin.

2.3.5.1 Set GPIO Control Command (0x31)

The Set GPIO Control command specifies the function of programmable GPIO_19, GPIO_17 through GPIO_09, and GPIO_07 through GPIO_05 of the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
		GPIO_09	
	1:0	0: LS_PWR	
		1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_10	
		0: RC_CHARGE	
	3:2	1: Input	
		2: Output (Standard)	
0		3: Output (Open Drain)	
0		GPIO_11	
		0: Thermistor power enable	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_12	
		0: Reserved	
	7:6	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_13	
		0: CAL_PWR	
	1:0	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_14	
		0: Reserved	
1	3:2	1: Input	
1		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_15	
		0: KEYPAD_0	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
	7:6	Reserved	

Table 2-36. Set GPIO Control Command

BYTE	BITS	DESCRIPTION	RESET
		GPIO_17	
		0: KEYPAD_2	
	1:0	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_18	
		0: KEYPAD_2	
0	3:2	1: Input	
2		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_19	
		0: KEYPAD_4	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
	7:6	Reserved	
	1:0	Reserved	
		GPIO_05	
		0: Reserved	
	3:2	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_06	
2		0: Reserved	
3	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_07	
	7:6	0: LED_ENABLE	
		1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	

Table 2-36. Set GPIO Control Command (continued)

2.3.5.2 Read GPIO Control (0x32)

The Read GPIO Control command reports the function of programmable GPIO_19, GPIO_17 through GPIO_09, and GPIO_07 through GPIO_05 of the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
		GPIO_09	
		0: LS_PWR	
	1:0	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	-
		GPIO_10	-
		0: RC_CHARGE	
	3:2	1: Input	
		2: Output (Standard)	
0		3: Output (Open Drain)	-
0		GPIO_11	-
		0: Thermistor power enable	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_12	
	7:6	0: Reserved	
		1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_13	
		0: CAL_PWR	
	1:0	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_14	
		0: Reserved	
1	3:2	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_15	
		0: KEYPAD_0	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
	7:6	Reserved	

Table 2-37. Read GPIO Control Command

BYTE	BITS	DESCRIPTION	RESET
		GPIO_17	
		0: KEYPAD_2	
	1:0	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_18	
		0: KEYPAD_3	
2	3:2	1: Input	
2		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_19	
		0: KEYPAD_4	
	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
	7:6	Reserved	
	1:0	Reserved	
		GPIO_05	
		0: Reserved	
	3:2	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_06	
3		0: Reserved	
5	5:4	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	
		GPIO_07	
		0: LED_ENABLE	
	7:6	1: Input	
		2: Output (Standard)	
		3: Output (Open Drain)	

Table 2-37. Read GPIO Control Command (continued)

2.3.5.3 Set GPIO Output (0x33)

The Set GPIO Output command specifies the configured outputs and output values of programmable GPIO_19, GPIO_17 through GPIO_09, and GPIO_07 through GPIO_05 of the DLPC150. In order to set the value of a GPIO, the GPIO must be selected using bytes 1 to 3 of this command, with the appropriate value then being specified using bytes 3 to 6.

BYTE	BITS	DESCRIPTION	RESET
	0	Reserved	
	1	Reserved	
	2	Reserved	
	3	Reserved	
	4	Reserved	
		GPIO_5	
0	5	0h: Not Selected	
0		1h: Selected	
		GPIO_6	
	6	0h: Not Selected	
		1h: Selected	
		GPIO_7	
	7	0h: Not Selected	
		1h: Selected	
		GPIO_9	
	0	0h: Not Selected	
		1h: Selected	
	1	GPIO_10	
		0h: Not Selected	
		1h: Selected	
		GPIO_11	
	2	0h: Not Selected	
		1h: Selected	
		GPIO_12	
1	3	0h: Not Selected	
I		1h: Selected	
		GPIO_13	
	4	0h: Not Selected	
		1h: Selected	
		GPIO_14	
	5	0h: Not Selected	
		1h: Selected	
		GPIO_15	
	6	0h: Not Selected	
		1h: Selected	
	7	Reserved	

Table 2-38. Set GPIO Output Command

BYTE	BITS	DESCRIPTION	RESET
		GPIO_17	
	0	0h: Not Selected	
		1h: Selected	
		GPIO_18	
2	1	0h: Not Selected	
2		1h: Selected	
		GPIO_19	
	2	0h: Not Selected	
		1h: Selected	
	7:3	Reserved	
	0	Reserved	
	1	Reserved	
	2	Reserved	
3	3	Reserved	
3	4	Reserved	
	5	GPIO_5	
	6	GPIO_6	
	7	GPIO_7	
	0	GPIO_9	
	1	GPIO_10	
	2	GPIO_11	
4	3	GPIO_12	
4	4	GPIO_13	
	5	GPIO_14	
	6	GPIO_15	
	7	Reserved	
	0	GPIO_17	
5	1	GPIO_18	
5	2	GPIO_19	
	7:3	Reserved	

Table 2-38. Set GPIO Output Command (continued)

Status Commands

2.3.5.4 Read GPIO Output Command (0x33h)

The Read GPIO Output command reports the output values of the currently programmed outputs of the GPIO(19), GPIO(17:09), and GPIO(07:05) of the DLPC150.

BYTE	BITS	DESCRIPTION	RESET
	0	Reserved	
	1	Reserved	
	2	Reserved	
0	3	Reserved	- 00h
0	4	Reserved	- 0011
	5	GPIO_5	
	6	GPIO_6	
	7	GPIO_7	
	0	GPIO_9	
	1	GPIO_10	
	2	GPIO_11	
1	3	GPIO_12	- 00h
I	4	GPIO_13	- 0011
	5	GPIO_14	
	6	GPIO_15	
	7	Reserved	
	0	GPIO_17	
2	1	GPIO_18	00h
Z	2	GPIO_19	001
	7:3	Reserved	

Table 2-39. Read GPIO Output Command

2.4 **Sequencer Commands**

The DLPC150 includes a sequencer that directs the operations to load and control of the DLP2010 or DLP2010NIR in real-time. Four sequencer commands control loading a sequence vector, disabling and enabling the sequencer, and reading the sequencer state of the DLPC150.

2.4.1 Disable Sequencer Command

The Disable Sequencer command disables the sequencer. The 9-byte I²C command is shown in Table 2-40. This command must be the first when reconfiguring the sequencer.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0xF1: Sequencer command	
1	7:0	0x00: Disable sequencer command parameters	
2	7:0	0x22	
3	7:0	0x00	
4	7:0	0x40	
5	7:0	0x20	
6	7:0	0x10	
7	7:0	0x00	
8	7:0	0x00	

Table 2-40. Disable Sequencer Command

2.4.2 Enable Sequencer Command

The Enable Sequencer command enables the sequencer. The 9-byte I²C command is shown in Table 2-41. This command must be the last when reconfiguring the sequencer.

Table 2-41. Enable Sequencer Command

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0xF1: Sequencer command	
1	7:0	0x00: Enable sequencer command parameters	
2	7:0	0x22	
3	7:0	0x00	
4	7:0	0x40	
5	7:0	0x21	
6	7:0	0x10	
7	7:0	0x00	
8	7:0	0x00	

2.4.3 Stop Sequencer Command

The Stop Sequencer command stops the sequencer. The 9-byte I²C command is shown in Table 2-42. This command must be issued a 100 ms after a change of the input source with the Set Input Source command.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0xF1: Sequencer command	
1	7:0	0x60: Stop sequencer command parameters	
2	7:0	0x22	
3	7:0	0x00	

Table 2-42. Stop Sequencer Command

BYTE	BITS	DESCRIPTION	RESET
4	7:0	0x40	
5	7:0	0x01	
6	7:0	0x00	
7	7:0	0x00	
8	7:0	0x00	

Table 2-42. Stop Sequencer Command (continued)

2.4.4 Select Sequencer Vector Command

The Select Sequencer Vector command loads a predetermined sequence of operations to control the display of the DLP2010 and DLP2010NIR. The DLPC150 supports four display sequences described in Section 2.5. The 9-byte I²C command is shown in Table 2-43.

BYTE	BITS	DESCRIPTION	RESET
0	7:0	0xF1: Sequencer command	
1	7:0	0x14: Select display sequence vector parameters	
2	7:0	0x22	
3	7:0	0x00	
4	7:0	0x40	
5	7:0	0x00	
		Vector Number LSB	
		0x00: Pattern load from Serial Flash Memory with 16-bit RGB565 Data Format	
6	7:0	0x01: Pattern Streamed through the Parallel Port Interface with 16- bit RGB565 Data Format	
		0x02: Pattern Streamed through the Parallel Port Interface with 24- bit RGB888 Data Format	
		0x03: Pattern Streamed through the Parallel Port Interface with External Trigger input and 24-bit RGB888 Data Format	
		Vector Number MSB	
7	7:0	0x01: Pattern load from Serial Flash Memory with 16-bit RGB565 Data Format	
		0x01: Pattern Streamed through the Parallel Port Interface with 16- bit RGB565 Data Format	
		0x01: Pattern Streamed through the Parallel Port Interface with 24- bit RGB888 Data Format	
		0x18: Pattern Streamed through the Parallel Port Interface with External Trigger input and 24-bit RGB888 Data Format	
8	7:0	0x00	

Table 2-43. Stop Sequencer Command

2.5 Display Sequences

A DLP display sequence consists of several parameters that dictate how the DLPC150 loads the DLP2010 or DLP2010NIR. When loading from serial Flash memory, the DLPC150 stores a 24-bit frame in its internal memory buffer and then it is sent to the DLP2010 or DLP2010NIR. When streaming data from the Parallel Port interface, the DLPC150 takes advantage of a second 24-bit buffer to pipeline the data to the DLP2010 or DLP2010NIR while the second buffer is filled from the Parallel Port interface. After a 24-bit frame is displayed, the buffer rotates providing the next 24-bit frame to the DLP2010 or DLP2010NIR, while the previously used one is filled with new data. Therefore, the displayed image is a 24-bit frame behind the data streamed through the Parallel Port interface. The DLPC150 supports the following sequence modes:

- Pattern load from serial Flash memory with 16-bit RGB565 data format.
- Pattern streamed through the Parallel Port interface with 16-bit RGB565 data format.
- Pattern streamed through the Parallel Port interface with 24-bit RGB888 data format.
- Pattern streamed through the Parallel Port interface with external trigger input and 24-bit RGB888 data format.

The DLPC150 includes a sequencer that directs the operations to load and control of the DLP2010 or DLP2010NIR in real-time. Four sets of sequencer commands control loading the patterns in Flash memory or streamed through the Parallel Port interface.

NOTE: The trigger output (TRIG_OUT_1) signal remains undefined from the reset of DLPC150 until the last command to configure the display sequence is interpreted by the DLPC150. During this time ignore any spurious TRIG_OUT_1 signals.

2.5.1 Pattern Load from Serial Flash Memory with 16-bit RGB565 Data Format (0xF4)

The DLPC150 retrieves patterns stored in serial Flash memory with 16-bit RGB565 data format with the I²C commands shown in Table 2-44.

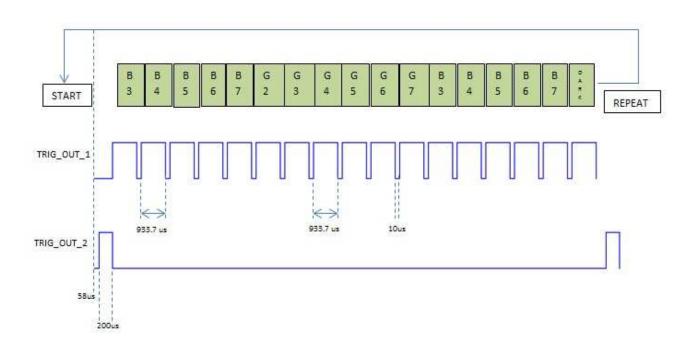

ORDER	COMMAND	DESCRIPTION
1	0x36 0x05 0x02	Set input source select to serial Flash memory
2	0x36 0xF4	Pattern Load from Serial Flash Memory with 16-bit RGB565 Data Format

Table 2-44. Pattern Load from Serial Flash Memory Command Sequence

The pattern display behavior and output trigger behavior in this mode is illustrated in Figure 2-7. In this figure R, G, and B refers to the corresponding bit-plane when a 16 binary patterns are combined into a single 16-bit RGB565 image and stored in SPI Flash memory. Dark refers to a black bit plane to measure dark time of a detector. This sequence supports a pattern exposure of 933.7 µs.

Display Sequences

2.5.2 Pattern Streamed through the Parallel Port Interface with 16-bit RGB565 Data Format (0xF5)

The DLPC150 displays streamed patterns through the Parallel Port interface with 16-bit RGB565 data format with the I^2C commands shown in Table 2-45.

ORDER	COMMAND	DESCRIPTION	
1	0x36 0x10 0x00 0x00 0x00 0x00 0x56 0x03 0xE0 0x01	Set image crop to start at 0, 0 and end at 854, 480	
2	0x36 0x12 0x56 0x03 0xE0 0x01	Set display size to 854 × 480 Set image size to 854 × 480 Set input source select to Parallel Port	
3	0x36 0x2E 0x56 0x03 0xE0 0x01		
4	0x36 0x05 0x00		
5	0x36 0xF5 0x00	Pattern Streamed through the Parallel Port Interface with 16-bit RGB565 Data Format	

Table 2-45. 16-bit Parallel Port Streaming Pattern Mode Command Sequence

The pattern display behavior and output trigger behavior in this mode is illustrated in Figure 2-8. In this figure, R, G, and B refers to the corresponding bit plane when a 16 binary patterns are combined into a single 16-bit RGB565 image and streamed through the Parallel Port. Dark refers to a black bit plane to measure dark time of a detector. This sequence supports a pattern exposure of 933.7 µs.

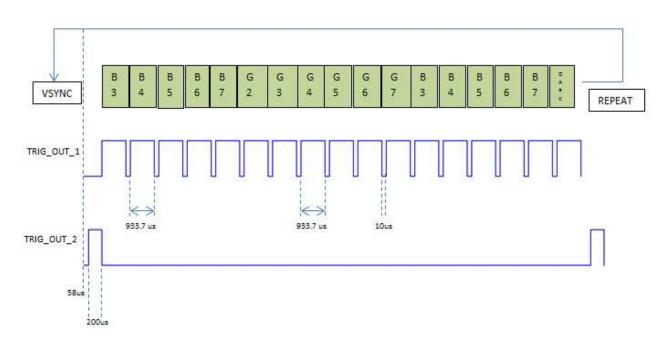


Figure 2-8. 16-bit Parallel Port Streaming Pattern Behavior

2.5.3 Pattern Streamed through the Parallel Port Interface with 24-bit RGB888 Data Format (0xF5)

The DLPC150 displays streamed patterns through the Parallel Port interface with 24-bit RGB888 data format with the I^2C commands shown in Table 2-46.

ORDER	COMMAND	DESCRIPTION	
1	0x36 0x10 0x00 0x00 0x00 0x00 0x56 0x03 0xE0 0x01	Set image crop to start at 0, 0 and end at 854, 480	
2	0x36 0x12 0x56 0x03 0xE0 0x01	Set display size to 854 × 480	
3	0x36 0x2E 0x56 0x03 0xE0 0x01	Set image size to 854 × 480	
4	0x36 0x05 0x00	Set input source select to Parallel Port	
5	0x36 0xF5 0x01	Pattern Streamed through the Parallel Port Interface with 24-bit RGB888 Data Format	

Table 2-46. 24-bit Parallel Port Streaming Pattern Mode Command Sequence

Display Sequences

www.ti.com

The pattern display behavior and output trigger behavior in this mode is illustrated in Figure 2-9. In this figure, R, G, and B refers to the corresponding bit plane when a 24 binary patterns are combined into a single 24-bit RGB888 image and streamed through the Parallel Port. Dark refers to a black bit plane to measure dark time of a detector. This sequence supports a pattern exposure of 625 µs.

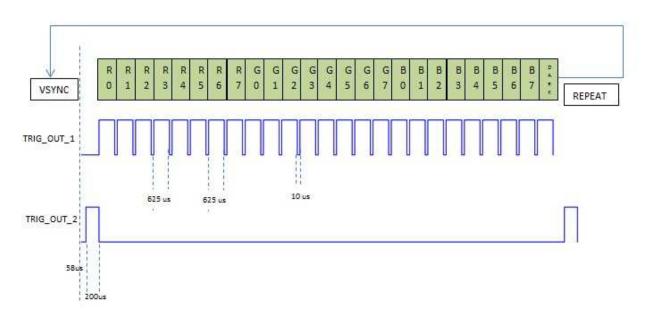


Figure 2-9. 24-bit Parallel Port Streaming Pattern Behavior

2.5.4 Pattern Streamed through the Parallel Port Interface with External Trigger input and 24-bit RGB888 Data Format (0xF6)

The DLPC150 displays streamed patterns through the Parallel Port interface with external trigger input (TRIG_IN_1) and 24-bit RGB888 data format with the I²C commands shown in Table 2-47. This mode supports a pattern exposure greater than 350 μ s.

ORDER	COMMAND	DESCRIPTION	
1	0x36 0x10 0x00 0x00 0x00 0x00 0x56 0x03 0xE0 0x01	^{D3} Set image crop to start at 0, 0 and end at 854, 480	
2	0x36 0x12 0x56 0x03 0xE0 0x01	Set display size to 854 × 480Set image size to 854 × 480	
3	0x36 0x2E 0x56 0x03 0xE0 0x01		
4	0x36 0x05 0x00	Set input source select to Parallel Port	
5	0x36 0xF6 0x00	Pattern Streamed through the Parallel Port Interface with External Trigger input and 24-bit RGB888 Data Format	

The pattern display behavior and output trigger behavior in this mode is illustrated in Figure 2-10.

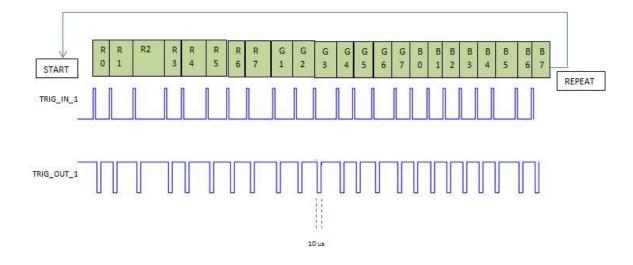


Figure 2-10. 24-bit Parallel Port Streaming Pattern with External Trigger Behavior

PC Command Reference Summary

A.1 I²C Command Reference

This appendix provides a quick reference summary of all available I²C commands.

COMMAND NUMBER	DESCRIPTION	TYPE	RESET VALUE	ACTION		
INPUT SOURCE COMMANDS						
0x05	Set Input Source Selection Command	Write	0x01	Selects the input source: Parallel Port, Test Pattern Generator, or SPI Flash Memory.		
0x06	Read Input Source Selection Command	Read	0x01	Reports the currently selected input source: Parallel Port, Test Pattern Generator, or SPI Flash Memory.		
		PA	RALLEL PORT COMM	ANDS		
0x07	Set Parallel Port Data Format Selection Command	Write	0x43	Specifies the source data type for the Parallel Port interface: 16-bit RGB565 or 24-bit RGB888.		
0x08	Read Parallel Port Data Format Selection Command	Read	0x43	Reports the source data type for the Parallel Port interface: 16-bit RGB565 or 24-bit RGB888.		
0x2E	Set Parallel Port Input Image Size Command	Write	0x56 0x03 0xE0 0x01	Specifies the data size of the Parallel Port input image of the DPLC150.		
0x2F	Read Parallel Port Input Image Size Command	Read	0x56 0x03 0xE0 0x01	Reports the data size of the Parallel Port input image of the DPLC150.		
0xB6	Set Parallel Port SYNC Polarity Command	Write	0x00	Specifies the SYNC polarity for the Parallel Port interface of the DLPC150.		
0xB7	Read Parallel Port SYNC Polarity Command	Read	0x00	Reports the state of the SYNC polarity for the Parallel Port interface of the DLPC150.		
0xB8	Set Parallel Port Manual Image Framing Command	Write	0x00	Specifies the Parallel Port interface manual image framing parameters for the DLPC150.		
0xB9	Read Parallel Port Manual Image Framing Command	Read	0x00	Reports the Parallel Port interface manual image framing parameters for the DLPC150.		
0xBA	Read Auto Framing Information Command	Read	0x00	Reports the input framing information for the Parallel Port interface.		
	•	TEST PA	TTERN GENERATOR (COMMANDS		
0x0B	Set Test Pattern Selection Command	Write	Parameter Dependent	Specifies the internal test pattern used by the DLPC150: solid filed, horizontal lines, vertical lines, horizontal and vertical grid, or checkerboard.		
0x0C	Read Test Pattern Selection	Read	Parameter Dependent	Reports the internal test pattern used by the DLPC150: solid filed, horizontal lines, vertical lines, horizontal and vertical grid, or checkerboard.		
SERIAL FLASH PATTERN COMMANDS						
0x0D	Set Serial Flash Pattern Selection Command	Write	0x00	Selects a pattern stored in the serial Flash memory of the DLPC150.		
0x0E	Read Serial Flash Pattern Selection Command	Read	0x00	Reports the pattern selected from the serial Flash memory of the DLPC150.		
0x35	Retrieve Serial Flash Pattern Command	Read	-	Starts the DLPC150 process of retrieving a pattern from serial Flash memory.		

Table A-1. I²C Command Quick Reference

COMMAND NUMBER	DESCRIPTION	TYPE	RESET VALUE	ACTION		
IMAGE CONTROL COMMANDS						
0x12	Set Display Size Command	Write	0x56 0x03 0xE0 0x01	Specifies the size of the pattern or image to be displayed by the DLPC150.		
0x13	Read Display Size Command	Read	0x56 0x03 0xE0 0x01	Reports the size of the pattern or image to be displayed by the DLPC150.		
0x10	Set Image Crop Command	Write	0xFF	Specifies which portion of the input image is to be captured and output from the cropping function of the DLPC150.		
0x11	Read Image Crop Command	Read	0xFF	Reports the portion of the input image or pattern that is cropped by the DLPC150.		
0x1A	Set Image Freeze Command	Write	0x00	Enables or disables the image freeze function of the DLPC150.		
0x1B	Read Image Freeze Status Command	Read	0x00	Reports the state of the image freeze function of the DLPC150.		
			STATUS COMMAND	S		
0xD0	Read Short Status Command	Read	0x00	Reports the overall system status summary of the DLPC150.		
0xD1	Read System Status Command	Read	0x00	Reports the system status information for the DLPC150.		
0xD2	Read System Software Version Command	Read	0x00	Reports the firmware software version information for the DLPC150.		
0xD3	Read Communication Status	Read	0x00	reports the I ² C communication status of the DLPC150		
		G	PIO CONTROL COMMA	ANDS		
0x31	Set GPIO Control	Write	0x00	Specifies the function of programmable GPIO(19), GPIO(17:09), and GPIO(07:05) of the DLPC150.		
0x32	Read GPIO Control	Read	0x00	Reports the current function selected of the programmable GPIO(19), GPIO(17:09), and GPIO(07:05) of the DLPC150.		
0x33	Set GPIO Outputs	Write	0x00	Specifies the configured outputs and output values of programmable GPIO(19), GPIO(17:09), and GPIO(07:05) of the DLPC150.		
0x34	Read GPIO Outputs	Read	0x00	Reports the output values of the currently programmed outputs GPIO(19), GPIO(17:09), and GPIO(07:05) of the DLPC150.		
	DISPLAY SEQUENCES COMMANDS					
0xF4	Pattern Load from Serial Flash Memory	Write	0x00	Loads a 16-bit RGB565 pattern from serial Flash memory		
0xF5	Pattern Load from Parallel Port Interface	Write	0x00	Streams a 16-bit RGB565 or 24-bit RGB888 pattern from the Parallel Port interface		
0xF6	Pattern Load from Parallel Port Interface with External Trigger Input	Write	0x00	Streams a 16-bit RGB565 or 24-bit RGB888 pattern from the Parallel Port interface with an external trigger input		

Table A-1. I²C Command Quick Reference (continued)

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	nanges from Original (March 2015) to A Revision P	Page
•	Updated Section 1.1.4.1 and Section 1.1.5.1 for clarification	6
•	Added note of spurious trgigger outputs while display sequence is configured.	35
•	Updated Section 2.5 to support v1.1 and later of DLPC150 firmware changes	35
•	Updated pattern control commands in Table 2-44, Table 2-45, Table 2-46, and Table 2-47 to support v1.1 and later of DLPC150 firmware changes	
•	Added pattern exposure timing for 24-bit RGB888 display sequence.	38
•	Added pattern exposure timing for 24-bit RGB888 with external trigger display sequence	38
•	Changed 24-bit RGB888 with external trigger behaviour figure	39

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated