This user's guide describes the characteristics, operation, and use of the ADS1259EVM, both by itself and as part of the ADS1259EVM-PDK. This evaluation model (EVM) is an evaluation board for two different devices. First, it can be used to evaluate the ADS1259, a low-noise, 24-bit, single-channel, delta-sigma (ΔΣ) analog-to-digital converter (ADC). The ADS1259 can be used either in standalone applications or with the PGA280. The PGA280 is a high-precision instrumentation amplifier with digitally-controllable gain and signal integrity test capability. The combination of these two devices forms a high-resolution measurement system able to digitize a wide range of signals.

This EVM allows performance evaluations of both the ADS1259 and the PGA280. The EVM also allows for PGA280 control of the ADS1259 through the use of the external chip select modes. Complete circuit descriptions, schematic diagrams, printed circuit board (PCB) layouts, and bill of material are included in this document.

The following related documents are available through the Texas Instruments web site at http://www.ti.com.

<table>
<thead>
<tr>
<th>Device</th>
<th>Literature Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS1259</td>
<td>SBAS424A</td>
</tr>
<tr>
<td>PGA280</td>
<td>SBOS487A</td>
</tr>
<tr>
<td>REF5025</td>
<td>SBOS410C</td>
</tr>
<tr>
<td>SN74LVC2G157</td>
<td>SCES207K</td>
</tr>
</tbody>
</table>
Contents
1 EVM Overview .. 4
2 Analog Interface .. 4
3 Digital Interface .. 6
4 Power Supplies .. 7
5 Voltage Reference .. 8
6 ADS1259 Control ... 9
7 Clock Source ... 9
8 EVM Operation .. 10
9 ADS1259EVM-PDK Operation ... 12
10 Evaluating Performance with the ADCPro Software .. 27
11 Schematics and Layout .. 35

List of Figures
1 Test Points TP11 and TP12 ... 5
2 Switch S2 and Jumper J15 ... 6
3 Switch S3 .. 6
4 Jumper J10 .. 8
5 Switch S1 .. 8
6 Switch S4 .. 9
7 ADS1259EVM Default Jumper Positions ... 11
8 ADS1259EVM Default Switch Positions ... 11
9 ADS1259EVM-PDK Setup Wizard; Screen 1 .. 12
10 ADS1259EVM-PDK Setup Wizard; Screen 2 ... 13
11 ADS1259EVM-PDK Setup Wizard; Screen 3 .. 13
12 ADS1259EVM-PDK Setup Wizard; Screen 4 ... 14
13 MMB0 Initial Configuration .. 15
14 Connecting the ADS1259EVM to the MMB0 ... 16
15 Using a Wall Supply for +5V ... 17
16 MMB0 Configured for Lab Power Supply .. 18
17 NI-VISA Driver Installation Wizard, Screen 1 ... 19
18 NI-VISA Driver Installation Wizard, Screen 2 ... 20
19 NI-VISA Driver Installation Wizard, Screen 3 ... 20
20 NI-VISA Driver Installation Wizard, Screen 4 ... 21
21 NI-VISA Driver Verification Using Device Manager .. 21
22 ADCPro Software Start-up Display Window ... 22
23 ADS1259EVM-PDK Plug-In Display Window ... 23
24 Install New Driver Wizard Screen 1 ... 24
25 Install New Driver Wizard Screen 2 ... 24
26 Install New Driver Wizard Screen 3 ... 25
27 Install New Driver Wizard Screen 4 ... 25
28 Install New Driver Wizard Screen 5 ... 26
29 USBStyx Driver Verification Using Device Manager .. 26
30 Data Rate Control .. 27
31 Over-Range Flag .. 27
32 ADC Configuration Tab .. 28
33 ADC Calibration Tab ... 29
34 PGA Configuration Tab .. 30
35 PGA GPIO Tab .. 31
36 PGA Input Switch Tab ... 32
List of Tables

1 J8: Analog Interface Header Pinout ... 5
2 J7: Serial Data Interface Pins .. 7
3 J11 Configuration: Power-Supply Input .. 7
4 ADS1259EVM Bill of Materials .. 35
1 EVM Overview

1.1 Features

ADS1259EVM:
- Contains all support circuitry needed for the ADS1259
- PGA280 can be evaluated as a buffer and integrated control
- Voltage reference options: external or onboard
- Clock options: External clock source or 7.3728MHz onboard crystal oscillator
- Compatible with the TI Modular EVM System

ADS1259EVM and ADS1259EVM-PDK Features:
- Easy-to-use evaluation software for Microsoft® Windows® XP
- Data collection to text files
- Built-in analysis tools including scope, FFT, and histogram displays
- Complete control of board settings
- Easily expandable with new analysis plug-in tools from Texas Instruments

For use with a computer, the ADS1259EVM-PDK is available. This kit combines the ADS1259EVM board with the DSP-based MMB0 motherboard, and includes ADCPro™ software for evaluation.

The MMB0 motherboard allows the ADS1259EVM to be connected to the computer via an available USB port. This manual shows how to use the MMB0 as part of the ADS1259EVM-PDK, but does not provide technical details about the MMB0 itself.

ADCPro™ is a program for collecting, recording, and analyzing data from ADC evaluation boards. It is based on a number of plug-in programs, so it can be expanded easily with new test and data collection plug-ins. The ADS1259EVM-PDK is controlled by a plug-in running in ADCPro. For more information about ADCPro, see the [ADCPro™ Analog-to-Digital Converter Evaluation Software User's Guide](http://www.ti.com) (SBAU128), available for download from the TI web site.

This manual covers the operation of both the ADS1259EVM and the ADS1259EVM-PDK. Throughout this document, the abbreviation *EVM* and the term *evaluation module* are synonymous with the ADS1259EVM.

1.2 Introduction

The ADS1259EVM is an evaluation module built to the TI Modular EVM System specification. It can be connected to any modular EVM system interface card.

The ADS1259EVM is available as a standalone printed circuit board (PCB) or as part of the ADS1259EVM-PDK, which includes an MMB0 motherboard and software. As a standalone PCB, the ADS1259EVM is useful for prototyping designs and firmware.

Note that the ADS1259EVM has no microprocessor and cannot run software. To connect it to a computer, some type of interface is required.

2 Analog Interface

For maximum flexibility, the ADS1259EVM is designed for easy interfacing to multiple analog sources. Samtec part numbers SSW-110-22-F-D–VS-K and TSM-110-01-T-DV-P provide a convenient 10-pin, dual-row, header/socket combination at J8. This header/socket provides access to the analog input pins of the ADS1259 and the PGA280. Consult Samtec at http://www.samtec.com or call 1-800-SAMTEC-9 for a variety of mating connector options.

The input pins on the ADS1259EVM do not connect directly to the part, but connect to the inputs of the ADS1259 through switch S2 and modest filtering. Along with the analog header, these analog inputs can be easily accessed through test loops TP7 and TP8. Analog input pins INN1 and INP1 of the PGA280 can also be accessed through test loops TP13 and TP14 (INP2 and INN2 can only be accessed through the analog header). For all analog inputs, it is important that appropriate caution is taken when handling the pins.
Table 1 summarizes the pinouts for analog interface header J8.

Table 1. J8: Analog Interface Header Pinout

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8.1</td>
<td>A0N</td>
<td>AINN, ADS1259, through switch S2 and low-pass filter, R1-2, C1-3</td>
</tr>
<tr>
<td>J8.2</td>
<td>A0P</td>
<td>AINP, ADS1259, through switch S2 and low-pass filter, R1-2, C1-3</td>
</tr>
<tr>
<td>J8.3</td>
<td>A1N</td>
<td>INN1, PGA280, through R7</td>
</tr>
<tr>
<td>J8.4</td>
<td>A1P</td>
<td>INP1, PGA280, through R6</td>
</tr>
<tr>
<td>J8.5</td>
<td>A1N</td>
<td>INN2, PGA280, through R5</td>
</tr>
<tr>
<td>J8.6</td>
<td>A1P</td>
<td>INP2, PGA280, through R4</td>
</tr>
<tr>
<td>J8.9-13 (odd)</td>
<td>AGND</td>
<td>Analog ground connections</td>
</tr>
<tr>
<td>J8.15</td>
<td>VCOM</td>
<td>VOCM, PGA280, via switch S3 and R3</td>
</tr>
<tr>
<td>J8.17-19 (odd)</td>
<td>AGND</td>
<td>Analog ground connections</td>
</tr>
<tr>
<td>J8.18</td>
<td>REFN</td>
<td>External reference source input (– side of differential input)</td>
</tr>
<tr>
<td>J8.20</td>
<td>REFP</td>
<td>External reference source input (+ side of differential input)</td>
</tr>
<tr>
<td>J8.10-16 (even)</td>
<td>Unused</td>
<td>—</td>
</tr>
</tbody>
</table>

The output pins of the PGA280 (VOP and VON) can be accessed through TP11 and TP12, but there is no connection to the analog interface J8. Figure 1 shows TP11 and TP12.

![Figure 1. Test Points TP11 and TP12](image)

The input of the ADS1259 is selectable through switch S2. From settings left-to-right, this three-way switch selects the ADC input from the AINP or AINN inputs from the analog interface header, the VOP and VON outputs of the PGA280, or allows for the self calibration inputs in combination with jumper J15.
As an indicator, the three settings of S2 are labeled HDR, PGA, and CAL below the switch, as Figure 2 illustrates.

![Figure 2. Switch S2 and Jumper J15](image)

When switch S2 is set to the right, jumper J15 is used in the system calibration modes for the ADS1259. When the jumper is set to the left, pins 1 and 2 of jumper J15 are connected. The inputs of the ADS1259 are shorted together and tied to REFP. With this connection, the user can run an offset calibration. When the jumper is set to the right, pins 2 and 3 of jumper J15 are connected. The inputs of the ADS1259 are tied to REFP and REFN, measuring the reference voltage. At this point, the user can run a gain calibration. On either side of J15, OF and GA indicate the sides of jumper J15 used for offset and gain calibrations.

Another three-way switch (S3) sets the source of the output common-mode of the PGA280. Setting the switch to the left connects the output common-mode to pin J8.15 of the analog interface header. The center setting of the switch connects it to the midpoint between AVDD and AVSS via the voltage divider of R8 and R9. The right setting connects it to the REFOUT of the ADS1259. These options are labeled under the switch as HDR, AVDD/2, and REF respectively. Figure 3 shows S3 as it appears on the ADS1259EVM.

![Figure 3. Switch S3](image)

3 Digital Interface

The ADS1259EVM is designed to easily interface with multiple control platforms. Samtec part numbers SSW-110-22-F-D–VS-K and TSM-110-01-T-DV-P provide a convenient 10-pin, dual-row, header/socket combination at J7. This header/socket provides access to the digital control and serial data pins of the ADC. Consult Samtec at http://www.samtec.com or call 1-800-SAMTEC-9 for a variety of mating connector options.
All logic levels on J7 are 3.3V CMOS, except for the I²C™ pins. These pins conform to 3.3V I²C rules. Table 2 describes the J7 serial interface pins.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Signal Name</th>
<th>I/O Type</th>
<th>Pull-up</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>J7.1</td>
<td>CNTL</td>
<td>Unused</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>J7.2</td>
<td>GPIO0</td>
<td>START</td>
<td>In</td>
<td>High</td>
<td>ADS1259 START Pin</td>
</tr>
<tr>
<td>J7.3</td>
<td>CLKX</td>
<td>SCLK</td>
<td>In</td>
<td>None</td>
<td>ADS1259/PGA280 SPI clock</td>
</tr>
<tr>
<td>J7.4</td>
<td>DGNF</td>
<td>DGNF</td>
<td>In/Out</td>
<td>None</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>J7.5</td>
<td>CLKR</td>
<td>Unused</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>J7.6</td>
<td>GPIO1</td>
<td>RST/PDWN</td>
<td>In</td>
<td>High</td>
<td>ADS1259 RST/PDWN</td>
</tr>
<tr>
<td>J7.7</td>
<td>FSX</td>
<td>CS</td>
<td>—</td>
<td>—</td>
<td>ADS1259 SPI Chip Select</td>
</tr>
<tr>
<td>J7.8</td>
<td>GPIO2</td>
<td>DOUT</td>
<td>Out</td>
<td>High</td>
<td>PGA280 SPI data out</td>
</tr>
<tr>
<td>J7.9</td>
<td>FSR</td>
<td>Unused</td>
<td>—</td>
<td>None</td>
<td>—</td>
</tr>
<tr>
<td>J7.10</td>
<td>DGNF</td>
<td>DGNF</td>
<td>In/Out</td>
<td>None</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>J7.11</td>
<td>DX</td>
<td>DIN</td>
<td>In</td>
<td>None</td>
<td>ADS1259 SPI data in</td>
</tr>
<tr>
<td>J7.12</td>
<td>GPIO3</td>
<td>CS</td>
<td>In</td>
<td>High</td>
<td>PGA280 SPI Chip Select</td>
</tr>
<tr>
<td>J7.13</td>
<td>DR</td>
<td>DOUT</td>
<td>Out</td>
<td>None</td>
<td>ADS1259 SPI data out</td>
</tr>
<tr>
<td>J7.14</td>
<td>GPIO4</td>
<td>Unused</td>
<td>—</td>
<td>None</td>
<td>—</td>
</tr>
<tr>
<td>J7.15</td>
<td>INT</td>
<td>DRDY</td>
<td>Out</td>
<td>None</td>
<td>ADS1259 SPI Data Ready signal</td>
</tr>
<tr>
<td>J7.16</td>
<td>SCL</td>
<td>SCL</td>
<td>I²C</td>
<td>n/a</td>
<td>I²C clock</td>
</tr>
<tr>
<td>J7.17</td>
<td>TOUT</td>
<td>CLK</td>
<td>In</td>
<td>None</td>
<td>Can be used to provide a clock from a processor</td>
</tr>
<tr>
<td>J7.18</td>
<td>DGNF</td>
<td>DGNF</td>
<td>In/Out</td>
<td>None</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>J7.19</td>
<td>GPIO5</td>
<td>EXTCLK</td>
<td>In</td>
<td>None</td>
<td>External Clock input</td>
</tr>
<tr>
<td>J7.20</td>
<td>SDA</td>
<td>SDA</td>
<td>I²C</td>
<td>n/a</td>
<td>I²C data</td>
</tr>
</tbody>
</table>

Many pins on J7 have weak pull-up/down resistors. These resistors provide default settings for many of the control pins. Furthermore, many pins on J7 correspond directly to pins on the ADS1259. See the ADS1259 product data sheet for complete details on these pins.

4 Power Supplies

J11 is the power-supply input connector. Table 3 lists the configuration details for J11. The ADS1259 and PGA280 output amplifier are powered from +5V that can be supplied through the +5VA supply that can be found on pin J11.3. An additional bipolar supply is needed to power the PGA280 through +VA and –VA through pins J11.1 and J11.2.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11.1</td>
<td>+VA</td>
<td>+10V to +15V</td>
<td>Yes</td>
</tr>
<tr>
<td>J11.2</td>
<td>–VA</td>
<td>–10V to –15V</td>
<td>Yes</td>
</tr>
<tr>
<td>J11.3</td>
<td>+5VA</td>
<td>+5V analog supply</td>
<td>Always</td>
</tr>
<tr>
<td>J11.4</td>
<td>-5VA</td>
<td>-5V analog supply</td>
<td>No</td>
</tr>
<tr>
<td>J11.5</td>
<td>DGNF</td>
<td>Digital ground input</td>
<td>Yes</td>
</tr>
<tr>
<td>J11.6</td>
<td>AGND</td>
<td>Analog ground input</td>
<td>Yes</td>
</tr>
<tr>
<td>J11.7</td>
<td>+1.8VD</td>
<td>1.8V digital supply</td>
<td>No</td>
</tr>
<tr>
<td>J11.8</td>
<td>VD1</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>J11.9</td>
<td>+3.3VD</td>
<td>3.3V digital supply</td>
<td>Always</td>
</tr>
<tr>
<td>J11.10</td>
<td>+5VD</td>
<td>+5V</td>
<td>No</td>
</tr>
</tbody>
</table>
Between the power-supply input connector of J11 and the devices on the EVM, jumper J10 allows a point to either bypass the supply connection or measure the supply current. With all the jumpers in J10 inserted, the components on the EVM are powered through the power-supply header. In this configuration, AVDD = +5V, DVDD = +3.3V, and AGND and DGND are both 0V (AGND and DGND are connected together on the EVM). Jumper J10 is shown in Figure 4.

![Figure 4. Jumper J10](image)

Note that the high-voltage supplies for the PGA280 can only be accessed through pins 1 and 2 of jumper J11. The supplies +VA and –VA can be set to +10V to +15V, and –10V to –15V, respectively.

5 Voltage Reference

The ADS1259EVM has three options for supplying a reference voltage to the ADS1259. There are two options for an external reference and one option with the internal ADS1259 reference.

Switch S1 selects an external reference from an external reference voltage using pins J8.18 (REF–) and J8.20 (REF+) from the analog interface header or the REF5025 reference (U11). With the switch set to the left, switch S1 selects the external reference voltage that is connected to the header of J8. With the switch set to the right, S1 selects the onboard reference from the REF5025. Figure 5 shows switch S1 as it appears on the EVM.

![Figure 5. Switch S1](image)

Alternately, the ADS1259 also has an internal reference that can be used. The REFOUT pin allows for measurement of this reference as well as a source that can be used to drive other functions, such as a measurement bridge or the output common mode of the PGA280. If the internal reference is selected, set switch S1 to the analog interface header, and leave the reference inputs at J8 unconnected.
6 ADS1259 Control

The ADS1259 can be used as a standalone device on the EVM or can be controlled using the interface with the PGA280. However, to use the ADS1259EVM-PDK with the ADCPro software, the PGA280 must be used as the control for the ADS1259.

To operate the ADS1259 without the PGA280, all the jumpers from J2, J3, and J4 should be moved to the right, connecting pins 2 and 3 of each jumper. These jumpers connect the ADS1259 to the EVM serial interface header and allow control of the ADS1259 CS, START, and RST/PDWN pins through J7.

Communications with the ADS1259 are handled with an SPI™-compatible serial interface. From the serial interface header, SCLK is handled with CLKX, chip select is handled by FSX, DIN comes from DX, DOUT goes to DR, and DRDY goes to INT. Additionally, the START pin (used to start a conversion) is run from GPIO0; reset and the power-down pin can be controlled by GPIO1.

The ADS1259 can also be controlled through communications from the PGA280. The PGA280 can generate an extended chip select (ECS) for other devices that are connected to the same SPI wires: SDO, SDI, and SCLK. This ECS signal redirects the SPI communication to the connected device, while the PGA280 ignores data and SCLK. For this type of control, all the jumpers from J2, J3, and J4 should be moved to the left, connecting pins 1 and 2 of each jumper. This configuration connects the PGA280 to the ADS1259 through several of the PGA GPIOs. Note that this method of control is used in the ADS1259EVM-PDK, and that jumpers J2, J3, and J4 must be set to the left to enable control through ADCPro and the ADS1259EVM plug-in.

PGA280:GPIO0-2 can be used to control external functions, such as a mux.
PGA280:GPIO3 can be used to enable a reset or power-down of the ADS1259.
PGA280:GPIO4 can be used to toggle the START pin of the ADS1259 to trigger a conversion.
PGA280:GPIO5 is used to generate chip select (ECS) for the ADS1259.
PGA280:GPIO6 receives the ACLKOUT signal from the ADS1259. This port sends out an f_S/8 clock from the ADS1259 that can be used as a synchronized chopper clock for the PGA280. Note that this configuration requires J1 to be set so that pins 2 and 3 are connected.

For more details, see the PGA280 data sheet.

7 Clock Source

The ADS1259 clock can come from one of several sources. It can be selected through switch S4, as illustrated in Figure 6.

Figure 6. Switch S4

- A crystal dropped into X1 with switch S4 set to the unconnected setting to the right.
- The ADS1259 can start an internal oscillator upon power up with switch S4 switched to ground to the center.
- The crystal oscillator (U32) can be selected through GPIO5 HIGH and switch S4 set to the left, selecting the multiplexer (U31) output.
- A TOUT clock coming from the serial header (J7.17) can be selected through GPIO5 LOW, with switch S4 selecting the multiplexer (U31)
7.1 Usage in PDK

If using the ADS1259EVM as part of the ADS1259EVM-PDK, switch S4 should be set to the left, using the multiplexer output. Using the onboard 7.3728MHz crystal oscillator allows the ADS1259EVM-PDK software to recognize the EVM using the software provided.

7.2 Usage as a standalone EVM

If using the EVM in your own system and not with the PDK hardware and software, switch S4 can be used to select the clock. The switch can be used to select the 7.3728MHz crystal (through multiplexer U31) or to allow the onboard oscillator to be enabled when S4 is set to ground.

8 EVM Operation

This section provides information on the analog input, digital control, and general operating conditions of the ADS1259EVM.

8.1 Analog Input

A single-channel differential input source can be applied directly to J8 (top or bottom side) or through signal-conditioning modules available for the modular EVM system. The input is connected through switch S2 and through a low-pass filter (R1, R2, C10, C11, and C12) before reaching the ADS1259.

The common-mode voltage (VCOM) for the PGA280 input buffer is 2.5V supplied from the REFOUT of the ADS1259, the VCOM pin at the analog header (J8.15), or a voltage divider set to $AV_{DD}/2$. This configuration can be selected through switch S3.

8.2 Digital Control

The digital control signals can be applied directly to J7 (top or bottom side). The modular ADS1259EVM can also be connected directly to a DSP or microcontroller interface board, such as the 5-6k Interface or HPA-MCU Interface boards available from Texas Instruments, or the MMB0 if purchased as part of the ADS1259EVM-PDK. For a list of compatible interface and/or accessory boards for the EVM or the ADS1259, see the relevant product folder on the TI web site. Some of the digital signals are controlled directly with pins on J7.

Other pins on the ADS1259 may be accessed via J7 through J2, J3, and J4. The ADS1259EVM-PDK uses the PGA280 external chip select function to control the ADS1259; therefore, these jumpers must be set to allow for access through J7.
8.3 Default Jumper Settings and Switch Positions

Jumpers connect the power supplies and enable PGA280 control of the ADS1259. J1, J2, J3, and J4 are all set to the left and connect the PGA280 to ADS1259. All the jumpers on J6 and J10 are used to connect power supplies and grounds. J15 is used to short the inputs together during an offset calibration. Figure 7 shows the jumpers found on the EVM and the respective factory default conditions for each.

![Figure 7. ADS1259EVM Default Jumper Positions](image1)

Four switches are used on the ADS1259/PGA280. Three-way switch S1 is set to the center position, setting the output common-mode of the PGA280 to AVDD/2. Switch S2 is set to the right, connecting the ADS1259 reference to the EVM onboard reference. Three-way switch S3 is set to the right to allow for calibration of the ADS1259, through jumper J15. Finally, three-way switch S4 is set to the left connecting the ADS1259 to the onboard oscillator. Figure 8 illustrates the switches on the EVM and the respective factory default configurations for each.

![Figure 8. ADS1259EVM Default Switch Positions](image2)
9 ADS1259EVM-PDK Operation

This section provides information on using the ADS1259EVM-PDK, including setup, program installation, and program usage.

To prepare to evaluate the ADS1259 with the ADS1259EVM-PDK, complete the following steps:

Step 1. Install the ADCPro software (if not already installed) on a PC.
Step 2. Install the ADS1259EVM-PDK EVM plug-in software.
Step 3. Set up the ADS1259EVM-PDK.
Step 4. Connect a proper power supply or ac adapter.
Step 5. Complete the NI-VISA™ USB driver installation process.
Step 6. Run the ADCPro software.
Step 7. Complete the Microsoft Windows USB driver installation process.

Each task is described in the subsequent sections of this document.

9.1 Installing the ADCPro Software

CAUTION
Do not connect the ADS1259EVM-PDK before installing the software on a suitable PC. Failure to observe this caution may cause Microsoft Windows to not recognize the ADS1259EVM-PDK.

To install the ADS1259EVM-PDK plug-in, run the file: ADS1259EVM-pdk-plug-in-1.0.0.exe (1.0.0 is the version number, and increments with software version releases). Double-click the file to run it; then follow the instructions shown.

Installation for the ADS1259EVM plug-in should be relatively straightforward. The plug-in comes as an executable file. Once started, the program leads the user through the screens shown in Figure 9 through Figure 12.

Figure 9. ADS1259EVM-PDK Setup Wizard: Screen 1
Figure 10. ADS1259EVM-PDK Setup Wizard: Screen 2

Figure 11. ADS1259EVM-PDK Setup Wizard: Screen 3
The software should now be installed, but the USB drivers may not yet have been loaded by the PC operating system. This step completes when the ADCPro software is executed; see Section 9.4, Running the Software and Completing Driver Installation.
9.2 Setting Up the ADS1259EVM-PDK

The ADS1259EVM-PDK contains both the ADS1259EVM and the MMB0 motherboard; however, the devices are shipped unconnected. Follow these steps to set up the ADS1259EVM-PDK:

Step 1. Unpack the ADS1259EVM-PDK package.
Step 2. Set the jumpers and switches on the MMB0 as shown in Figure 13.
 • Set the Boot Mode switch to USB.
 • Connect +5V and +5VA on jumper block J13 (if +5V is supplied from J14 +5VA).
 • Leave +5V and +5VA disconnected on jumper block J13.
 • If the PDK will be powered from an ac adapter, connect J12. If the PDK will be powered through the terminal block, disconnect J12 (see Section 9.3 for details on connecting the power supply).

Figure 13. MMB0 Initial Configuration
Step 3. Plug the ADS1259EVM into the MMB0 as Figure 14 illustrates.

CAUTION

Do not misalign the pins when plugging the ADS1259EVM into the MMB0. Check the pin alignment carefully before applying power to the PDK.

Figure 14. Connecting the ADS1259EVM to the MMB0

9.2.1 About the MMB0

The MMB0 is a Modular EVM System motherboard. It is designed around the TMS320VC5507, a DSP with an onboard USB interface from Texas Instruments. The MMB0 also has 16MB of SDRAM installed.

The MMB0 is not sold as a DSP development board, and it is not available separately. TI cannot offer support for the MMB0 except as part of an EVM kit. For schematics or other information about the MMB0, contact Texas Instruments.
9.3 Connecting the Power Supply

The ADS1259EVM-PDK can be operated with a combination of +5V and bipolar (±10V to ±15V) supply. When the MMB0 DSP is powered properly, LED D2 glows green. The green light indicates that the 3.3V supply for the MMB0 is operating properly. (It does not indicate that the EVM power supplies are operating properly.)

9.3.1 Using a Wall Supply for +5V

An ac adapter can be connected to barrel jack J2 on the MMB0. J2 is located next to the USB connector. Jumper J12 on the MMB0 connects a wall-mounted power supply to the board. To use the wall-mount supply, J12 must be shorted. Figure 15 illustrates how to connect an ac adapter to the MMB0.

![Figure 15. Using a Wall Supply for +5V](image)

9.3.1.1 External Wall-Adapter Power-Supply Requirements

The external wall-adapter power-supply requirements are as follows:

- Output voltage: 6 VDC to 7 VDC
- Maximum output current: \(\geq 2 \) A
- Output connector: barrel plug (positive center), 2.0-mm I.D. \(\times \) 5.5-mm O.D. (9-mm insertion depth)

NOTE: Use an external power supply that complies with applicable regional safety standards; for example, UL, CSA, VDE, CCC, PSE, and so forth.
9.3.2 Using an External Supply for +5V

A laboratory power supply can be connected through terminal block J14 on the MMB0, as shown in Figure 16. Both unipolar and bipolar configurations are supported.

![Figure 16. MMB0 Configured for Lab Power Supply](image)

To use a lab power-supply configuration:

- Disconnect J12 on the MMB0.
- Connect a +5V dc supply to the +5VA terminal on J14.
- Connect ground of the dc supply to the GND terminal on J14.
- Connect a –10V dc supply to the –VA, and +10V on the +VA terminals on J14.

 For bipolar mode, connect at –5V supply to –5VA.

It is not necessary to connect a +5V dc supply voltage to the +5VA terminal on J14 if the +5V/+5VA position on J13 is shorted.
9.4 Running the Software and Completing Driver Installation

NOTE: The software is continually under development. These instructions and screen images are current at the time of this writing, but may not exactly match future releases.

The program for evaluating the ADS1259EVM-PDK is called ADCPro. This program uses plug-ins to communicate with the EVM. The ADS1259EVM-PDK plug-in is included in the ADS1259EVM-PDK package.

The program currently runs only on Microsoft Windows platforms of Windows XP; Windows Vista and Windows 7 are NOT supported.

If this is the first time installing ADCPro and plug-ins, follow these procedures to run ADCPro and complete the necessary driver installation. Make sure the ADCPro software and device plug-in software are installed from the CD-ROM as described in Section 9.1.

9.4.1 NI-VISA USB Device Driver Installation

1. After the ADCPro software is installed, apply power to the PDK and connect the board to an available PC USB port.

2. The computer should recognize new hardware and begin installing the drivers for the hardware. Figure 17 through Figure 20 are provided for reference to show the installation steps.
 • For the first screen, Figure 17, it is not necessary to search for the software; it has already been installed on your PC.
 • For the remaining steps, accept the default settings.

Figure 17. NI-VISA Driver Installation Wizard, Screen 1
Figure 18. NI-VISA Driver Installation Wizard, Screen 2

Figure 19. NI-VISA Driver Installation Wizard, Screen 3
This procedure should complete the installation of the NI-VISA drivers. You can verify proper installation by opening the Windows Device Manager and locating the drivers as shown in Figure 21.

Figure 20. NI-VISA Driver Installation Wizard, Screen 4

Figure 21. NI-VISA Driver Verification Using Device Manager
9.4.2 USBStyx Driver Installation

1. Start the software by selecting ADCPro from the Windows Start menu. The screen in Figure 22 appears.

![Figure 22. ADCPro Software Start-up Display Window](image-url)
2. Select *ADS1259EVM* from the EVM drop-down menu. The ADS1259EVM-PDK plug-in appears in the left pane, as shown in Figure 23.

![Figure 23. ADS1259EVM-PDK Plug-In Display Window](image)

3. The ADS1259EVM-PDK plug-in window has a status area at the top of the screen. When the plug-in is first loaded, the plug-in searches for the board. You will see a series of messages in the status area indicating this action.

4. If you have not yet loaded the operating system drivers, Windows will display the Windows *Install New Driver Wizard* sequence (illustrated in Figure 24 through Figure 28). Accept the default settings.

NOTE: During the driver installation, a message may appear indicating the firmware load has TIMED OUT. Click OK and continue driver installation. The plug-in attempts to download the firmware again once the driver installation completes.
Figure 24. Install New Driver Wizard Screen 1

Figure 25. Install New Driver Wizard Screen 2
Figure 26. Install New Driver Wizard Screen 3

Figure 27. Install New Driver Wizard Screen 4
5. Once Windows finishes installing the software driver, the plug-in downloads the firmware to the MMB0. The status area displays *Connected to EVM* when the device is connected and ready to use. If the firmware does not load properly, you can try resetting the MMB0 by pressing *Reset* and then reloading the plug-in.

6. You can verify the proper installation of the USBStyx driver using the Device Manager. Note that the first driver item, NI-VISA USB Devices, disappears and a new item, LibUSB-Win32 Devices appears, as Figure 29 shows.

The driver installation wizard sequence should not appear again, unless you connect the board to a different USB port.
10 Evaluating Performance with the ADCPro Software

The evaluation software is based on ADCPro, a program that operates using a variety of plug-ins. (The ADS1259EVM plug-in is installed as described in the installation section, Section 9).

To use ADCPro, load an EVM plug-in and a test plug-in. To load an EVM plug-in, select it from the EVM menu. To load a test plug-in, select it from the Test menu. To unload a plug-in, select the Unload option from the corresponding menu.

Only one of each kind of plug-in can be loaded at a time. If you select a different plug-in, the previous plug-in is unloaded.

10.1 Using the ADS1259EVM-PDK plug-in

The ADS1259EVM-PDK plug-in for ADCPro provides complete control over settings of the ADS1259 and the PGA280. It consists of a tabbed interface, with different functions available on different tabs. These controls are described in this section.

You can adjust the ADS1259EVM settings when you are not acquiring data. During acquisition, all controls are disabled and settings may not be changed.

When you change a setting on the ADS1259EVM plug-in, the setting immediately updates on the board.

Settings on the ADS1259EVM correspond to settings described in the ADS1259 data sheet and the PGA280 data sheet (available for download at www.ti.com) for details.

10.1.1 ADC Data Rate

ADCPro can receive data from the ADS1259 at eight different data rates. The data rate is controlled by the Data Rate control tab (shown in Figure 30) at the upper right portion of the plug-in window. The data rate default upon start up is 10 samples per second (SPS) with options to change the data rate to 16.67, 50, 60, 400, 1200, 3600, and 14,440 SPS.

![Figure 30. Data Rate Control](image)

10.1.2 ADC Over Range Flag

The ADS1259 has over-range detection for the modulator. If the differential input exceeds 105% of the range, then the ADC Over Range Flag light indicates the condition, as Figure 31 illustrates. Note that this function must be enabled; it is implemented by using the 24th data bit as the over-range indicator. This indicator is only updated at the end of a data acquisition event by ADCPro. The indicator is located at the bottom right side of the ADS1259/PGA280 EVM plug-in.

![Figure 31. Over-Range Flag](image)
10.1.3 ADC Configuration Tab

The first tab for the ADS1259EVM is the ADC Configuration Tab. This set of controls is used primarily for setting up the operation for the ADS1259. This tab is broken up into three subsections. The ADC Configuration tab is shown in Figure 32.

![Figure 32. ADC Configuration Tab](image)

The first subsection is Clock Options. This set of controls is used primarily for monitoring and setting different clock and filter options. First, two indicator lights show the clock source for the ADC, showing if the master clock source is generated from the internal oscillator, or from some external source. The clock source indicator is shown at the start up of the plug-in. It can be re-read with the Update button.

A push button labeled SYNCOUT allows for a divided modulator clock to be put onto the SYNCOUT pin of the ADS1259. This can be used to drive the input chopping of the PGA280. To synchronize the two devices, the PGA280 must be set to External (as shown in the PGA-Config tab under the Sync pull-down; see Figure 34) and connected through pins 2 and 3 of J1 on the ADS1259EVM.

There are two different digital filter options for the ADS1259. A fixed decimation sinc5 filter is then followed by either a sinc1 filter or a sinc2 filter that is selected by the pull-down menu labeled Filter.

The second subsection is used to control the reference. The ADC reference source can be selected here to be either the internal, onboard reference of the ADS1259 or the external reference seen on VREFP and VREFN. The VREF voltage is adjusted here for readings for plug-in tools.

In order to use the internal reference, it must be enabled with the Internal Reference Enable button.

The final subsection of the ADC Configuration tab is Power Options. With the ADS1259, conversions can be initiated by the rising edge of START. The pull-down menu labeled Start Delay, will delay the part coming out of startup to allow external circuitry to settle before a conversion is started. The pull-down menu can be used to set the delay to a fixed time as a function of the master clock period. While this function is not useful in reading out data from the device, it is observable by using one of the PGA280 GPIO pins to toggle the START pin of the ADS1259. Afterward, the delay of the DRDY pin can be seen.
There are two power reduction modes that can be used to reduce the quiescent current of the ADS1259 when the part is not in use. They are enabled by clicking the buttons labeled Sleep and Powerdown. In SLEEP mode, device power is reduced to a minimum; only essential internal functions are kept active. This condition includes the R_{BIAS} status to keep the reference on, if enabled, and some digital function. To exit SLEEP mode, toggling the button issues the WAKEUP command. The absolute lowest power is achieved in Power-Down mode. Both SLEEP mode and Power-Down modes can be accessed through the buttons at the bottom of this tab.

10.1.4 ADC Calibration Tab

A calibration feature is integrated into the ADS1259 to correct for offset and gain errors. The ADS1259EVM-PDK software is designed to allow the user to use the built-in system calibration commands or manually calibrate the device by directly entering the values for the offset and gain registers of the ADS1259. Figure 33 shows the ADC calibration tab.

![Figure 33. ADC Calibration Tab](image)

In the Calibration Options subsection, two buttons allow for an offset calibration and a gain calibration. First, the offset calibration can be done when the inputs are shorted. As described earlier, the part can be shorted by setting the three way switch S2 to the right most position labeled CAL, and by setting a jumper across the left two pins of jumper J15. Then the gain calibration can be performed by keeping the setting of switch S2 and by moving the jumper to the right side of J15. During calibration, the Working indicator light shows that the device is performing the calibration and cannot be updated at that time.

At the bottom of this tab, there are two buttons that allow for reading and writing to the Offset Calibration Register and the Gain (Full-Scale) Calibration Register. To set a register value, enter it into the New space, and push the Set button. To read back the register push the Read button, and the value is updated in the space labeled Actual.
10.1.5 PGA Configuration Tab

The PGA Configuration Tab (shown in Figure 34) has options that allow for control of much of the PGA280.

![PGA Configuration Tab](image)

Figure 34. PGA Configuration Tab

The first subsection of this tab sets control register 0 in the PGA280. First, there is a pull-down menu that controls the input gain of the part, adjustable from 1/8V/V up to 128V/V with gains in factors of 2. A second pull-down menu sets the output gain to either 1V/V or 1-3/8V/V.

In this subsection, another pull-down menu allows the user to set an external multiplexer value through GPIO0-GPIO2. This option can be enabled with a push button and must also be set in the PGA GPIO tab.

Finally, control register 0 is written together with the Update PGA - Register 0 button. This feature allows for simultaneous switching of gain and the external mux. If the Input Gain, Output Gain, or MUX Value pull-down menus are changed, the Update PGA - Register 0 button becomes active and this button must be clicked to proceed with the changes.

A pull-down menu allows for the synchronization of the PGA280 chopper. The chopper can be synchronized to the internal clock of the PGA280 or to an external clock as supplied by the ADS1259. The two parts can be connected on the right side of J1 when the jumper connects pins 2 and 3. In order for this function to be enabled, the ADS1259 SYNCOUT pin must be enabled as found on the ADC Configuration tab (see Figure 32) with the SYNCOUT Enable.

The second subsection controls the Buffer of the PGA280. A pull-down menu allows for triggering the buffer based on a write to a register. The buffer is turned off after a preset time. This time is variable and can be written into the Buffer Timeout register in increments of 4µs, from 0µs to 252µs. To change the time, enter a value between 0 and 252, and the plug-in rounds the result to the nearest value divisible by four. Note that the buffer is only enabled with a change of the MUX value. For further information about the use of the current buffer, see the PGA280 data sheet.
10.1.6 PGA GPIO Tab

The PGA GPIO tab, as Figure 35 shows, allows for control of three of the GPIO pins (GPIO0-GPIO2) in the PGA280. These pins can be independently used as GPIO inputs, GPIO outputs, and external MUX mode. For each of these pins, select the desired function. If used as a GPIO output, a high or a low is selected with the Output push button. If used as a GPIO input, the value is shown by the indicator light on the right when the Read GPIO button is clicked.

![Figure 35. PGA GPIO Tab](image)

Note that the control for setting the GPIO values in Mux mode is in the PGA Configuration tab, described in Section 10.1.5.

The remaining four GPIO pins (GPIO3-GPIO6) are reserved in ECS mode to control the ADS1259.
10.1.7 PGA Input Switch Tab

The PGA Input Switch Tab pulls up a diagram of the input switches available in the PGA280, as Figure 36 illustrates. These switches allow for switching in different inputs, buffers, supplies, and current sources. Click on the switch to enable or disable the switch. For more information about switch function and control, see the Input Switch Network section of the PGA280 data sheet.

Figure 36. PGA Input Switch Tab
10.1.8 PGA Error Indicators Tab

The error indicators for the PGA280 can be seen on the PGA Error Indicator tab (shown in Figure 37). There are seven indicator lights that show error conditions in the PGA280.

Each error corresponds to a bit in the error register (register 4) of the PGA280. At the top of the tab, a pull-down menu selects the suppression time for the error flags. In the PGA280 data sheet, this period is referred to as FLAGTIM and can be found in register 11.

The Update Errors button clears the error register and updates the status of the error indicators on this tab. Note that as the device powers up for the first time, these error flags may be set. If you are going to use these flags, it is important to first clear them after the part has settled after start up.
10.1.9 About Tab

The About tab displays information about the EVM and software, as shown in Figure 38.

The Plug-in Version and Firmware Version indicators show the version numbers of the plug-in and firmware code, respectively.

The Notes indicator may show relevant notes about the plug-in or firmware code, if there are any.
10.1.10 Collecting Data

Once you have configured the ADS1259 for your test scenario, press the ADCPro Acquire button to start the collection of the number of data points specified in the Test plug-in Block Size control. The ADS1259EVM-PDK plug-in disables all the front panel controls while acquiring, and displays a progress bar as shown in Figure 39.

![Figure 39. Software Progress Indicator](image)

For more information on testing analog-to-digital converters in general and using ADCPro and Test plug-ins, refer to the ADCPro User’s Guide.

10.2 Troubleshooting

If ADCPro stops responding while the ADS1259EVM-PDK is connected, try unplugging the power supply from the PDK. Unload and reload the plug-in before reapplying power to the PDK.

11 Schematics and Layout

Schematics for the ADS1259EVM are appended to this user’s guide. The bill of materials is provided in Table 4.

11.1 Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>RefDes</th>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>1</td>
<td>Printed wiring board</td>
<td>6512211</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>2</td>
<td>C1, C31</td>
<td>2</td>
<td>Capacitor, C0G ceramic, 10nF ±5%, 25WV, Size = 0805</td>
<td>C2012C0G1E103J</td>
<td>TDK</td>
</tr>
<tr>
<td>3</td>
<td>C2, C3</td>
<td>2</td>
<td>Capacitor, C0G ceramic, 47pF ±5%, 50WV, Size = 0805</td>
<td>CC0805JRNPN09BN470</td>
<td>Yageo</td>
</tr>
<tr>
<td>4</td>
<td>C4, C5</td>
<td>2</td>
<td>Capacitor, C0G ceramic, 18pF ±5%, 50WV, Size = 0603</td>
<td>C1608C0G1H100J</td>
<td>TDK</td>
</tr>
<tr>
<td>5</td>
<td>C6, CR9, CR10, CR11, C24, C25</td>
<td>6</td>
<td>Capacitor, X5R Ceramic 10μF ±20%, 16WV, Size = 0805</td>
<td>C2012X5R1C106MT</td>
<td>TDK</td>
</tr>
<tr>
<td>6</td>
<td>C20, C21, C22</td>
<td>3</td>
<td>Capacitor, X7R Ceramic 0.47μF ±10%, 25WV, Size = 0603</td>
<td>GRM188R71E474KA12D</td>
<td>Murata Electronics</td>
</tr>
<tr>
<td>7</td>
<td>C23</td>
<td>1</td>
<td>Capacitor, X7R Ceramic 0.1μF ±10%, 16WV, Size = 0603</td>
<td>C1608X7R1C104K</td>
<td>TDK</td>
</tr>
<tr>
<td>8</td>
<td>C33</td>
<td>1</td>
<td>Capacitor, X7R Ceramic 0.1μF ±10%, 25WV, Size = 0603</td>
<td>C1608X7R1E104KT</td>
<td>TDK</td>
</tr>
<tr>
<td>9</td>
<td>CR1, CR2, CR30</td>
<td>3</td>
<td>Capacitor, X7R Ceramic 1μF ±10%, 16WV, Size = 0603</td>
<td>C1608X7R1C105KT</td>
<td>TDK</td>
</tr>
<tr>
<td>10</td>
<td>CR3</td>
<td>1</td>
<td>Capacitor, Tanalum 10μF ±20%, 4WV, Size = 0805</td>
<td>TCP0G100M8R</td>
<td>Rohm</td>
</tr>
<tr>
<td>11</td>
<td>CR4</td>
<td>1</td>
<td>Capacitor, X5R Ceramic 22μF ±20%, 10WV, Size = 0805</td>
<td>LMK212J226MG-T</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>12</td>
<td>D1, D2, D4, D5</td>
<td>4</td>
<td>Diode, Schottky 30V 200mA SOT-23</td>
<td>BAT54FSCT</td>
<td>Fairchild</td>
</tr>
<tr>
<td>13</td>
<td>D3</td>
<td>1</td>
<td>Zener Diode SOT-23</td>
<td>MMBZ5231BLT1</td>
<td>ON Semiconductor</td>
</tr>
<tr>
<td>14</td>
<td>R3, R4, R5, R6, R7, R11</td>
<td>6</td>
<td>Resistor, Thick Film Chip 1kΩ, 1%, 1/10W, Size = 0603</td>
<td>ERJ-3KEF1001V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>15</td>
<td>R1, R2</td>
<td>2</td>
<td>Resistor, Thick Film Chip 470Ω, 1%, 1/8W, Size = 0805</td>
<td>ERJ-3ENF470R0V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>16</td>
<td>R8, R9</td>
<td>2</td>
<td>Resistor, Thick Film Chip 10kΩ, 1%, 1/8W, Size = 0805</td>
<td>ERJ-3ENF1002V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>17</td>
<td>R10</td>
<td>1</td>
<td>Resistor, Thick Film Chip 100kΩ, 1%, 1/10W, Size = 0603</td>
<td>ERJ-3KEF1003V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>18</td>
<td>R31, R32</td>
<td>2</td>
<td>Resistor, Thick Film Chip 2.7kΩ, 1%, 1/10W, Size = 0603</td>
<td>ERJ-3KEF2701V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>19</td>
<td>R34, R35</td>
<td>2</td>
<td>Resistor, Thick Film Chip 470kΩ, 5%, 1/10W, Size = 0603</td>
<td>ERJ-3GEYJ474V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>20</td>
<td>RA1</td>
<td>1</td>
<td>Resistor Array 100kΩ, 8-Term 4RES SMD</td>
<td>742C083104JP</td>
<td>CTS Resistor Products</td>
</tr>
<tr>
<td>21</td>
<td>RA2, RA4</td>
<td>2</td>
<td>Resistor Array 100Ω, 8-Term 4RES SMD</td>
<td>742C083101JP</td>
<td>CTS Resistor Products</td>
</tr>
<tr>
<td>22</td>
<td>RB1, RB2</td>
<td>2</td>
<td>Resistor, Thick Film Chip 22Ω, 1%, 1/10W, Size = 0603</td>
<td>ERJ-3KEF22R0V</td>
<td>Panasonic</td>
</tr>
</tbody>
</table>
Table 4. ADS1259EVM Bill of Materials (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>RefDes</th>
<th>Quantity</th>
<th>Description</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>RB3, RB4</td>
<td>2</td>
<td>Resistor, Thick Film Chip 10Ω, 1%, 1/10W, Size = 0603</td>
<td>ERJ-3EKF10R0V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>24</td>
<td>RR1</td>
<td>1</td>
<td>Resistor, Thick Film Chip 10kΩ, 5%, 1/10W, Size = 0603</td>
<td>ERJ-3GEYJ103V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>25</td>
<td>RR4, RR5</td>
<td>2</td>
<td>Resistor, Thick Film Chip 0Ω, 5%, 1/10W, Size = 0603</td>
<td>ERJ-3GEYR000V</td>
<td>Panasonic</td>
</tr>
<tr>
<td>26</td>
<td>J1, J2, J3, J4, J15</td>
<td>5</td>
<td>1x3 100 mil male header</td>
<td>TSW-103-07-L-S</td>
<td>Samtec</td>
</tr>
<tr>
<td>27</td>
<td>J5</td>
<td>1</td>
<td>7x2 100 mil male header</td>
<td>TSW-107-07-L-D</td>
<td>Samtec</td>
</tr>
<tr>
<td>28</td>
<td>J6, J13, J14</td>
<td>3</td>
<td>1x2 100 mil male header</td>
<td>TSW-101-07-L-D</td>
<td>Samtec</td>
</tr>
<tr>
<td>29</td>
<td>J7A, J8A</td>
<td>2</td>
<td>Mini-EVM serial header: Top, 10x2x.1_SMT</td>
<td>TSM-110-01-L-DV-P</td>
<td>Samtec</td>
</tr>
<tr>
<td>30</td>
<td>J7B, J8B</td>
<td>2</td>
<td>Mini-EVM serial header: Bottom, 10x2x.1_SMT</td>
<td>SSW-110-22-F-D-VS-K</td>
<td>Samtec</td>
</tr>
<tr>
<td>31</td>
<td>J10</td>
<td>1</td>
<td>5x2 100 mil male header</td>
<td>TSW-105-07-L-D</td>
<td>Samtec</td>
</tr>
<tr>
<td>32</td>
<td>J11A</td>
<td>1</td>
<td>5x2x.1_SMT</td>
<td>TSM-105-01-L-DV-P</td>
<td>Samtec</td>
</tr>
<tr>
<td>33</td>
<td>J11B</td>
<td>1</td>
<td>Bottom, 5x2x.1_SMT</td>
<td>SSW-105-22-F-D-VS-K</td>
<td>Samtec</td>
</tr>
<tr>
<td>34</td>
<td>S1</td>
<td>1</td>
<td>Switch Slide Ultra Mini DPDT Top ACT</td>
<td>SS22SDP2</td>
<td>NKK Switches of America</td>
</tr>
<tr>
<td>35</td>
<td>S2</td>
<td>1</td>
<td>Switch Slide DP3T PC MNT</td>
<td>EG2305</td>
<td>E-Switch</td>
</tr>
<tr>
<td>36</td>
<td>S3, S4</td>
<td>2</td>
<td>Switch Slide Ultra Mini SP3T TOP ACT</td>
<td>SSI4MDP2</td>
<td>NKK Switches of America</td>
</tr>
<tr>
<td>37</td>
<td>TP1, TP2, TP3, TP4, TP5, TP7, TP11, TP12, TP13, TP14</td>
<td>11</td>
<td>Keystone Electronics, PCB Test Point, Miniature, Through-Hole, MINILOOP</td>
<td>5000</td>
<td>Keystone Electronics</td>
</tr>
<tr>
<td>38</td>
<td>TP6</td>
<td>1</td>
<td>Keystone Electronics, PCB Test Point, Multipurpose, Through-Hole, LARGELOOP</td>
<td>5011</td>
<td>Keystone Electronics</td>
</tr>
<tr>
<td>39</td>
<td>U1</td>
<td>1</td>
<td>Programmable Gain Amplifier, 24TSSOP</td>
<td>PGA280IPW</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>40</td>
<td>U2</td>
<td>1</td>
<td>ADC, 20TSSOP</td>
<td>ADS1259IPW</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>41</td>
<td>U11</td>
<td>1</td>
<td>TI REF5025 +2.5V precision voltage reference, 8-SOIC</td>
<td>REF5025D</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>42</td>
<td>U31</td>
<td>1</td>
<td>2:1 multiplexer, SM8</td>
<td>SN74LVC2G157DCT</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>43</td>
<td>U32</td>
<td>1</td>
<td>Oscillator, 7.3728 MHz 3.3V SMD, CTS_CB3LV</td>
<td>CB3LV-3I-7M3728</td>
<td>CTS - Frequency Controls</td>
</tr>
<tr>
<td>44</td>
<td>U34</td>
<td>1</td>
<td>EEPROM, 1.8V, 256K, 8TSSOP</td>
<td>24AA256-I/ST</td>
<td>Microchip Technology</td>
</tr>
</tbody>
</table>

Additional Components

<table>
<thead>
<tr>
<th>Item</th>
<th>RefDes</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>N/A</td>
<td>11</td>
<td>Shunt, 2-Position</td>
</tr>
</tbody>
</table>
11.2 PCB Layout

NOTE: Board layouts are not to scale. These figures are intended to show how the board is laid out; they are not intended to be used for manufacturing ADS1259EVM PCBs.

Figure 40 through Figure 44 show the PCB layouts for the ADS1259EVM.

Figure 40. Top Silk Image

Figure 41. Top Side (Layer 1)

Figure 42. Internal Layer 1 (Layer 2)
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (August 2011) to B Revision Page

• Updated software download links and text in the Installing the ADCPro Software section. .. 12
• Added External Wall-Adapter Power-Supply Requirements section. .. 17
STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, or documentation (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 Limited Warranty and Related Remedies/Disclaimers:

2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.

2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes: (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.ti.co.jp/sds/it_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.ti.co.jp/sds/it_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan.
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三菱ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

4 EVM Use Restrictions and Warnings:

4.1 EVMs are not for use in functional safety and/or safety critical evaluations, including but not limited to evaluations of life support applications.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. **Disclaimers:**

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM.

7. **User’s Indemnity Obligations and Representations.** User will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "claims") arising out of or in connection with any handling or use of the EVM that is not in accordance with these terms and conditions. This obligation shall apply whether claims arise under statute, regulation, or the law of tort, contract or any other legal theory, and even if the EVM fails to perform as described or expected.

8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** In no event shall TI be liable for any special, collateral, indirect, punitive, incidental, consequential, or exemplary damages in connection with or arising out of these terms and conditions or the use of the EVMs provided hereunder. Regardless of whether TI has been advised of the possibility of such damages, excluded damages include, but are not limited to, cost of removal or reinstallation, ancillary costs to the procurement of substitute goods or services, retesting, outside computer time, labor costs, loss of goodwill, loss of profits, loss of savings, loss of use, loss of data, or business interruption. No claim, suit or action shall be brought against TI more than one year after the related cause of action has occurred.

8.2 **Specific Limitations.** In no event shall TI’s aggregate liability from any warranty or other obligation arising out of or in connection with these terms and conditions, or any use of any TI EVM provided hereunder, exceed the total amount paid to TI for the particular units sold under these terms and conditions with respect to which losses or damages are claimed. The existence of more than one claim against the particular units sold to User under these terms and conditions shall not enlarge or extend this limit.

9. **Return Policy.** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated