

AUC Advanced Ultra-Low-Voltage CMOS

January 2003

Logic Products

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

AUC Advanced Ultra-Low-Voltage CMOS Data Book

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

INTRODUCTION

AUC (Advanced Ultra-Low-Voltage CMOS) is the industry's first logic family optimized at 1.8 V and operation from 0.8 V to 2.7 V, with an input tolerance of 3.6 V. This sub-1-V product family meets a variety of demands that have been placed on logic designers by offering low-voltage operation, faster speed, and lower power consumption while still maintaining overall signal integrity. AUC was designed to meet advanced system performance requirements in applications such as portable consumer electronics, telecommunications equipment, and high-performance workstations. AUC features include bus hold and I_{off}, which protect the device by supporting partial power-down applications.

Little Logic is a product segment of single, dual, and triple gates (1G/2G/3G) available in several standard logic functions. The principle driving Little Logic is derived from the standard quad gate, which once was the smallest number of gate functions you could order on one device. By providing only the needed number of gates at the desired location, designers can reduce board space and unnecessary routing. In addition to providing a space savings, Little Logic devices maximize ASIC design development by providing a quick-fix solution for signal errors.

Texas Instruments offers Little Logic devices in 5-pin SOT-23 (DBV), 5-pin SC-70 (DCK), 6-pin SOT-23 (DBV), 6-pin SC-70 (DCK), 8-pin SM-8 (DCT), 8-pin US-8 (DCU), and the smallest logic packages available today NanoStar[™] (YEA) and NanoFree[™] (YZA) packages. NanoStar and NanoFree devices are manufactured using a Wafer Chip Scale Package (WCSP) process, also known as die-size ball grid array (DSBGA, JEDEC MO-211) and offer a 70% reduction in area as compared to the 5-pin SC-70 package.

Along with Little Logic, various Widebus[™] (16-bit) and Widebus+[™] (32-bit) products are offered in this family. AUC offers a propagation delay of 2 ns at 1.8 V (SN74AUC16245) with good signal integrity.

PRODUCT STAGE STATEMENTS

Product stage statements are used on Texas Instruments data sheets to indicate the development stage(s) of the product(s) specified in the data sheets.

If all products specified in a data sheet are at the same development stage, the appropriate statement from the following list is placed in the lower left corner of the first page of the data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

If not all products specified in a data sheet are at the PRODUCTION DATA stage, then the first statement below is placed in the lower left corner of the first page of the data sheet. Subsequent pages of the data sheet containing PRODUCT PREVIEW information or ADVANCE INFORMATION are then marked in the lower left-hand corner with the appropriate statement given below:

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

Contonito	
F	Page
Alphanumeric Index 1	
Glossary 1	1–5
Explanation of Function Tables 1	1–10
D-Type Flip-Flop and Latch Signal Conventions 1	1–12
Device Names and Package Designators 1	1–13
Thermal Information 1	1–20

ALPHANUMERIC INDEX

DEVICE PAGE
SN74AUC1G00 2–3
SN74AUC1G02 2–9
SN74AUC1G04 2–15
SN74AUC1GU04 2–21
SN74AUC1G06 2–25
SN74AUC1G07 2–31
SN74AUC1G08 2–35
SN74AUC1G14 2–41
SN74AUC1G17 2–47
SN74AUC1G32 2–53
SN74AUC1G66 2–59
SN74AUC1G79 2–69
SN74AUC1G80 2–75
SN74AUC1G86 2–81
SN74AUC1G125 2–87

EVICE PAGE	
SN74AUC1G126 2–93	
SN74AUC1G240 2–99	
SN74AUC16240 3-3	
SN74AUC16244 3–17	
SN74AUC16245 3-31	
SN74AUC16373 3-43	
SN74AUC16374 3–55	
SN74AUC32245 4–11	
SN74AUCH16240 3–9	
SN74AUCH16244 3–23	
SN74AUCH16245 3–37	
SN74AUCH16373 3-49	
SN74AUCH16374 3-61	
SN74AUCH32244 4–3	

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

operating conditions and characteristics (in sequence by letter symbols)

Ci	Input capacitance
	The capacitance of an input terminal of the device
Cio	Input/output capacitance
	The capacitance of an input/output (I/O) terminal of the device with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
Co	Output capacitance
	The capacitance of an output terminal of the device with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
С _{рd}	Power dissipation capacitance
	Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages): $P_D = C_{pd} V_{CC}^2 f + I_{CC} V_{CC}$
f _{max}	Maximum clock frequency
	The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification
I _{ВНН}	Bus-hold high sustaining current
	The bus-hold circuit can source at least the minimum high sustaining current at V _{IH} min. I _{BHH} should be measured after raising V _{IN} to V _{CC} and then lowering it to V _{IH} min.
I	Rue hold low sustaining current
I _{BHL}	Bus-hold low sustaining current
'BHL	The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.
'BHL I _{BHHO}	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be
	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be measured after lowering V _{IN} to GND and then raising it to V _{IL} max.
	The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current
Івнно	The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low.
Івнно	 The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low. Bus-hold low overdrive current
I _{BHHO} I _{BHLO}	The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I_{BHLO} to switch this node from low to high.
I _{BHHO} I _{BHLO}	 The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I_{BHLO} to switch this node from low to high. Supply current
I _{ВННО} I _{BHLO} I _{CC}	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be measured after lowering V _{IN} to GND and then raising it to V _{IL} max. Bus-hold high overdrive current An external driver must sink at least I _{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I _{BHLO} to switch this node from low to high. Supply current The current into* the V _{CC} supply terminal of an integrated circuit
I _{ВННО} I _{BHLO} I _{CC}	 The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I_{BHLO} to switch this node from low to high. Supply current The current into* the V_{CC} supply terminal of an integrated circuit Supply current change The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC} Output high leakage current
I _{ВННО} I _{BHLO} I _{CC}	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be measured after lowering V _{IN} to GND and then raising it to V _{IL} max. Bus-hold high overdrive current An external driver must sink at least I _{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I _{BHLO} to switch this node from low to high. Supply current The current into* the V _{CC} supply terminal of an integrated circuit Supply current change The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V _{CC}
I _{ВННО} I _{BHLO} I _{CC}	The bus-hold circuit can sink at least the minimum low sustaining current at V _{IL} max. I _{BHL} should be measured after lowering V _{IN} to GND and then raising it to V _{IL} max. Bus-hold high overdrive current An external driver must sink at least I _{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I _{BHLO} to switch this node from low to high. Supply current The current into* the V _{CC} supply terminal of an integrated circuit Supply current change The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V _{CC} Output high leakage current The maximum leakage current into* an output that is in a high state and V _O = V _{CC}
I _{ВННО} I _{BHLO} I _{CC} I _{CEX}	The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max. Bus-hold high overdrive current An external driver must sink at least I_{BHHO} to switch this node from high to low. Bus-hold low overdrive current An external driver must source at least I_{BHLO} to switch this node from low to high. Supply current The current into* the V_{CC} supply terminal of an integrated circuit Supply current change The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC} Output high leakage current The maximum leakage current into* an output that is in a high state and $V_O = V_{CC}$

*Current out of a terminal is given as a negative value.

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

Чн	High-level input current The current into* an input when a high-level voltage is applied to that input
Ι _{ΙL}	Low-level input current The current into* an input when a low-level voltage is applied to that input
l _{off}	Input/output power-off leakage current
-011	The maximum leakage current into* an input or output terminal of the device with the specified voltage applied to the terminal and $V_{CC} = 0 V$
I _{OH}	High-level output current
	The current into* an output with input conditions applied that, according to the product specification, establishes a high level at the output
IOHS	Static high-level output current
	The static and testable current into* a DOC [™] circuit output with input conditions applied that, according to the product specifications, establishes a static high level at the output. The dynamic drive current is not specified for devices with DOC circuit outputs because of its transient nature; however, it is similar to the dynamic drive current that is available from a high-drive (nondamping resistor) standard-output device.
I _{OL}	Low-level output current
	The current into* an output with input conditions applied that, according to the product specification, establishes a low level at the output
I _{OLS}	Static low-level output current
	The static and testable current into* a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static low level at the output. The dynamic drive current is not specified for devices with DOC circuit outputs because of its transient nature; however, it is similar to the dynamic drive current that is available from a high-drive (nondamping resistor) standard-output device.
I _{OZ}	Off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output
IOZPD	Power-down off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output that is switched to or held in the high-impedance state as the device is being powered down to V_{CC} = 0 V
I _{OZPU}	Power-up off-state (high-impedance state) output current (of a 3-state output)
	The current flowing into* an output that is switched to or held in the high-impedance state as the device is being powered up from $V_{CC} = 0 V$
jitter	Jitter
	Dispersion of a time parameter of the pulse waveforms in a pulse train with respect to a reference time, interval, or duration. Unless otherwise specified by a mathematical adjective, peak-to-peak jitter is assumed.
jitter(RMS)	RMS jitter
/	The root mean square jitter, one-sixth of the maximum peak-to-peak jitter

*Current out of a terminal is given as a negative value. DOC is a trademark of Texas Instruments.

SR Slew rate

The average rate of change (i.e., V/ns) for a waveform that is changing from one defined logic level to another defined logic level

ta Access time

The time interval between the application of a specified input pulse and the availability of valid signals at an output

t_c Clock cycle time

Clock cycle time is 1/fmax

tdis Disable time (of a 3-state or open-collector output)

The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from either of the defined active levels (high or low) to the high-impedance (off) state

NOTE: For 3-state outputs, $t_{dis} = t_{PHZ}$ or t_{PLZ} . Open-collector outputs change only if they are low at the time of disabling, so $t_{dis} = t_{PLH}$.

ten Enable time (of a 3-state or open-collector output)

The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from the high-impedance (off) state to either of the defined active levels (high or low)

NOTE: In the case of memories, this is the access time from an enable input (e.g., \overline{OE}). For 3-state outputs, $t_{en} = t_{PZH}$ or t_{PZL} . Open-collector outputs change only if they are responding to data that would cause the output to go low, so $t_{en} = t_{PHI}$.

t_f Fall time

The time interval between two reference points (90% and 10%, unless otherwise specified) on a waveform that is changing from the defined high level to the defined low level

t_h Hold time

The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal

NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is to be expected.

2. The hold time may have a negative value, in which case, the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is to be expected.

tpd Propagation delay time

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level ($t_{pd} = t_{PHL}$ or t_{PLH})

t_{PHL} Propagation delay time, high-to-low level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level

t_{PHZ} Disable time (of a 3-state output) from high level

The time interval between the specified reference points on the input and the output voltage waveforms with the 3-state output changing from the defined high level to the high-impedance (off) state

GLOSSARY SYMBOLS, TERMS, AND DEFINITIONS

Propagation delay time, low-to-high level output t_{PLH} The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level Disable time (of a 3-state output) from low level ^tPLZ The time interval between the specified reference points on the input and the output voltage waveforms with the 3-state output changing from the defined low level to the high-impedance (off) state Enable time (of a 3-state output) to high level tPZH The time interval between the specified reference points on the input and output voltage waveforms with the 3-state output changing from the high-impedance (off) state to the defined high level Enable time (of a 3-state output) to low level ^tPZL The time interval between the specified reference points on the input and output voltage waveforms with the 3-state output changing from the high-impedance (off) state to the defined low level tr **Rise time** The time interval between two reference points (10% and 90%, unless otherwise specified) on a waveform that is changing from the defined low level to the defined high level Input skew t_{sk(i)} The difference between any two propagation delay times that originate at different inputs and terminate at a single output. Input skew describes the ability of a device to manipulate (stretch, shrink, or chop) a clock signal. This is typically accomplished with a multiple-input gate wherein one of the inputs acts as a controlling signal to pass the clock through. tsk(i) describes the ability of the gate to shape the pulse to the same duration, regardless of the input used as the controlling input. Limit skew t_{sk(l)} The difference between 1) the greater of the maximum specified values of t_{PLH} and t_{PHI} and 2) the lesser of the minimum specified values of tpl H and tpHI. Limit skew is not directly observed on a device. It is calculated from the data-sheet limits for tPLH and tPHL. tsk(I) quantifies for the designer how much variation in propagation delay time is induced by operation over the entire ranges of supply voltage, temperature, output load, and other specified operating conditions. Specified as such, tsk(l) also accounts for process variation. In fact, all other skew specifications $[t_{sk(0)}, t_{sk(i)}, t_{sk(p)}, and t_{sk(pr)}]$ are

t_{sk(o)} Output skew

subsets of $t_{sk(l)}$; they are never greater than $t_{sk(l)}$.

The skew between specified outputs of a single logic device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads

t_{sk(p)} Pulse skew

The magnitude of the time difference between the propagation delay times, t_{PHL} and t_{PLH} , when a single switching input causes one or more outputs to switch

t_{sk(pr)} Process skew

The magnitude of the difference in propagation delay times between corresponding terminals of two logic devices when both logic devices operate with the same supply voltages, operate at the same temperature, and have identical package styles, identical specified loads, identical internal logic functions, and the same manufacturer

t _{su}	Setup time							
	The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal							
	NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is specified.							
	The setup time may have a negative value, in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is specified.							
t _w	Pulse duration (width)							
	The time interval between specified reference points on the leading and trailing edges of the pulse waveform							
V _{IH}	High-level input voltage							
	An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables							
	NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is to be expected.							
V _{IK}	Input clamp voltage							
	The maximum voltage developed across an input diode with test current applied							
V _{IL}	Low-level input voltage							
	An input voltage within the less positive (more negative) of the two ranges of values used to represent the binary variables							
	NOTE: A maximum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is to be expected.							
V _{OH}	High-level output voltage							
	The voltage at an output terminal with input conditions applied that, according to product specification, establishes a high level at the output							
V _{OHS}	Static high-level output voltage							
	The static and testable voltage at a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static high level at the output. The dynamic drive voltage is not specified for devices with DOC circuit outputs because of its transient nature.							
V _{OL}	Low-level output voltage							
	The voltage at an output terminal with input conditions applied that, according to product specification, establishes a low level at the output							
V _{OLS}	Static low-level output voltage							
	The static and testable voltage at a DOC circuit output with input conditions applied that, according to the product specifications, establishes a static low level at the output. The dynamic drive voltage is not specified for devices with DOC circuit outputs because of its transient nature.							
V _{T+}	Positive-going input threshold level							
	The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T-}							
V _{T-}	Negative-going input threshold level							

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, V_{T+}

EXPLANATION OF FUNCTION TABLES

The following symbols are used in function tables on TI data sheets:

Н high level (steady state) = L low level (steady state) = ↑ transition from low to high level = \downarrow transition from high to low level = value/level or resulting value/level is routed to indicated destination = -> = value/level is re-entered Х irrelevant (any input, including transitions) = Ζ off (high-impedance) state of a 3-state output = a...h = the level of steady-state inputs A through H, respectively level of Q before the indicated steady-state input conditions were established Q_0 = complement of Q_0 or level of \overline{Q} before the indicated steady-state input Q_0 = conditions were established level of Q before the most recent active transition indicated by \downarrow or \uparrow Qn = one high-level pulse = one low-level pulse = Toggle each output changes to the complement of its previous level on each active = transition indicated by \downarrow or \uparrow

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow , this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, Q₀, or \overline{Q}_0), it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, $____$ or $____$, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register.

INPUTS						OUTPUTS									
CLEAR	MODE			СГОСК	SEF	RIAL		PARA	LLEL		0.	0-	0.5	0-	
GLEAR	S1	S0	CLUCK	LEFT	RIGHT	Α	В	С	D	QA	QA ■	QA	QB	QC	QD
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L		
н	Х	Х	L	х	х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}		
н	н	н	\uparrow	х	Х	а	b	С	d	а	b	С	d		
н	L	н	↑	Х	Н	н	н	н	Н	н	Q _{An}	Q _{Bn}	Q _{Cn}		
н	L	н	↑	Х	L	L	L	L	L	L	Q _{An}	Q _{Bn}	Q _{Cn}		
н	н	L	\uparrow	н	х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	Н		
н	н	L	\uparrow	L	х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	L		
Н	L	L	Х	Х	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}		

FUNCTI	ON	ТАВ	LE
	••••		_

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

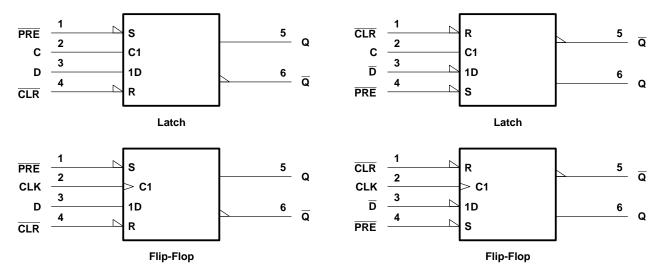
The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs occurs while the clock remains high or on the high-to-low transition of the clock.

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A is at output Q_A , data entered at B is at Q_B , and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_A is now at Q_B , the previous levels of Q_B and Q_C are now at Q_C and Q_D , respectively, and the data previously at Q_D is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and S0 is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_B is now at Q_A , the previous levels of Q_C and Q_D are now at Q_B and Q_C , respectively, and the data previously at Q_A is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is high and S0 is low and the levels at inputs A through D have no effect.

The last line shows that as long as both inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.


The function table functional tests do not reflect all possible combinations or sequential modes.

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop or latch and to draw its logic symbol based on the assumption of true data (D) inputs. Outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \overline{Q} . An input that causes a Q output to go high or a \overline{Q} output to go low is called preset (PRE). An input that causes a \overline{Q} output to go high or a Q output to go low is called clear (CLR). Bars are used over these pin names (\overline{PRE} and \overline{CLR}) if they are active low.

The devices on several data sheets are second-source designs, and the pin-name conventions used by the original manufacturers have been retained. That makes it necessary to designate the inputs and outputs of the inverting circuits \overline{D} and Q.

In some applications, it may be advantageous to redesignate the data input from D to \overline{D} or vice versa. In that case, all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbols. Arbitrary pin numbers are shown.

The figures show that when Q and \overline{Q} exchange names, the preset and clear pins also exchange names. The polarity indicators (\square) on \overline{PRE} and \overline{CLR} remain, as these inputs are still active low, but the presence or absence of the polarity indicator changes at D (or \overline{D}), Q, and \overline{Q} . Pin 5 (Q or \overline{Q}) is still in phase with the data input (D or \overline{D}); their active levels change together.

Example: SN 74 AUC H	16 245 GQL R 5 6 7 8 9 10
1 Standard Prefix	6 Options
Examples: SN – Standard Prefix	Examples: Blank = No Options
SNJ – Conforms to MIL-PRF-38535 (QML)	2 – Series Damping Resistor on Outputs
2 Temperature Range	4 – Level Shifter
Examples: 54 – Military	$25 - 25 - \Omega$ Line Driver
74 – Commercial	7 Function
3 Family	
Examples: Blank = Transistor-Transistor Logic (TTL)	Examples: 244 – Noninverting Buffer/Driver 374 – D-Type Flip-Flop
ABT – Advanced BiCMOS Technology	573 – D-Type Transparent Latch
ABTE/ETL – Advanced BiCMOS Technology/	640 – Inverting Transceiver
Enhanced Transceiver Logic	
AC/ACT – Advanced CMOS Logic	8 Device Revision
AHC/AHCT – Advanced High-Speed CMOS Logic	Examples: Blank = No Revision
ALB – Advanced Low-Voltage BiCMOS	Letter Designator A–Z
ALS – Advanced Low-Power Schottky Logic	
ALVC – Advanced Low-Voltage CMOS Technology	9 Packages
ALVT – Advanced Low-Voltage BiCMOS Technology	
AS – Advanced Schottky Logic	DB, DBQ, DCT, DL – Shrink Small-Outline Package
AUC – Advanced Ultra Low-Voltage CMOS Logic	(SSOP)
AVC – Advanced Very Low-Voltage CMOS Logic BCT – BiCMOS Bus-Interface Technology	DBB, DGV – Thin Very Small-Outline Package (TVSOP) DBQ – Quarter-Size Small-Outline Package (QSOP)
CBT – Crossbar Technology	DBV, DCK, DCY, PK – Small-Outline Transistor (SOT)
CBTLV – Low-Voltage Crossbar Technology	DCU – Very Thin Shrink Small-Outline Package (VSSOP)
CD4000 – CMOS B-Series Integrated Circuits	DGG, PW – Thin Shrink Small-Outline Package (TSSOP)
F – F Logic	FN – Plastic Leaded Chip Carrier (PLCC)
FB – Backplane Transceiver Logic/Futurebus+	GGM, GKE, GKF, ZKE, ŻKF – MicroStar BGA™
FCT – Fast CMOS TTL Logic	Low-Profile Fine-Pitch Ball Grid Array (LFBGA)
GTL – Gunning Transceiver Logic	GQL, GQN, ZQL, ZQN – MicroStar Jr.™
GTLP – Gunning Transceiver Logic Plus	Very-Thin-Profile Fine-Pitch Ball Grid Array (VFBGA)
HC/HCT – High-Speed CMOS Logic	N, NT, P – Plastic Dual-In-Line Package (PDIP)
HSTL – High-Speed Transceiver Logic	NS, PS – Small-Outline Package (SOP)
LS – Low-Power Schottky Logic	PAG, PAH, PCA, PCB, PM, PN, PZ – Thin Quad
LV – Low-Voltage CMOS Technology	Flatpack (TQFP)
LVC – Low-Voltage CMOS Technology LVT – Low-Voltage BiCMOS Technology	PH, PQ, RC – Quad Flatpack (QFP) PZA – Low-Profile Quad Flatpack (LQFP)
$PCA/PCF - I^2C$ Inter-Integrated Circuit Applications	RGY – Quad Flatpack No Lead (QFN)
S – Schottky Logic	YEA, YZA – NanoStar™ and NanoFree™
SSTL/SSTV – Stub Series-Terminated Logic	Die-Size Ball Grid Array (DSBGA [†])
TVC – Translation Voltage Clamp Logic	Military: FK – Leadless Ceramic Chip Carrier (LCCC)
VME – VERSAmodule Eurocard Bus Technology	GB – Ceramic Pin Grid Array (CPGA)
4 Special Features	HFP, HS, HT, HV – Ceramic Quad Flatpack (CQFP)
Examples: Blank = No Special Features	J, JT – Ceramic Dual-In-Line Package (CDIP)
$C - Configurable V_{CC}$ (LVCC)	W, WA, WD – Ceramic Flatpack (CFP)
D – Level-Shifting Diode (CBTD)	
H – Bus Hold (ALVCH)	10 Tape and Reel
K – Undershoot-Protection Circuitry (CBTK)	Devices in the DB and PW package types include the R designation

R – Damping Resistor on Inputs/Outputs (LVCR)

S – Schottky Clamping Diode (CBTS) Z - Power-Up 3-State (LVCZ)

Examples: Blank = Gates, MSI, and Octals

1G - Single Gate

2G – Dual Gate

3G - Triple Gate

8 - Octal IEEE 1149.1 (JTAG) 16 - Widebus™ (16, 18, and 20 bit) 18 - Widebus IEEE 1149.1 (JTAG) 32 - Widebus+™ (32 and 36 bit)

5 Bit Width

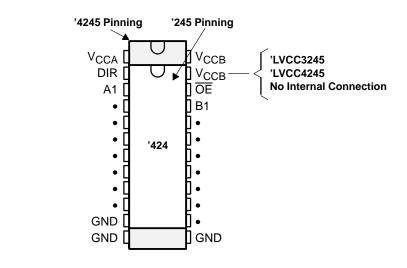
Devices in the DB and PW package types include the R designation for reeled product. Existing product inventory designated LE may remain, but all products are being converted to the R designation.

Examples: Old Nomenclature - SN74LVTxxxDBLE New Nomenclature - SN74LVTxxxADBR LE – Left Embossed (valid for DB and PW packages only)

R – Standard (valid for all surface-mount packages)

There is no functional difference between LE and R designated products, with respect to the carrier tape, cover tape, or reels used.

[†] DSBGA is the JEDEC reference for wafer chip scale package (WCSP).


SPECIAL FEATURES

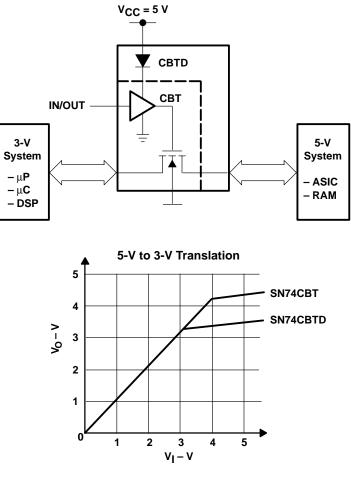
Special features of TI standard logic devices are designated in the device name by using abbreviations that are listed below and are defined in the following paragraphs.

- Blank No special features
 - C Configurable V_{CC}
 - D Level-shifting diode
 - H Bus hold
 - K Undershoot protection circuitry
 - R Damping resistor on inputs/outputs
 - S Schottky clamping diode
 - Z Power-up 3-state

configurable V_{CC} (C)

Configurable V_{CC} is a feature of devices that are designed as dual-supply-level shifters, e.g., SN74LVCC3245 and SN74LVCC4245. Using these devices allows the user to select the voltage to be applied to V_{CC} on the B-port side (V_{CCB}) and/or A-port side (V_{CCA}) (see Figure 1).

	V _{CCA} A PORT	V _{CCB} B PORT	TRANSLATION (BIDIRECTIONAL FLOW)			
SN74LVCC3245A	2.3 V–3.6 V	3 V–5.5 V	2.5 V to 3.3 V or 3.3 V to 5 V			
SN74LVCC4245A	5 V	3 V–5 V	5 V to 3.3 V			


Figure 1

Designers can use these devices in existing single-voltage systems. When systems become mixed-voltage systems, these devices do not need to be replaced, allowing for quicker time to market.

level-shifting diode (D)

Devices with D as part of the device name have an integrated diode in the V_{CC} line. Examples are crossbar switches SN74CBT3306 (without the integrated diode) and SN74CBTD3306 (with integrated diode). These devices allow 5-V to 3.3-V translation if no drive is required. Bidirectional data transmission is allowed between 5-V TLL and 3.3-V LVTTL, whereas only unidirectional level translation is allowed from 5-V CMOS to 3.3-V LVTTL (see Figure 2). The integrated diode saves designers both board space and component cost.

bus hold (H)

A bus-hold circuit is implemented in selected logic families to help solve the floating-input problem. The bus-hold circuit maintains the last known input state into the device and, as an additional benefit, pullup or pulldown resistors are no longer needed (see Figure 3). The advantages of devices with this circuit are board space savings and reduced component costs.

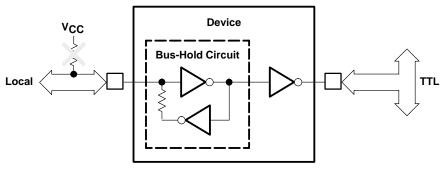
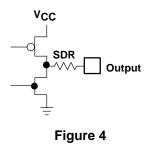
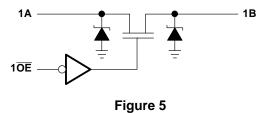
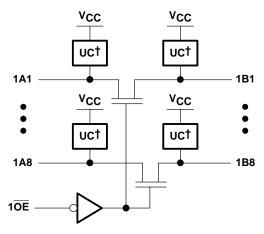



Figure 3


damping resistor on inputs/outputs (R)

Series damping resistors (SDR), denoted R in the device name, are included at all input and output ports of designated devices (see Figure 4). The SDRs limit the current, thereby reducing noise from signal undershoot and overshoot. Additionally, SDRs make line termination easier, which improves signal quality by reducing ringing and line reflections.

schottky clamping diode (S)


Schottky diodes are incorporated in inputs and outputs to clamp undershoot (see Figure 5). The Schottky diodes prevent undershoot signals from dropping below a specified level, reducing the possibility of damage to connected devices by large undershoots that can occur without the Schottky diodes.

undershoot-protection circuitry (K)

TI undershoot-protection circuitry (UPC) functions similarly to Schottky clamping diodes, with one major difference. UPC is an active clamping structure. UPC can greatly reduce undershoot duration, increasing protection to connected devices that otherwise can be damaged (see Figure 6).

[†] Undershoot control circuit

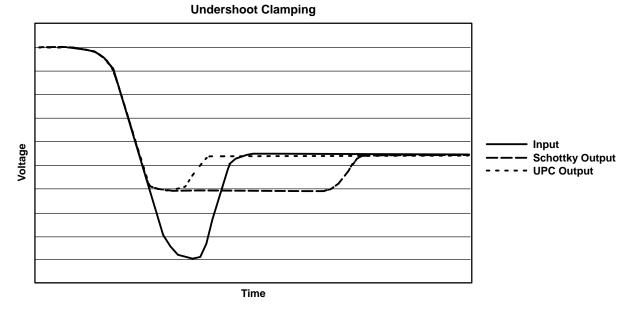


Figure 6

power-up 3-state (Z)

The power-up 3-state feature ensures valid output levels during power up and the valid high-impedance state during power down. OE must be tied high (to V_{CC}) through an external pullup resistor (see Figure 7).

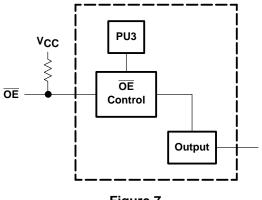


Figure 7

NOTIFICATION OF PACKAGE NOMENCLATURE ALIAS (for Standard Linear and Logic device names of more than 18 characters)

TI is converting from its current order-entry system to a more advanced system. This conversion requires modifications, both internal and external, to TI's current business processes. This new system will ultimately provide significant improvements to all facets of TI's business – from production, to order entry, to logistics. One change required is a limitation of TI part numbers to no more than 18 characters in length. Based on customer inputs, Standard Linear and Logic determined the least disruptive implementations as outlined below:

1. Package alias

TI will use a package alias to denote specific package types for devices currently exceeding 18 characters in length. Table 1 shows a mapping of package codes to an alias single-character representation.

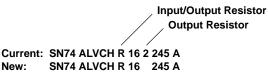

CURRENT PACKAGE CODE	ALIAS
DL	L
DGG/DBB	G
DGV	V
GKE/GKF/GQL	К
DLR	LR – tape/reel packing
DGGR/DBBR	GR – tape/reel packing
DGVR	VR – tape/reel packing
GKER/GKFR/GQLR	KR – tape/reel packing

Table 1

Current: SN74 ALVCH 162269A DGGR New: SN74 ALVCH 162269A GR

2. Resistor-option nomenclature

For devices with names of more than 18 characters with input and output resistors, TI will adopt a simplified nomenclature to designate the resistor option. This will eliminate the redundant "2" (designating output resistors) when the part number also contains an "R" (designating input/output resistors).

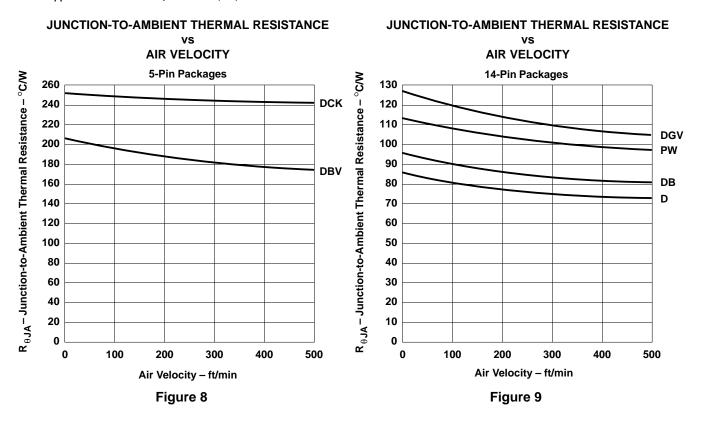
There is no change to the device or data-sheet electrical parameters. The packages involved and the changes in nomenclature are noted in Table 1.

These nomenclature changes are being gradually implemented. The first customer-visible conversions for TI logic devices will be made to data sheets. Over the next few months, TI logic data sheets will be updated. These changes in device nomenclature do not reflect a change in device performance or process characteristics.

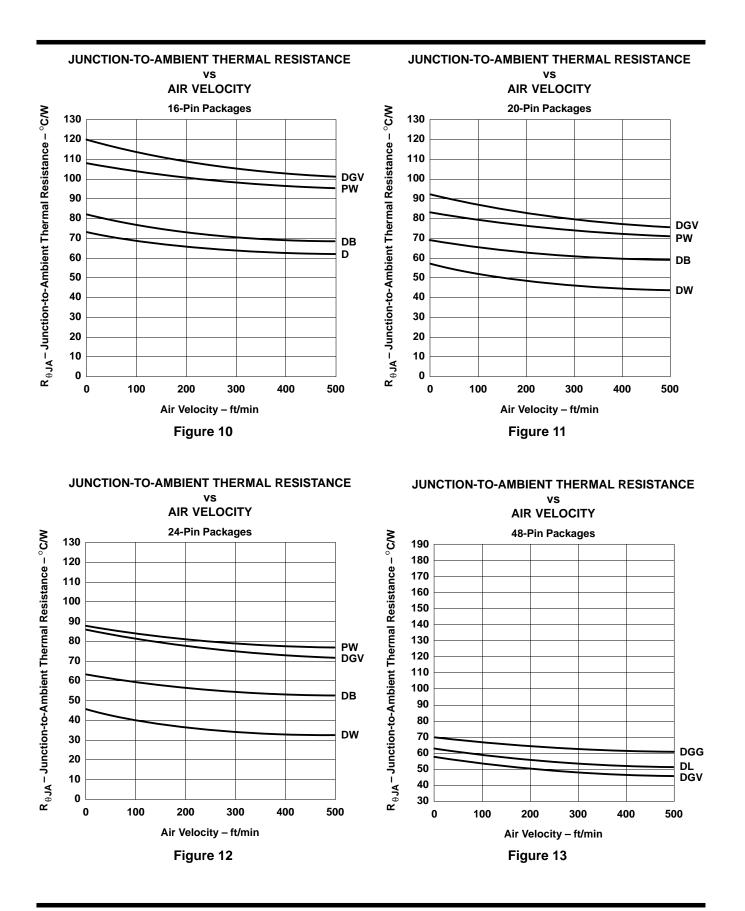
In digital-system design, consideration must be given to thermal management of components. The small size of packages makes this more critical. Figures 8–16 show the high-effect (high-K) thermal resistance for the 5-, 14-, 16-, 20-, 24-, 48-, 56-, 64-, and 80-pin packages for various rates of airflow calculated in accordance with JESD 51-7.

The thermal resistances in Figures 8–16 can be used to approximate typical and maximum virtual junction temperatures. In general, the junction temperature for any device can be calculated using the following equation:

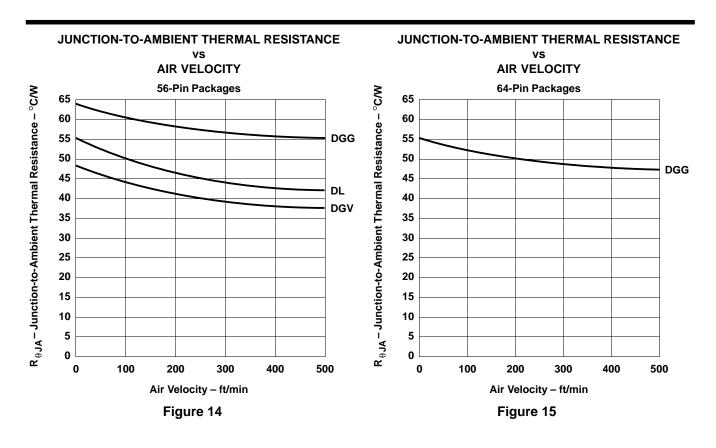
$$T_J = R_{\theta JA} \times P_T + T_A$$


Where:

 T_J = virtual junction temperature (°C)


 $R_{\theta JA}$ = thermal resistance, junction to free air (°C/W)

 P_T = total power dissipation of the device (W)


 T_A = free-air temperature (°C)

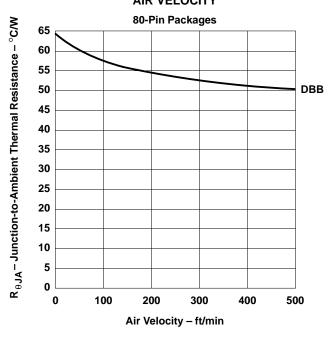


Figure 16

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

		Page
SN74AUC1G00	Single 2-Input Positive-NAND Gate	2–3
SN74AUC1G02	Single 2-Input Positive-NOR Gate	2–9
SN74AUC1G04	Single Inverter Gate	2–15
SN74AUC1GU04	Single Inverter Gate	2–21
SN74AUC1G06	Single Inverter Buffer/Driver With Open-Drain Output	2–25
SN74AUC1G07	Single Buffer/Driver With Open-Drain Output	2–31
SN74AUC1G08	Single 2-Input Positive-AND Gate	2–35
SN74AUC1G14	Single Schmitt-Trigger Inverter	2–41
SN74AUC1G17	Single Schmitt-Trigger Buffer	2–47
SN74AUC1G32	Single 2-Input Positive-OR Gate	2–53
SN74AUC1G66	Single Bilateral Analog Switch	2–59
SN74AUC1G79	Single Positive-Edge-Triggered D-Type Flip-Flop	2–69
SN74AUC1G80	Single Positive-Edge-Triggered D-Type Flip-Flop	2–75
SN74AUC1G86	Single 2-Input Exclusive-OR Gate	2–81
SN74AUC1G125	Single Bus Buffer Gate With 3-State Output	2–87
SN74AUC1G126	Single Bus Buffer Gate With 3-State Output	2–93
SN74AUC1G240	Single Buffer/Driver With 3-State Output	2–99

SCES368J - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.2 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single 2-input positive-NAND gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G00 performs the Boolean function $Y = \overline{A \bullet B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

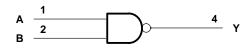
TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING‡
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G00YEAR	UA
–40°C to 85°C	WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G00YZAR	0A_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G00DBVR	U00_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G00DCKR	UA_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.


YEA OR YZA PACKAGE (BOTTOM VIEW)

GND	03	40	Y
В			
А	01	50	v_{cc}

SCES368J - SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE								
INP	UTS	OUTPUT						
Α	В	Y						
Н	Н	L						
L	Х	Н						
Х	L	Н						

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	
DCK package	
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES368J - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V _{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
	High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current Low-level output current Δv Input transition rise or fall rate	V _{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage	-	0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН		V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
	/IH High-level input voltage /IL Low-level input voltage /I Input voltage /O Output voltage OH High-level output current OL Low-level output current Δt/Δv Input transition rise or fall rate	V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	H High-level input voltage L Low-level input voltage Input voltage Output voltage O Output voltage H High-level output current L Low-level output current L Low-level output current Δv Input transition rise or fall rate	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V to 1.95 V		20	
Δτ/Δν	input transition rise or fall rate	V _{CC} = 2.3 V to 2.7 V		10	ns/V
TA	Operating free-air temperature	- -	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	•

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1				
	I _{OH} = -0.7 mA	0.8 V		0.55			
Maria	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V	
VOL VOL II A or B input	I _{OH} = -5 mA	1.4 V	1			V	
	I _{OH} = -8 mA	1.65 V	1.2				
$V_{OH} \qquad \begin{array}{c} I_{OH} = -100 \ \mu A \\ I_{OH} = -0.7 \ mA \\ I_{OH} = -3 \ mA \\ I_{OH} = -3 \ mA \\ I_{OH} = -5 \ mA \\ I_{OH} = -8 \ mA \\ I_{OH} = -9 \ mA \\ I_{OH} = -9 \ mA \\ I_{OL} = 100 \ \mu A \\ I_{OL} = 0.7 \ mA \\ I_{OL} = 0.7 \ mA \\ I_{OL} = 3 \ mA \\ I_{OL} = 5 \ mA \\ I_{OL} = 5 \ mA \\ I_{OL} = 8 \ mA \\ I_{OL} = 9 \ mA \\ I_{OL} = 0.7 \ mA \\ I_{OL} = 0.7$		2.3 V	1.8				
	I _{OL} = 100 μA	I _{OL} = 100 μA 0.8 V to 2.7 V					
	I _{OL} = 0.7 mA	0.8 V		0.25		V	
N	I _{OL} = 3 mA	1.1 V			0.3		
VOL	I _{OL} = 5 mA	1.4 V			0.4	V	
	I _{OL} = 8 mA	1.65 V			0.45		
	I _{OL} = 9 mA	2.3 V			0.6		
I A or B input	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA	
l _{off}	V_{I} or V_{O} = 2.7 V	0			±10	μA	
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA	
Ci	$V_{I} = V_{CC} \text{ or } GND$	2.5 V		3		pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

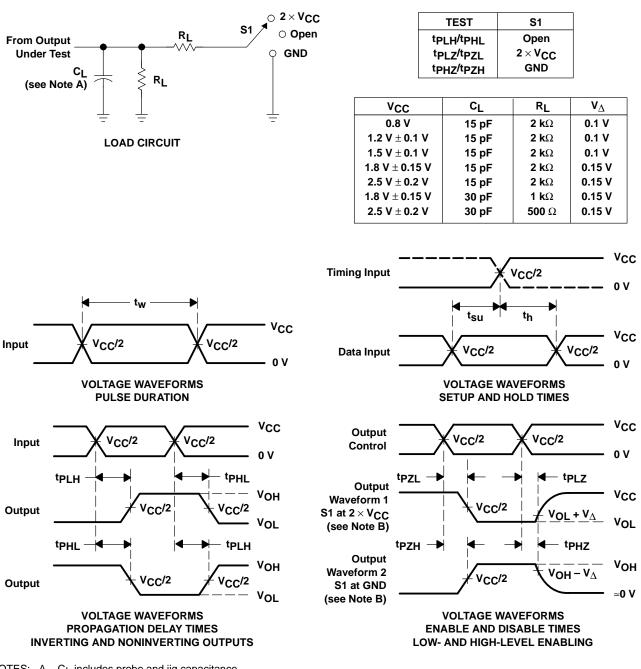
SCES368J - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	-	TO (OUTPUT) V _{CC} = 0.8 TYP	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.			C = 1.8 0.15 V		V _{CC} = ± 0.	: 2.5 V 2 V	UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	4.7	0.9	3.2	0.5	2.2	†	†	†	†	†	ns

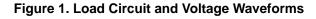
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		UNIT	
		(0011 01)	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	0.7	1.3	2.2	0.5	2	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	15	15	15	15	19	pF


SCES368J - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES369J - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.4 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single 2-input positive-NOR gate is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

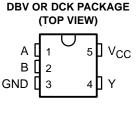
The SN74AUC1G02 performs the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \cdot \overline{B}$ in positive logic.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

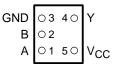
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

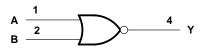
TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING‡	
–40°C to 85°C	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G02YEAR	UB	
	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G02YZAR	0B_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G02DBVR	U02_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G02DCKR	UB_	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.


YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.


YEA OR YZA PACKAGE (BOTTOM VIEW)

SCES369J - SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE			
INPUTS		OUTPUT	
Α	В	Y	
Н	Х	L	
Х	Н	L	
L	L	н	

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	–0.5 V to 3.6 V
Voltage range applied to any output in the high-impedance or por	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, Io	
Continuous current through V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DBV package .	
	ge 154°C/W
Storage temperature range, T _{stg}	-

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES369J - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V to 1.95 V		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 2.3 V to 2.7 V		10	ns/V
TA	Operating free-air temperature	-	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	•

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
	I _{OH} = -0.7 mA	0.8 V		0.55		
	I _{OH} = -3 mA	1.1 V	0.8			V
VOH	I _{OH} = -5 mA	1.4 V	1			V
	I _{OH} = -8 mA	1.65 V	1.2			
	I _{OH} = -9 mA	2.3 V	1.8			
	l _{OL} = 100 μA	0.8 V to 2.7 V			0.2	
	I _{OL} = 0.7 mA	0.8 V		0.25		
N/	I _{OL} = 3 mA	1.1 V			0.3	
VOL	I _{OL} = 5 mA	1.4 V			0.4	V
	I _{OL} = 8 mA	1.65 V			0.45	
	I _{OL} = 9 mA	2.3 V			0.6	
I A or B input	$V_{I} = V_{CC}$ or GND	0 to 2.7 V			±5	μA
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA
Ci	$V_{I} = V_{CC}$ or GND	2.5 V		3		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

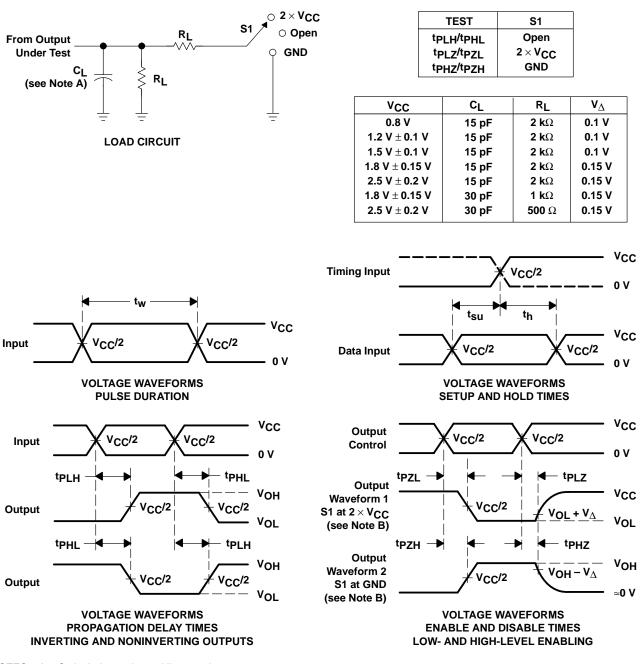
SCES369J - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V_{CC} = 1.2 V ± 0.1 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			V_{CC} = 2.5 V \pm 0.2 V		UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	4.6	0.9	3.2	0.5	2.2	†	†	†	†	†	ns

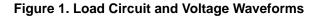
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	PARAMETER FROM (INPUT)			C = 1.8 ± 0.15 V		V _{CC} = ± 0.	UNIT	
		(OUTPUT)	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	0.7	1.3	2.4	0.5	2.1	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
	TANAMETER	CONDITIONS	ТҮР	TYP	TYP	TYP	ТҮР	ÖNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	15	15	15	15	19	pF


SCES369J - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES370J - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.2 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single inverter gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

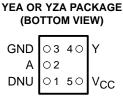
The SN74AUC1G04 performs the Boolean function $Y = \overline{A}$.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

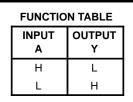
ORDERING INFORMATION

TA	PACKAGE [†]	PACKAGE [†] ORDERABLE PART NUMBER			
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G04YEAR	UC	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G04YZAR	00_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G04DBVR	U04_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G04DCKR	UC_	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.


NanoStar and NanoFree are trademarks of Texas Instruments.

NC - No internal connection

DNU – Do not use

SCES370J - SEPTEMBER 2001 - REVISED DECEMBER 2002

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V to 3.6 V Input voltage range, V _I (see Note 1)–0.5 V to 3.6 V	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	V
Output voltage range, V _O (see Note 1)0.5 V to V _{CC} + 0.5 V	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V_{CC} or GND	A
Package thermal impedance, θ_{JA} (see Note 2): DBV package	V
DCK package	V
YEA/YZA package	V
Storage temperature range, T _{stg}	С

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES370J – SEPTEMBER 2001 – REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIН	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 V \text{ to } 2.7 V$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
	land the active state of the lands	V _{CC} = 0.8 V to 1.95 V		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 2.3 V to 2.7 V		5	ns/V
ТА	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	•

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
	I _{OH} = -0.7 mA	0.8 V		0.55		
Maria	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V
VOH	$I_{OH} = -5 \text{ mA}$	1.4 V	1			V
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2			
	I _{OH} = -9 mA	2.3 V	1.8			
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2	
	I _{OL} = 0.7 mA	0.8 V		0.25		
	I _{OL} = 3 mA	1.1 V			0.3	
VOL	I _{OL} = 5 mA	1.4 V			0.4	V
	I _{OL} = 8 mA	1.65 V			0.45	
	I _{OL} = 9 mA	2.3 V			0.6	
II A input	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA
ICC	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.8 V to 2.7 V			10	μA
Ci	VI = V _{CC} or GND	2.5 V		3		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

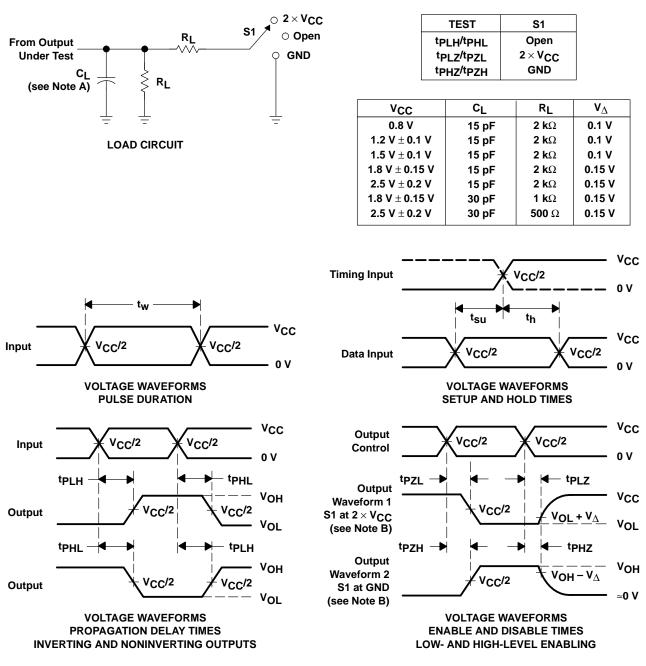
SCES370J - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	$\begin{array}{c} v_{CC} = 1.2 \text{ V} \\ \pm 0.1 \text{ V} \end{array}$		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			V_{CC} = 2.5 V \pm 0.2 V		UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	4.4	0.8	3	0.5	2	†	†	†	†	†	ns

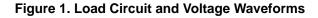
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V			V_{CC} = 2.5 V \pm 0.2 V		UNIT
		(001201)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.6	1.2	2.2	0.5	1.9	ns

operating characteristics, $T_A = 25^{\circ}C$

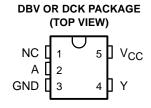
	PARAMETER	TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
FARAMETER		CONDITIONS	ТҮР	ТҮР	TYP	TYP	ТҮР	0
C _{pd}	Power dissipation capacitance	f = 10 MHz	14	14	14	14	19	pF


SCES370J - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.



SCES371G - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Sub 1-V Operable
- Max t_{pd} of 2.4 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Unbuffered Output
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

NC – No internal connection

YEA OR YZA PACKAGE (BOTTOM VIEW)

GND	03	40	Y
Α	02		
A DNU	01	50	Vcc

DNU - Do not use

This single inverter gate is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1GU04 contains one inverter with an unbuffered output and performs the Boolean function $Y = \overline{A}$.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

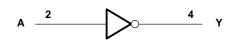
ТА	PACKAGE [†]				
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1GU04YEAR	UD	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1GU04YZAR	0D_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1GU04DBVR	UU4_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1GU04DCKR	UD_	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

 \pm DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.


FUNCTION TABLE

INPUT A	OUTPUT Y
н	L
L	Н

NanoStar and NanoFree are trademarks of Texas Instruments.

SCES371G - SEPTEMBER 2001 - REVISED DECEMBER 2002

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		–0.5 V to 3.6 V
Input voltage range, V _I (see Note 1)		–0.5 V to 3.6 V
Output voltage range, VO (see Note 1)		–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)		–50 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Continuous output current, IO		±20 mA
Continuous current through V _{CC} or GND		±100 mA
Package thermal impedance, θ_{JA} (see Note 2):	DBV package	206°C/W
	DCK package	252°C/W
	YEA/YZA package	154°C/W
Storage temperature range, Tstg		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
VIH	High-level input voltage	I _O = −100 μA	$0.65 \times V_{CC}$		V
VIL	Low-level input voltage	I _O = 100 μA		$0.35 \times V_{CC}$	V
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		$V_{CC} = 0.8 V$		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	1
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
$\Delta t/\Delta v$	Input transition rise or fall rate			20	ns/V
Τ _Α	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES371G - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
	I _{OH} = -0.7 mA	0.8 V		0.55		
Neu	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V
VOH	$I_{OH} = -5 \text{ mA}$	1.4 V	1			v
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2			
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8			
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2	
	I _{OL} = 0.7 mA	0.8 V		0.25		
Mar	I _{OL} = 3 mA	1.1 V			0.3	V
VOL	I _{OL} = 5 mA	1.4 V			0.4	v
	I _{OL} = 8 mA	1.65 V			0.45	
	I _{OL} = 9 mA	2.3 V			0.6	
II A input	$V_I = V_{CC}$ or GND	0 to 2.7 V			±5	μA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA
Ci	$V_{I} = V_{CC}$ or GND	2.5 V		3		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

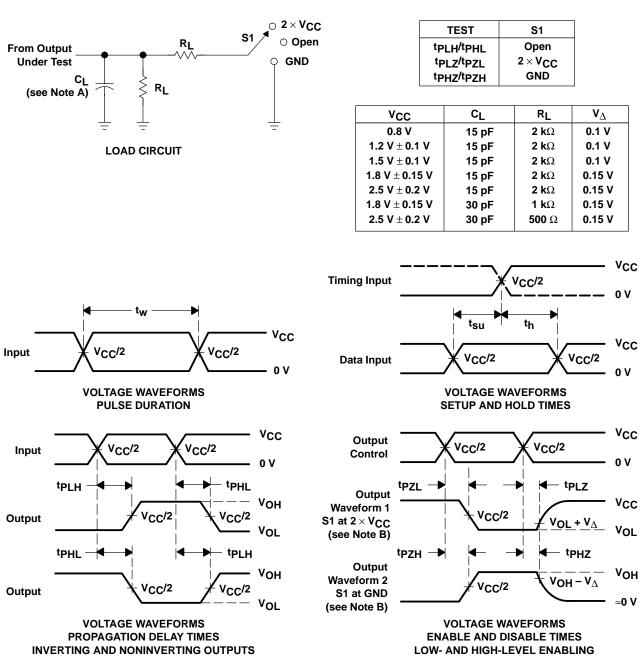
[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	= 1.5 V .1 V		C = 1.8 0.15 V		V _{CC} = ± 0.	2.5 V 2 V	UNIT	
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX		
^t pd		A	Y	1.9	0.6	2.5	0.6	1.7	‡	‡	‡	‡	‡	ns

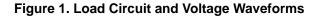
[‡] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		UNIT
	(INFOT)	(001201)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.6	1.1	2.4	0.5	2.1	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	4	4	4	4	5	pF


SCES371G - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT SCES372G – SEPTEMBER 2001 – REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single inverter buffer/driver is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

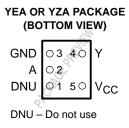
The output of the SN74AUC1G06 is open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]				
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G06YEAR	UT	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G06YZAR	01_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G06DBVR	U06_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G06DCKR	UT_	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

NC - No internal connection

SN74AUC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

SCES372G - SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE						
INPUT A	OUTPUT Y					
Н	L					
L	Н					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Storage temperature range, T _{stg}	Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Note 1) Input clamp current, I_{IK} ($V_I < 0$) Output clamp current, I_{OK} ($V_O < 0$) Continuous output current, I_O Continuous current through V_{CC} or GND Package thermal impedance, θ_{JA} (see Note 2): D	-0.5 V to 3.6 V -0.5 V to 3.6 V -0.5 V to 3.6 V -0.5 V to 3.6 V -0.5 V to 3.6 V -50 mA ±20 mA ±100 mA ±100 mA BV package
9		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

SCES372G - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 V \text{ to } 2.7 V$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
VO	Output voltage		0	2.7	V
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V to 1.6 V		20	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 1.65 V		10	ns/V
		V _{CC} = 2.3 V		5	
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vcc	MIN TYP†	MAX	UNIT
	I _{OL} = 100 μA		0.8 V to 2.7 V		0.2	
	I _{OL} = 0.7 mA		0.8 V	0.25		
	I _{OL} = 3 mA		1.1 V		0.3	V
VOL	I _{OL} = 5 mA		1.4 V		0.4	v
	I _{OL} = 8 mA		1.65 V		0.45	
	I _{OL} = 9 mA		2.3 V		0.6	
II A input	$V_{I} = V_{CC} \text{ or } GND$		0 to 2.7 V		±5	μA
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$		0		±10	μA
ICC	$V_{I} = V_{CC} \text{ or GND},$ IC) = 0	0.8 V to 2.7 V		10	μA
Ci	$V_{I} = V_{CC}$ or GND		2.5 V	3		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

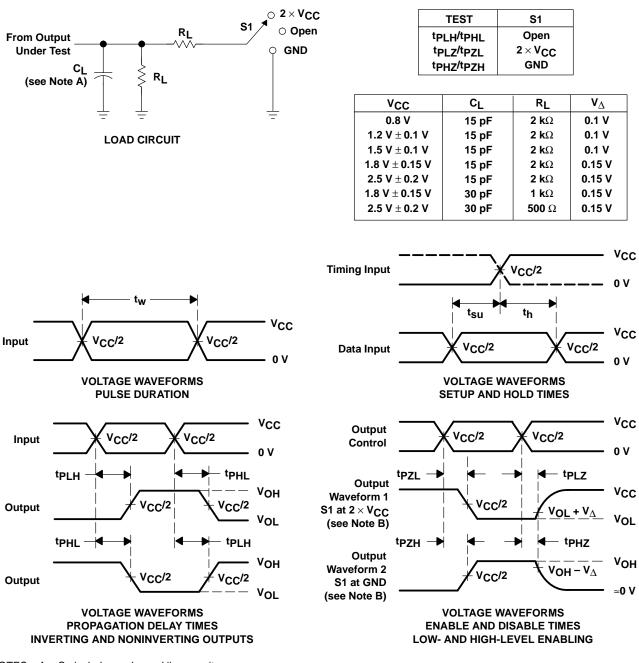
switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A	Y	5	0.3	3.1	0.2	2.4	‡	‡	‡	‡	‡	ns

[‡]This information was not available at the time of publication.

SN74AUC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT SCES372G – SEPTEMBER 2001 – REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V			$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$		UNIT
		(001-01)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.5	1.6	2.5	0.2	1.8	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	2	2	2	2	7	pF

SN74AUC1G06 SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT SCES372G – SEPTEMBER 2001 – REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

SN74AUC1G07 SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT SCES373J- SEPTEMBER 2001 – REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single buffer/driver is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The output of the SN74AUC1G07 is open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions.

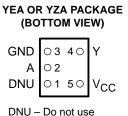
NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING‡	
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G07YEAR	UV_
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G07YZAR	0v_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G07DBVR	U07_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G07DCKR	UV_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

NC – No internal connection

SN74AUC1G07 SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

SCES373J- SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE							
INPUT A	OUTPUT Y						
Н	Н						
L	L						

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

$\begin{array}{l} Supply \mbox{ voltage range, } V_{CC} & \dots & \\ Input \mbox{ voltage range, } V_I \mbox{ (see Note 1)} & \dots & \\ Output \mbox{ voltage range, } V_O \mbox{ (see Note 1)} & \dots & \\ Input \mbox{ clamp current, } I_{IK} \mbox{ (V}_I < 0) & \dots & \\ Output \mbox{ clamp current, } I_{OK} \mbox{ (V}_O < 0) & \dots & \\ Continuous \mbox{ output current, } I_O & \dots & \\ Continuous \mbox{ current through } V_{CC} \mbox{ or GND} & \dots & \\ \end{array}$	
Package thermal impedance, θ_{IA} (see Note 2): DBV package	
DCK package	
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
	High-level input voltage	V _{CC} = 0.8 V	VCC		
VIH		V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
٧o	Output voltage		0	2.7	V
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
$\Delta t/\Delta v$	Input transition rise or fall rate			15	ns/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC1G07 SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT SCES373J- SEPTEMBER 2001 - REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
		I _{OL} = 100 μA	0.8 V to 2.7 V	0.2	
		I _{OL} = 0.7 mA	0.8 V	0.25	
		I _{OL} = 3 mA	1.1 V	0.3	V
VOL		I _{OL} = 5 mA	1.4 V	0.4	V
		I _{OL} = 8 mA	1.65 V	0.45	
		I _{OL} = 9 mA	2.3 V	0.6	
lj	A input	$V_I = V_{CC}$ or GND	0 to 2.7 V	±5	μA
loff		$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0	±10	μA
ICC		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	0.8 V to 2.7 V	10	μA
Ci		$V_{I} = V_{CC}$ or GND	2.5 V	3	pF
Co		$V_{O} = V_{CC}$ or GND	2.5 V	3.5	pF

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

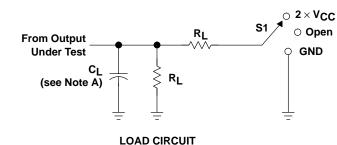
PARAMETI	R FROM	TO (OUTPUT)	V _{CC} = 0.8 V	, V _{CC} = 1.2 V ± 0.1 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			$\begin{array}{c} \mathrm{V_{CC}=2.5~V}\\ \pm~0.2~\mathrm{V} \end{array}$		UNIT
	(INFOT)		TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A	Y	4.7	0.3	3.3	0.2	2.4	‡	‡	‡	‡	‡	ns

[‡] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		UNIT
		(001101)	MIN	TYP	MAX	MIN	MAX	
^t pd	A	Y	0.8	1.9	2.5	0.2	1.8	ns

operating characteristics, $T_A = 25^{\circ}C$


		PARAMETER	TEST CONDITIONS	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		FARAMETER	TEST CONDITIONS	TYP	TYP	TYP	TYP	UNIT	
	Cpd	Power dissipation capacitance	f = 10 MHz	2	3	3	5	рF	

SN74AUC1G07 SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

SCES373J- SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

	tp	LH ^{/t} PHL PLZ ^{/t} PZL HZ ^{/t} PZH	Open 2 × V _{CC} GND	
Vcc		CL	RL	v_Δ
0.8 V		15 pF	2 k Ω	0.1 V
1.2 V \pm 0.1	v	15 pF	2 k Ω	0.1 V
1.5 V ± 0.1	V	15 pF	2 k Ω	0.1 V
1.8 V ± 0.15	5 V	15 pF	2 k Ω	0.15 V
2.5 V ± 0.2	V	15 pF	2 k Ω	0.15 V

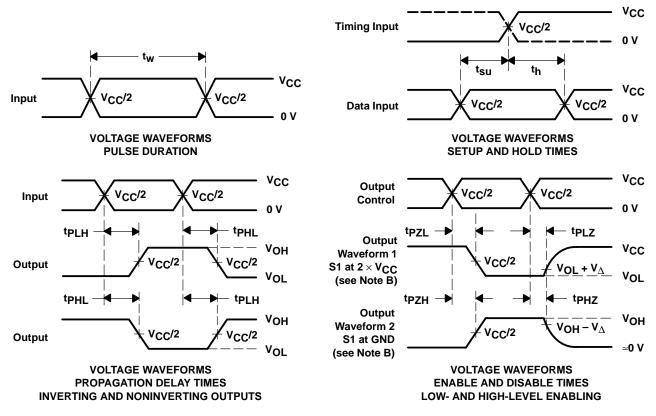
30 pF

30 pF

S1

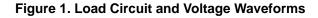
1 kΩ

500 Ω


0.15 V

0.15 V

TEST


 $1.8~V\pm0.15~V$

 $\textbf{2.5 V} \pm \textbf{0.2 V}$

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

SCES374I - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.4 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single 2-input positive-AND gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

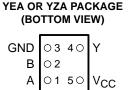
The SN74AUC1G08 performs the Boolean function $Y = A \bullet B$ or $Y = \overline{A + B}$ in positive logic.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]	
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G08YEAR	UE
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G08YZAR	0E_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G08DBVR	U08_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G08DCKR	UE_


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

SCES374I - SEPTEMBER 2001 - REVISED DECEMBER 2002

FU	FUNCTION TABLE									
INP	UTS	OUTPUT								
Α	В	Y								
Н	Н	Н								
L	Х	L								
Х	L	L								

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	206°C/W
DCK package	252°C/W
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES374I - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
	Llich lovel input voltoge	V _{CC} = 0.8 V to 1.95 V	$0.65 \times V_{CC}$		V
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
V	Low lovel input voltage	V _{CC} = 0.8 V to 1.95 V		$0.35 \times V_{CC}$	V
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	v
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
IOH	High-level output current	$V_{CC} = 1.4 V$		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fell rate	$V_{CC} = 0.8 V \text{ to } 1.95 V$		20	ns/V
Δι/Δν	Input transition rise or fall rate	V_{CC} = 2.3 V to 2.7 V		10	ns/V
Τ _Α	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

I	PARAMETER	TEST CONDITI	ONS	V _{CC}	MIN	түр†	MAX	UNIT
		I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.1			
		I _{OH} = -0.7 mA		0.8 V		0.55		
Vari		I _{OH} = -3 mA		1.1 V	0.8			V
VOH		I _{OH} = -5 mA	1.4 V	1			v	
		I _{OH} = -8 mA		1.65 V	1.2			
		I _{OH} = -9 mA		2.3 V	1.8			
		I _{OL} = 100 μA		0.8 V to 2.7 V			0.2	
		I _{OL} = 0.7 mA		0.8 V		0.25		
Va		I _{OL} = 3 mA		1.1 V			0.3	V
VOL		I _{OL} = 5 mA		1.4 V			0.4	v
		I _{OL} = 8 mA		1.65 V			0.45	
	_	I _{OL} = 9 mA		2.3 V			0.6	
lj	A or B input	$V_I = V_{CC}$ or GND		0 to 2.7 V			±5	μA
loff		$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$		0			±10	μA
ICC		$V_I = V_{CC}$ or GND,	IO = 0	0.8 V to 2.7 V			10	μA
Ci		$V_I = V_{CC}$ or GND		2.5 V		3		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

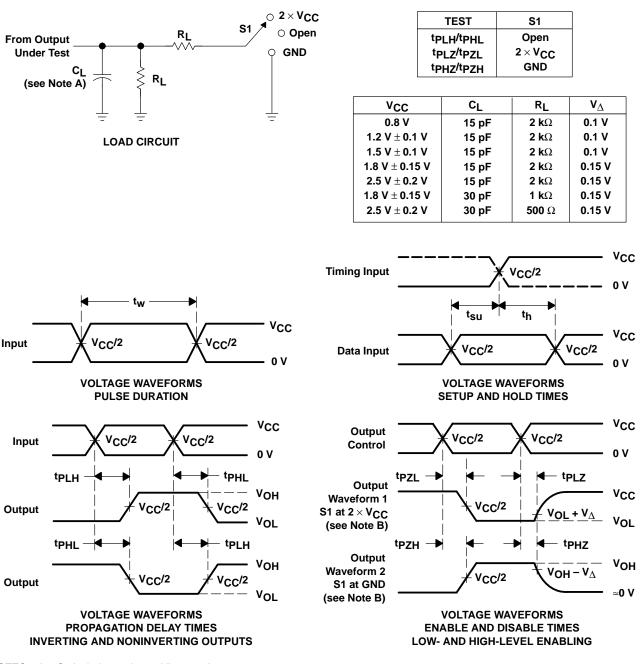
SCES374I - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V_{CC} = 1.2 V ± 0.1 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	4.7	0.9	3.3	0.6	2.3	†	†	†	†	†	ns

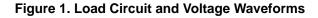
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V			V _{CC} = 2.5 V ± 0.2 V		UNIT
	(INFOT)	(001701)	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	0.7	1.3	2.4	0.5	2	ns

operating characteristics, $T_A = 25^{\circ}C$

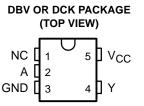
PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	15	15	15	15	19	pF


SCES374I - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tPZL and tPZH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.



SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

NC - No internal connection

YEA OR YZA PACKAGE (BOTTOM VIEW)

GND A DNU	03	40	Y
Α	02		
DNU	01	50	V _{CC}

DNU – Do not use

This single Schmitt-trigger inverter is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G14 contains one inverter and performs the Boolean function $Y = \overline{A}$. The device functions as an independent inverter, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

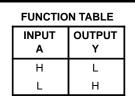
NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING‡
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G14YEAR	UF
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G14YZAR	0r_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G14DBVR	U14_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G14DCKR	UF_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	V
Output voltage range, V _O (see Note 1)0.5 V to V _{CC} + 0.5 V	V
Input clamp current, I _{IK} (V _I < 0)	A
Output clamp current, I _{OK} (V _O < 0)	A
Continuous output current, I _O ±20 m	
Continuous current through V _{CC} or GND	А
Package thermal impedance, θ_{IA} (see Note 2): DBV package	Ν
DCK package	Ν
YEA/YZA package	Ν
Storage temperature range, T _{stg} 65°C to 150°C	С

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
VI	Input voltage		0	3.6	V	
VO	Output voltage		0	VCC	V	
		V _{CC} = 0.8 V	-0.			
		V _{CC} = 1.1 V		-3		
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA	
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
	$V_{CC} = 2.3 V$			9		
$\Delta t/\Delta v$	Input transition rise or fall rate			20	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT			
		0.8 V		0.5					
V _{T+}		1.1 V	0.51		0.86				
Positive-going input threshold voltage		1.4 V	0.65		1	V			
lineshold voltage		1.65 V	0.79		1.16				
		2.3 V	1.11		1.56				
		0.8 V		0.3					
V _T -		1.1 V	0.22		0.53				
Negative-going input		1.4 V	0.3		0.58	3 V			
threshold voltage		1.65 V	0.39		0.62				
		2.3 V	0.58		0.87	V V V V V V			
		0.8 V		0.21					
ΔV_T Hysteresis (V _{T+} - V _T -)		1.1 V	0.25		0.38				
		1.4 V	0.31		0.5	V			
		1.65 V	0.37		0.62				
		2.3 V	0.48		0.77	1			
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1						
	I _{OH} = -0.7 mA	0.8 V		0.55					
Vou	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V			
Negative-going input threshold voltage ΔVT Hysteresis	I _{OH} = -5 mA	1.4 V	1			v			
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2						
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8						
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2				
	I _{OL} = 0.7 mA	0.8 V		0.25					
Vo	I _{OL} = 3 mA	1.1 V			0.3	V			
VOL	$I_{OL} = 5 \text{ mA}$	1.4 V			0.4	v			
	I _{OL} = 8 mA	1.65 V			0.45	1			
	$I_{OL} = 9 \text{ mA}$	2.3 V			0.6				
Ij A input	$V_I = V_{CC}$ or GND	0 to 2.7 V			±5	μA			
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA			
lcc	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μΑ			
C _i	V _I = V _{CC} or GND	2.5 V		3.5		pF			

[†] All typical values are at $T_A = 25^{\circ}C$.

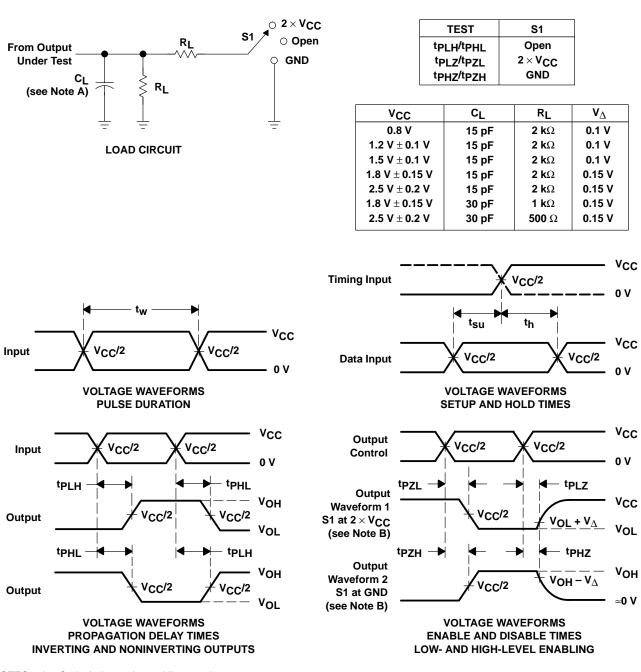
switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)		-	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	5.8	0.7	4	0.6	2.3	‡	‡	‡	‡	‡	ns	

[‡] This information was not available at the time of publication.

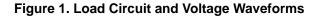
SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V			$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$		UNIT
	(INFOT)	(0011 01)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.7	1.6	2.5	0.5	2.5	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
С	pd Power dissipation capacitance	f = 10 MHz	14	15	15	16	19	pF


SCES375H - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.4 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single Schmitt-trigger buffer is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G17 contains one buffer and performs the Boolean function Y = A. The device functions as an independent buffer, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

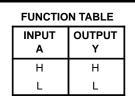
TA	PACKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]	
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G17YEAR	U7
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G17YZAR	0/_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G17DBVR	U17_
	SOT (SC-70) – DCK Tape and reel		SN74AUC1G17DCKR	U7_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.



NC – No internal connection


YEA OR YZA PACKAGE (BOTTOM VIEW)									
GND A DNU	03	40	Y						
А	02								
DNU	01	50	V _{CC}						

DNU – Do not use

SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	V
Output voltage range, V _O (see Note 1)0.5 V to V _{CC} + 0.5 V	V
Input clamp current, I _{IK} (V _I < 0)	A
Output clamp current, I _{OK} (V _O < 0)	A
Continuous output current, I _O ±20 m	
Continuous current through V _{CC} or GND	А
Package thermal impedance, θ_{IA} (see Note 2): DBV package	Ν
DCK package	Ν
YEA/YZA package	Ν
Storage temperature range, T _{stg} 65°C to 150°C	С

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		$V_{CC} = 0.8 V$		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		5 8 9 0.7	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
$\Delta t/\Delta v$	Input transition rise or fall rate	·		20	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

electrical characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise noted)					-	•	

PARAMETER	TEST CONDITIONS	Vcc	MIN	ΤΥΡ [†] ΜΑλ					
		0.8 V		0.5					
V _{T+}		1.1 V	0.51	0.8	6				
Positive-going input threshold voltage		1.4 V	0.65		V				
theshold voltage		1.65 V	0.79	1.1	6				
		2.3 V	1.11	1.5	6				
		0.8 V		0.3					
V _T		1.1 V	0.22	0.5	3				
Negative-going input		1.4 V	0.3	0.5	3 V				
threshold voltage		1.65 V	0.39	0.6	2				
		2.3 V	0.58	0.8	7				
		0.8 V		0.21					
ΔV_T		1.1 V	0.25	0.3	3				
Hysteresis		1.4 V	0.31	0.	5 V				
$(V_{T+} - V_{T-})$		1.65 V	0.37	0.6	2				
		2.3 V	0.48	0.7	7				
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1						
	I _{OH} = -0.7 mA	0.8 V		0.55					
Maria	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8		v				
VOH	I _{OH} = -5 mA	1.4 V	1		v				
	I _{OH} = -8 mA	= -8 mA 1.65 V 1.2							
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8						
	I _{OL} = 100 μA	0.8 V to 2.7 V		0.:	2				
	I _{OL} = 0.7 mA	0.8 V		0.25	3 V				
	I _{OL} = 3 mA	1.1 V		0.3					
V _{OL}	I _{OL} = 5 mA	1.4 V		0.4	1 V				
	I _{OL} = 8 mA	1.65 V		0.4	5				
	I _{OL} = 9 mA	2.3 V		0.0	6				
II A input	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V		±	5 μΑ				
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0		±1) μΑ				
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V		1) μΑ				
Ci	$V_{I} = V_{CC} \text{ or } GND$	2.5 V		3	pF				

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	$V_{CC} = 1.2 V$ ± 0.1 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$		UNIT	
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A	Y	5.7	0.8	3.9	0.7	2.1	‡	‡	‡	‡	‡	ns

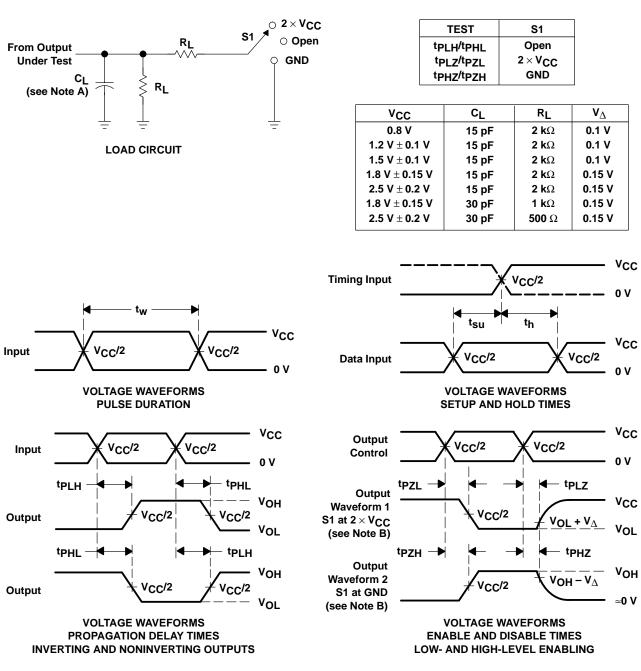
[‡]This information was not available at the time of publication.

SN74AUC1G17 SINGLE SCHMITT-TRIGGER BUFFER

SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

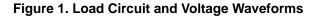
switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 ⊧ 0.15 V		V _{CC} = ± 0.	: 2.5 V 2 V	UNIT
		(001101)	MIN	TYP	MAX	MIN	MAX	
^t pd	A	Y	0.8	1.4	2.4	0.7	2.5	ns


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	15	15	16	16	20	pF

SN74AUC1G17 SINGLE SCHMITT-TRIGGER BUFFER


SCES376H - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES377H - SEPTEMBER 2001 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.4 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single 2-input positive-OR gate is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G32 performs the Boolean function Y = A + B or $Y = \overline{\overline{A} \bullet \overline{B}}$ in positive logic.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]	
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G32YEAR	UG	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G32YZAR	0G_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G32DBVR	U32_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G32DCKR	UG_	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

YEA OR YZA PACKAGE (BOTTOM VIEW) GND 03 40 Y B 2 A 01 50 Voc

SCES377H - SEPTEMBER 2001 - REVISED DECEMBER 2002

FUNCTION TABLE							
INP	UTS	OUTPUT					
Α	В	Y					
Н	Х	Н					
Х	Н	н					
L	L	L					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off s	
(see Note 1)	0
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	
DCK package	
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES377H - SEPTEMBER 2001 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		$V_{CC} = 0.8 V$		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fall rate	-		20	ns/V
Τ _Α	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITION	IS	Vcc	MIN	TYP†	MAX	UNIT	
		I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.1				
		I _{OH} = -0.7 mA		0.8 V		0.55			
Maria		$I_{OH} = -3 \text{ mA}$		1.1 V	0.8			V	
Vон		$I_{OH} = -5 \text{ mA}$		1.4 V	1			v	
		$I_{OH} = -8 \text{ mA}$		1.65 V	1.2				
		I _{OH} = -9 mA		2.3 V	1.8				
		I _{OL} = 100 μA		0.8 V to 2.7 V			0.2		
		I _{OL} = 0.7 mA		0.8 V		0.25			
N.e.		I _{OL} = 3 mA		1.1 V			0.3	v	
VOL		I _{OL} = 5 mA	I _{OL} = 5 mA				0.4	v	
		I _{OL} = 8 mA		1.65 V			0.45		
		I _{OL} = 9 mA		2.3 V			0.6		
Ц	A or B input	$V_I = V_{CC}$ or GND		0 to 2.7 V			±5	μA	
loff		$V_I \text{ or } V_O = 2.7 \text{ V}$		0			±10	μA	
ICC		$V_{I} = V_{CC}$ or GND, I	O = 0	0.8 V to 2.7 V			10	μA	
Ci		$V_{I} = V_{CC}$ or GND		2.5 V		4		pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

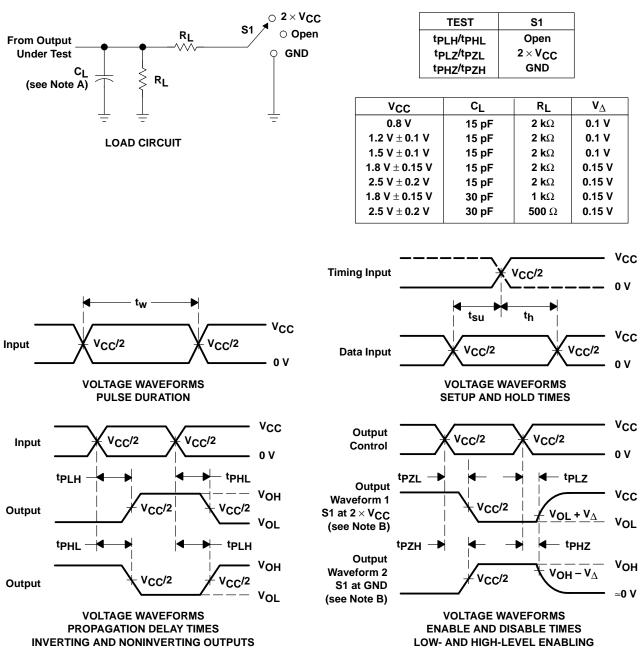
SCES377H - SEPTEMBER 2001 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	AMETER FROM TO VCC = 0.8 V												UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	UNII
^t pd	A or B	Y	4.8	1	3.5	0.6	2.3	†	†	†	†	†	ns

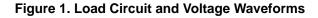
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 ± 0.15 V		V _{CC} = ± 0.		UNIT
	(INFOT)	(001701)	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	Y	0.8	1.4	2.4	0.6	2.1	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	TYP	•••••
C _{pd}	Power dissipation capacitance	f = 10 MHz	14	14	15	15	20	pF


SCES377H - SEPTEMBER 2001 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

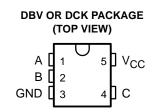
NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

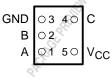
SCES386E - MARCH 2002 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Sub 1-V Operable
- Max t_{pd} of 0.2 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- High On-Off Output Voltage Ratio

description/ordering information


This single analog switch is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G66 can handle both analog and digital signals. It permits signals with amplitudes of up to 3.6-V (peak) to be transmitted in either direction.


NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

- High Degree of Linearity
- High Speed Typically 0.5 ns (V_{CC} = 3 V, C_L = 50 pF)
- Low On-State Impedance Typically ≈9 Ω (V_{CC} = 2.3 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

YEA OR YZA PACKAGE (BOTTOM VIEW)

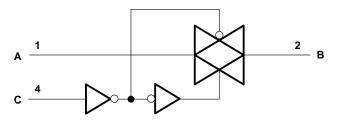
ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]	
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G66YEAR	U6	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G66YZAR	06_	
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G66DBVR	U66_	
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G66DCKR	U6_	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.


NanoStar and NanoFree are trademarks of Texas Instruments.

SCES386E – MARCH 2002 – REVISED DECEMBER 2002

FUNCTION TABLE						
CONTROL INPUT (C)	SWITCH					
L	OFF					
Н	ON					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	–0.5 V to 3.6 V
Input voltage range, V _I (see Notes 1 and 2)	–0.5 V to 3.6 V
Switch I/O voltage range, V _{I/O} (see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Control input clamp current, I_{IK} (V _I < 0)	–50 mA
I/O port diode current, I_{IOK} ($V_{I/O}$ < 0 or $V_{I/O}$ > V_{CC})	±50 mA
On-state switch current, $I_T (V_{I/O} = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DBV package	206°C/W
DCK package	252°C/W
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to ground unless otherwise specified.
 - 2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		$V_{CC} = 0.8 V$	VCC		
VIН	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
	/IH High-level input voltage /IL Low-level input voltage /I/O I/O port voltage /I Control input voltage xt/Δv Input transition rise or fall rate	V _{CC} = 0.8 V		0	
VIL		V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VI/O	I/O port voltage		0	VCC	V
VI	Control input voltage		0	3.6	V
$\Delta t / \Delta v$	Input transition rise or fall rate			20	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	V _{CC}	MIN TYP†	MAX	UNIT
-	On-state switch resistance	$V_{I} = V_{CC}$ or GND,	I _S = 4 mA	1.65 V	10	20	Ω
ron	On-state switch resistance	VC = VIH (see Figure 1)	I _S = 8 mA	2.3 V	9	15	52
.	Peak on resistance	$V_{I} = V_{CC}$ to GND,	I _S = 4 mA	1.65 V	32	80	Ω
^r on(p)	Peak on resistance	V _C = V _{IH} (see Figure 1)	I _S = 8 mA	2.3 V	15	20	52
	Off state switch lookage surrent	$V_{I} = V_{CC}$ and $V_{O} = GN$		2.7 V		±1	۵
IS(off)	Off-state switch leakage current	$V_I = GND$ and $V_O = V_O$ $V_C = V_{IL}$ (see Figure 2		2.7 V		±0.1†	μΑ
	On-state switch leakage current	$V_I = V_{CC}$ or GND, V_C	= VIH, VO = Open	2.7 V		±1	μA
IS(on)	On-state switch leakage current	(see Figure 3)		2.7 V		±0.1†	μΑ
lj	Control input current	$V_I = V_{CC}$ or GND		0 to 2.7 V		±5	μΑ
ICC	Supply current	$V_{I} = V_{CC}$ or GND,	IO = 0	0.8 V to 2.7 V		10	μΑ
C _{ic}	Control input capacitance			2.5 V	2		pF
C _{io(off)}	Switch input/output capacitance			2.5 V	3.5		pF
C _{io(on)}	Switch input/output capacitance			2.5 V	7		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 4)

PARAMETE	FROM TO (INPUT) (OUTPUT		V _{CC} = 0.8 V	V _{CC} = ± 0.			⊧ 1.5 V .1 V		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
tpd‡	A or B	B or A	0.9		0.3		0.2			0.2		0.1	ns
t _{en}	С	A or B	4.1	0.5	2.6	0.5	1.7	0.5	0.8	1.1	0.5	1	ns
^t dis	С	A or B	5	0.7	3.6	0.5	2.6	0.5	1.7	2.9	0.5	2.2	ns

[‡] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 ± 0.15 V		V _{CC} = ± 0.		UNIT
	(INFOT)	(001101)	MIN	TYP	MAX	MIN	MAX	
t _{pd} †	A or B	B or A			0.3		0.3	ns
ten	С	A or B	0.5	1.4	2.3	0.8	1.4	ns
^t dis	С	A or B	0.5	1.7	2.9	0.5	1.5	ns

[†] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	vcc	ТҮР	UNIT
				0.8 V	60	
			$C_1 = 50 \text{ pF}$, $R_1 = 600 \Omega$.	1.1 V	60	
			f _{in} = sine wave	1.4 V	80	
		(see Figure 5)	(see Figure 5)	1.65 V	120	
Frequency response [†]	A or B	B or A		2.3 V	170	MHz
(switch ON)	A GI B	Born		0.8 V	>500	101112
			$C_{L} = 5 \text{ pF}, R_{L} = 50 \Omega,$	1.1 V	>500	
			f _{in} = sine wave	1.4 V	>500	
	METER(INPUT)(OUTPUT)TEST CONDITIONSponse1A or BB or A $C_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = sine wave (see Figure 5)o signal output)CA or BC_L = 5 \text{ pF}, \text{ R}_L = 50 \Omega, f_{in} = sine wave (see Figure 5)o signal output)CA or BC_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = 1 \text{ MHz} (square wave) (see Figure 5)attenuation‡A or BB or AC_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = 1 \text{ MHz} (square wave) (see Figure 6)attenuation‡A or BB or AC_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = 1 \text{ MHz} (square wave) (see Figure 7)A or BB or AC_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = 1 \text{ MHz} (sine wave) (see Figure 7)A or BB or AC_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, f_{in} = 1 \text{ MHz} (sine wave) (see Figure 7)$	1.65 V	>500			
				$\begin{array}{c c} 0.8 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.4 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.4 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 0.8 \lor \\ 1.1 \lor \\ 1.65 \lor \\ 2.3 \lor \\ 0.8 \lor \\ 0$	>500	
					9	
Crosstalk	C	4 D			14	mV
(control input to signal output)	С	A or B	f _{in} = 1 MHz (square wave)		15	
		A or B $f_{in} = 1 \text{ MHz (square wave)}$ (see Figure 6) $C_{L} = 50 \text{ pF, } R_{L} = 600 \Omega,$ $f_{in} = 1 \text{ MHz (sine wave)}$ (see Figure 7)		16		
					20	
					-60	dB
					-60 -60	
			$f_{in} = 1 \text{ MHz} (sine wave)$ (see Figure 7)		-60 -60	
Food through attactuation +					_60	
Feed-through attenuation‡ (switch OFF)	A or B	B or A			-55	
· · · · ·			$C_L = 5 \text{ pF}, R_L = 50 \Omega,$ f., = 1 MHz (sine wave)		-55	
					-55	
			(see Figure 7)		-55	
			A or B $f_{in} = 1 \text{ MHz} \text{ (square wave)} \text{ (see Figure 6)}$ $(see Figure 6)$ $C_L = 50 \text{ pF}, \text{ R}_L = 600 \Omega, \text{ f}_{in} = 1 \text{ MHz} \text{ (sine wave)} \text{ (see Figure 7)}$ B or A $C_L = 5 \text{ pF}, \text{ R}_L = 50 \Omega, \text{ f}_{in} = 1 \text{ MHz} \text{ (sine wave)} \text{ (see Figure 7)}$ B or A $C_L = 50 \text{ pF}, \text{ R}_L = 50 \Omega, \text{ f}_{in} = 1 \text{ MHz} \text{ (sine wave)} \text{ (see Figure 7)}$ B or A $C_L = 50 \text{ pF}, \text{ R}_L = 10 \text{ k}\Omega, \text{ f}_{in} = 1 \text{ kHz} \text{ (sine wave)}$		-55	
				0.8 V	7.5	
			$C_{1} = 50 \text{ pE } R_{1} = 10 \text{ kO}$	1.1 V	0.16	
	A or B	B or A	$f_{in} = 1 \text{ kHz} (\text{sine wave})$	1.4 V	0.04	
			(see Figure 8)	1.65 V	0.03	
				2.3 V	0.02	
Sine-wave distortion				0.8 V	4.2	%
			$C_{1} = 50 \text{ pE}$, $R_{1} = 10 \text{ k}\Omega_{2}$	1.1 V	0.2	
	A or B	B or A	f _{in} = 10 kHz (sine wave)	1.4 V	0.03	
				1.65 V	0.02	
				2.3 V	0.02	

analog switch characteristics, $T_A = 25^{\circ}C$

[†] Adjust f_{in} voltage to obtain 0 dBm at output. Increase f_{in} frequency until dB meter reads –3 dB. [‡] Adjust f_{in} voltage to obtain 0 dBm at input.

operating characteristics, T_{A} = 25°C

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
Cpd	Power dissipation capacitance	f = 10 MHz	3	3	3	3	3	pF

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

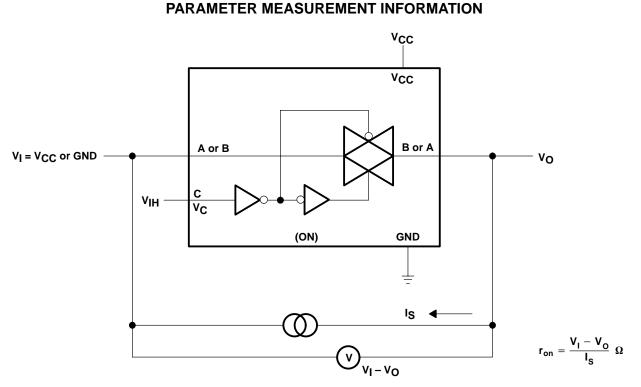
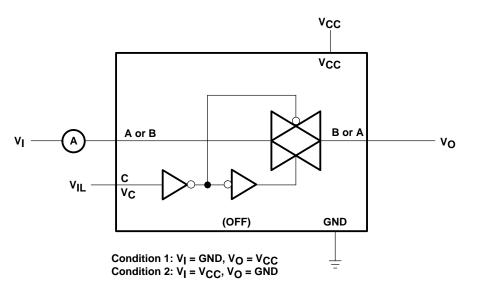



Figure 1. On-State Resistance Test Circuit

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

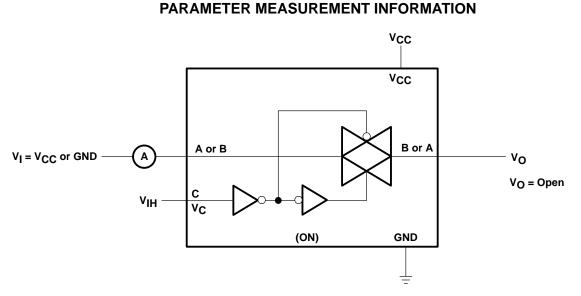
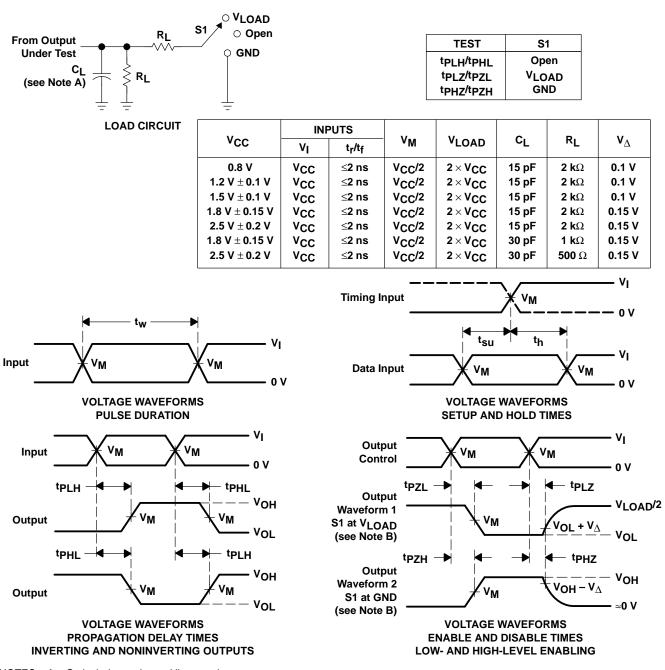
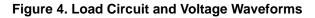
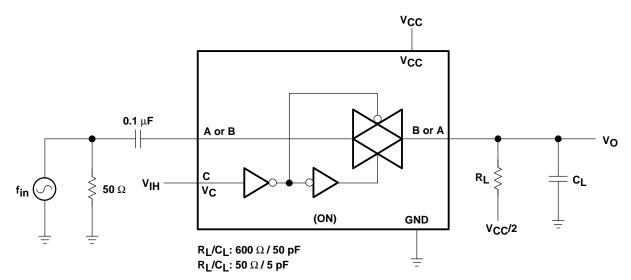



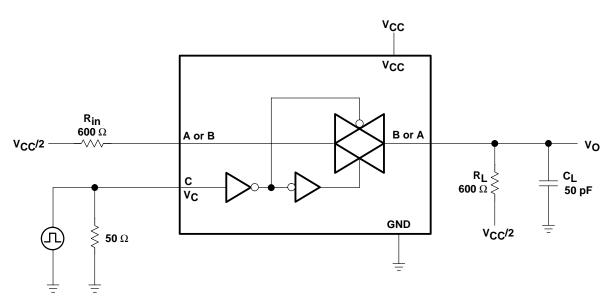
Figure 3. On-State Leakage-Current Test Circuit


SCES386E - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.



SCES386E - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

SCES386E - MARCH 2002 - REVISED DECEMBER 2002

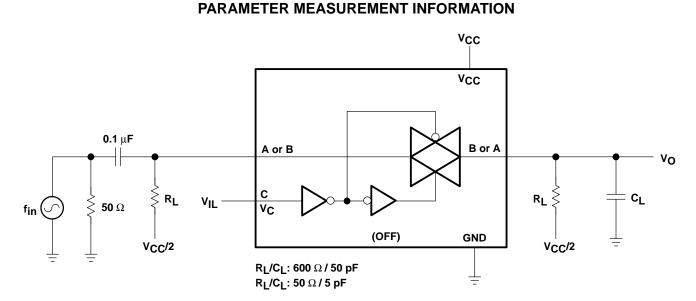
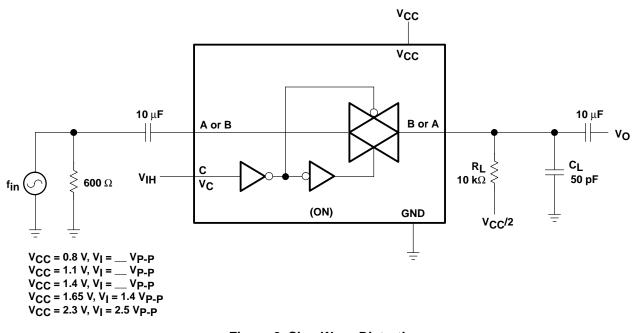
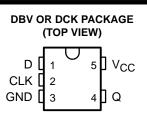



Figure 7. Feed Through, Switch Off



- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

SCES387F - MARCH 2002 - REVISED DECEMBER 2002

YEA OR YZA PACKAGE (BOTTOM VIEW) GND 03 40 CLK 2 D 01 50 V_{CC}

This single positive-edge-triggered D-type flip-flop is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

When data at the data (D) input meets the setup time requirement, the data is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

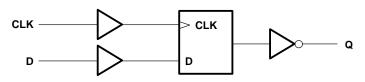
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G79YEAR	UR
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G79YZAR	0R_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G79DBVR	U79_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G79DCKR	UR_

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.


YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

SCES387F – MARCH 2002 – REVISED DECEMBER 2002

FUNCTION TABLE							
INPU	JTS	OUTPUT					
CLK	D	Q					
Ŷ	Н	Н					
Ŷ	L	L					
L	Х	Q ₀					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, Vo	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, Io	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	206°C/W
DCK package	252°C/W
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES387F - MARCH 2002 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 V \text{ to } 2.7 V$		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fall rate	•		20	ns/V
т _А	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS		V _{CC}	MIN	түр†	МАХ	UNIT	
		I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.1				
	I _{OH} = -0.7 mA		0.8 V		0.55				
Voh		$I_{OH} = -3 \text{ mA}$		1.1 V	0.8			V	
VOH	$I_{OH} = -5 \text{ mA}$		1.4 V	1			v		
		$I_{OH} = -8 \text{ mA}$		1.65 V	1.2				
		$I_{OH} = -9 \text{ mA}$		2.3 V	1.8				
		I _{OL} = 100 μA		0.8 V to 2.7 V			0.2		
		I _{OL} = 0.7 mA		0.8 V		0.25			
N.e.		I _{OL} = 3 mA		1.1 V			0.3 V		
VOL		I _{OL} = 5 mA		1.4 V			0.4	v	
		I _{OL} = 8 mA		1.65 V			0.45		
		I _{OL} = 9 mA		2.3 V		0.45			
Ц	D or CLK input	$V_{I} = V_{CC}$ or GND		0 to 2.7 V			±5	μA	
loff		$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$		0			±10	μA	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = C$)	0.8 V to 2.7 V			10	μA	
Ci		$V_{I} = V_{CC}$ or GND		2.5 V		2.5		pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

SCES387F – MARCH 2002 – REVISED DECEMBER 2002

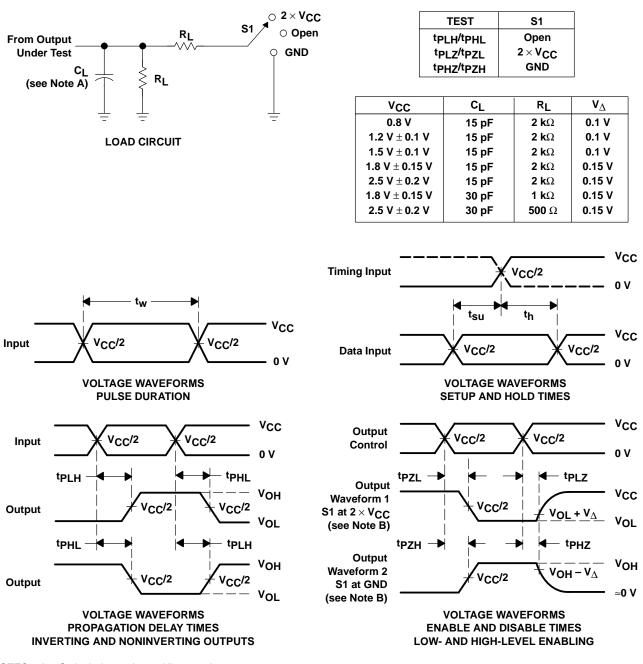
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	50		200		225		250		275	MHz
tw	Pulse duration, CLK high or low	4.6	1.7		1.7		1.7		1.7		ns
t _{su}	Setup time before $CLK\uparrow$, Data high or low	1.5	1.1		0.7		0.7		0.5		ns
th	Hold time, data after CLK^\uparrow	0	0		0		0		0.1		ns

switching characteristics over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1)

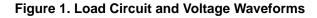
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.	2.5 V 2 V	UNIT
			(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX
fmax			50	200		225		250			275		MHz
^t pd	CLK	Q	5	1	3.9	0.8	2.5	0.3	1	1.9	0.3	1.3	ns

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 0.15 V		V _{CC} = ± 0.	UNIT	
			MIN	TYP	MAX	MIN	MAX	
fmax			250			275		ns
^t pd	CLK	Q	0.8	1.5	2.4	0.6	1.8	ns

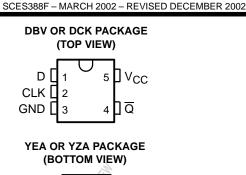
operating characteristics, $T_A = 25^{\circ}C$

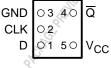
	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	18	18	18	18.5	20.5	pF


SCES387F - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.



- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 3.3 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single positive-edge-triggered D-type flip-flop is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

When data at the data (D) input meets the setup time requirement, the data is transferred to the \overline{Q} output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

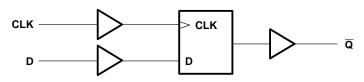
TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G80YEAR	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G80YZAR	UX_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G80DBVR	U80_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G80DCKR	UX_

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.


NanoStar and NanoFree are trademarks of Texas Instruments.

SCES388F – MARCH 2002 – REVISED DECEMBER 2002

FU	FUNCTION TABLE									
INPU	OUTPUT									
CLK	D	Q								
\uparrow	Н	L								
Ŷ	L	н								
L	Х	Q ₀								

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V	0
(see Note 1)	
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, Io	
Continuous current through V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DBV package	
DCK package	
YEA/YZA package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES388F - MARCH 2002 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 V \text{ to } 2.7 V$		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fall rate	•		20	ns/V
т _А	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	ARAMETER	TEST CONDITIO	NS	Vcc	MIN	түр†	MAX	UNIT
		I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.1			
		I _{OH} = -0.7 mA		0.8 V		0.55		
Vari		$I_{OH} = -3 \text{ mA}$		1.1 V	0.8			V
∨он		$I_{OH} = -5 \text{ mA}$		1.4 V	1			v
		I _{OH} = -8 mA		1.65 V	1.2			
		IOH = -9 mA		2.3 V	1.8			
		I _{OL} = 100 μA		0.8 V to 2.7 V			0.2	
		I _{OL} = 0.7 mA		0.8 V		0.25		
Va		I _{OL} = 3 mA		1.1 V			0.3	V
VOL		I _{OL} = 5 mA		1.4 V			0.4	v
		I _{OL} = 8 mA		1.65 V			0.45	
		I _{OL} = 9 mA		2.3 V			0.6	
lj	D or CLK input	$V_I = V_{CC}$ or GND		0 to 2.7 V			±5	μA
l _{off}		$V_I \text{ or } V_O = 2.7 \text{ V}$		0			±10	μA
ICC		$V_I = V_{CC}$ or GND,	IO = 0	0.8 V to 2.7 V			10	μΑ
Ci		$V_I = V_{CC}$ or GND		2.5 V		2.5		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

SCES388F - MARCH 2002 - REVISED DECEMBER 2002

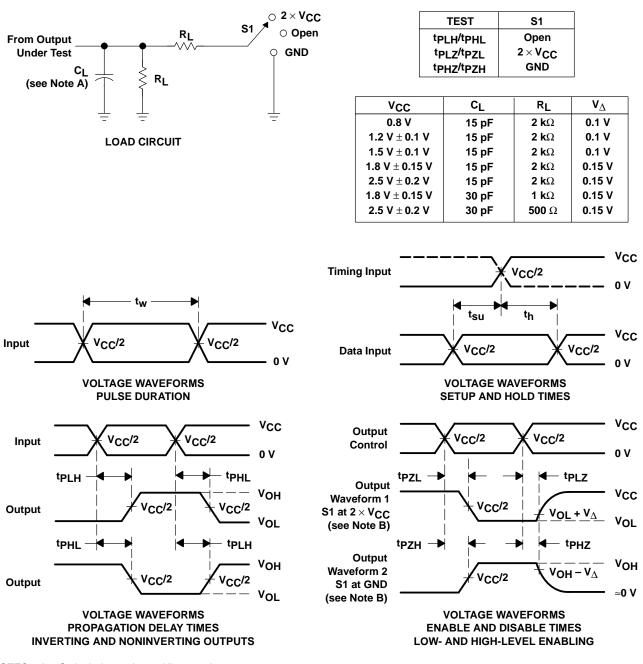
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	50		200		225		250		275	MHz
tw	Pulse duration, CLK high or low	4.6	1.7		1.7		1.7		1.7		ns
t _{su}	Setup time before $CLK\uparrow$, Data high or low	1.6	1.1		0.8		0.6		0.5		ns
th	Hold time, data after CLK^\uparrow	0	0		0.1		0.1		0.1		ns

switching characteristics over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1)

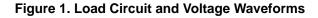
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.	2.5 V 2 V	UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
fmax			50	200		225		250			275		MHz
^t pd	CLK	Q	5	1	3.9	0.8	2.5	0.3	1	1.9	0.3	1.3	ns

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 0.15 V		V _{CC} = ± 0.	UNIT	
		(001101)	MIN	TYP	MAX	MIN	MAX	
fmax			250			275		ns
^t pd	CLK	Q	0.8	1.5	2.4	0.6	1.8	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	18	18	18	18.5	20.5	pF


SCES388F - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SCES389E - MARCH 2002 - REVISED JANUARY 2003

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This single 2-input exclusive - OR gate is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G86 performs the Boolean function $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If the input is low, the other input is reproduced in true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

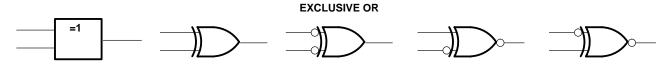
TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING‡
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G86YEAR	UH
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G86YZAR	0n_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G86DBVR	U86_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G86DCKR	UH_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

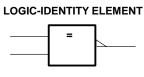
[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.

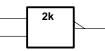

YEA OR YZA PACKAGE (BOTTOM VIEW) GND 03 40 B 2 A 01 50 V_{CC}

SCES389E - MARCH 2002 - REVISED JANUARY 2003

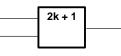

FUNCTION TABLE						
INP	UTS	OUTPUT				
Α	В	Y				
L	L	L				
L	н	Н				
н	L	н				
Н	Н	L				

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.



These are five equivalent exclusive-OR symbols valid for an SN74AUC1G86 gate in positive logic; negation may be shown at any two ports.


The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

EVEN-PARITY ELEMENT

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{Ω}	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	\dots –0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	206°C/W
DCK package	252°C/W
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES389E - MARCH 2002 - REVISED JANUARY 2003

recommended operating conditions (see Note 3)

			MIN	МАХ	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
$\Delta t / \Delta v$	Input transition rise or fall rate			20	ns/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	V _{CC}	MIN	түр†	MAX	UNIT	
		I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1				
		I _{OH} = -0.7 mA	0.8 V		0.55			
Val		$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V	
∨он		$I_{OH} = -5 \text{ mA}$	1.4 V	1			v	
		$I_{OH} = -8 \text{ mA}$	1.65 V	1.2				
		$I_{OH} = -9 \text{ mA}$	2.3 V	1.8				
		I _{OL} = 100 μA	0.8 V to 2.7 V			0.2		
		I _{OL} = 0.7 mA	0.8 V		0.25			
Vai		I _{OL} = 3 mA	1.1 V			0.3	V	
VOL		I _{OL} = 5 mA	1.4 V			0.4	v	
		I _{OL} = 8 mA	1.65 V			0.45		
		I _{OL} = 9 mA	2.3 V			0.6		
lj	A or B input	$V_I = V_{CC}$ or GND	0 to 2.7 V			±5	μA	
loff		$V_I \text{ or } V_O = 2.7 \text{ V}$	0			±10	μA	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA	
Ci		$V_I = V_{CC}$ or GND	2.5 V		2.5		pF	

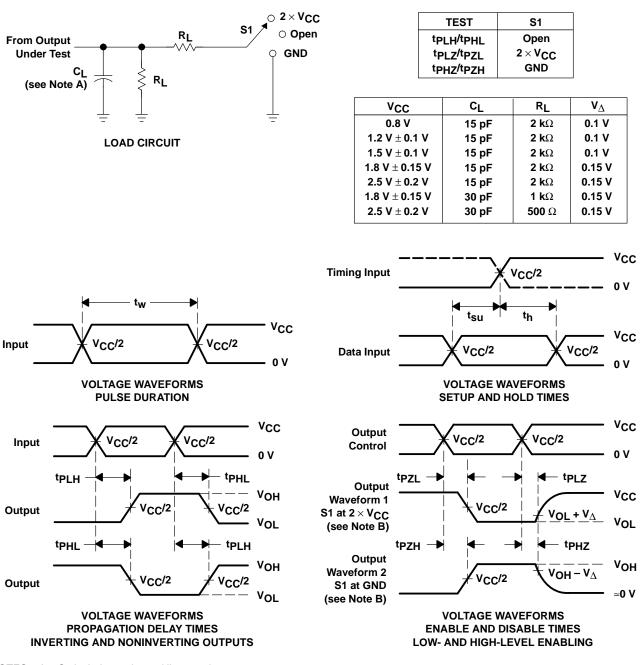
[†] All typical values are at $T_A = 25^{\circ}C$.

SCES389E - MARCH 2002 - REVISED JANUARY 2003

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

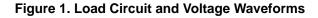
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.	1.2 V 1 V	V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.	2.5 V 2 V	UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
	А	V	5.5	0.8	3.8	0.5	2.4	0.4	1	1.7	0.3	1.3	20
^t pd	В	ſ	5	0.8	3.6	0.5	2.2	0.4	1	1.7	0.3	1.2	ns

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
	(INFOT)	(001101)	MIN	TYP	MAX	MIN	MAX	
÷ .	A	V	0.8	1.5	2.3	0.7	1.8	20
^t pd	В	T	0.8	1.5	2.3	0.7	1.7	ns

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT
C _{pd}	Power dissipation capacitance	f = 10 MHz	16	16	16.5	17	18.5	pF


SCES389E - MARCH 2002 - REVISED JANUARY 2003

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPU SCES382E - MARCH 2002 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Ioff Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-µA Max Icc
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This bus buffer gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G125 is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is high.

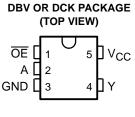
To ensure the high-impedance state during power up or power down, $\overline{\mathsf{OE}}$ should be tied to V $_{\mathsf{CC}}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

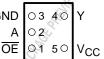
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

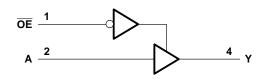
TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING [‡]
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G125YEAR	UM
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G125YZAR	0M_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G125DBVR	U25_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G125DCKR	UM_


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.


YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments


YEA OR YZA PACKAGE (BOTTOM VIEW) GND 03 40

SN74AUC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT SCES382E - MARCH 2002 - REVISED DECEMBER 2002

FUNCTION TABLE						
INP	JTS	OUTPUT				
OE	Α	Y				
L	Н	Н				
L	L	L				
Н	Х	Z				

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DBV package	206°C/W
DCK package	252°C/W
YEA/YZA package	154°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
VIH		V _{CC} = 0.8 V	VCC		
	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
٧ _I	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
lон		V _{CC} = 0.8 V		-0.7	
	High-level output current	V _{CC} = 1.1 V		-3	
		V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
IOL		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V to 1.6 V		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 1.65 V to 1.95 V		10	ns/V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		3	
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT

SCES382E - MARCH 2002 - REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	түр†	MAX	UNIT			
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1						
	I _{OH} = -0.7 mA	0.8 V		0.55					
Marri	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			v			
VOH	I _{OH} = -5 mA	1.4 V	1			v			
	I _{OH} = -8 mA	1.65 V	1.2						
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8						
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2				
	I _{OL} = 0.7 mA	0.8 V		0.25					
Ve	I _{OL} = 3 mA	1.1 V			0.3				
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	v			
	I _{OL} = 8 mA	1.65 V			0.45				
	I _{OL} = 9 mA	2.3 V			0.6]			
I A or OE input	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V			±5	μA			
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA			
IOZ	$V_{O} = V_{CC} \text{ or } GND$	2.7 V			±10	μA			
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA			
C _i	$V_{I} = V_{CC}$ or GND	2.5 V		2.5		pF			
Co	$V_{O} = V_{CC}$ or GND	2.5 V		5.5		pF			

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 1)

PARAMETER	METER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	$ \begin{array}{ c c c c c } V_{CC} = 1.2 \ V \\ \pm \ 0.1 \ V \\ \pm \ 0.1 \ V \\ \end{array} \\ \begin{array}{ c c c c c } V_{CC} = 1.5 \ V \\ \pm \ 0.1 \ V \\ \end{array} $		V _{CC} = 1.8 V ± 0.15 V			V _{CC} = 2.5 V ± 0.2 V		UNIT		
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX		
t	pd	А	Y	4.7	0.8	3.6	0.4	2.3	‡	‡	‡	‡	‡	ns
t	en	ŌĒ	Y	5.4	0.7	4.1	0.5	2.6	‡	‡	‡	‡	‡	ns
t	dis	OE	Y	4.8	1.4	4.3	1.4	4	‡	‡	‡	‡	‡	ns

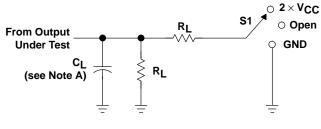
[‡]This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V			$V_{CC} = 2.5 V \pm 0.2 V$		UNIT
		(001-01)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.7	1.5	2.5	0.9	1.7	ns
^t en	ŌĒ	Y	1	1.6	2.6	1.1	1.9	ns
^t dis	ŌĒ	Y	1.8	2.2	3.1	0.8	1.7	ns

SN74AUC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT SCES382E – MARCH 2002 – REVISED DECEMBER 2002

operating characteristics, T_{A} = 25°C


	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
			CONDITIONS TYP	ТҮР	TYP	TYP	ТҮР	UNIT	
	Power Outputs enabled		f = 10 MHz	14	14	14	15	16	pF
Cpd	dissipation capacitance	Outputs disabled		1.5	1.5	1.5	2	2.5	μr

SN74AUC1G125 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT

SCES382E - MARCH 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

tr	PLH ^{/t} PHL PLZ ^{/t} PZL PHZ ^{/t} PZH	Open 2 × V _{CC} GND	
VCC	CL	RL	ν _Δ
0.8 V	15 pF	2 k Ω	0.1 V
1.2 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.5 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V \pm 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V \pm 0.2 V	15 pF	2 k Ω	0.15 V

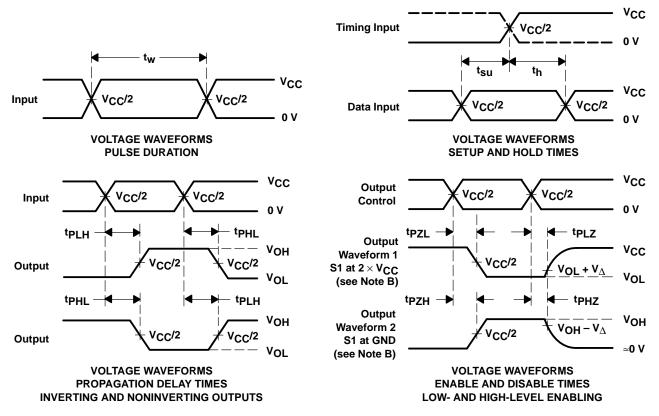
30 pF

30 pF

1.8 V \pm 0.15 V

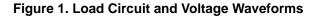
 $\textbf{2.5 V} \pm \textbf{0.2 V}$

S1


1 kΩ

500 Ω

0.15 V


0.15 V

TEST

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC1G126 SINGLE BUS BUFFER GATE WITH 3-STATE OUTP SCES383E - MARCH 2002 - REVISED DECEMBER 2002

UV_{CC} 5

DBV OR DCK PACKAGE

(TOP VIEW)

OE

GND |

GND

OE

ΑĽ 2

٦

YEA OR YZA PACKAGE

(BOTTOM VIEW)

0340

01 50

02 A

Υ

Vcc

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Ioff Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-µA Max Icc
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This bus buffer gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G126 is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is low.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

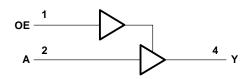
TA	PACKAGET	PACKAGET		
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G126YEAR	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G126YZAR	UN_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G126DBVR	U26_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G126DCKR	UN_

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡]DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments



SN74AUC1G126 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT

SCES383E - MARCH 2002 - REVISED DECEMBER 2002

FUNCTION TABLE								
INP	JTS	OUTPUT						
OE	Α	Y						
Н	Н	Н						
Н	L	L						
L	Х	Z						

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V_{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DBV package	
DCK package	
YEA/YZA package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V to 1.6 V		20	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 1.65 V to 1.95 V		10	ns/V
		V_{CC} = 2.3 V to 2.7 V	Í	3	
TA	Operating free-air temperature	•	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC1G126 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT

SCES383E – MARCH 2002 – REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP†	MAX	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
VOH	I _{OH} = -0.7 mA	0.8 V		0.55		
	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V
	I _{OH} = -5 mA	1.4 V	1			v
	I _{OH} = -8 mA	1.65 V	1.2			
	I _{OH} = -9 mA	2.3 V	1.8			
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2	
	I _{OL} = 0.7 mA	0.8 V		0.25		
Mai	$I_{OL} = 3 \text{ mA}$	1.1 V			0.3	V
V _{OL}	$I_{OL} = 5 \text{ mA}$	1.4 V			0.4	v
	I _{OL} = 8 mA	1.65 V			0.45	
	$I_{OL} = 9 \text{ mA}$	2.3 V			0.6	
II A or OE input	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V			±5	μA
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA
Icc	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA
Ci	V _I = V _{CC} or GND	2.5 V		2.5		pF
Co	$V_{O} = V_{CC}$ or GND	2.5 V		5.5		pF

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V		= 1.5 V .1 V	-	C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
		(0011 01)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	4.5	0.8	3.6	0.6	2.3	‡	‡	‡	‡	+	ns
t _{en}	OE	Y	4.9	0.7	3.8	0.7	2.5	‡	‡	‡	‡	‡	ns
^t dis	OE	Y	4.9	2.2	4.7	1.8	4.1	‡	‡	‡	‡	‡	ns

[‡]This information was not available at the time of publication.

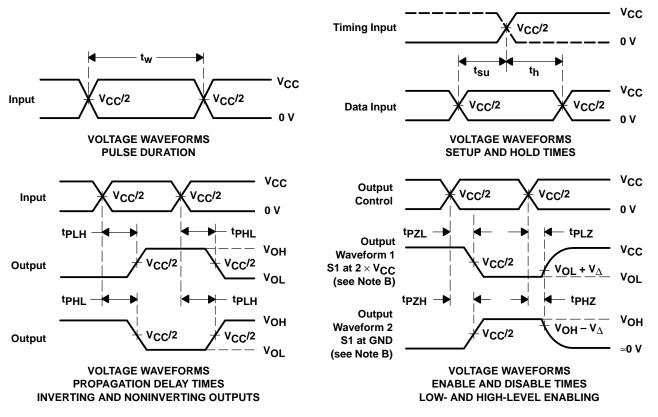
switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 0.15 V		V _{CC} = ± 0.	: 2.5 V 2 V	UNIT
		(001101)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	1	1.5	2.5	0.9	1.7	ns
ten	OE	Y	1.1	1.6	2.5	0.9	1.9	ns
^t dis	OE	Y	1.3	2.6	3.1	1	2.1	ns


SN74AUC1G126 SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT SCES383E – MARCH 2002 – REVISED DECEMBER 2002

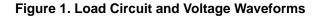
operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
			CONDITIONS	TYP	TYP	ТҮР	TYP	ТҮР	ONIT
	Power enable	Outputs enabled	f = 10 MHz	14	14	14	15	16	pF
C _{pd}	dissipation capacitance	Outputs disabled		1.5	1.5	1.5	2	2.5	μL



LOAD CIRCUIT

	^t PLH ^{/t} PHL ^t PLZ ^{/t} PZL ^t PHZ ^{/t} PZH		Open 2 × V _{CC} GND		
Vcc		CL	RL	ν _Δ	
0.8 V		15 pF	2 k Ω	0.1 V	
1.2 V \pm 0.1 V	/	15 pF	2 k Ω	0.1 V	
1.5 V \pm 0.1 V	/	15 pF	2 k Ω	0.1 V	
1.8 V \pm 0.15 $^{\circ}$	V	15 pF	2 k Ω	0.15 V	
2.5 V ± 0.2 \	/	15 pF	2 k Ω	0.15 V	
1.8 V ± 0.15	V	30 pF	1 k Ω	0.15 V	
2.5 V ± 0.2 \	/	30 pF	500 Ω	0.15 V	


S1

TEST

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC1G240 SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT

SCES384E - MARCH 2002 - REVISED DECEMBER 2002

- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This bus buffer gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G240 is a single line driver with a 3-state output. The output is disabled when the output-enable (\overline{OE}) input is high.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

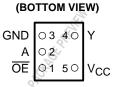
NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

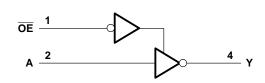
TA	PACKAGE [†]	PACKAGE [†]		TOP-SIDE MARKING [‡]
	NanoStar™ WCSP (DSBGA) – YEA	Tape and reel	SN74AUC1G240YEAR	
–40°C to 85°C	NanoFree™ WCSP (DSBGA) – YZA (Pb-free)	Tape and reel	SN74AUC1G240YZAR	UK_
	SOT (SOT-23) – DBV	Tape and reel	SN74AUC1G240DBVR	U40_
	SOT (SC-70) – DCK	Tape and reel	SN74AUC1G240DCKR	UK_

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


 \pm DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.

YEA/YZA: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site.

NanoStar and NanoFree are trademarks of Texas Instruments.



SN74AUC1G240 SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT SCES384E - MARCH 2002 - REVISED DECEMBER 2002

FUNCTION TABLE							
INPU	JTS	OUTPUT					
OE	Α	Y					
L	Н	L					
L	L	н					
Н	Х	Z					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	-0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Continuous output current, I_{O}	
Continuous current through V_{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DBV package	
YEA/YZA package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		$V_{CC} = 0.8 V$	VCC		
VIH	High-level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		$V_{CC} = 0.8 V$		0	
VIL	Low-level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	$V_{CC} = 1.4 V$		-5	mA
		V _{CC} = 1.65 V		-8	
		$V_{CC} = 2.3 V$		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	$V_{CC} = 1.4 V$		5	mA
		V _{CC} = 1.65 V		8	
		$V_{CC} = 2.3 V$		9	
		V _{CC} = 0.8 V to 1.6 V		20	
Δt/Δv	Input transition rise or fall rate	V _{CC} = 1.65 V to 1.95 V		10	ns/\
		V _{CC} = 2.3 V to 2.7 V		3	
TA	Operating free-air temperature	÷	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC1G240 SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT

SCES384E – MARCH 2002 – REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	VCC	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1				
	I _{OH} = -0.7 mA	0.8 V		0.55			
Vou	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V	
VOH	I _{OH} = -5 mA	1.4 V	1			v	
	I _{OH} = -8 mA	1.65 V	1.2				
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8				
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2		
	$I_{OL} = 0.7 \text{ mA}$	0.8 V		0.25			
Mai	$I_{OL} = 3 \text{ mA}$	1.1 V			0.3	V	
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	v	
	I _{OL} = 8 mA	1.65 V			0.45		
	I _{OL} = 9 mA	2.3 V			0.6		
I A or OE input	$V_{I} = V_{CC}$ or GND	0 to 2.7 V			±5	μA	
l _{off}	V_{I} or $V_{O} = 2.7 V$	0			±10	μA	
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA	
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			10	μA	
Ci	$V_I = V_{CC}$ or GND	2.5 V		2.5		pF	
Co	$V_{O} = V_{CC} \text{ or } GND$	2.5 V		5.5		pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

P	ARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	: 1.5 V 1 V		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
	(INPOT)		TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX		
	^t pd	А	Y	4.5	0.6	3.3	0.7	2.2	‡	‡	‡	‡	+	ns
	t _{en}	ŌĒ	Y	5.5	0.7	4.1	0.5	2.6	‡	‡	‡	‡	‡	ns
	^t dis	ŌĒ	Y	5	1.5	4.3	0.9	4.1	‡	‡	‡	‡	‡	ns

[‡]This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		C = 1.8 0.15 V		V _{CC} = ± 0.	: 2.5 V 2 V	UNIT
		(001101)	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	0.5	1.5	2.5	0.8	1.7	ns
ten	ŌĒ	Y	0.7	1.6	2.6	0.6	1.9	ns
^t dis	ŌĒ	Y	2	2.4	3.1	0.8	1.7	ns


SN74AUC1G240 SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT SCES384E – MARCH 2002 – REVISED DECEMBER 2002

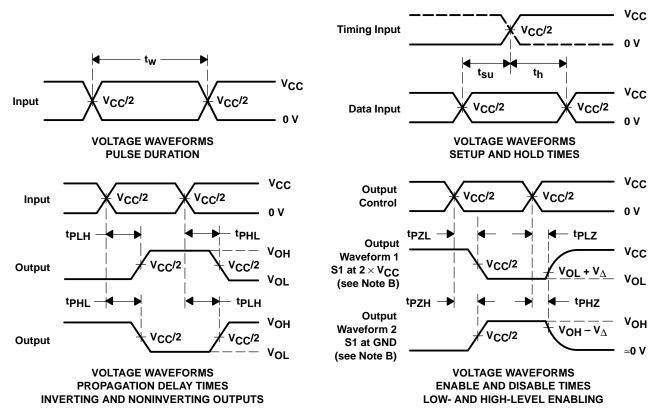
operating characteristics, T_{A} = 25°C

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNIT	
	Power	Outputs enabled	f = 10 MHz	14	14	14	14	15	pF
Cpd	dissipation capacitance	Outputs disabled		1	1	1	1	2	рг

LOAD CIRCUIT

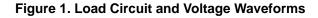
tr	PLH ^{/t} PHL PLZ ^{/t} PZL PHZ ^{/t} PZH	Open 2 × V _{CC} GND	
Vcc	CL	RL	ν _Δ
0.8 V	15 pF	2 k Ω	0.1 V
1.2 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.5 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V \pm 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V \pm 0.2 V	15 pF	2 k Ω	0.15 V
1.8 V \pm 0.15 V	30 pF	1 k Ω	0.15 V

30 pF


S1

500 Ω

0.15 V


TEST

 $\textbf{2.5 V} \pm \textbf{0.2 V}$

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 All input pulses are supplied by generators beying the following characteristics: BBR < 10 MHz Za = 50.0, slow rate > 1 //rec
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

		Page
SN74AUC16240	16-Bit Buffer/Driver With 3-State Outputs	3–3
SN74AUCH16240	16-Bit Buffer/Driver With 3-State Outputs	3–9
SN74AUC16244	16-Bit Buffer/Driver With 3-State Outputs	3–17
SN74AUCH16244	16-Bit Buffer/Driver With 3-State Outputs	3–23
SN74AUC16245	16-Bit Bus Transceiver With 3-State Outputs	3–31
SN74AUCH16245	16-Bit Bus Transceiver With 3-State Outputs	3–37
SN74AUC16373	16-Bit Transparent D-Type Latch With 3-State Outputs	3–43
SN74AUCH16373	16-Bit Transparent D-Type Latch With 3-State Outputs	3–49
SN74AUC16374	16-Bit Edge-Triggered D-Type Flip-Flop With 3-State Outputs	3–55
SN74AUCH16374	16-Bit Edge-Triggered D-Type Flip-Flop With 3-State Outputs	3–61

	per of the Texas Instruments bus™ Family	DGG (OR DG (TOP \	V PACKAGE VIEW)
	nized for 1.8-V Operation and is 3.6-V plerant to Support Mixed-Mode Signal ation	10E [1Y1 [1Y2 [2	48 20E 47 1A1 46 1A2
 I_{off} Su Operation 	upports Partial-Power-Down Mode ation	GND [1Y3 [4	45 GND 44 1A3
Sub 1	-V Operable	1Y4 [-	43] 1A4
 Max t 	_{pd} of 2 ns at 1.8 V	V _{CC} [42 VCC
	Power Consumption, 20-μΑ Max I _{CC}	2Y1 [41] 2A1
	A Output Drive at 1.8 V	2Y2		40 2A2
	-Up Performance Exceeds 100 mA Per	GND [39 GND
	78, Class II	2Y3		38 2A3
	Protection Exceeds JESD 22	2Y4 [37 2A4
	00-V Human-Body Model (A114-A)	3Y1 [36 3A1
)-V Machine Model (A115-A)	3Y2 [GND [35 3A2 34 GND
	00-V Charged-Device Model (C101)	3Y3 [34 GND 33 3A3
		3Y4 [32 3A4
description	n/ordering information	V _{CC} [31 V _{CC}
This 16	6-bit buffer/driver is operational at 0.8-V to	4Y1 [30 4A1
	$/_{\rm CC}$, but is designed specifically for 1.65-V	4Y2 [20	29 🛛 4A2
	-V V _{CC} operation.	GND [21	28] GND
		4Y3 [22	27 🛛 4A3
	N74AUC16240 is designed specifically to	4Y4 [26 4A4
memor	e the performance and density of 3-state y address drivers, clock drivers, and ented receivers and transmitters.	4 0E [24	25 3 <u>0</u> E

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides inverting outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUC16240DGGR	AUC16240
-40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16240DGVR	MH240
	VFBGA – GQL	Tape and reel	SN74AUC16240GQLR	MH240

ORDERING INFORMATION

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74AUC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

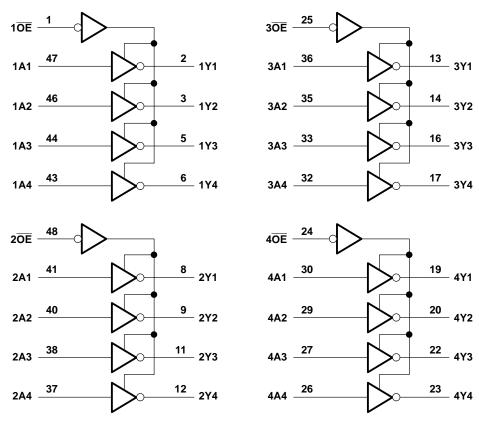
SCES390E - MARCH 2002 - REVISED DECEMBER 2002

GQL PACKAGE (TOP VIEW)

	1	2	3	4	5	6	
A (0					
в		С					
С	\odot	С	С	С	С	С	
D	\odot	С	С	С	С	С	
E	\bigcirc	С			\bigcirc	С	
F	\bigcirc	\bigcirc			\bigcirc	\bigcirc	
G	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
н	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
J	С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
к	С	С	С	С	С	\bigcirc	

terminal assignments

	1	2	3	4	5	6
Α	10E	NC	NC	NC	NC	2 <mark>0E</mark>
в	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	VCC	V _{CC}	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	VCC	VCC	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
к	4 0E	NC	NC	NC	NC	3 <mark>0E</mark>


NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

INPU	JTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	н
н	Х	Z

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)0.6	5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES390E – MARCH 2002 – REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNI
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	Vcc		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	$V_{CC} = 1.4 V$		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V, 1.3 V		20	
Δt/Δv	Input transition rise or fall rate	V _{CC} = 1.6 V, 1.95 V		10	ns/\
		V _{CC} = 2.7 V		5	
Тд	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES390E – MARCH 2002 – REVISED DECEMBER 2002

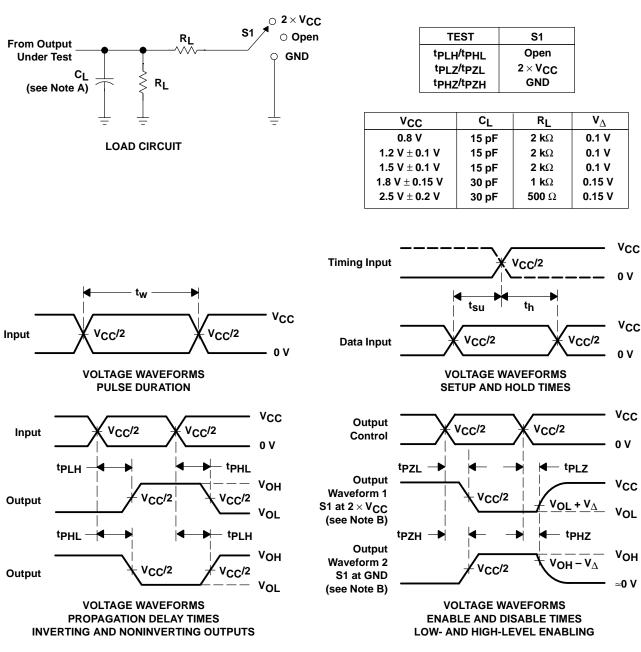
electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise	noted)					-	-	-

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1				
	I _{OH} = -0.7 mA	0.8 V		0.55			
Varia	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V	
Vон	I _{OH} = –5 mA	1.4 V	1			v	
	I _{OH} = -8 mA	1.65 V	1.2				
	I _{OH} = –9 mA	2.3 V	1.8				
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2		
	I _{OL} = 0.7 mA	0.8 V		0.25			
Ve	I _{OL} = 3 mA	1.1 V			0.3	v	
VOL	I _{OL} = 5 mA	1.4 V			0.4	0.4	
	I _{OL} = 8 mA	1.65 V			0.45		
	I _{OL} = 9 mA	2.3 V			0.6		
I A or OE inputs	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA	
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA	
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA	
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			20	μA	
Ci	V _I = V _{CC} or GND	2.5 V		3	4	pF	
Co	$V_{O} = V_{CC}$ or GND	2.5 V		5.5	6	pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

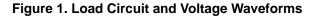
switching characteristics over	recommended	operating	free-air	temperature	range	(unless
otherwise noted) (see Figure 1)				-	•	

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	⊧ 1.5 V .1 V	-	C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	5.9	0.9	2.6	0.7	1.8	0.6	1.4	2	0.4	1.6	ns
t _{en}	ŌE	Y	7.9	1.2	3.8	0.8	2.5	0.7	1.5	2.5	0.7	2	ns
^t dis	ŌE	Y	9.3	2.1	6	1.5	4.8	1.8	2.7	4.5	0.6	2.3	ns


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
	FARAMETE	ĸ	CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNIT
C _{pd}	Power	Outputs enabled	f = 10 MHz	24	24	25	26	30	<u>، ۲</u>
Фра	dissipation capacitance	Outputs disabled		2	2	2	3	4	pF

SN74AUC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES390E – MARCH 2002 – REVISED DECEMBER 2002


90E – MARCH 2002 – REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

 Member of the Texas Instruments Widebus™ Family 		IV PACKAGE VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 1Y1 2 1Y2 3	48 20E 47 1A1
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 1Y3 5	46 1A2 45 GND 44 1A3
Sub 1-V Operable	1Y4 🛛 6	43 1A4
 Max t_{pd} of 2 ns at 1.8 V 	V _{CC}	42 V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	2Y1 [8	41 2A1
• ±8-mA Output Drive at 1.8 V	2Y2 9	40 2A2
 Bus Hold on Data Inputs Eliminates the 	GND 10	39 GND
Need for External Pullup/Pulldown	2Y3 🛛 11 2Y4 🚺 12	38 2A3 37 2A4
Resistors	3Y1 13	37 1 2A4 36 3A1
	3Y2 [14	35 3A2
description/ordering information	GND 15	34 GND
This 16-bit buffer/driver is operational at 0.8-V to	3Y3 🚺 16	33 3A3
2.7-V V_{CC} , but is designed specifically for 1.65-V	3Y4 🛛 17	32 3A4
to 1.95-V V _{CC} operation.	V _{CC} 18	31 V _{CC}
The SN74AUCH16240 is designed specifically to	4Y1 [19	30 4A1
improve the performance and density of 3-state	4Y2 20 GND 21	29 4A2 28 GND
memory address drivers, clock drivers, and	4Y3 22	28 GND 27 4A3
bus-oriented receivers and transmitters.	4Y4 23	27 0 4A3 26 0 4A4
The device can be used as four 4-bit buffers, two	4 0E [24	25 3 <u>0E</u>

8-bit buffers, or one 16-bit buffer. It provides inverting outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAG	ε†	ORDERABLE PART NUMBER	TOP-SIDE MARKING					
	TSSOP – DGG	Tape and reel	SN74AUCH16240DGGR						
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16240DGVR						
	VFBGA – GQL	Tape and reel	SN74AUCH16240GQLR						

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SN74AUCH16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES398C – JULY 2002 – REVISED DECEMBER 2002

GQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	_
Α		С	С	С	С	С	0	
в	(С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
С	(С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D	(С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
Е	(С	\bigcirc			\bigcirc	С	
F	(С	\bigcirc			\bigcirc	С	
G	(С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
н	(С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
J	(С	\bigcirc	\bigcirc	\bigcirc	С	С	
κ		С	С	С	С	С	С	

terminal assignments

	1	2	3	4	5	6				
Α	1 <mark>0E</mark>	NC	NC	NC	NC	2 <mark>0E</mark>				
в	1Y2	1Y1	GND	GND	1A1	1A2				
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4				
D	2Y2	2Y1	GND	GND	2A1	2A2				
Е	2Y4	2Y3			2A3	2A4				
F	3Y1	3Y2			3A2	3A1				
G	3Y3	3Y4	GND	GND	3A4	3A3				
н	4Y1	4Y2	VCC	VCC	4A2	4A1				
J	4Y3	4Y4	GND	GND	4A4	4A3				
κ	4OE	NC	NC	NC	NC	3 <mark>0E</mark>				

NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

INP	JTS	OUTPUT
OE	Α	Y
L	Н	L
L	L	н
н	Х	Z

14

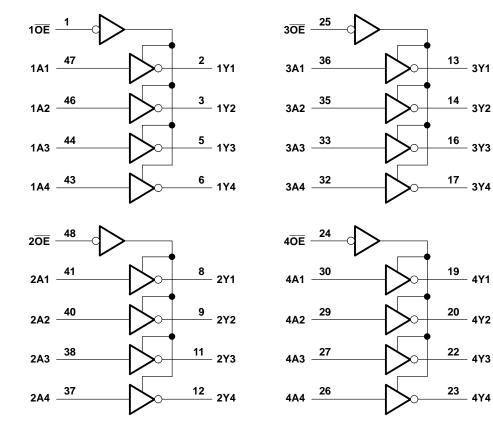
16

19

22

23

- 4Y1


– 4Y3

4Y4

- 3Y2

- 3Y3

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V ₀	r
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUCH16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES398C - JULY 2002 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	1
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fall rate	•		20	ns/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUCH16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES398C - JULY 2002 - REVISED DECEMBER 2002

PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP†	MAX	UNIT				
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.	.1						
	I _{OH} = -0.7 mA	0.8 V		0.55						
	I _{OH} = -3 mA	1.1 V	0.8			V				
VOH	I _{OH} = -5 mA	1.4 V	1			v				
	IOH = -8 mA	1.65 V	1.2							
	I _{OH} = -9 mA	2.3 V	1.8							
	l _{OL} = 100 μA	0.8 V to 2.7 V			0.2					
	I _{OL} = 0.7 mA	0.8 V		0.25						
	I _{OL} = 3 mA	1.1 V			0.3	.,				
V _{OL}	$I_{OL} = 5 \text{ mA}$	1.4 V			0.4	V				
	I _{OL} = 8 mA	1.65 V			0.45					
	I _{OL} = 9 mA	2.3 V			0.6					
II A or OE inputs	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA				
	VI = 0.35 V	1.1 V	10			_				
. +	V ₁ = 0.47 V	1.4 V	15							
IBHL‡	V ₁ = 0.57 V	1.65 V	20			μΑ				
	V _I = 0.7 V	2.3 V	40			-				
	V ₁ = 0.8 V	1.1 V	-10			μA				
	V _I = 0.9 V	1.4 V	-15							
Iвнн§	V _I = 1.07 V	1.65 V	-20							
	VI = 1.7 V	2.3 V	-40							
		1.3 V	75							
		1.6 V	125							
IBHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA				
		2.7 V	275							
		1.3 V	-75							
		1.6 V	-125							
IBHHO#	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA				
		2.7 V	-275							
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA				
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V	<u> </u>		±10	μA				
ICC	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.8 V to 2.7 V			20	μA				
C _i	V _I = V _{CC} or GND	2.5 V				pF				
Co	$V_{O} = V_{CC} \text{ or } GND$	2.5 V	I			pF				

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at $T_A = 25^{\circ}C$.

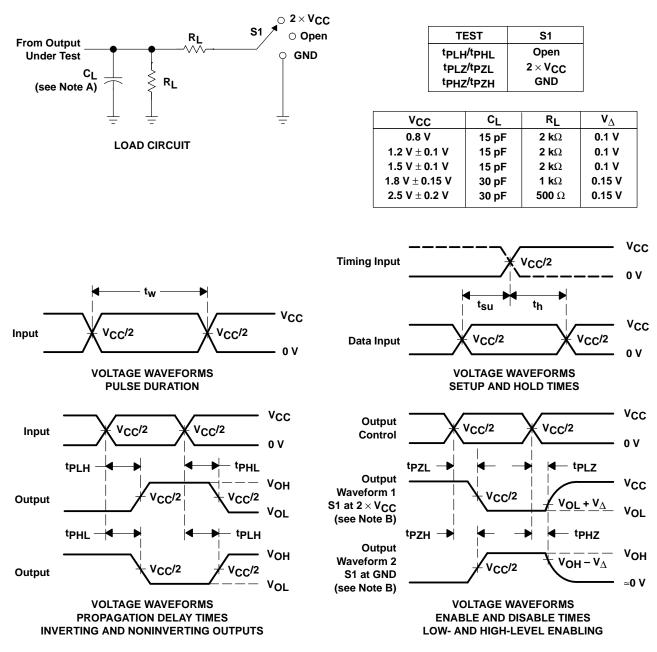
[‡] The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to $V_{\mbox{\scriptsize IH}}$ min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

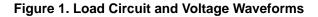
SN74AUCH16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES398C – JULY 2002 – REVISED DECEMBER 2002


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	ETER FROM TO	TO (OUTPUT)	V _{CC} = 0.8 V	$\begin{array}{c} \text{V}_{\text{CC}} = 1.2 \text{ V} \\ \pm 0.1 \text{ V} \end{array}$	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$	UNIT
		(001901)	TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX	
^t pd	А	Y						ns
ten	ŌĒ	Y						ns
^t dis	ŌĒ	Y						ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	TYP		
	Power	Outputs enabled	£ 10 MU						م ۲
C _{pd}	dissipation capacitance	Outputs disabled	f = 10 MHz						pF



PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

	2CE2388C - 10	LY 2002 – REVISED D
 Member of the Texas Instruments Widebus™ Family 		GV PACKAGE VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	1 0E [1 1Y1 [2 1Y2 [3	48] 20E 47] 1A1 46] 1A2
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 1Y3 5	45 GND 44 1A3
Sub 1-V Operable	1Y4 6	43 1A4
 Max t_{pd} of 2 ns at 1.8 V 	V _{CC} [7	42 VCC
 Low Power Consumption, 20-μA Max I_{CC} 	2Y1 🛛 8	41 🛛 2A1
• ±8-mA Output Drive at 1.8 V	2Y2 9	40 2A2
	GND [10	39 GND
description/ordering information	2Y3 11	38 2A3
This 16-bit buffer/driver is operational at 0.8-V to	2Y4 [12 3Y1 [13	37 2A4 36 3A1
2.7-V V_{CC} , but is designed specifically for 1.65-V	3Y2 14	35 3A2
to 1.95-V V _{CC} operation.	GND 15	34 GND
	3Y3 16	33 3A3
The SN74AUC16244 is designed specifically to improve the performance and density of 3-state	3Y4 🛛 17	32 3A4
memory address drivers, clock drivers, and	V _{CC} [18	31 🛛 V _{CC}
bus-oriented receivers and transmitters.	4Y1 🛛 19	30 4A1
The device can be used as four 4 bit buffers, two	4Y2 20	29 4A2
The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true		28 GND
outputs and symmetrical active-low	4Y3 22	27 4A3
(\overline{O}) input	4Y4 23	26 4A4

output-enable (OE) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING					
	TSSOP – DGG	Tape and reel	SN74AUC16244DGGR						
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16244DGVR						
	VFBGA – GQL	Tape and reel	SN74AUC16244GQLR						

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

25 30E

4<u>0e</u> || 24

SN74AUC16244 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

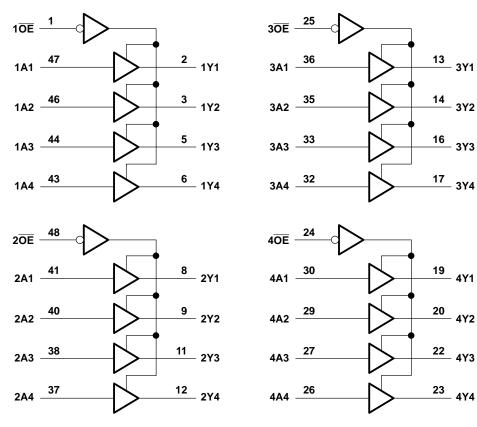
SCES399C – JULY 2002 – REVISED DECEMBER 2002

GQL PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6	_
Α	$\left(\right)$	\bigcirc	С	С	С	С	С	
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
Е		\bigcirc	\bigcirc			\bigcirc	С	
F		\bigcirc	\bigcirc			\bigcirc	С	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
κ		\bigcirc	С	С	С	С	С	

terminal assignments

	1	2	3	4	5	6				
Α	10E	NC	NC	NC	NC	2 <mark>0E</mark>				
в	1Y2	1Y1	GND	GND	1A1	1A2				
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4				
D	2Y2	2Y1	GND	GND	2A1	2A2				
Е	2Y4	2Y3			2A3	2A4				
F	3Y1	3Y2			3A2	3A1				
G	3Y3	3Y4	GND	GND	3A4	3A3				
н	4Y1	4Y2	VCC	VCC	4A2	4A1				
J	4Y3	4Y4	GND	GND	4A4	4A3				
κ	4OE	NC	NC	NC	NC	3 <mark>0E</mark>				


NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

		,
INPU	JTS	OUTPUT
OE A		Y
L	Н	Н
L	L	L
н	Х	Z

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)0.5 V	to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, Io	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUC16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES399C - JULY 2002 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		V_{CC} = 2.3 V to 2.7 V	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
VO	Output voltage		0	VCC	V	
		V _{CC} = 0.8 V		-0.7	mA	
	High-level output current	V _{CC} = 1.1 V		-3		
ЮН		V _{CC} = 1.4 V		-5		
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
		V _{CC} = 2.3 V		9		
Δt/Δv	Input transition rise or fall rate	•		20	ns/V	
Т _А	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74AUC16244 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES399C - JULY 2002 - REVISED DECEMBER 2002

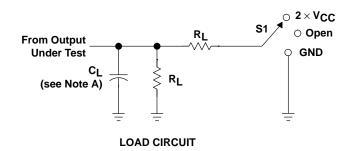
PA	RAMETER	TEST CONDITIONS	Vcc	MIN TYP†	MAX	UNIT	
		I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
		I _{OH} = -0.7 mA	0.8 V	0.55		- v	
Val		$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			
VOH		$I_{OH} = -5 \text{ mA}$	1.4 V	1		v	
		I _{OH} = -8 mA	1.65 V	1.2			
		I _{OH} = -9 mA	2.3 V	1.8			
		I _{OL} = 100 μA	0.8 V to 2.7 V		0.2	0.3 0.4	
		I _{OL} = 0.7 mA	0.8 V	0.25			
Vai		I _{OL} = 3 mA	1.1 V		0.3		
VOL		I _{OL} = 5 mA	1.4 V		0.4		
		I _{OL} = 8 mA	1.65 V		0.45		
		I _{OL} = 9 mA	2.3 V		0.6		
Ц	A or \overline{OE} inputs	$V_I = V_{CC}$ or GND	0 to 2.7 V		±5	μΑ	
loff		$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0		±10	μA	
Ioz		$V_{O} = V_{CC}$ or GND	2.7 V		±10	μA	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V		20	μA	
Ci		$V_I = V_{CC}$ or GND	2.5 V			pF	
Co		$V_{O} = V_{CC}$ or GND	2.5 V			pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

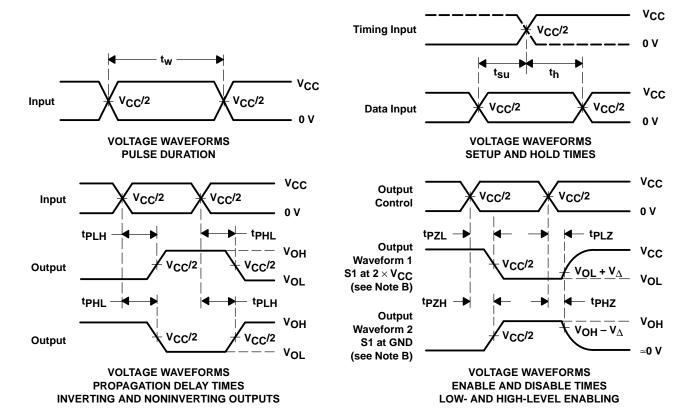
[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

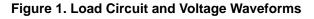
P	PARAMETER	FROM (INPUT)		V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	UNIT
				TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX	
	^t pd	А	Y						ns
	^t en	ŌĒ	Y						ns
	^t dis	ŌĒ	Y						ns


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	TYP		
	Power	Outputs enabled	£ 10 MU						~ [
C _{pd}	dissipation capacitance	Outputs disabled	f = 10 MHz						pF


PARAMETER MEASUREMENT INFORMATION

	tPLZ	I ^{/t} PHL 2 ^{/t} PZL 2 ^{/t} PZH	Open 2 × V _{CC} GND	
VCC	;	CL	RL	ν _Δ
0.8 \	/	15 pF	2 k Ω	0.1 V
1.2 V \pm C).1 V	15 pF	2 k Ω	0.1 V
1.5 V \pm C).1 V	15 pF	2 k Ω	0.1 V
1.8 V \pm 0.15 V		30 pF	1 k Ω	0.15 V
2.5 V ± 0).2 V	30 pF	500 Ω	0.15 V


S1

TEST

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

 Member of the Texas Instruments Widebus™ Family 	DGG OR DGV PACKAGE (TOP VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 48 20E 1Y1 2 47 1A1 1Y2 3 46 1A2
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 45 GND 1Y3 5 44 1A3
Sub 1-V Operable	1Y4 [6 43] 1A4
 Max t_{pd} of 1.8 ns at 1.8 V 	V _{CC} [] 7 42 [] V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	2Y1 🛛 8 41 🗋 2A1
• ±8-mA Output Drive at 1.8 V	2Y2 9 40 2A2
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	GND 10 39 GND 2Y3 11 38 2A3 2Y4 12 37 2A4
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	3Y1 [] 13 36 [] 3A1 3Y2 [] 14 35 [] 3A2 GND [] 15 34 [] GND
 ESD Protection Exceeds JESD 22 	3Y3 🛛 16 33 🗍 3A3
 – 2000-V Human-Body Model (A114-A) 	3Y4 [] 17 32 [] 3A4
- 200-V Machine Model (A115-A)	V _{CC} 18 31 V _{CC}
 1000-V Charged-Device Model (C101) 	4Y1 [] 19 30 [] 4A1
description/ordering information	4Y2 20 29 4A2 GND 21 28 GND
	4Y3 22 27 4A3
This 16-bit buffer/driver is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.	413 [22 27] 4A3 4Y4 [23 26] 4A4 4OE [24 25] 3OE

The SN74AUCH16244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

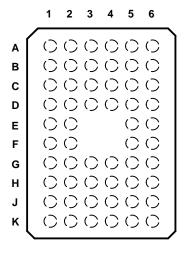
ТА	PACKAGE [†]		PACKAGE [†] ORDERABLE PART NUMBER			TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUCH16244DGGR	AUCH16244		
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16244DGVR	MJ244		
	VFBGA – GQL	Tape and reel	SN74AUCH16244GQLR	MJ244		

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

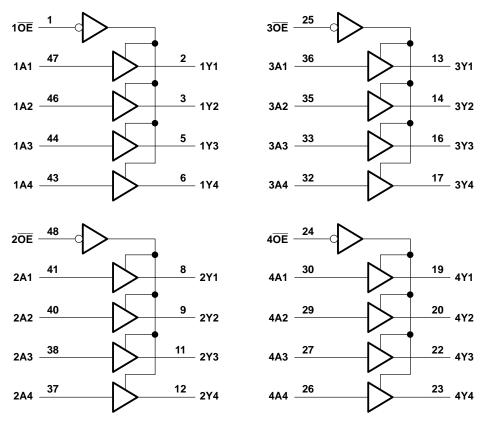


description/ordering information (continued)

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

terminal assignments


_	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	2 <mark>0E</mark>
в	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	VCC	VCC	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	VCC	VCC	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
κ	4OE	NC	NC	NC	NC	3 <mark>0E</mark>

NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

(00	ballel)	
INP	UTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
н	х	Z

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_{O}	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUCH16244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES391E – MARCH 2002 – REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		$V_{CC} = 0.8 V$	VCC		
VIH	High-level input voltage	$V_{CC} = 1.1 V \text{ to } 1.95 V$	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
٧I	Input voltage		0	3.6	V
٧ ₀	Output voltage		0	VCC	V
ЮН		$V_{CC} = 0.8 V$		-0.7	
		V _{CC} = 1.1 V		-3	
	High-level output current	$V_{CC} = 1.4 V$		-5	mA
		V _{CC} = 1.65 V		-8	
		$V_{CC} = 2.3 V$		-9	
		$V_{CC} = 0.8 V$		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	$V_{CC} = 1.4 V$		5	mA
		V _{CC} = 1.65 V		8	
		$V_{CC} = 2.3 V$		9	
		$V_{CC} = 0.8 V$		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 1.3 V		15	ns/\
		V_{CC} = 1.6 V, 1.95 V, and 2.7 V		10	
Тд	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUCH16244 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES391E - MARCH 2002 - REVISED DECEMBER 2002

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise	noted)					-	-	-

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.2				
	I _{OH} = -0.7 mA	0.8 V		0.55		1	
N	I _{OH} = -3 mA	1.1 V	0.8				
VOH	$I_{OH} = -5 \text{ mA}$	1.4 V	1			V	
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2				
	I _{OH} = -9 mA	2.3 V	1.8				
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2		
	I _{OL} = 0.7 mA	0.8 V		0.25			
Max	I _{OL} = 3 mA	1.1 V			0.3	V	
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	V	
	I _{OL} = 8 mA	1.65 V			0.45		
	I _{OL} = 9 mA	2.3 V			0.6		
I A or OE inputs	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA	
	V _I = 0.35 V	1.1 V	10				
IBHL [‡]	V _I = 0.47 V	1.4 V	15				
	V _I = 0.57 V	1.65 V	20			μA	
	V _I = 0.7 V	2.3 V 4	40				
	V _I = 0.8 V	1.1 V	-10				
18	V ₁ = 0.9 V	1.4 V	-15			μA	
I _{BHH} §	V _I = 1.07 V	1.65 V	-20			μΑ	
	V _I = 1.7 V	2.3 V	-40				
		1.3 V	75				
		1.6 V	125				
IBHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA	
		2.7 V	275				
		1.3 V	-75				
. #		1.6 V	-125			•	
IBHHO [#]	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA	
		2.7 V	-275				
loff	V_{I} or V_{O} = 2.7 V	0			±10	μA	
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μΑ	
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	0.8 V to 2.7 V			20	μA	
Ci	$V_{I} = V_{CC}$ or GND	2.5 V		3	4.5	pF	
Co	$V_{O} = V_{CC}$ or GND	2.5 V		4	7	pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to $V_{\mbox{\scriptsize IL}}$ max.

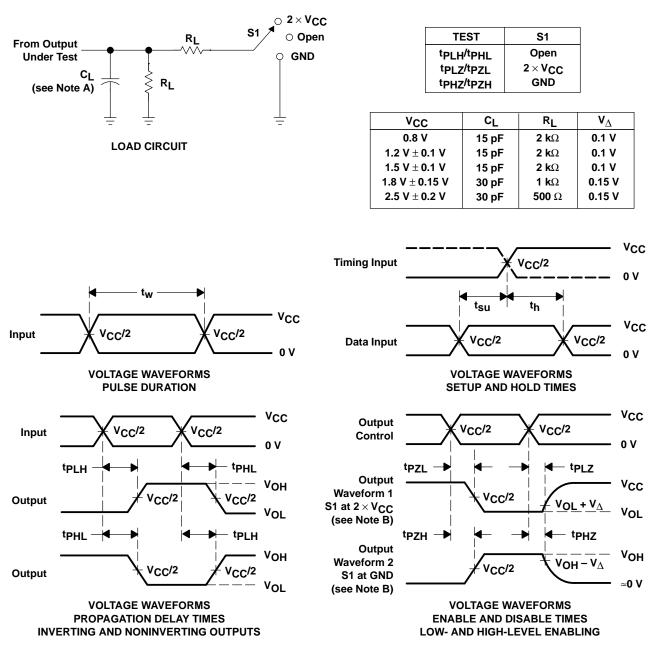
§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

SN74AUCH16244 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES391E - MARCH 2002 - REVISED DECEMBER 2002


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V	V _{CC} = ± 0.	= 1.5 V .1 V	-	C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	5.4	0.8	2.8	0.6	1.9	0.7	1.3	1.8	0.5	1.8	ns
t _{en}	ŌĒ	Y	8	1	4.4	0.7	2.6	0.8	1.4	2.5	0.6	1.9	ns
^t dis	ŌĒ	Y	12	1.9	4.9	1	4.6	1.5	2.6	4	0.5	2	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	ТҮР	UNIT	
Power er		Outputs enabled	£ 10 MU-	21	22	23	25	30	~ L
⊂pd	dissipation capacitance	Outputs disabled	f = 10 MHz	1	1	1	1	1	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tp_{ZL} and tp_{ZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

SN74AUC16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES392E – MARCH 2002 – REVISED DECEMBER 2002

 Member of the Texas Instruments Widebus™ Family 		GV PACKAGE P VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	1DIR 1 1B1 2 1B2 3	48 1 0E 47 1A1 46 1A2
 I_{off} Supports Partial-Power-Down Mode Operation 	1B2 U 3 GND 4 1B3 5	46 1 1A2 45 GND 44 1 1A3
Sub 1-V Operable	1B3 0 3 1B4 0 6	44 0 1A3 43 0 1A4
• Max t _{pd} of 2 ns at 1.8 V		42 V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	1B5 8	41 1 1A5
 ±8-mA Output Drive at 1.8 V 	1B6 🕻 9	40 🛛 1A6
-	GND [] 10	
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	1B7 🛛 11	
	1B8 12	
ESD Protection Exceeds JESD 22	2B1 🛛 13	
 2000-V Human-Body Model (A114-A) 200 V Mashina Model (A115 A) 	2B2 14	
 200-V Machine Model (A115-A) 1000-V Charged-Device Model (C101) 	GND 15	L
- TOUD-V Charged-Device Model (CTOT)	2B3 16	
description/ordering information	2B4 17	F
	V _{CC} [18	
This 16-bit (dual-octal) noninverting bus	2B5 19	E
transceiver is operational at 0.8-V to 2.7-V V_{CC} ,	2B6 20	L
but is designed specifically for 1.65-V to 1.95-V	GND 21	
V _{CC} operation.	2B7 22	
The SN74AUC16245 is designed for	2B8 23	
asynchronous communication between data buses. The control-function implementation	2DIR 24	25 2 0E

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ТА	PACKAG	3et	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUC16245DGGR	AUC16245
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16245DGVR	MH245
	VFBGA – GQL	Tape and reel	SN74AUC16245GQLR	MH245

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

minimizes external timing requirements.

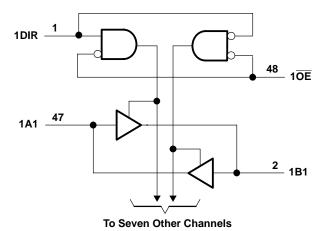
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCES392E - MARCH 2002 - REVISED DECEMBER 2002

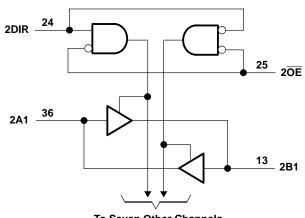
GQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
A B	ſ				00			
С		С	С	С	С	С	С	
D E		Ō	Ō	-	С	Ō	Ō	
F G		Ō	-	С	С	Ô	Ô	
H J		-	-	-	() ()	-	-	
κ	L	С	С	С	С	С	С	J

terminal assignments


	1	2	3	4	5	6				
Α	1DIR	NC	NC	NC	NC	1 <mark>0E</mark>				
в	1B2	1B1	GND	GND	1A1	1A2				
С	1B4	1B3	V _{CC}	V _{CC}	1A3	1A4				
D	1B6	1B5	GND	GND	1A5	1A6				
Е	1B8	1B7			1A7	1A8				
F	2B1	2B2			2A2	2A1				
G	2B3	2B4	GND	GND	2A4	2A3				
н	2B5	2B6	VCC	VCC	2A6	2A5				
J	2B7	2B8	GND	GND	2A8	2A7				
κ	2DIR	NC	NC	NC	NC	2 <mark>0E</mark>				

NC - No internal connection


FUNCTION TABLE (each 8-bit section)

_	(04011 0 #11 00011011)							
	INPUTS		OPERATION					
0	E	DIR	OPERATION					
L	-	L	B data to A bus					
L	-	Н	A data to B bus					
F	ł	Х	Isolation					

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

To Seven Other Channels

SCES392E - MARCH 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		V_{CC} = 2.3 V to 2.7 V	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
	Output veltogo	Active state	0	VCC	V	
VO Output voltage	Output voltage	3-state	0	3.6	v	
	High-level output current		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3		
ЮН		V _{CC} = 1.4 V		-5	mA	
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
		V _{CC} = 2.3 V		9		
$\Delta t / \Delta v$	Input transition rise or fall rate	•		5	ns/V	
TA	Operating free-air temperature		-40	85	°C	

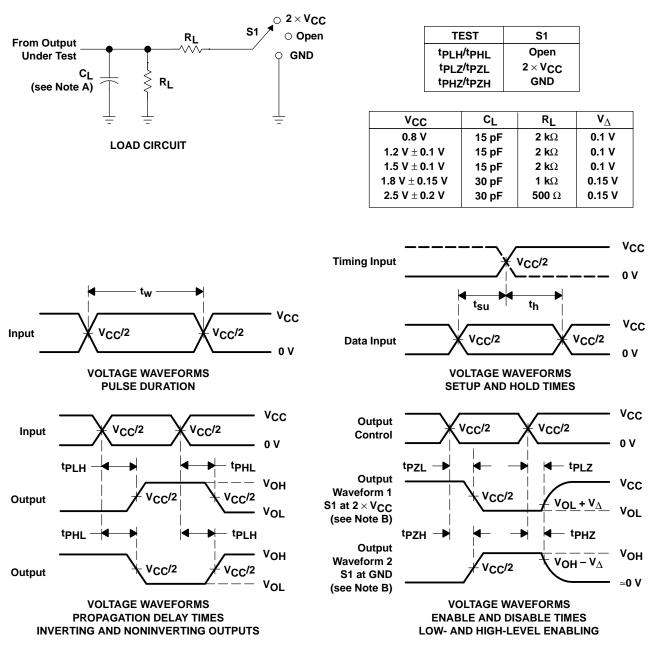
NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES392E – MARCH 2002 – REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	ΜΙΝ ΤΥΡ [†] ΜΑΣ				
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1				
	I _{OH} = -0.7 mA	0.8 V	0.55				
Vari	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8	v			
Voh	I _{OH} = -5 mA	1.4 V	1	v			
	I _{OH} = -8 mA	1.65 V	1.2				
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8				
	I _{OL} = 100 μA	0.8 V to 2.7 V	0.1	2			
	I _{OL} = 0.7 mA	0.8 V	0.25				
Mar	$I_{OL} = 3 \text{ mA}$	1.1 V	0.	3 V			
V _{OL}	I _{OL} = 5 mA	1.4 V	0	ŧ V			
	I _{OL} = 8 mA	1.65 V	0.4	5			
	I _{OL} = 9 mA	2.3 V	0.	3			
II All inputs	$V_I = V_{CC}$ or GND	0 to 2.7 V	±	5 μΑ			
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0	±1) μΑ			
I _{OZ} ‡	$V_{O} = V_{CC}$ or GND	2.7 V	±1) μΑ			
ICC	$V_{I} = V_{CC} \text{ or } GND,$ $I_{O} = 0$	0.8 V to 2.7 V	2) μΑ			
Ci	$V_I = V_{CC} \text{ or } GND$	2.5 V	3	pF			
C _{io}	$V_{O} = V_{CC}$ or GND	2.5 V	7	pF			

[†] All typical values are at $T_A = 25^{\circ}C$. [‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.			C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	B or A	5.6	0.5	3.1	0.5	2	0.5	1.5	2	0.4	1.9	ns
^t en	ŌĒ	A or B	10	0.7	4.6	0.7	3.1	0.7	2.1	3.1	0.7	2.6	ns
^t dis	ŌĒ	A or B	12.8	0.8	6.8	0.8	5	0.8	3.4	4.8	0.5	2.9	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V			V _{CC} = 1.8 V		UNIT	
			CONDITIONS	TYP	TYP	TYP	TYP	TYP	
Carl	Power	Outputs enabled	f = 10 MHz	22	23	24	25	29	pF
Сра	C _{pd} dissipation capacitance	Outputs disabled		1	1	1	1	1	рг

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

SN74AUCH16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES400C – JULY 2002 – REVISED DECEMBER 2002

 Member of the Texas Instruments Widebus™ Family 	DGG OR DGV PACKAGE (TOP VIEW)	
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	1DIR 1 48 10E 1B1 2 47 1A1 1B2 3 46 1A2	
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 45 GND 1B3 5 44 1A3	
 Sub 1-V Operable 	1B4 6 43 1A4	
 Max t_{pd} of 2 ns at 1.8 V 	V_{CC} [7 42] V_{CC}	
 Low Power Consumption, 20-μA Max I_{CC} 	1B5 [8 41] 1A5	
• ±8-mA Output Drive at 1.8 V	1B6 🛛 9 🛛 40 🗋 1A6	
-	GND 0 10 39 GND	
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown 	1B7 11 38 1A7	
Resistors	1B8 12 37 1A8	
Nesistors	2B1 13 36 2A1	
description/ordering information	2B2 14 35 2A2	
	GND 5 34 GND	
This 16-bit (dual-octal) noninverting bus	2B3 16 33 2A3	
transceiver is operational at 0.8-V to 2.7-V V _{CC} ,	2B4 17 32 2A4	
but is designed specifically for 1.65-V to 1.95-V	V_{CC} 18 31 V_{CC}	
V _{CC} operation.	2B5 19 30 2A5	
The SN74AUCH16245 is designed for	2B6 20 29 2A6 GND 21 28 GND	
asynchronous communication between data	2B7 22 27 2A7	
buses. The control-function implementation	2B7 22 27 2A7 2B8 23 26 2A8	
minimizes external timing requirements.	2DIR 24 25 20E	
This device can be used as two 8-bit transceivers		

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data

transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING				
	TSSOP – DGG	Tape and reel	SN74AUCH16245DGGR					
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16245DGVR					
	VFBGA – GQL	Tape and reel	SN74AUCH16245GQLR					

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

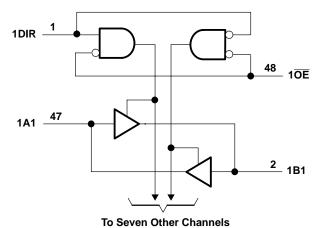
Widebus is a trademark of Texas Instruments.

SCES400C - JULY 2002 - REVISED DECEMBER 2002

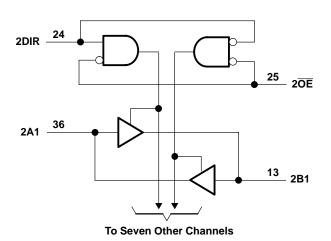
GQL PACKAGE (TOP VIEW)

		1	2	3	4	5	6	_
Α	$\left(\right)$	С	С	С	С	С	С	
в		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
С		\bigcirc	\bigcirc	\bigcirc	С	\bigcirc	С	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
Е		\bigcirc	\bigcirc			\bigcirc	С	
F		\bigcirc	\bigcirc			\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С	
κ		\bigcirc	\bigcirc	\bigcirc	С	\bigcirc	С	
	`							/

terminal assignments


	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 <mark>0E</mark>
в	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CC}	V _{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
Е	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
н	2B5	2B6	VCC	VCC	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
κ	2DIR	NC	NC	NC	NC	2 <mark>0E</mark>

NC - No internal connection


FUNCTION TABLE (each 8-bit section)

(******************							
INPUTS		OPERATION					
OE	DIR	OPERATION					
L	L	B data to A bus					
L	н	A data to B bus					
Н	Х	Isolation					

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

SCES400C - JULY 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high-impedance or power-off state, V _O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
VI	Input voltage		0	3.6	V
v	Output usltana	Active state	0	VCC	v
VO	Output voltage	3-state	0	3.6	
		V _{CC} = 0.8 V		-0.7	mA
	High-level output current	V _{CC} = 1.1 V		-3	
ЮН		V _{CC} = 1.4 V		-5	
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	1
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δv	Input transition rise or fall rate			20	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES400C - JULY 2002 - REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.	1			
	I _{OH} = -0.7 mA 0.8 V			0.55			
Maria	I _{OH} = -3 mA	1.1 V	0.8			- V	
VOH	I _{OH} = -5 mA	1.4 V	1				
	I _{OH} = -8 mA	1.65 V	1.2				
	I _{OH} = -9 mA	2.3 V	1.8				
	l _{OL} = 100 μA	0.8 V to 2.7 V			0.2		
	I _{OL} = 0.7 mA	0.8 V		0.25			
N/	I _{OL} = 3 mA	1.1 V			0.3	V	
VOL	I _{OL} = 5 mA	1.4 V			0.4	v	
	I _{OL} = 8 mA	1.65 V			0.45		
	I _{OL} = 9 mA	2.3 V			0.6		
II All inputs	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V			±5	μA	
-	V _I = 0.35 V	1.1 V	10			μΑ	
. +	V _I = 0.47 V	1.4 V	15				
IBHL‡	V _I = 0.57 V	1.65 V	20				
	V ₁ = 0.7 V	2.3 V	40				
	V ₁ = 0.8 V	1.1 V	-10				
	V _I = 0.9 V	-15					
I _{BHH} §	V _I = 1.07 V	1.65 V	-20			μA	
	V _I = 1.7 V	2.3 V	-40			1	
		1.3 V	75				
. 1		1.6 V	125				
^I BHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA	
		2.7 V	275				
		1.3 V	-75				
. 4		1.6 V	-125				
IBHHO [#]	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA	
		2.7 V	-275				
l _{off}	V_{I} or V_{O} = 2.7 V	0		-	±10	μA	
IOZ	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA	
ICC	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.8 V to 2.7 V			20	μA	
C _i	$V_{I} = V_{CC}$ or GND	2.5 V				pF	
C _{io}	V _O = V _{CC} or GND	2.5 V				pF	

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to V_{IH} min.

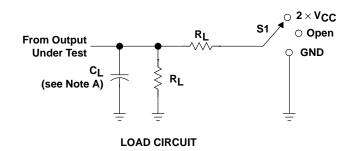
 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

 \parallel For I/O ports, the parameter IOZ includes the input leakage current.

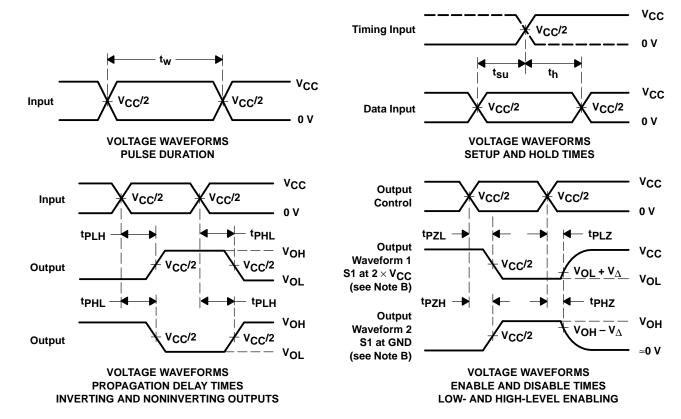
SCES400C - JULY 2002 - REVISED DECEMBER 2002

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

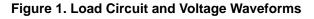

PARAMETER	FROM (INPUT) (TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$	UNIT
		(001101)	TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX	
^t pd	A or B	B or A						ns
ten	ŌE	A or B						ns
^t dis	OE	A or B						ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNIT	
	Power	Outputs enabled	£ 10 MU						<u>م</u> ۲
C _{pd}	dissipation capacitance	Outputs disabled	f = 10 MHz						pF


PARAMETER MEASUREMENT INFORMATION

	^t PLH ^{/t} PHL ^t PLZ ^{/t} PZL ^t PHZ ^{/t} PZH		Open 2 × V _{CC} GND	
Vcc		CL	RL	 ν _Δ
0.8 \		15 pF	2 k Ω	0.1 V
1.2 V ± 0 1.5 V ± 0		15 pF 15 pF	2 kΩ 2 kΩ	0.1 V 0.1 V
1.8 V \pm 0		30 pF	1 k Ω	0.15 V
2.5 V ± 0).2 V	30 pF	500 Ω	0.15 V


S1

TEST

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES401C - JULY 2002 - REVISED DECEMBER 2002

 Member of the Texas Instruments Widebus™ Family 	DGG OR DGV (TOP V	
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 1Q1 2 1Q2 3	48] 1LE 47] 1D1 46] 1D2
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 1Q3 5	46 GND 45 GND 44 1D3
Sub 1-V Operable	1Q4 []6	43 0 1D4
• Max t _{pd} of 2 ns at 1.8 V	V _{CC}	42 V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	1Q5 [8	41] 1D5
 ±8-mA Output Drive at 1.8 V 	1Q6 🛛 9	40 🛛 1D6
-	GND 10	39 🛛 GND
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	1Q7 [] 11	38 1D7
 ESD Protection Exceeds JESD 22 	1Q8 12	37 1D8
 – 2000-V Human-Body Model (A114-A) 	2Q1 [13 2Q2 [14	36 2D1
– 200-V Machine Model (A115-A)	GND 15	35 2D2 34 GND
 – 1000-V Charged-Device Model (C101) 	2Q3 [16	33 2D3
	2Q4 [] 17	32 2D4
description/ordering information		31 V _{CC}
This 16-bit transparent D-type latch is operational	2Q5 [19	30 2D5
at 0.8-V to 2.7-V V_{CC} , but is designed specifically	2Q6 🛛 20	29 2D6
for 1.65-V to 1.95-V V_{CC} operation.	GND 21	28 GND
	2Q7 22	27 2D7
The SN74AUC16373 is particularly suitable for implementing buffer registers, I/O ports,	2Q8 23 20E 24	26 2D8 25 2LE

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUC16373DGGR	AUC16373
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16373DGVR	MH373
	VFBGA – GQL	Tape and reel	SN74AUC16373GQLR	MH373

ORDERING INFORMATION

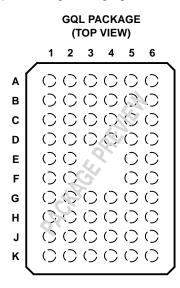
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

bidirectional bus drivers, and working registers. The device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched

at the levels set up at the D inputs.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



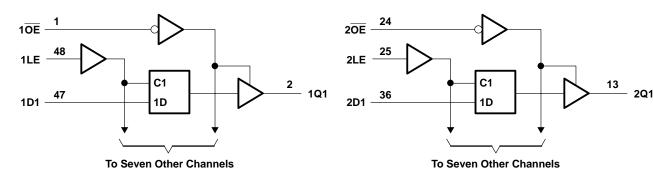
description/ordering information (continued)

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

terminal assignments


	1	2	3	4	5	6
A	1 <mark>0E</mark>	NC	NC	NC	NC	1LE
в	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	VCC	VCC	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	VCC	VCC	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
κ	2 <mark>0E</mark>	NC	NC	NC	NC	2LE

NC - No internal connection

FUNCTION TABLE
(each latch)

(•••••••						
INPUTS			OUTPUT			
OE	LE	D	Q			
L	Н	Н	Н			
L	н	L	L			
L	L	Х	Q ₀			
н	Х	Х	Z			

logic diagram (positive logic)

Pin numbers shown are for the DGG and DGV packages.

SN74AUC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPU SCES401C - JULY 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
Vo	Output voltage		0	VCC	V	
		V _{CC} = 0.8 V		-0.7	mA	
	High-level output current	V _{CC} = 1.1 V		-3		
ЮН		V _{CC} = 1.4 V		-5		
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8	1	
		V _{CC} = 2.3 V		9		
Δt/Δv	Input transition rise or fall rate	•		20	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCES401C – JULY 2002 – REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN TYP [†]	MAX	UNIT				
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1						
	I _{OH} = -0.7 mA	0.8 V	0.55						
Vou	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8		V				
VOH	I _{OH} = -5 mA	1.4 V	1		v				
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2						
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8						
	I _{OL} = 100 μA	0.8 V to 2.7 V		0.2					
	I _{OL} = 0.7 mA	0.8 V	0.25						
Max	I _{OL} = 3 mA	1.1 V		0.3					
V _{OL}	I _{OL} = 5 mA	1.4 V		0.4					
	I _{OL} = 8 mA	1.65 V		0.45					
	I _{OL} = 9 mA	2.3 V		0.6					
II All inputs	V _I = V _{CC} or GND	0 to 2.7 V		±5	μA				
l _{off}	V_{I} or V_{O} = 2.7 V	0		±10	μA				
I _{OZ}	$V_0 = V_{CC}$ or GND	2.7 V		±10	μA				
ICC	$V_{I} = V_{CC} \text{ or } GND,$ $I_{O} = 0$	0.8 V to 2.7 V		20	μA				
Ci	$V_I = V_{CC}$ or GND	2.5 V	3	4	pF				
Co	$V_{O} = V_{CC}$ or GND	2.5 V	5.5	6.5	pF				

[†] All typical values are at $T_A = 25^{\circ}C$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 0.8 V	V _{CC} = ± 0.7	1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.2		UNIT
		ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high	4.2	2.9		2.3		2.1		1.7		ns
t _{su}	Setup time, data before LE \downarrow	1.7	0.7		0.5		0.4		0.4		ns
th	Hold time, data after LE \downarrow	-	1.2		0.8		0.7		0.6		ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER		FROM TO (INPUT) (OUTPUT)		V _{CC} = 1.2 V ± 0.1 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			V _{CC} = 2.5 V ± 0.2 V		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX		
D D	Q	8	1.1	3.8	0.6	2.4	0.7	1.5	2.4	0.6	1.9	ns	
^t pd	LE	Q	10.6	1.4	4.9	0.7	3.2	0.7	1.6	2.8	0.6	2.1	
t _{en}	ŌE	Q	9	1.3	4.5	0.6	2.9	0.8	1.7	2.9	0.7	2.2	ns
^t dis	ŌE	Q	13	2.4	7	0.8	4.8	1.1	2.7	4.6	0.4	2.5	ns

SN74AUC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCES401C – JULY 2002 – REVISED DECEMBER 2002

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
FARAMETER		CONDITIONS	TYP	ТҮР	TYP	TYP	TYP	UNIT	
C _{pd}	Power	cilabieu	f = 10 MHz	21	22	23	25	29	рF
	dissipation capacitance	Outputs disabled		5	5	6	7	10	

SN74AUC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS

SCES401C - JULY 2002 - REVISED DECEMBER 2002

$\odot 2 \times VCC$ **S1** R_L O Open TEST **S1** From Output Open ^tPLH^{/t}PHL GND **Under Test** tPLZ/tPZL $2 \times V_{CC}$ Cı ξ RL tPHZ/tPZH GND (see Note A) V_{Δ} CL RL Vcc 0.8 V 15 pF 0.1 V **2 k**Ω LOAD CIRCUIT 1.2 V \pm 0.1 V 15 pF 0.1 V 2 kΩ 1.5 V \pm 0.1 V 15 pF **2 k**Ω 0.1 V 30 pF 1.8 V \pm 0.15 V **1 k**Ω 0.15 V $2.5 \text{ V} \pm 0.2 \text{ V}$ **500** Ω 0.15 V 30 pF **Timing Input** V_{CC}/2 t_w t_{su} th Vcc V_{CC}/2 V_{CC}/2 Input V_{CC}/2 V_{CC}/2 Data Input 0 V VOLTAGE WAVEFORMS **VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES Vcc Output V_{CC}/2 V_{CC}/2 V_{CC}/2 V_{CC}/2 Input Control 0 V ^tPHL - ^tPLZ ^tPLH ^tPZL Output ۷он Waveform 1 /cc/2 V_{CC}/2 V_{CC}/2 Output S1 at $2 \times V_{CC}$ Voi + V Vol (see Note B) tPHL ' ^tPLH ^tPZH - tphz

۷он

VOL

V_{CC}/2

Vcc

0 V

Vcc

0 V

Vcc

0 V

VCC

VOL

Vон

≈0 V

 $VOH - V_{\Delta}$

V_{CC}/2

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

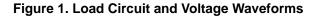
LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns. D. The outputs are measured one at a time with one transition per measurement.

NOTES: A. Cl includes probe and jig capacitance.

E. tpLz and tpHz are the same as tdis.


V_{CC}/2

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Output

Waveform 2

(see Note B)

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

S1 at GND

Output

SN74AUCH16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCES402C – JULY 2002 – REVISED DECEMBER 2002

	30134020 - 30	ULY 2002 – REVISEL
 Member of the Texas Instruments Widebus™ Family 		GV PACKAGE P VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 1Q1 2 1Q2 3	48 1LE 47 1D1 46 1D2
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 1Q3 5	45 GND 44 103
Sub 1-V Operable	1Q4 [6	43 0 1D4
• Max t _{pd} of 2 ns at 1.8 V		42 V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	1Q5 🛛 8	41] 1D5
• ±8-mA Output Drive at 1.8 V	1Q6 🛛 9	40 🛛 1D6
•	GND [] 10	39 🛛 GND
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown 	1Q7 🛛 11	38 1D7
Resistors	1Q8 12	37 1D8
	2Q1 13	
description/ordering information	2Q2 14	35 2D2
This 40 bit to an another bit to an another all	GND 15 2Q3 16	
This 16-bit transparent D-type latch is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically	2Q3 [10 2Q4 [17	
for 1.65-V to 1.95-V V _{CC} , but is designed specifically for 1.65-V to 1.95-V V _{CC} operation.		31 V _{CC}
	2Q5 [] 19	30 2D5
The SN74AUCH16373 is particularly suitable for	2Q6 20	29 2D6
implementing buffer registers, I/O ports,	GND 21	28 GND
bidirectional bus drivers, and working registers. The device can be used as two 8-bit latches or one	2Q7 🛛 22	27 🛛 2D7
16-bit latch. When the latch-enable (LE) input is	2Q8 🛛 23	26 🛛 2D8
high, the Q outputs follow the data (D) inputs.	2 <mark>0E</mark> [] 24	25 🛛 2LE
3 ,		

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAG	ε†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74AUCH16373DGGR	
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16373DGVR	
	VFBGA – GQL	Tape and reel	SN74AUCH16373GQLR	

ORDERING INFORMATION

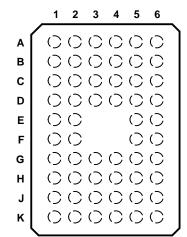
[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

When LE is taken low, the Q outputs are latched

at the levels set up at the D inputs.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.



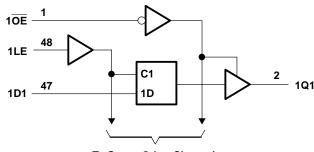
description/ordering information (continued)

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

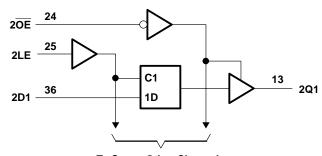
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

GQL PACKAGE (TOP VIEW)

terminal assignments


	1	2	3	4	5	6
Α	1 <mark>OE</mark>	NC	NC	NC	NC	1LE
в	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	VCC	VCC	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	VCC	VCC	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
к	2 <mark>0E</mark>	NC	NC	NC	NC	2LE

NC - No internal connection


FUNCTION TABLE (each latch)

	INPUTS		OUTPUT
OE	LE	D	Q
L	Н	Н	Н
L	н	L	L
L	L	Х	Q ₀ Z
Н	Х	Х	Z

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

SN74AUCH16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCES402C - JULY 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	. –0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V_{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	
GQL package	42°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIН	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
٧I	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ОН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
OL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
t/∆v	Input transition rise or fall rate	-		20	ns/\
A	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUCH16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCES402C - JULY 2002 - REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	VCC	MIN	түр†	MAX	UNIT		
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1					
	I _{OH} = -0.7 mA	0.8 V		0.55				
Maria	I _{OH} = -3 mA	1.1 V	0.8			V		
Vон	I _{OH} = -5 mA	1.4 V	1			V		
	I _{OH} = -8 mA	1.65 V	1.2					
	I _{OH} = -9 mA	2.3 V	1.8					
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2			
	I _{OL} = 0.7 mA	0.8 V		0.25				
N	I _{OL} = 3 mA	1.1 V			0.3	V		
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	v		
	I _{OL} = 8 mA	1.65 V			0.45			
	I _{OL} = 9 mA	2.3 V			0.6			
II All inputs	$V_I = V_{CC} \text{ or } GND$	0 to 2.7 V			±5	μA		
	V _I = 0.35 V	1.1 V	10					
. +	V ₁ = 0.47 V	1.4 V	15			•		
IBHL‡	V ₁ = 0.57 V	1.65 V	20			μΑ		
	V ₁ = 0.7 V	2.3 V	40					
	V ₁ = 0.8 V	1.1 V	-10					
1 8	V ₁ = 0.9 V	1.4 V	-15			μΑ		
I _{BHH} §	V _I = 1.07 V	1.65 V	-20					
	V _I = 1.7 V	2.3 V	-40					
		1.3 V	75					
, ¶		1.6 V	125					
IBHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA		
		2.7 V	275					
		1.3 V	-75					
. #		1.6 V	-125					
IBHHO [#]	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA		
		2.7 V	-275					
l _{off}	$V_1 \text{ or } V_0 = 2.7 \text{ V}$	0			±10	μA		
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V	1		±10	μA		
Icc	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	0.8 V to 2.7 V			20	μA		
Ci	$V_{I} = V_{CC}$ or GND	2.5 V				pF		
Co	$V_{O} = V_{CC} \text{ or } GND$	2.5 V				pF		

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

SN74AUCH16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS

SCES402C - JULY 2002 - REVISED DECEMBER 2002

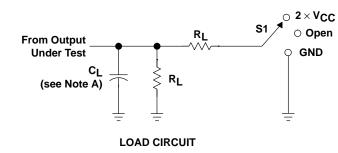
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 0.8 V	V _{CC} = ± 0.	1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.2		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high										ns
t _{su}	Setup time, data before LE \downarrow										ns
th	Hold time, data after LE \downarrow										ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

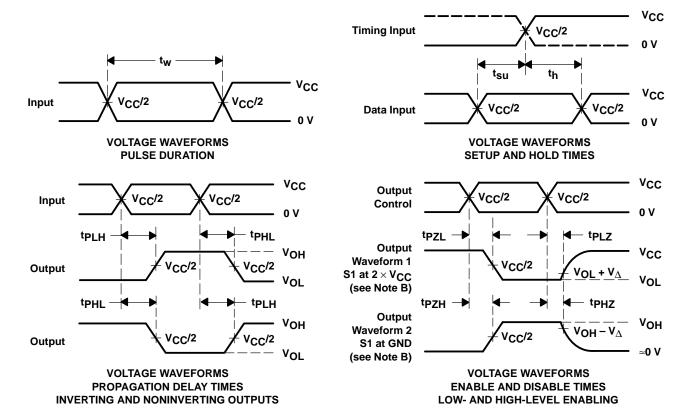
PARAMETER	PARAMETER FROM TO (INPUT) (OUTPU			V _{CC} = 0.8 V	V_{CC} = 1.2 V ± 0.1 V	V_{CC} = 1.5 V \pm 0.1 V	V _{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \text{V}_{\text{CC}} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$	UNIT
		(001701)	TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX		
test	D	0						ns	
^t pd	LEQ	Q						115	
ten	ŌĒ	Q						ns	
^t dis	ŌĒ	Q						ns	

operating characteristics, $T_A = 25^{\circ}C$

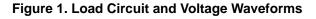

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
FARAMETER		CONDITIONS	TYP	TYP	TYP	TYP	TYP	UNIT	
Power		Outputs enabled	f = 10 MHz						<u>م</u> ۲
⊂pa	C _{pd} dissipation capacitance	Outputs disabled							pF

SN74AUCH16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS

SCES402C - JULY 2002 - REVISED DECEMBER 2002



		-		-	
	tPLZ	I ^{/t} PHL I ^{/t} PZL I ^{/t} PZH		Open 2 × V _{CC} GND	
V _{CC}		CL		RL	v_Δ
0.8 \	/	15 pF		2 k Ω	0.1 V
1.2 V \pm C).1 V	15 pF		2 k Ω	0.1 V
1.5 V \pm 0.1 V		15 pF		2 k Ω	0.1 V
1.8 V ± 0	.15 V	30 pF		1 k Ω	0.15 V
$2.5 V \pm 0$).2 V	30 pF		500 Ω	0.15 V


S1

TEST

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

SN74AUC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCES403C – JULY 2002 – REVISED DECEMBER 2002

 Member of the Texas Instruments Widebus™ Family 	DGG OR DGV PACKAGE (TOP VIEW)				
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 48 1CLk 1Q1 2 47 1D1 1Q2 3 46 1D2	<			
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 45 GND 1Q3 5 44 1D3	I			
Sub 1-V Operable					
 Max t_{pd} of 2 ns at 1.8 V 	V_{CC} $\begin{bmatrix} 7 & 42 \end{bmatrix} V_{CC}$				
 Low Power Consumption, 20-μA Max I_{CC} 	1Q5 [8 41 [1D5				
 ±8-mA Output Drive at 1.8 V 	1Q6 9 40 1 1D6				
 Latch-Up Performance Exceeds 100 mA Per)			
JESD 78, Class II	1Q7 11 38 1D7				
 ESD Protection Exceeds JESD 22 					
 – 2000-V Human-Body Model (A114-A) 	2Q1 13 36 2D1 2Q2 14 35 2D2				
– 200-V Machine Model (A115-A)	GND 15 34 GND				
 1000-V Charged-Device Model (C101) 	2Q3 16 33 2D3				
	2Q3 L 10 33 L 2D3 2Q4 L 17 32 L 2D4				
description/ordering information	V_{CC} [18 31] V_{CC}				
This 16 hit adap triggered. D type flip flop is	2Q5 19 30 2D5				
This 16-bit edge-triggered D-type flip-flop is	2Q6 20 29 206				
operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.	GND 21 28 GND)			
	2Q7 22 27 207				
The SN74AUC16374 is particularly suitable for	2Q8 2 3 26 2D8				
implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It	2 <u>0E</u> [24 25] 2CLK	<			

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

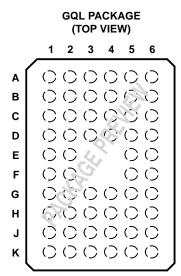
TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG Tape and reel		SN74AUC16374DGGR	AUC16374
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16374DGVR	MH374
	VFBGA – GQL	Tape and reel	SN74AUC16374GQLR	MH374

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

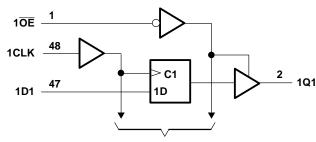
SN74AUC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES403C - JULY 2002 - REVISED DECEMBER 2002

description/ordering information (continued)

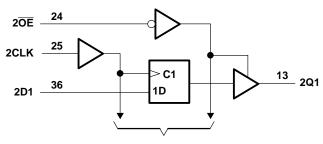
To ensure the high-impedance state during power up or power down, $\overline{\mathsf{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

terminal assignments


	1	2	3	4	5	6
A	1 <mark>OE</mark>	NC	NC	NC	NC	1CLK
в	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	VCC	VCC	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
E	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	VCC	VCC	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
к	2 <mark>0E</mark>	NC	NC	NC	NC	2CLK

NC - No internal connection


FUNCTION TABLE (each flip-flop)

	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Х	Q ₀ Z
Н	Х	Х	Z

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

SN74AUC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES403C - JULY 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, V_{Ω}	
(see Note 1)	5 V to 3.6 V
Output voltage range, V _O (see Note 1)0.5 V to V	
Input clamp current, I _{IK} (VI < 0)	
Output clamp current, I_{OK} (V_{O} < 0)	
Continuous output current, I _O	
Continuous current through V_{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	
GQL package	42°C/W
Storage temperature range, T _{stg} 65	°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 0.8 V		-0.7		
		V _{CC} = 1.1 V		-3		
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA	
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
		V _{CC} = 2.3 V		9		
$\Delta t / \Delta v$	Input transition rise or fall rate	•		20	ns/V	
Тд	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES403C – JULY 2002 – REVISED DECEMBER 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	ΜΙΝ ΤΥΡ [†] ΜΑΧ	
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1	
	I _{OH} = -0.7 mA	0.8 V	0.55	
Vou	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8	v
VOH	$I_{OH} = -5 \text{ mA}$	1.4 V	1	v
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2	
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8	
	I _{OL} = 100 μA	0.8 V to 2.7 V	0.2	2
	I _{OL} = 0.7 mA	0.8 V	0.25	
	I _{OL} = 3 mA	1.1 V	0.3	s v
V _{OL}	I _{OL} = 5 mA	1.4 V	0.4	, v
	I _{OL} = 8 mA	1.65 V	0.45	5
	I _{OL} = 9 mA	2.3 V	0.6	5
II All inputs	$V_{I} = V_{CC}$ or GND	0 to 2.7 V	±5	μA
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0	±10) μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V	±10) μA
Icc	$V_{I} = V_{CC} \text{ or } GND,$ $I_{O} = 0$	0.8 V to 2.7 V	20) μA
C _i	$V_{I} = V_{CC} \text{ or } GND$	2.5 V	3	pF
Co	$V_{O} = V_{CC}$ or GND	2.5 V	5	pF

[†] All typical values are at $T_A = 25^{\circ}C$.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

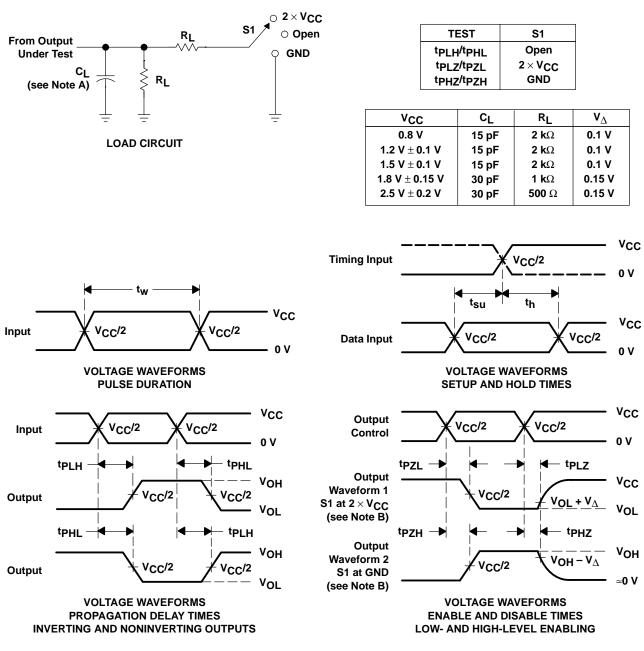
		V _{CC} = 0.8 V	V _{CC} = ± 0.7	1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	85		250		250		250		250	MHz
tw	Pulse duration, CLK high or low	5.9	1.9		1.9		1.9		1.9		ns
t _{su}	Setup time, data before $CLK\uparrow$	1.4	1		1		1		1		ns
t _h	Hold time, data after $CLK\uparrow$	0.1	0.9		0.9		0.9		0.9		ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V_{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V			V _{CC} = 2.5 V ± 0.2 V		UNIT
		(001-01)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
fmax			85	250		250		250			250		MHz
^t pd	CLK	Q	7.3	1	4.5	0.8	2.9	0.7	1.5	2.8	0.7	2.2	ns
t _{en}	OE	Q	7	1.2	5.3	0.8	3.6	0.8	1.5	2.9	0.7	2.2	ns
^t dis	ŌĒ	Q	8.2	2	7.1	1	4.8	1.4	2.7	4.5	0.5	2.2	ns

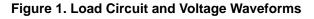
SN74AUC16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES403C – JULY 2002 – REVISED DECEMBER 2002

PARAMETER			TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
	FARAMETER		CONDITIONS	TYP	TYP	ТҮР	ТҮР	ТҮР		
C _{pd} ‡ (each output)	Power dissipation capacitance	Outputs enabled, 1 output switching	$1 f_{data} = 5 MHz$ $1 f_{Clk} = 10 MHz$ $1 f_{out} = 5 MHz$ $\overline{OE} = GND$ $C_L = 0 pF$	24	24	24.1	26.2	31.2	pF	
C _{pd} (Z)	Power dissipation capacitance	Outputs disabled, 1 clock and 1 data switching	$1 f_{data} = 5 MHz$ $1 f_{Clk} = 10 MHz$ $f_{out} = not$ switching $\overline{OE} = V_{CC}$ $C_L = 0 pF$	7.5	7.5	8	9.4	13.2	pF	
C _{pd} § (each clock)	Power dissipation capacitance	Outputs disabled, clock only switching	$\begin{array}{l} 1 \ f_{data} = 0 \ \text{MHz} \\ 1 \ f_{Clk} = 10 \ \text{MHz} \\ f_{out} = \text{not} \\ \text{switching} \\ \overline{\text{OE}} = \text{V}_{CC} \\ \text{C}_{L} = 0 \ \text{pF} \end{array}$	13.8	13.8	14	14.7	17.5	pF	


operating characteristics, $T_A = 25^{\circ}C^{\dagger}$

[†] Total device C_{pd} for multiple (n) outputs switching and (y) clocks inputs switching = {n * C_{pd} (each output)} + {y * C_{pd} (each clock)}. [‡] C_{pd} (each output) is the C_{pd} for each data bit (input and output circuitry) as it operates at 5 MHz (Note: the clock is operating at 10 MHz in this test, but its I_{CC} component has been subtracted out). § C_{pd} (each clock) is the C_{pd} for the clock circuitry only as it operates at 10 MHz.

SN74AUC16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS


SCES403C - JULY 2002 - REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

SN74AUCH16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

		11 3-	JIAI		J F	013
SCES404C-	JULY	2002 -	REVISE	D DECI	EMBE	R 2002

		JLI 2002 – REVISED
 Member of the Texas Instruments Widebus™ Family 		GV PACKAGE ? VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	1 0E [1 1Q1 [2 1Q2 [3	48 1CLK 47 1D1 46 1D2
 I_{off} Supports Partial-Power-Down Mode Operation 	GND 4 1Q3 5	45 GND 44 1D3
Sub 1-V Operable	1Q4 [6	43 0 1D4
 Max t_{pd} of 2 ns at 1.8 V 	V _{CC} []7	42 V _{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	1Q5 [8	41 0 1D5
• ±8-mA Output Drive at 1.8 V	1Q6 4 9	40 1 1D6
 Bus Hold on Data Inputs Eliminates the 		39 GND
Need for External Pullup/Pulldown	1Q7 [11 1Q8 [12	38 1D7 37 1D8
Resistors	2Q1 13	36 2D1
	2Q1 11 2Q2 114	35 2D1
description/ordering information	GND 15	34 GND
This 16-bit edge-triggered D-type flip-flop is	2Q3 🛛 16	33 🛛 2D3
operational at 0.8-V to 2.7-V V_{CC} , but is designed	2Q4 🛛 17	32 2 2D4
specifically for 1.65-V to 1.95-V V _{CC} operation.		31 V _{CC}
The SN74AUCH16374 is particularly suitable for	2Q5 [19	30 2D5
implementing buffer registers, I/O ports,	2Q6 20 GND 21	29 2D6 28 GND
bidirectional bus drivers, and working registers. It	2Q7 222	28 GND 27 207
can be used as two 8-bit flip-flops or one 16-bit	2Q7 [22 2Q8 [23	26 2D7
flip-flop. On the positive transition of the clock	20E 24	25 200 25 200
(CLK) input, the Q outputs of the flip-flop take on		

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAG	ε†	ORDERABLE PART NUMBER	TOP-SIDE MARKING			
	TSSOP – DGG	Tape and reel	SN74AUCH16374DGGR				
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUCH16374DGVR				
	VFBGA – GQL	Tape and reel	SN74AUCH16374GQLR				

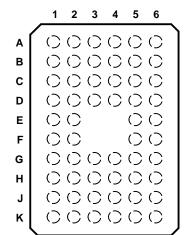
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Widebus is a trademark of Texas Instruments.

the logic levels set up at the data (D) inputs.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.


SN74AUCH16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS SCES404C - JULY 2002 - REVISED DECEMBER 2002

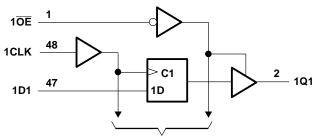
description/ordering information (continued)

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

GQL PACKAGE (TOP VIEW)

terminal assignments


	1	2	3	4	5	6
Α	1 <mark>OE</mark>	NC	NC	NC	NC	1CLK
в	1Q2	1Q1	GND	GND	1D1	1D2
С	1Q4	1Q3	VCC	VCC	1D3	1D4
D	1Q6	1Q5	GND	GND	1D5	1D6
Е	1Q8	1Q7			1D7	1D8
F	2Q1	2Q2			2D2	2D1
G	2Q3	2Q4	GND	GND	2D4	2D3
н	2Q5	2Q6	VCC	VCC	2D6	2D5
J	2Q7	2Q8	GND	GND	2D8	2D7
к	2 <mark>0E</mark>	NC	NC	NC	NC	2CLK

NC - No internal connection

FUNCTION TABLE (each flip-flop)

	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Х	Q ₀
Н	Х	Х	z

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

SN74AUCH16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES404C - JULY 2002 - REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	58°C/W
GQL package	42°C/W
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	VCC		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
ЮН	High-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
$\Delta t / \Delta v$	Input transition rise or fall rate	•		20	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUCH16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES404C - JULY 2002 - REVISED DECEMBER 2002

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise						-	•	

PARAMETER	TEST CONDITIONS	Vcc	MIN	түр†	MAX	UNIT			
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.	1					
	I _{OH} = -0.7 mA	0.8 V		0.55					
	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			Ň			
VOH	I _{OH} = -5 mA	1.4 V	1			V			
	I _{OH} = -8 mA	1.65 V	1.2						
	I _{OH} = -9 mA	2.3 V	1.8						
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2				
	I _{OL} = 0.7 mA	0.8 V		0.25					
M	I _{OL} = 3 mA	1.1 V			0.3	V			
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	v			
	I _{OL} = 8 mA	1.65 V			0.45				
	I _{OL} = 9 mA	2.3 V			0.6				
II All inputs	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V			±5	μA			
· • •	V _I = 0.35 V	1.1 V	10						
. +	V _I = 0.47 V	1.4 V	15			μΑ			
IBHL‡	V _I = 0.57 V	1.65 V	20						
	V ₁ = 0.7 V	2.3 V	40						
	V ₁ = 0.8 V	1.1 V	-10			μΑ			
	V _I = 0.9 V	1.4 V	-15						
I _{BHH} §	V _I = 1.07 V	1.65 V	-20						
	V _I = 1.7 V	2.3 V	-40						
		1.3 V	75						
, ¶		1.6 V	125						
IBHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA			
		2.7 V	275						
		1.3 V	-75						
. 4		1.6 V	-125						
IBHHO [#]	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA			
		2.7 V	-275						
loff	V_{I} or V_{O} = 2.7 V	0		-	±10	μA			
loz	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA			
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	0.8 V to 2.7 V			20	μA			
C _i	$V_{I} = V_{CC}$ or GND	2.5 V				pF			
Co	$V_{O} = V_{CC} \text{ or } GND$	2.5 V				pF			

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

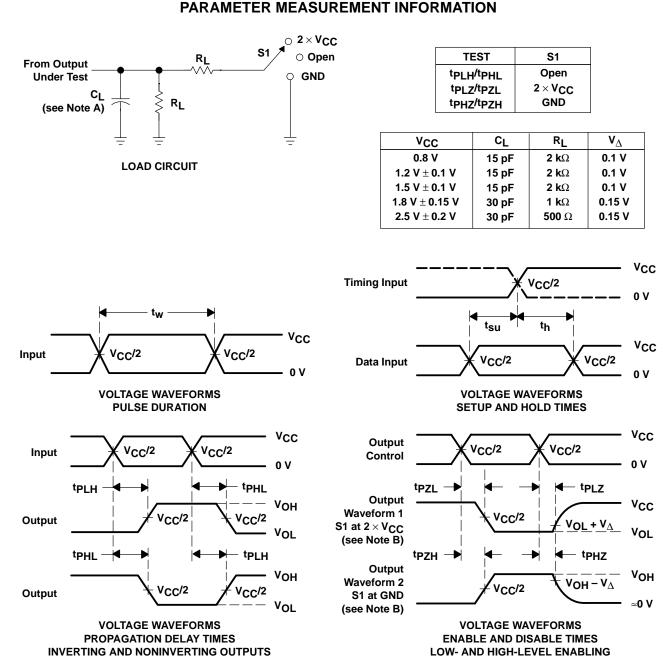
SN74AUCH16374 **16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP** WITH 3-STATE OUTPUTS SCES404C – JULY 2002 – REVISED DECEMBER 2002

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = 0.8 V	= ۷ _{CC} ± 0.	1.2 V 1 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.2		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency										MHz
tw	Pulse duration, CLK high or low										ns
t _{su}	Setup time, data before $CLK\uparrow$										ns
t _h	Hold time, data after $CLK\uparrow$										ns

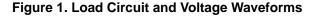
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V ± 0.2 V	UNIT
		(001F01)	TYP	MIN MAX	MIN MAX	MIN TYP MAX	MIN MAX	
^f max								MHz
^t pd	CLK	Q						ns
^t en	OE	Q						ns
^t dis	ŌE	Q						ns


operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT	
	Power	Outputs enabled	6 40 MUL						- 5
C _{pd}	dissipation capacitance	Outputs disabled	f = 10 MHz						pF

SN74AUCH16374 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS


SCES404C - JULY 2002 - REVISED DECEMBER 2002

PRODUCT PREVIEW

NOTES: A. $C_{\mbox{L}}$ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

		Page
SN74AUCH32244	32-Bit Buffer/Driver With 3-State Outputs	4–3
SN74AUC32245	32-Bit Bus Transceiver With 3-State Outputs	4–11

Member of the Texas Instruments Widebus+[™] Family

- Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 1.8 ns at 1.8 V
- Low Power Consumption, 40-μA Max I_{CC}

description/ordering information

• ±8-mA Output Drive at 1.8 V

- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

SCES412B - SEPTEMBER 2002 - REVISED DECEMBER 2002

SN74AUCH32244

32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

This 32-bit buffer/driver is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUCH32244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as eight 4-bit buffers, four 8-bit buffers, two 16-bit buffers, or one 32-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	LFBGA – GKE	Tape and reel	SN74AUCH32244GKER	MK244

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

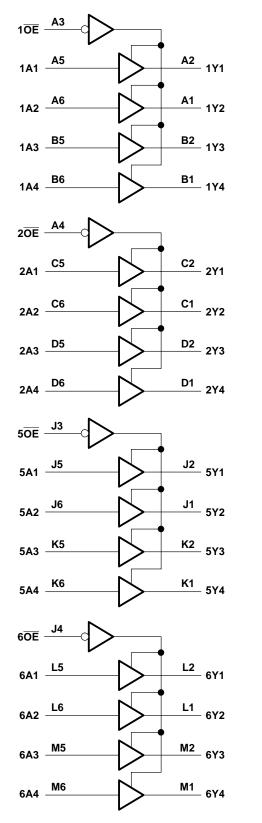
Widebus+ is a trademark of Texas Instruments.

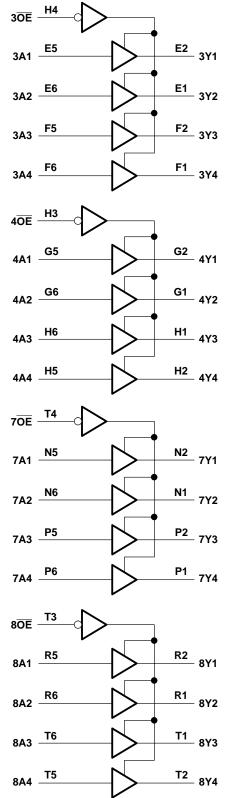
SN74AUCH32244 **32-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES412B – SEPTEMBER 2002 – REVISED DECEMBER 2002

GKE PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6
A	/	\bigcirc	С	С	\odot	\bigcirc	0
в		\bigcirc	\bigcirc	С	\bigcirc	С	С
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С
к		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С
L		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
м		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	С
Ν		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Р		\bigcirc	\bigcirc	С	\bigcirc	С	С
R		\bigcirc	\bigcirc	С	\bigcirc	С	С
т		\bigcirc	\bigcirc	С	\bigcirc	С	С
	/						


terminal assignments


	1	2	3	4	5	6
Α	1Y2	1Y1	10E	2 <mark>0E</mark>	1A1	1A2
в	1Y4	1Y3	GND	GND	1A3	1A4
С	2Y2	2Y1	V _{CC}	V _{CC}	2A1	2A2
D	2Y4	2Y3	GND	GND	2A3	2A4
Е	3Y2	3Y1	GND	GND	3A1	3A2
F	3Y4	3Y3	VCC	VCC	3A3	3A4
G	4Y2	4Y1	GND	GND	4A1	4A2
н	4Y3	4Y4	4 0E	3 <mark>0E</mark>	4A4	4A3
J	5Y2	5Y1	50E	6 0E	5A1	5A2
к	5Y4	5Y3	GND	GND	5A3	5A4
L	6Y2	6Y1	VCC	VCC	6A1	6A2
М	6Y4	6Y3	GND	GND	6A3	6A4
Ν	7Y2	7Y1	GND	GND	7A1	7A2
Р	7Y4	7Y3	VCC	VCC	7A3	7A4
R	8Y2	8Y1	GND	GND	8A1	8A2
т	8Y3	8Y4	80E	7 <mark>0E</mark>	8A4	8A3

FUNCTION TABLE (each 4-bit buffer)

INPU	JTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
н	Х	Z

logic diagram (positive logic)

SN74AUCH32244 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES412B – SEPTEMBER 2002 – REVISED DECEMBER 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high-impedance or power-off sta	\ldots –0.5 V to 3.6 V
(see Note 1)	
Output voltage range, V _O (see Note 1)	$\dots \dots \dots -0.5$ V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2)	40°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		V_{CC} = 2.3 V to 2.7 V	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	$V_{CC} = 1.1 V \text{ to } 1.95 V$		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
V -	Output veltere	Active state	0	V _{CC}	v	
VO	Output voltage	3-state	0	3.6	v	
		V _{CC} = 0.8 V		-0.7		
		V _{CC} = 1.1 V		-3		
ЮН	High-level output current	$V_{CC} = 1.4 V$		-5	mA	
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8		
		V _{CC} = 2.3 V	9			
		V _{CC} = 0.8 V		20		
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 1.3 V		15	ns/\	
		V_{CC} = 1.6 V, 1.95 V, and 2.7 V		10		
TA	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUCH32244 **32-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES412B - SEPTEMBER 2002 - REVISED DECEMBER 2002

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise	noted)					-	-	-

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	түр†	MAX	UNIT			
	I _{OH} = –100 μA	0.8 V to 2.7 V	V _{CC} -0.	1					
	I _{OH} = -0.7 mA	0.8 V		0.55					
Maria	I _{OH} = -3 mA	1.1 V	0.8			V			
VOH	I _{ОН} = –5 mA	1.4 V	1			V			
	I _{OH} = -8 mA	1.65 V	1.2						
	I _{OH} = –9 mA	2.3 V	1.8						
	l _{OL} = 100 μA	0.8 V to 2.7 V			0.2				
	I _{OL} = 0.7 mA	0.8 V		0.25					
N	I _{OL} = 3 mA	1.1 V			0.3	Ň			
V _{OL}	I _{OL} = 5 mA	1.4 V			0.4	V			
	I _{OL} = 8 mA	1.65 V			0.45				
	I _{OL} = 9 mA	2.3 V			0.6				
I A or OE inputs	V _I = V _{CC} or GND	0 to 2.7 V			±5	μA			
-	V ₁ = 0.35 V	1.1 V	10						
	V ₁ = 0.47 V	1.4 V	15						
IBHL‡	V ₁ = 0.57 V	1.65 V	20			μA			
	V ₁ = 0.7 V	2.3 V	40						
	V ₁ = 0.8 V	1.1 V	-10						
. 8	V ₁ = 0.9 V	1.4 V	-15			•			
I _{BHH} §	V _I = 1.07 V	1.65 V	-20			μA			
	V _I = 1.7 V	2.3 V	-40						
		1.3 V	75						
. T		1.6 V	125						
IBHLO [¶]	$V_{I} = 0$ to V_{CC}	1.95 V	175			μA			
		2.7 V	275						
		1.3 V	-75						
. #		1.6 V	-125						
IBHHO [#]	$V_{I} = 0$ to V_{CC}	1.95 V	-175			μA			
		2.7 V	-275			1			
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA			
loz	V _O = V _{CC} or GND	2.7 V			±10	μA			
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			40	μA			
Ci	V _I = V _{CC} or GND	2.5 V		3	4.5	pF			
Co	$V_{O} = V_{CC} \text{ or GND}$	2.5 V		4	7	pF			

[†] All typical values are at $T_A = 25^{\circ}C$.

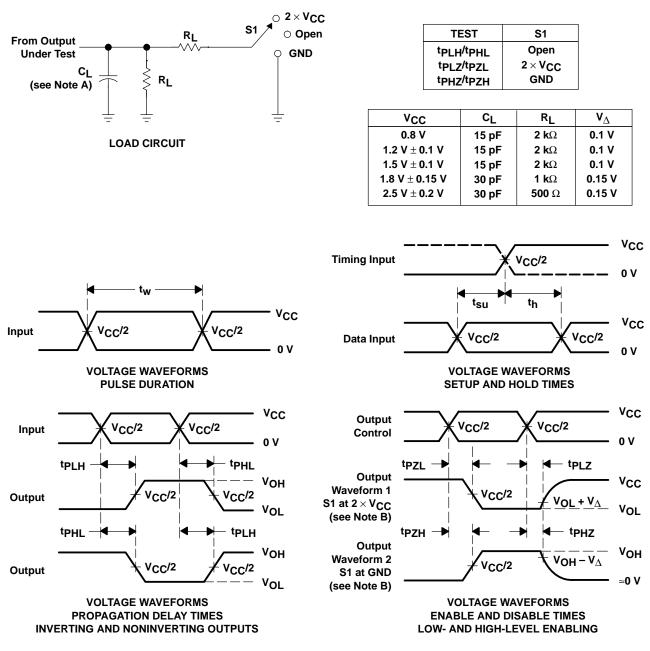
[‡] The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to $V_{\mbox{\scriptsize IL}}$ max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

SN74AUCH32244 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES412B - SEPTEMBER 2002 - REVISED DECEMBER 2002


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V	V _{CC} = ± 0.	= 1.5 V .1 V	-	C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
		(001201)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	5.4	0.8	2.8	0.6	1.9	0.7	1.3	1.8	0.5	1.8	ns
^t en	ŌĒ	Y	8	1	4.4	0.7	2.6	0.8	1.4	2.5	0.6	1.9	ns
^t dis	ŌĒ	Y	12	1.9	4.9	1	4.6	1.5	2.6	4	0.5	2	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	ТҮР		
	Power	Outputs enabled	£ 10 MU	21	22	23	25	30	~ [
C _{pd} dissipation capacitance		Outputs disabled	f = 10 MHz	1	1	1	1	1	рF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

SN74AUC32245 32-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCES410C – AUGUST 2002 – REVISED DECEMBER 2002

- Member of the Texas Instruments Widebus+[™] Family
- Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2 ns at 1.8 V

description/ordering information

• Low Power Consumption, 40-μA Max I_{CC}

- ±8-mA Output Drive at 1.8 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

This 32-bit noninverting bus transceiver is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC32245 is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.

This device can be used as four 8-bit transceivers, two 16-bit transceivers, or one 32-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING							
–40°C to 85°C	LFBGA – GKE	Tape and reel	SN74AUC32245GKER	MM245							

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

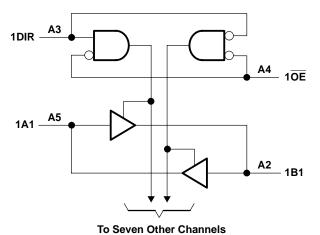
Widebus+ is a trademark of Texas Instruments.

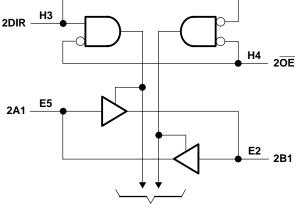
SCES410C – AUGUST 2002 – REVISED DECEMBER 2002

GKE PACKAGE (TOP VIEW)

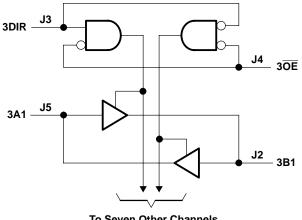
	1	2	3	4	5	6	_
A (C	С	С	0	С	
в	О	C	С	С	С	С	
с	О	C	С	С	С	С	
D	\bigcirc	C	\bigcirc	С	С	\bigcirc	
Е	-	C	-	-	-	-	
F	\bigcirc	C	\bigcirc	\bigcirc	С	С	
G	-	C	-	-	-	-	
н	-	C	-	-	-	-	
J	-	C	-	-	-	-	
к	-	C	-	-	-	-	
L	-	С	-	-	-	-	
м	-	С	-	-	-	-	
Ν	-	С	-	-	-	-	
Р	-	C -	-	-	-	-	
R	-	C -	-	-	-	-	
тĮ	O	С	С	С	С	O	/

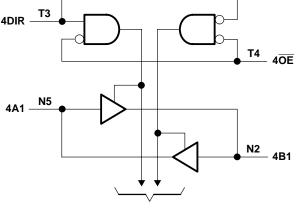
terminal assignments


	1	2	3	4	5	6
Α	1B2	1B1	1DIR	10E	1A1	1A2
в	1B4	1B3	GND	GND	1A3	1A4
С	1B6	1B5	VCC	VCC	1A5	1A6
D	1B8	1B7	GND	GND	1A7	1A8
Е	2B2	2B1	GND	GND	2A1	2A2
F	2B4	2B3	VCC	VCC	2A3	2A4
G	2B6	2B5	GND	GND	2A5	2A6
н	2B7	2B8	2DIR	2 <mark>0E</mark>	2A8	2A7
J	3B2	3B1	3DIR	3 <mark>0E</mark>	3A1	3A2
к	3B4	3B3	GND	GND	3A3	3A4
L	3B6	3B5	VCC	VCC	3A5	3A6
м	3B8	3B7	GND	GND	3A7	3A8
Ν	4B2	4B1	GND	GND	4A1	4A2
Р	4B4	4B3	VCC	VCC	4A3	4A4
R	4B6	4B5	GND	GND	4A5	4A6
т	4B7	4B8	4DIR	4 0E	4A8	4A7


FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION
OE	DIR	OFERATION
L	L	B data to A bus
L	н	A data to B bus
н	Х	Isolation




logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high-impedance or power-off sta	–0.5 V to 3.6 V
(see Note 1)	
Output voltage range, VO (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{IA} (see Note 2)	
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES410C – AUGUST 2002 – REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		0.8	2.7	V	
		V _{CC} = 0.8 V	VCC			
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V	
		V _{CC} = 2.3 V to 2.7 V	1.7			
		V _{CC} = 0.8 V		0		
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
VI	Input voltage		0	3.6	V	
Va	Output voltage	Active state	0	VCC	V	
VO		3-state	0	3.6	v	
		V _{CC} = 0.8 V		-0.7		
	High-level output current $V_{CC} = 1.1 V$ $V_{CC} = 1.4 V$ $V_{CC} = 1.65 V$	High-level output current	V _{CC} = 1.1 V		-3	
ЮН			High-level output current V _{CC} =	V _{CC} = 1.4 V		-5
		V _{CC} = 1.65 V		-8		
		V _{CC} = 2.3 V		-9		
		V _{CC} = 0.8 V		0.7		
		V _{CC} = 1.1 V		3		
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA	
		V _{CC} = 1.65 V		8	1	
		V _{CC} = 2.3 V		9	1	
$\Delta t / \Delta v$	Input transition rise or fall rate	•		5	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES410C - AUGUST 2002 - REVISED DECEMBER 2002

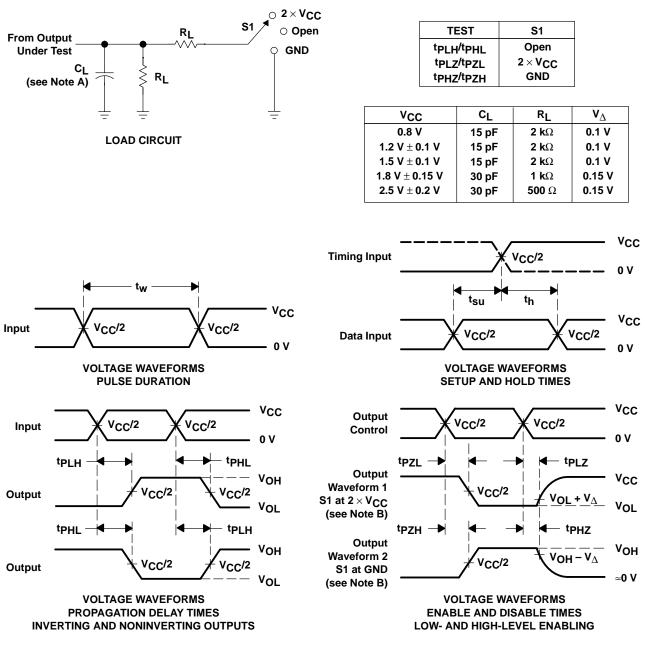
PARAMETER	TEST CONDITIONS	VCC	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1	
	I _{OH} = -0.7 mA	0.8 V	0.55	
	I _{OH} = -3 mA	1.1 V	0.8	v
VOH	I _{ОН} = -5 mA	1.4 V	1	v
	I _{OH} = -8 mA	1.65 V	1.2	
	I _{OH} = -9 mA	2.3 V	1.8	
	l _{OL} = 100 μA	0.8 V to 2.7 V	0.2	
	I _{OL} = 0.7 mA	0.8 V	0.25	
N/	I _{OL} = 3 mA	1.1 V	0.3	
VOL	I _{OL} = 5 mA	1.4 V	0.4	
	I _{OL} = 8 mA	1.65 V	0.45	
	I _{OL} = 9 mA	2.3 V	0.6	
II All inputs	$V_{I} = V_{CC} \text{ or } GND$	0 to 2.7 V	±5	μΑ
loff	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0	±10	μΑ
I _{OZ} ‡	$V_{O} = V_{CC}$ or GND	2.7 V	±10	μΑ
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V	40	μΑ
Ci	V _I = V _{CC} or GND	2.5 V	3	pF
C _{io}	$V_{O} = V_{CC}$ or GND	2.5 V	7	pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

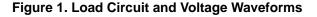
[†] All typical values are at $T_A = 25^{\circ}C$. [‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.	⊧ 1.5 V .1 V		C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	A or B	B or A	5.6	0.5	3.1	0.5	2	0.5	1.5	2	0.4	1.9	ns
t _{en}	ŌĒ	A or B	10	0.7	4.6	0.7	3.1	0.7	2.1	3.1	0.7	2.6	ns
^t dis	ŌĒ	A or B	12.8	0.8	6.8	0.8	5	0.8	3.4	4.8	0.5	2.9	ns


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
			CONDITIONS	TYP	TYP	ТҮР	TYP	TYP	UNIT
Power C _{pd} dissipation capacitance		Outputs enabled	f = 10 MHz	22	23	24	25	29	٥F
		Outputs disabled		1	1	1	1	1	μr


SCES410C – AUGUST 2002 – REVISED DECEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

	Page
Application of the Texas Instruments AUC Sub-1-V Little Logic Devices	. 5–3

Application Report SCEA027A - September 2002

Application of the Texas Instruments AUC Sub-1-V Little Logic Devices

Chris Maxwell and Tomdio Nana

Standard Linear & Logic

ABSTRACT

Power consumption and speed are always concerns in electronic system logic design. Texas Instruments (TI) announces the industry's first sub-1-V logic family that provides significant benefits to portable consumer electronics by operating at low power and high speed, while maintaining overall system signal integrity. TI's next-generation logic family is the advanced ultra-low-voltage CMOS (AUC) family. Although optimized for 1.8-V operation, AUC logic supports mixed-voltage systems because it is compatible with 0.8-V, 1.2-V, 1.5-V and 2.5-V devices. The AUC logic inputs tolerate 3.6-V signals, thus enabling level-translation down from 3.3-V nodes to lower-voltage nodes. Further, AUC logic has the I_{off} feature, which supports the partial-power-down mode of operation. This application report discusses AUC Little Logic device features, characteristics, and applications.

Keywords: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3-V tolerant, AUC, electrical performance, I_{off}, level translation, Little Logic, open drain, overvoltage protection, partial power down, signal integrity, ULTTL

	Contents	
1	Introduction	5–6
2	AUC Little Logic Features2.1 Novel Output Structure2.2 Level-Translation Support2.3 Power-Off Support	
3	AUC Little Logic Device Characteristics 3.1 Input Characteristics 3.1.1 Input Capacitance 3.1.2 Input Voltage Tolerance 3.1.3 Slow-Input-Edge-Rate Compatibility 3.2 Electrical Characteristics 3.2.1 AC Performance 3.2.2 DC Performance 3.3 Power Consumption	5–11 5–11 5–11 5–12 5–12 5–15 5–15 5–15
4	Design Issues and AUC Little Logic Solutions4.1 Signal Integrity4.2 Mixed-Voltage-Mode Data Communication4.3 Partial Power Down4.4 Low Power Consumption	 5–21 5–21 5–24 5–26

TI and Widebus are trademarks of Texas Instruments.

SCEA027A

TEXAS	
INSTRUMENTS	

5	Package Information	5–28
6	Features and Benefits	5–29
7	Conclusion	5–30
8	Frequently Asked Questions (FAQs)	5–30
9	References	5–32
10	Glossary	5–32
Арр	endix A. Parameter Measurement Information	5–34
Арр	endix B. Mechanical Data	5–36

List of Figures

1.	ULTTL Output Structure	. 5–8
2.	Output Drive Currents of UOP During Low-to-High Transition	. 5–9
3.	SN74AUC1G00 Slow-Input Transition-Time Plot, $\Delta t/\Delta V = 11.69 \text{ ns/V}$	5–13
4.	SN74AUC1G00 Slow-Input Transition-Time Plot, $\Delta t/\Delta V = 23.19$ ns/V	5–14
5.	t_{pd} vs Capacitive Load at 2.5-V, 1.8-V, and 1.5-V $V_{\mbox{CC}}$	5–16
6.	t_{pd} vs Capacitive Load at 1.2-V and 0.8-V V _{CC}	5–17
7.	V _{OH} vs I _{OH} for AUC1G Devices	
8.	V _{OL} vs I _{OL} for AUC1G Devices	5–18
9.	Relative Power Efficiency of Selected Little Logic Devices	5–20
10.	Transmission-Line Test Points for Simulations	5–21
11.	Output Impedance, Output Voltage, and Receiver Voltage of AUC Single-Gate	
	Transmission-Line Simulation	
12.	Simulation of 65- Ω Transmission Line Across Supply Voltage and Temperature	5–22
13.	Simulation of Low-to-High Transition into 30- Ω to 70- Ω Transmission Line	5–23
14.	Simulation of High-to-Low Transition into 30- Ω to 70- Ω Transmission Line	5–23
15.	Device at 1.8-V V _{CC} , With 2.5-V or 3.3-V Inputs, Showing Switching Levels	5–24
16.	Circuit for Voltage Translation Using the SN74AUC1G07	5–25
17.	I _{CC} vs Frequency for Different AUC Little Logic Devices	5–27
18.	I _{CC} vs Frequency for SN74AUC1G06 and SN74LVC1G06 Devices	5–27
19.	AUC Little Logic (with ULTTL Outputs) Load Circuit and Voltage Waveforms	5–34
20.	AUC Little Logic (with Open-Drain Outputs) Load Circuit and Voltage Waveforms	5–35
21.	Plastic Small Outline Package (DBV)	5–36
22.	Plastic Small Outline Package (DCK)	5–37
23.	Die-Size Ball Grid Array (YEA or YZA)	5–38

List of Tables

1.	Input Capacitance and Speed Comparison for Comparable Families	5–11
2.	Input Transition for Some AUC Little Logic Devices	5–14
3.	Timing Characteristics of AUC Little Logic Devices	5–15
4.	Power Consumption and Speed of Selected Little Logic Devices at Their Optimized Supply-Voltage Nodes	5–20
5.	Requirements for Voltage Translation Between Devices A and B	5–25
6.	Features and Benefits of AUC Little Logic Devices	5–29

1 Introduction

Many electronic applications have shifted from the legacy bipolar TTL interface to CMOS rail-to-rail interface. The CMOS technology has facilitated supply-voltage migration from 5 V to 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, and 0.8 V. These lower-voltage nodes allow decreased power consumption in the system. To facilitate migration to lower-voltage nodes, TI has released the advanced ultra-low-voltage CMOS (AUC) family, which is optimized for 1.8-V operation and is compatible with 0.8-V, 1.2-V, 1.5-V, 1.8-V, and 2.5-V devices.

TI offers the AUC functions in Widebus[™], octal, gates, and Little Logic (single, double, and triple gate) options. The widebus, octal, and gate AUC devices are designed for high-speed data throughput and enhanced signal integrity to target bus applications in telecommunications and computing systems. The Little Logic AUC devices have high speed, low power consumption, and low-noise characteristics, which make them suitable for portable consumer electronics applications.

This application report discusses AUC Little Logic device features, characteristics, and applications.

2 AUC Little Logic Features

The AUC Little Logic devices are designed for use in battery-operated portable consumer electronics or to fix design bugs in electronic systems. The characteristic output structure, level-translation support capability, and partial-power-down support features of the AUC Little Logic facilitate the use of these devices in their targeted applications.

2.1 Novel Output Structure

The AUC Little Logic features the ultra-low-voltage transistor-transistor logic (ULTTL) output driver. The ULTTL is a new CMOS-technology interface driver designed for applications requiring high-speed, low power consumption, and optimal signal integrity, while maintaining the bipolar TTL output characteristic of reduced line-reflection noise. With the migration from bipolar TTL technology to CMOS technology for lower-operating-voltage nodes, the ULTTL output driver was developed to minimize switching noise, which is inherent in high-speed applications.

The ULTTL output driver of the AUC Little Logic changes impedance during transition. Three basic output features are critical for optimal performance in low-voltage high-speed applications. First, the device must provide low-impedance (i.e., high dynamic current) drive during the initial phase of the transition through the ac threshold (i.e., $V_{CC}/2$). This initial high drive provides the quick transition to the desired logic level and ensures that system timing is preserved. During the second phase of the transition, the impedance must be equal to that of the transmission-line medium it is driving, to minimize ringing and optimize signal integrity. A major cause of ringing in point-to-point applications is the result of a mismatch or discontinuity between the output impedance of the driver and the impedance of the transmission line (i.e., PCB trace). AUC Little Logic devices have been optimized for transmission lines of 50 Ω to 65 Ω , which is typical of most portable PCB applications. Finally, the output should stabilize at an impedance low enough to provide the required dc drive. For most portable applications, 4-mA dc drive is sufficient; however, for nonportable applications, more drive current might be required.

The majority of application loads targeted for the AUC Little Logic family can be represented as a transmission line rather than a dc load. Thus, ac operation is dominated by the inductance and capacitance of the load and, in most cases, heavy drive capabilities are not required, although they are provided up to 8 mA at 1.8-V V_{CC} .

AUC Little Logic devices provide 8-mA dc drive current at the 1.8-V V_{CC} node for nonportable applications, while maintaining the signal-integrity performance of a 4-mA dc driver. The ULTTL output used in the AUC Little Logic family is designed to address each of the three critical performance requirements previously noted. Figure 1 shows a schematic of the ULTTL output structure.

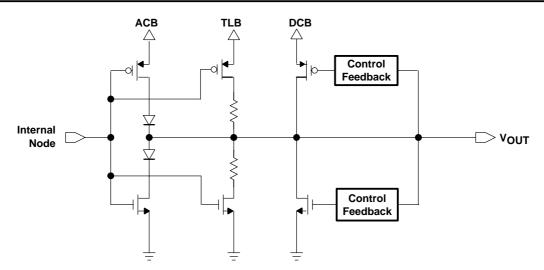


Figure 1. ULTTL Output Structure

To achieve the three impedance phases, the ULTTL output utilizes a three-branch p-channel upper-output (UOP) and three-branch n-channel lower-output (LOP) structure (see Figure 1). For the purpose of illustration, the three branches are referred to in this application report as the ac branch (ACB), the transmission-line branch (TLB), and the dc branch (DCB). The first branch, which uses the diode in the output structure, provides the high dynamic current required to drive through the ac threshold. The second branch, which contains a series resistor, provides optimized impedance matching into the transmission line. The third branch provides the additional dc current drive for applications requiring more than 4 mA of output drive current at 1.8-V V_{CC}.

Each independent branch posses a unique on-state resistance (r_{on}). As the output transitions from a low to high (or high to low), the equivalent resistance of all branches varies in a controlled manner by adjusting the individual resistance of each branch. The low-to-high transition functions similarly to the high-to-low transition. The output impedance is controlled during the low-to-high transition sequential action outlined below and shown in Figure 2.

- 1. During the initial phase of the transition, all three legs are turned on. The parallel r_{on} of all three legs provides very low combined impedance.
- 2. During the second phase of the transition, the ACB and DCB are turned off, and the output transitions to a higher impedance. As the output voltage level approaches V_{CC} , the series diode begins to saturate and, eventually, becomes reverse biased, causing the current through the ACB to be reduced to less than 1 mA (basically, turned off). A threshold-controlled feedback circuit turns off the DCB. The thresholds are adjusted, to minimize the effect of oscillations directly at the output of the driver before entering the transmission line. (NOTE: A major advantage for the DCB being turned on in the initial stage is to provide support for the ACB at lower V_{CC} ranges where speed often is sacrificed.) The TLB r_{on} is 50 Ω to 65 Ω and, because it is the last branch remaining on, it provides the impedance matching to the transmission line.
- 3. In the final phase of the transition, the DCB is turned on by the threshold-controlled feedback circuit to provide a combined DCB and TLB equivalent resistance that is satisfactory for driving applications requiring more than 4 mA of output drive current at 1.8-V V_{CC}.

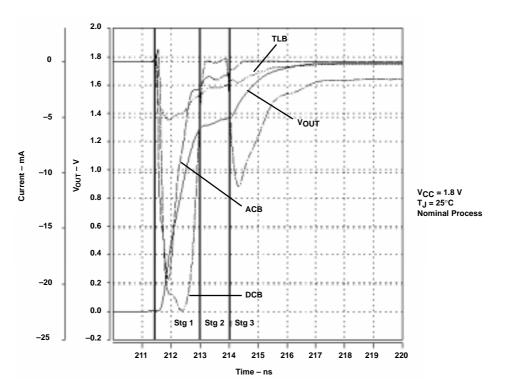


Figure 2. Output Drive Current of UOP During Low-to-High Transition

2.2 Level-Translation Support

Because the AUC Little Logic family uses a 0.8-V to 2.5-V power supply, interfacing AUC Little Logic devices with other components that use a 3.3-V power supply becomes a concern. If an AUC Little Logic device is subjected to 3.3-V at its inputs, it is critical that the device not be damaged. The term 3.3-V tolerance implies that the presence of 3.3-V at either the input or the output of the AUC device will not damage it. This feature enables AUC Little Logic devices to be used for level-translation support from higher-voltage nodes to lower-voltage nodes within the 0.8-V and 3.3-V nodes.

Whether a device can tolerate 3.3-V only at the input, only at the output, or at both the input and output must be considered. Every AUC Little Logic device TI produces can be subjected to 3.3-V at its input and not be damaged. Thus, all TI AUC Little Logic devices are 3.3-V input tolerant.

Whether or not an AUC Little Logic device can be subjected to 3.3-V at its output requires consideration. For the term 3.3-V output tolerant to be meaningful, the outputs of the device must be capable of being placed in the high-impedance state. Only the SN74AUC1G06, SN74AUC1G07, SN74AUC1G125, SN74AUC1G126, and SN74AUC1G240 have high-impedance outputs, and it is to these devices only that the term 3.3-V output tolerant applies. For those devices with outputs capable of being placed in the high-impedance state, 3.3-V output tolerance means that 3.3 V at its output does not damage the device.

The AUC Little Logic functions that do not have high-impedance-state outputs should not be connected to 3.3-V. This means that 3.3-V output tolerance does not make sense for these devices because their outputs cannot be placed in the high-impedance state.

2.3 Power-Off Support

The inputs and outputs of the AUC family have a blocking diode in the reversed-current paths to V_{CC} . In this configuration, the maximum leakage current into or out of the input or output transistors is negligible when forcing the input or output to 3.3 V and $V_{CC} = 0$ V. This off-state leakage current (I_{off}) is small enough to allow the device to remain electrically connected to a bus during partial power down without loading the remaining live circuits. This feature also allows the use of this family in a mixed-voltage environment.

3 AUC Little Logic Device Characteristics

3.1 Input Characteristics

3.1.1 Input Capacitance

The AUC Little Logic devices provide a low input capacitance-to-speed ratio relative to similar products (see Table 1). Two major design factors influence input capacitance: speed and capacitive-load-driving requirements. As speed requirements become more critical, the number of internal stages for a given integrated circuit must be reduced to minimize propagation delay. In addition to a reduction in stages, unless the requirement to drive large capacitive loads is reduced (especially for nonportable applications), the output stage must be large enough to drive these loads. In most cases, the combination of these two factors results in a higher input capacitance because the large input capacitance of the output stage is transferred to the input stage. Simply placing a small (low input capacitance) input stage in front of the large output stage does not result in less propagation delay.

Device	Input Capacitance (pF)	t _{pd} at 1.8-V V _{CC} (ns)		
SN74AUC1G00	3.0	2.5		
SN74LVC1G00	4.0	8.0		
SN74ALVC00	4.5	4.4		

Table 1. Input Capacitance and Speed Comparison for Comparable Families

The AUC Little Logic devices can maintain a comparable low input capacitance of 3 pF (typical), while providing high dynamic drive capability for larger loads and providing a propagation delay less than 2.5 ns at 1.8-V V_{CC} (see Table 1).

3.1.2 Input Voltage Tolerance

As previously mentioned, AUC Little Logic devices operate with a 0.8-V to 2.7-V V_{CC}. Therefore, interfacing AUC Little Logic with other components that use 3.3-V V_{CC} might be a concern. In such systems, AUC Little Logic devices must have tolerance for input levels up to and exceeding 3.3 V, as well as below 0 V, without causing damage to the inputs. The AUC Little Logic devices allow input voltages to exceed 3.3 V, up to 3.6 V, to allow extra protection for the following reasons:

- The 3.3-V system power supply might not stabilize at 3.3 V, but reach 3.6 V. Consequently, the output of the device driving the AUC Little Logic device could reach 3.6 V as well.
- The 3.3-V system power supply may stabilize at 3.3 V, but overshoots and undershoots can cause the input voltage into the AUC Little Logic devices to exceed the 0-V to 3.3-V range.

The AUC Little Logic devices support input voltages up to 3.6 V and must be operated within the following guidelines:

 The recommended operating conditions specified in the data sheets restrict the input voltage to 0 V to 3.6 V, while the absolute maximum ratings specify the input voltage to be -0.5 V to 4.1 V. As the data sheet indicates, stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. The absolute maximum ratings are stress ratings only, and functional operation of the device at those or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions may affect device reliability.

 Because the input-voltage range is limited from 0 V to 3.6 V, for 3.3-V systems, proper termination must be used on the inputs of AUC Little Logic devices to ensure that overshoot does not exceed 3.6 V.

3.1.3 Slow-Input-Edge-Rate Compatibility

The AUC Little Logic devices are designed and tested for high-speed systems (i.e., systems requiring a fast input edge rate) with input transition signals less than 1 ns/V. However, there may be several applications where it is desired to operate the device at a low frequency. In such applications, an input edge rate greater than 1 ns/V might be required. AUC Little Logic devices support such low-frequency applications.

A slow-input test sheds light on the integrity of the device, specifically, how the device responds when the input voltage is slowly ramped from 0 V to V_{CC} and, conversely, when the input voltage is ramped slowly from V_{CC} to 0 V. As the input voltage is ramping, the output voltage is monitored and, when it begins to switch, the waveform is observed. If nonmonotonic behavior is observed as the output traverses the threshold region, the device may be sensitive to a slow input, which can cause the output to oscillate or cause false triggering.

Figure 3 shows a passing case of slow-input-transition-rate tests. The test was done in the laboratory using the SN74AUC1G00 with $V_{CC} = 2.7$ V and the device at -40° C, with both inputs tied together for the worst-case condition. In Figure 3, the input transition rate is fast enough (11.69 ns/V) to not cause any oscillation at the output.

TEXAS INSTRUMENTS

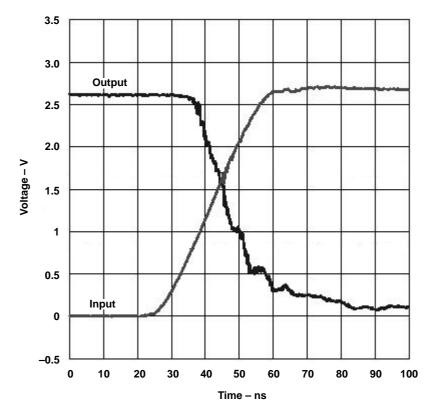


Figure 3. SN74AUC1G00 Slow-Input-Transition-Time Plot, $\Delta t / \Delta V = 11.69$ ns/V

Figure 4 shows a failure case of slow-input-transition-rate tests. The test was done in the laboratory using the SN74AUC1G00 with $V_{CC} = 2.7$ V and the device at -40° C, with both inputs tied together for the worst-case condition. In Figure 4, the input transition rate is too slow (23.19 ns/V) and causes oscillations at the output.

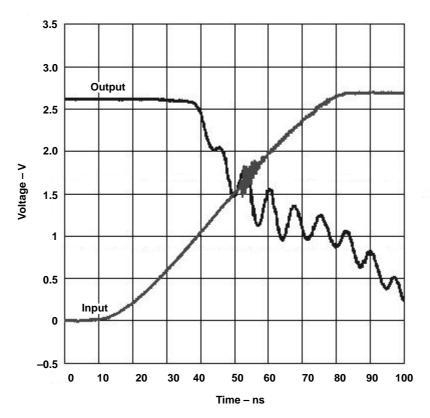


Figure 4. SN74AUC1G00 Slow-Input-Transition-Time Plot, $\Delta t / \Delta V = 23.19$ ns/V

Table 2 shows the maximum input transition rise or fall rate for some AUC Little Logic devices at different voltage nodes. At the optimized voltage node, all AUC Little Logic devices show noncritical responses to the slow-input test.

Device	Maximum Input Transition Rise or Fall Rate, $\Delta t / \Delta V$ (ns/V)							
	V _{CC} = 0.8 V	V _{CC} = 1.3 V	V _{CC} = 1.6 V	V _{CC} = 1.95 V	V _{CC} = 2.7 V			
SN74AUC1G00	20	20	20	20	10			
SN74AUC1G04	20	20	20	20	5			
SN74AUC1G07	20	20	20	20	15			
SN74AUC1G14	20	20	20	20	20			
SN74AUC1G17	20	20	20	20	20			
SN74AUC1G32	20	20	20	20	20			

Table 2 shows that the AUC Little Logic devices can operate with slow signals ($\Delta t/\Delta V > 1 \text{ ns/V}$) at the inputs. However, power consumption increases significantly with increased input transition rise or fall rates.

3.2 Electrical Characteristics

In most electronic-system applications, it is important for the integrated circuit drivers to provide balanced high and low drive during ac transition, which ensures balanced output edge rates and improved signal integrity. Also, balanced high and low drive ensures that the difference between the low-to-high transition time (t_{PLH}) and the high-to-low transition time (t_{PHL}) is minimized. In general, as the supply voltage lowers, the p-channel becomes weaker at a faster rate than the n-channel transistor, due to their respective positive and negative carrier-mobility-degradation characteristics. For devices with active p-channel pullups, this causes t_{PLH} to increase at a faster rate than t_{PHL} ; consequently, the $|t_{PLH} - t_{PHL}|$ increases respectively. The three-branch ULTTL output mentioned previously works to minimize this effect across V_{CC} by distributing the high drive across the r_{on} of the transistor with that of the resistor (i.e., resistor in the TLB). The resistance of the resistor does not vary with supply voltage, thus reducing the effective variation in r_{on} of the high and low drives.

As the supply voltage lowers, the ACB output branch provides less support for the ac transition due to the series diode. The propagation delay performance is then affected primarily by the TLB and DCB. Again, by inserting the series resistance, the balance between the high-drive transistor and low-drive transistor is preserved better at lower V_{CC} nodes.

The electrical characteristics of the AUC family are critical aspects of a successful system design. The following sections discuss the ac and dc performance of the devices.

3.2.1 AC Performance

Table 3 shows a comparison of the propagation delay for different AUC Little Logic devices operating at different voltage nodes. These results are from laboratory tests using the standard load specifications in the parameter measurement information (see Appendix A).

	t _{pd} (ns)									
Device	V _{CC} = 0.8 V	V _{CC} = 1.2 ± 0.1 V		V _{CC} = 1.5 ± 0.1 V		V _{CC} = 1.8 ± 0.15 V			V _{CC} = 2.5 ± 0.2 V	
	ТҮР	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX
SN74AUC1G00	4.7	0.9	3.5	0.5	2.3	0.7	1.3	2.5	0.5	2.1
SN74AUC1G02	4.6	0.9	3.4	0.5	2.2	0.7	1.3	2.5	0.5	2.1
SN74AUC1G04	4.4	0.8	3.3	0.5	2.2	0.6	1.2	2.5	0.5	1.9
SN74AUC1G06	5.0	0.3	3.1	0.2	2.5	0.5	1.6	2.9	0.2	1.9
SN74AUC1G07	4.7	0.3	3.3	0.2	2.4	0.8	1.9	2.5	0.2	1.8
SN74AUC1G08	4.7	0.9	3.5	0.6	2.6	0.7	1.3	2.5	0.5	2.1
SN74AUC1G14	5.8	0.7	4.2	0.6	2.7	0.7	1.6	2.8	0.5	2.5
SN74AUC1G17	5.7	0.8	4.0	0.7	2.4	0.8	1.4	2.5	0.7	2.6
SN74AUC1G32	4.8	1.0	3.5	0.6	2.3	0.8	1.4	2.5	0.6	2.1

Table 3. Timing Characteristics of AUC Little Logic Devices

Table 3 shows that the AUC Little Logic devices have very low propagation delay. The devices appear to be optimized at the 1.5-V node because the t_{pd} is lowest when $V_{CC} = 1.5$ V. However, the t_{pd} values are measured under different load conditions (see Appendix A). The AUC Little Logic devices are optimized at the 1.8-V node but, because the 1.8-V node test load ($R_L = 1 \ k\Omega$; $C_L = 30 \ pF$) is heavier than the 1.5-V test load ($R_L = 2 \ k\Omega$; $C_L = 15 \ pF$), the devices appear to be slower at the 1.8-V node than they are at the 1.5-V node. The test loads used for characterizing the devices are the standard JEDEC test loads at the respective voltage nodes.

A true comparison of the propagation delays of the AUC Little Logic devices at different voltage nodes is obtained by measuring the propagation delays at different voltage nodes when the device is under the same loading condition. Figure 5 shows typical variations of propagation delay with respect to capacitive loading for 1.5-V, 1.8-V, and 2.5-V V_{CC}. In all three cases, a resistive load of 1 M Ω was connected between the output and ground. The data were collected under nominal-process conditions from the SN74AUC1G00 at 25°C. Similarly, Figure 6 shows typical variations of propagation delay with respect to capacitive loading for 0.8-V and 1.2-V V_{CC}. The data also were collected under the same conditions as for Figure 5.

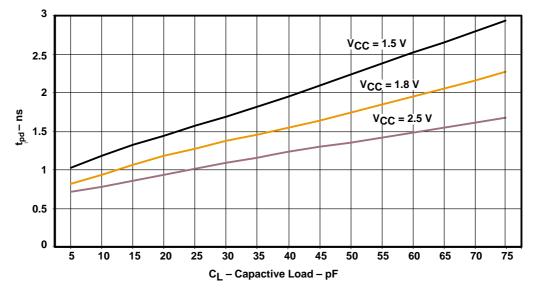
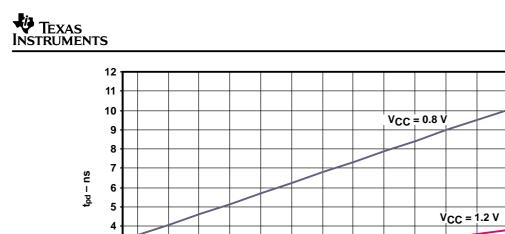



Figure 5. t_{pd} vs Capacitive Load at 2.5-V, 1.8-V, and 1.5-V V_{CC}

3.2.2 DC Performance

3

The V_{OH} vs I_{OH} and V_{OL} vs I_{OL} characteristics are unique for the ULTTL output used in the AUC Little Logic devices. Figures 7 and 8 show the typical V_O vs I_O performance of the AUC1G devices. These curves can be used to determine an approximate output resistance at each supply-voltage node. These figures are provided to demonstrate the dc drive performance of the integrated circuit, but do not relate directly to the ac performance.

It is common to use the V_O vs I_O curves to generate Bergeron plots for analyzing the effective signal integrity of the driver (see *The Bergeron Method: A Graphical Method for Determining Line Reflections in Transient Phenomena*).^[1] A simple V_O vs I_O plot is not accurate for this purpose unless the device is biased in an ac mode before generating the curve. For a low-to-high transition, the ac mode is defined as biasing the input so as to generate a high logic level on the output, then sweeping the load current from high current (between 70 mA and 80 mA) to 0 mA and monitoring the corresponding output waveform. Sweeping the current from a high to low represents the actual operation during ac operation because the current is highest at the beginning of the transition and reduces as the output reaches the desired logic level. The same concept applies for a high-to-low transition.

As previously mentioned, the AUC Little Logic devices are optimized to drive a 50- Ω to 65- Ω transmission line, and provide 8-mA output current at 1.8-V V_{CC}. The majority of application loads targeted for the AUC Little Logic family can be represented as a transmission line rather than a dc load. Therefore, 4 mA (~70 Ω) of dc drive current should be sufficient.

75

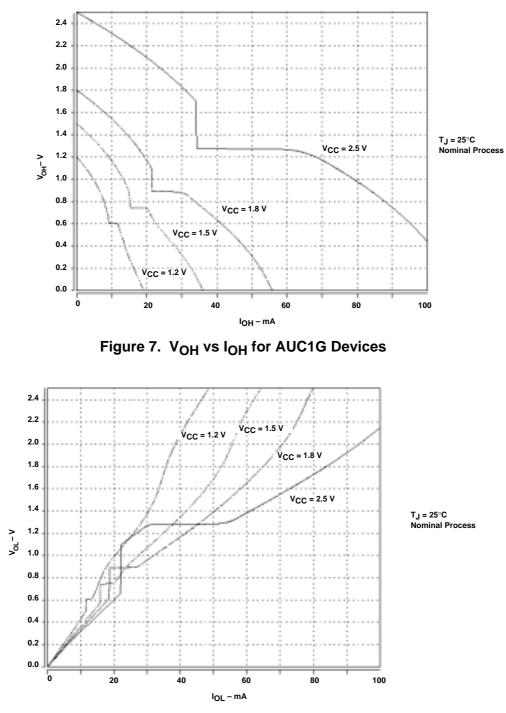
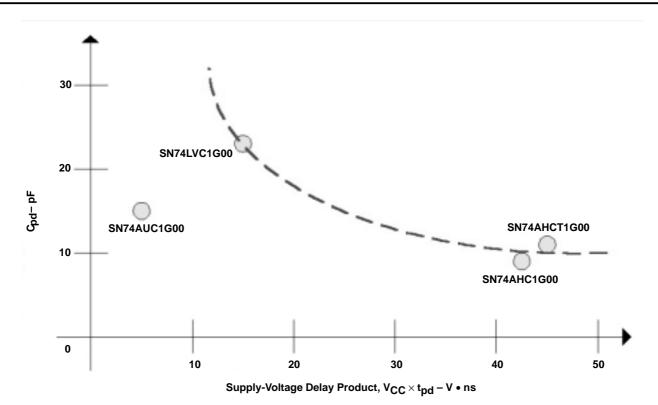


Figure 8. V_{OL} vs I_{OL} for AUC1G Devices

With each trace on the V_{OH} vs I_{OH} and V_{OL} vs I_{OL} plots, a small step function is present outside the drive conditions of the data sheet. This step in the waveform should not cause any problems in performance because it occurs at the point when the ACB and DCB are both turned off, and affects only the ac-signal-integrity performance, for which it is designed (refer to the Novel Output Structure section for more detailed operation).

3.3 Power Consumption


System designers, especially of portable applications, are becoming more concerned with the power consumption of each integrated circuit. The power consumption of an integrated circuit determines how much energy is consumed during operation (especially important for battery-powered systems), and how much heat the integrated circuit dissipates (especially important in personal-computer applications). The AUC Little Logic devices are designed for optimum efficiency in power consumption.

Two components establish the level of power consumption in a CMOS circuit:

- 1. Static dissipation caused by continuous leakage current from the power supply while the output is in a static (nonswitching) state
- Dynamic dissipation caused by switching-transient current, which is a combination of the short-circuit current (current pulse from V_{CC} to GND during a transition) and load current (current required to charge the capacitive load on the output)

Although system designers desire integrated circuits with minimal power consumption, lower power often results in slower propagation delays. For CMOS designs, the propagation delay and the power consumption of an integrated circuit are related. For a given gate topology, the product of power consumption and propagation delay usually is a constant. This is referred to as the power-delay product (PDP) and is a quality measure for analyzing the speed vs power efficiency of a given device. The AUC Little Logic devices provide a low-power solution, without sacrificing speed. Figure 9 shows the relative power efficiency of the AUC Little Logic devices compared with other Little Logic devices. The data represented in Figure 9 were measured at the supply-voltage node at which the different devices are optimized (see Table 4).

TEXAS INSTRUMENTS

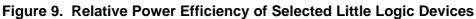


 Table 4. Power Consumption and Speed of Selected Little Logic Devices at Their Optimized Supply-Voltage Nodes

Device	Optimized V _{CC}	сL	Maximum t _{pd}	Typical C _{pd}
SN74AUC1G00	1.8 V	30 pF	2.5 ns	15 pF
SN74LVC1G00	3.3 V	30 pF	4.7 ns	23 pF
SN74AHC1G00	5.0 V	50 pF	8.5 ns	9.5 pF
SN74AHCT1G00	5.0 V	50 pF	9.0 ns	10.5 pF

4 Design Issues and AUC Little Logic Solutions

4.1 Signal Integrity

As power-supply voltages decrease, signal integrity becomes a major issue. The noise margin required for a device to be considered operable reduces proportionately with a reduction in power-supply voltage. In addition to the requirement for better signal integrity and smaller noise margins, system designers, especially for portable applications, need a solution that requires no external termination (i.e., damping resistors, clamping diodes, etc.). Additional components use valuable board space, and space also is at a premium in portable applications. The AUC Little Logic devices provide the best possible solution for systems with these design constraints.

The ULTTL output provides great signal integrity without the need for external termination when driving traces of moderate length (less than 15 cm). Figure 10 shows a typical application environment. The driver represents an AUC Little Logic device and the receiver represents a CMOS device whose interface is compatible with the AUC logic levels. The transmission line corresponds to a PCB trace of 50 Ω to 65 Ω for a portable system application, consisting of short trace length (less than 15 cm). During the second phase of the three distinctive transitional phases of the ULTTL output (see Section 2.1), the AUC output impedance changes to a level close to that of the transmission line (see Figure 11), thus minimizing overshoots and undershoots.

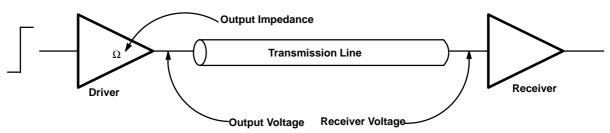


Figure 10. Transmission-Line Test Points for Simulations

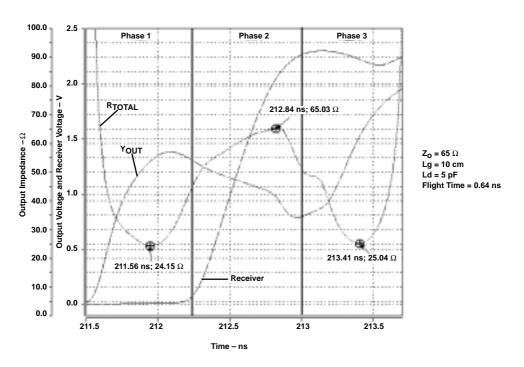


Figure 11. Output Impedance, Output Voltage, and Receiver Voltage of AUC Single-Gate Transmission-Line Simulation

The simulation results in Figure 12 show typical operation into a 10-cm PCB trace, with a line impedance of 65 Ω and a 5-pF capacitive load at the receiver end. The simulation was completed at 10 MHz, with an input edge rate of 1 ns/V.

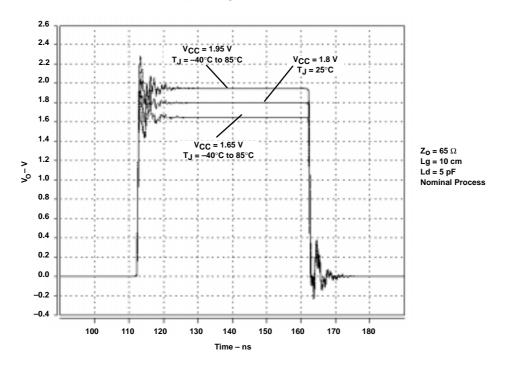


Figure 12. Simulation of $65-\Omega$ Transmission Line Across Supply Voltage and Temperature

TEXAS INSTRUMENTS

Although the AUC Little Logic devices are optimized for $50-\Omega$ to $65-\Omega$ loads, some applications might require operation into $30-\Omega$ to $75-\Omega$ loads. The unique characteristic of the ULTTL output provides adequate performance into these wider-range loads (see Figures 13 and 14).

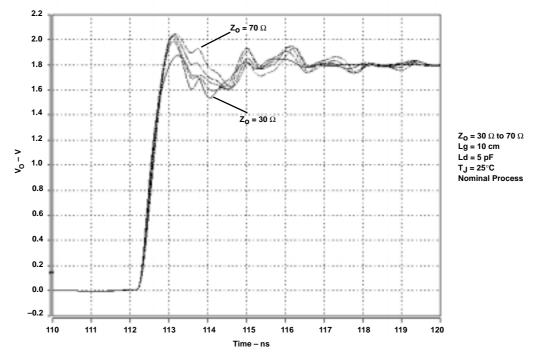


Figure 13. Simulation of Low-to-High Transition into 30- Ω to 70- Ω Transmission Line

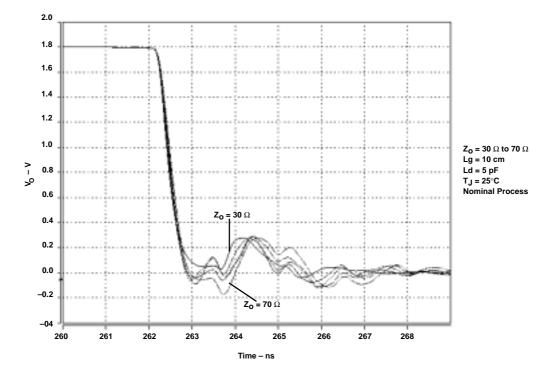
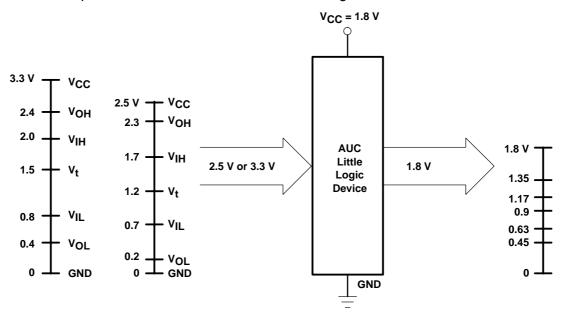



Figure 14. Simulation of High-to-Low Transition into 30- Ω to 70- Ω Transmission Line

4.2 Mixed-Voltage-Mode Data Communication

In designing electronic systems, proper interfaces between buses with incompatible logic levels must be provided. Voltage-level translation is necessary to allow the interconnection with flexibility to provide a future migration path to lower-voltage input/output (I/O) levels.

Voltage translation between buses with incompatible logic levels can be accomplished using AUC Little Logic devices. With a unidirectional AUC driver powered with 1.8-V V_{CC}, data communication from 2.5-V or 3.3-V devices can occur (see Figure 15). In this case, the inputs of the AUC devices are tolerant of the higher voltages and accept the higher switching levels. Likewise, the outputs of the AUC driver are valid 1.8-V signal levels.

Figure 15. Device at 1.8-V V_{CC}, With 2.5-V or 3.3-V Inputs, Showing Switching Levels

Generally, a unidirectional AUC driver powered with 0.8-V, 1.2-V, 1.5-V, or 1.8-V V_{CC} can be used to down-translate from a higher voltage node to the voltage node of the supply voltage.

Similarly, up-translation and down-translation can be achieved by using the SN74AUC1G06 or the SN74AUC1G07. The SN74AUC1G07 is a noninverting buffer with an open-drain output, and the SN74AUC1G06 is the inverting buffer (the SN74AUC1G07 plus an extra stage of inversion). These buffers are designed to operate in the 0.8-V to 2.7-V V_{CC} range; however, inputs and outputs can interface with 3.3-V signals.

This section focuses on the application of the SN74AUC1G07 in voltage-level translation. However, the SN74AUC1G06 can be used in such applications as well, only with an extra inversion.

TEXAS INSTRUMENTS

The open-drain feature of the SN74AUC1G07 is useful in voltage translation. The fact that the input and output structure of this device can accept voltages from 0.8-V to 3.3-V enables the device to support voltage translation from a lower voltage to a higher voltage, or vice versa. Without the p-channel pullup on the output structure of the SN74AUC1G07, the entire output voltage drops across the n-channel transistor (see Figure 16). With the help of a pullup resistor that is connected to the designer's choice of voltage (not exceeding 3.6 V), voltage translation is achieved.

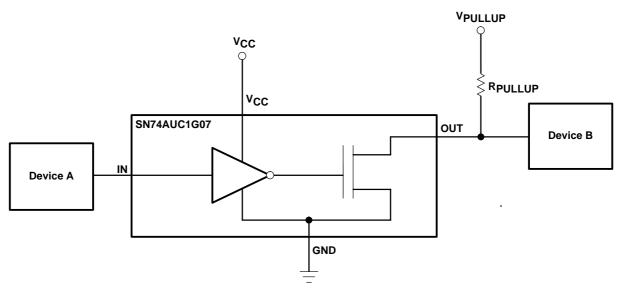


Figure 16. Circuit for Voltage Translation Using the SN74AUC1G07

The voltage translation provided by the SN74AUC1G07 can be used between wide CMOS voltage nodes. Table 5 illustrates parameters necessary for some example voltage translations between devices A and B.

Device A	Device B	VCC	VPULLUP	Function
3.3-V CMOS	1.2-V LVCMOS	0.8 V to 2.5 V	1.2 V	Down translation
3.3-V CMOS	1.8-V LVCMOS	0.8 V to 2.5 V	1.8 V	Down translation
2.5-V LVCMOS	1.8-V LVCMOS	0.8 V to 2.5 V	1.8 V	Down translation
3.3-V CMOS	3.3-V CMOS	0.8 V to 2.5 V	3.3 V	Buffer
1.8-V LVCMOS	1.8-V LVCMOS	0.8 V to 1.8 V	1.8 V	Buffer
1.2-V LVCMOS	1.2-V LVCMOS	0.8 V to 1.2 V	1.2 V	Buffer
1.8-V LVCMOS	3.3-V CMOS	0.8 V to 1.8 V	3.3 V	Up translation
1.8-V LVCMOS	2.5-V LVCMOS	0.8 V to 1.8 V	2.5 V	Up translation
1.2-V LVCMOS	3.3-V CMOS	0.8 V to 1.2 V	3.3 V	Up translation

Table 5. Requirements for Voltage Translation Between Devices A and B

In Table 5, note that the SN74AUC1G07 also can be used as a buffer in some applications. In such configurations, the device can be used as an active-high wired-AND or for active-low wired-OR functions. This is achieved by tying outputs of two or more open-drain devices.

4.3 Partial Power Down

Electronic systems usually have power-saving or suspended modes of operation, whereby some circuitry in the system is powered down to reduce power consumption. During such modes of operation, the supply voltage of the circuitry is turned off. This mode of operation is known as partial-power-down mode, as part of the system is powered down. The AUC Little Logic devices support partial-power-down applications and it is important that the designer understands the data-sheet-specified parameters related to this feature.

To partially power down a device, no direct path from the input to V_{CC} or from the output to V_{CC} can exist. Consequently, when the device is powered down ($V_{CC} = 0$ V), independent of the logic level at the I/O terminal, no current can flow from the I/O terminal to the power-supply pin, which is at 0 V. In the partial-powered-down mode, therefore, other devices interfacing with the powered-down device may be powered up with valid logic levels at the I/O terminals.

With the AUC Little Logic, there is no direct path from the I/O terminal to V_{CC}. Consequently, these devices support partial-power-down modes of operation. This feature is specified on the data sheet with the I_{off} parameter. The I_{off} parameter is the maximum leakage current into (or out of) the input (or output) transistors when forcing the input (or output) to 2.7 V and V_{CC} = 0 V. With the AUC Little Logic, I_{off} is specified at ±10 μ A. This is a very small current and represents leakage current at the I/O terminal.

4.4 Low Power Consumption

The migration to lower voltage nodes is becoming increasingly important in digital electronics, especially with portable and consumer electronics, because of the benefits of reduced power consumption. If power consumption is reduced, these electronics can use smaller batteries, thus reducing form factors, while getting the maximum life of the power supply between charges.

The AUC Little Logic devices enable low-power, high-performance designs. The power consumption reduction decreases heat dissipation in compact designs. This reduced heat dissipation simplifies heat removal and decreases the amount of package space needed, thus saving valuable board space in compact designs.

Figure 17 shows plots of supply current vs frequency for different AUC Little Logic devices. For each of the devices, the test was done with only one input switching from 0 V to 1.8 V at 1 ns/V. Note that the supply current increases with increased input transition. A 1.8-V power supply was used, and the tests were done at 25° C.

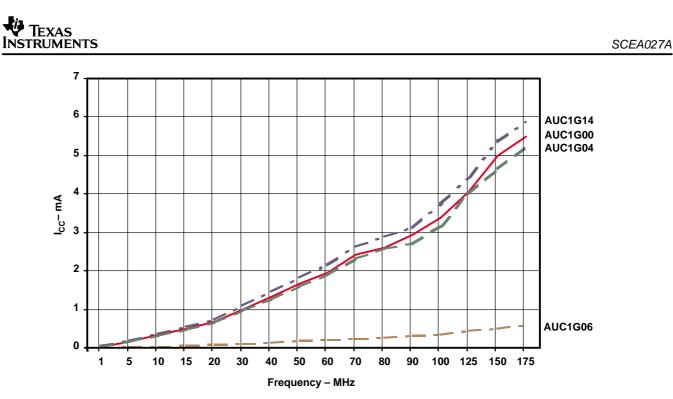


Figure 17. I_{CC} vs Frequency for Different AUC Little Logic Devices

Generally, the AUC Little Logic devices consume less power than the corresponding Little Logic devices of other families. Figure 18 provides a comparison of the supply current vs frequency for the SN74LVC1G06 and the SN74AUC1G06. Both devices were tested under the same conditions as those used to obtain the results in Figure 17.

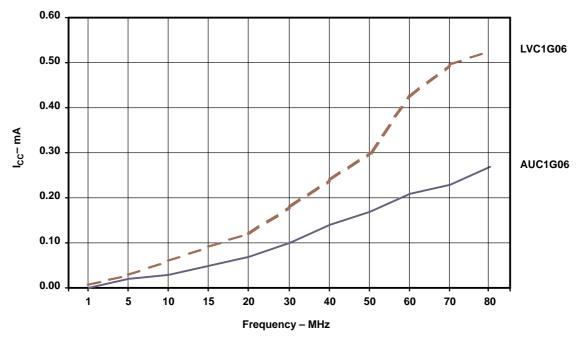


Figure 18. I_{CC} vs Frequency for SN74AUC1G06 and SN74LVC1G06 Devices

5 Package Information

The devices discussed in this application report are available in a variety of packages, including SOT-23 (DBV), SC-70 (DCK), tin-lead (SnPb) NanoStar[™] (YEA), and lead-free NanoFree[™] (YZA). TI's *Little Logic Data Book*, literature number SCED010, lists devices and packages in which they are available. The mechanical data information for these packages is provided in Appendix B of this application report.

The mechanical data for the YEA and YZA packages are the same. The only difference between the two packages is that the YEA package is leaded, while the YZA package is lead-free. The NanoStar and NanoFree packages comply with JEDEC MO-211.

6 Features and Benefits

Table 6 summarizes the features and benefits of AUC Little Logic devices.

FEATURES	BENEFITS	
Low power consumption	Use in portable electronics and battery-operated systems	
Supports Ioff at inputs	Use in applications that require partial power-down modes	
3.6-V I/O tolerant	Use in level-translation applications. Eases migration to lower-voltage nodes. Enhances system safety.	
Sub-1-V operable	Flexibility for future migration. Operable at lower-voltage nodes means less power consumption.	
Small low-profile packages	Saves board space. Simplify large PCB routing. Use as quick fix for design errors.	
Cost effective	Inexpensive compared to redesign. Used as quick fix for design errors. Reduces time-to-market and maximized design investment in all types of electronic systems.	

7 Conclusion

The AUC Little Logic devices provide simple cost-effective solutions for portable electronics and battery-operated systems and facilitates quick fixes in system design errors. The devices are optimized at 1.8 V and are compatible with 2.5-V, 1.5-V, 1.2-V, and 0.8-V systems. The AUC family features TI's ULTTL output circuitry, 3.6-V I/O tolerance, low power consumption capability, and partial power-down support. Features, electrical characteristics, and applications of the AUC Little Logic devices are presented in this application report.

8 Frequently Asked Questions (FAQs)

Question 1: What is AUC?

- Answer: The advanced ultra-low-voltage CMOS (AUC) is the new logic family that is optimized at 1.8 V, has an operating voltage range from 0.8 V to 2.5 V, and is tolerant of 3.3-V input and output voltages.
- Question 2: What is ULTTL?
- Answer: The ultra-low-voltage transistor-transistor logic (ULTTL) is a new interface driver designed for high-speed with low EMI noise, low power consumption, and optimal signal integrity.
- Question 3: How do I get copies of the AUC family data sheets and samples?
- Answer: The AUC family data sheets can be obtained by accessing <u>http://www.ti.com</u>. Samples of the AUC devices can be obtained by contacting your local TI sales representative.
- Question 4: How do I get copies of AUC family SPICE and IBIS models?
- Answer: The SPICE models for AUC devices can be obtained by contacting your local TI sales representative. The IBIS model can be obtained by accessing <u>http://www.ti.com</u>.
- Question 5: What are the advantages of migrating to the AUC family?
- Answer: The advantages of migrating to the AUC family include:
 - Lowered power consumption enables use in portable electronics and battery-operated systems.
 - Partial-power-down mode is supported.
 - Level-translation is feasible and migration to lower-voltage nodes is easy.
 - Future migration to sub-1-V applications is possible.
 - Board space is saved and large-PCB routing is simplified.
 - Capability for fixing design errors is flexible and redesign cost is lower.

Question 6: What should I do if it appears that the device is producing a noisy signal?

- Answer: The most common reason an AUC device may appear to be producing a noisy signal is that the outputs have not been terminated properly. To reduce or eliminate reflections that are inherent with long trace lengths and transmission lines, one of five techniques must be used to match the impedance of the transmission line and thereby properly terminate the output. These five techniques are: single-resistor termination, parallel split-resistor termination, series-resistor termination, resistor-and-capacitor termination, and diode termination. For a detailed explanation of the techniques and the advantages and disadvantages of each method, refer to the *Advanced Schottky Load Management* Application Report.^[3]
- Question 7: What is the maximum voltage the input pin of an AUC Little Logic can sustain when the device is powered down or when the device is powered up?
- Answer: The AUC Little Logic devices are 3.6-V tolerant at the inputs. Therefore, within the supply-voltage operational range (0.8 V = V_{CC} = 2.7 V), the input voltage can be as high as 3.6 V. Further, the AUC Little Logic devices have the I_{off} feature. Therefore, if V_{CC} = 0 V, the inputs can tolerate a 3.6-V signal.
- Question 8: What is the maximum voltage the output pin of an AUC Little Logic device can sustain when the device is powered down, and how can this information be inferred from the data sheet?
- Answer: With older family devices, there is a parasitic diode connected from the output to V_{CC} . With those devices, if $V_{CC} = 0$ V and the output is driven about 1 V above V_{CC} , the diode is forward biased and conducts current from the output pin to the V_{CC} pin. Under this condition, the device can be damaged. Therefore, the data sheet of a device with a power-clamp diode has a positive limit on the output clamp current (I_{OK}).

The AUC Little Logic, however, have no parasitic diode from the output to V_{CC}. The data sheets specify an absolute maximum rating I_{OK} of –50 mA, with no positive limit for this specification. Therefore, the output can be driven above V_{CC}, but caution should be taken to ensure that the I_{OK} limit is not exceeded when the output is driven below GND.

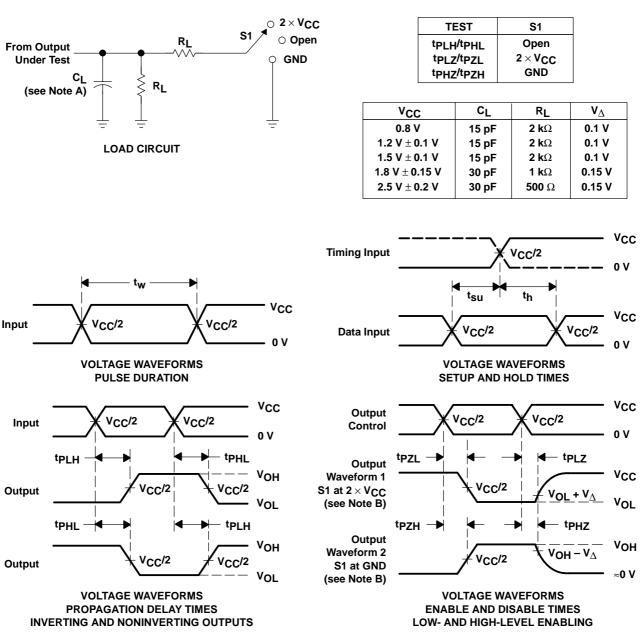
The above explanation applies only for the absolute maximum rating of the device. Under the recommended operating conditions, the AUC Little Logic devices with outputs incapable of being placed in the high-impedance state are recommended to be between 0 V and V_{CC} .

- Question 9: What is the maximum operating frequency of the AUC Little Logic devices?
- Answer: The maximum operating frequency of a device depends upon the load that the AUC device is driving. Using the specified data sheet load, the AUC Little Logic devices have been tested in the laboratory to operate at frequencies greater than 175 MHz.

9 References

- 1. The Bergeron Method: A Graphical Method for Determining Line Reflections in Transient Phenomena, application report, literature number SDYA014.
- 2. Little Logic Data Book (SCED010), November 2001.
- 3. Advanced Schottky Load Management, application report, literature number SDYA016.

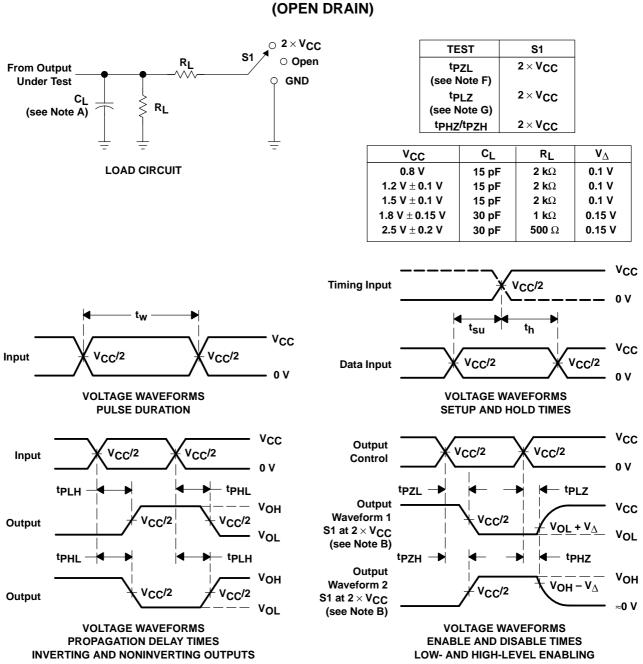
10 Glossary


ac Alternating current ACB ac branch AUC Advanced ultra-low-voltage CMOS CMOS Complementary metal-oxide silicon; a device technology that has balanced drive outputs and low power consumption dc Direct current DCB dc branch Electromagnetic interference EMI IBIS I/O buffer information specification The maximum leakage current into/out of the input/output transistors when forcing loff the input/output to 2.7 V and $V_{CC} = 0$ V High-level output current. The current out of an output with input conditions applied ЮН that, according to the product specification, establishes a high level at the output. Output clamp current. The absolute maximum current that can be sourced from an lok output pin when the voltage is taken below 0 V Low-level output current. The current into an output with input conditions applied that, IOI according to the product specification, establishes a low level at the output. JEDEC Joint Electron Device Engineering Council LOP Lower-output transistor LVCMOS Low-voltage complementary metal-oxide silicon PCB Printed circuit board PDP Power-delay product **On-channel resistance** ron

TEXAS INSTRUMENTS

SPICE	Simulation program with integrated circuit emphasis
ТΙ	Texas Instruments
TLB	Transmission-line branch
t _{pd}	Propagation delay time. The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level ($t_{pd} = t_{PHL}$ or t_{PLH}).
^t PHL	Propagation delay time, high-to-low level output. The time between the specified reference points on the input and output voltage waveforms, with the output changing from the defined high level to the defined low level.
^t PLH	Propagation delay time, low-to-high level output. The time between the specified reference points on the input and output voltage waveforms, with the output changing from the defined low level to the defined high level
TTL	Transistor-transistor logic
ULTTL	Ultra-low-voltage transistor-transistor logic
UOP	Upper-output transistor
V _{OH}	High-level output voltage. The voltage at an output terminal with input conditions applied such that, according to product specification, it establishes a high level at the output.
V _{OL}	Low-level output voltage. The voltage at an output terminal with input conditions applied such that, according to product specification, it establishes a low level at the output.

Appendix A. Parameter Measurement Information


PARAMETER MEASUREMENT INFORMATION

NOTES: I. C_L includes probe and jig capacitance.

- J. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. K. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- L. The outputs are measured one at a time with one transition per measurement.
- M. tpLZ and tpHZ are the same as tdis.
- N. tpzL and tpzH are the same as ten.
- O. tPLH and tPHL are the same as tpd.
- P. All parameters and waveforms are not applicable to all devices.

Figure 19. AUC Little Logic (with ULTTL Outputs) Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (OPEN DRAIN)

NOTES: Q. CL includes probe and jig capacitance.

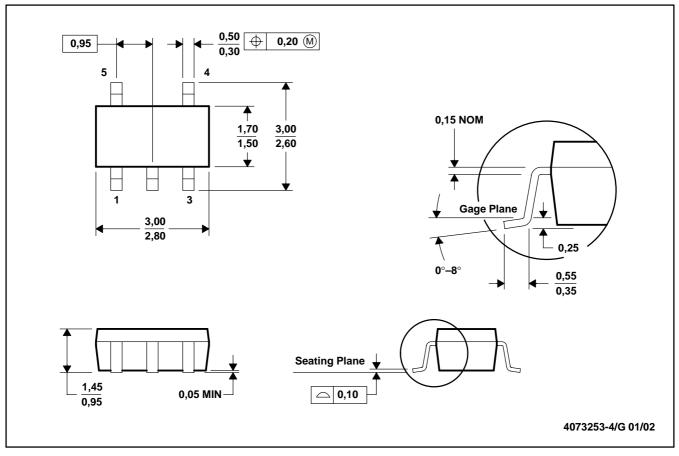

- R. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- S. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- T. The outputs are measured one at a time with one transition per measurement.
- U. For open-drain outputs, t_{PLZ} and t_{PZL} are the same as t_{pd} .
- V. t_{PZL} is measured at V_{CC}/2.
- W. tpLZ is measured at VOL + V $_{\Delta}$.
- X. All parameters and waveforms are not applicable to all devices.

Figure 20. AUC Little Logic (with Open-Drain Outputs) Load Circuit and Voltage Waveforms

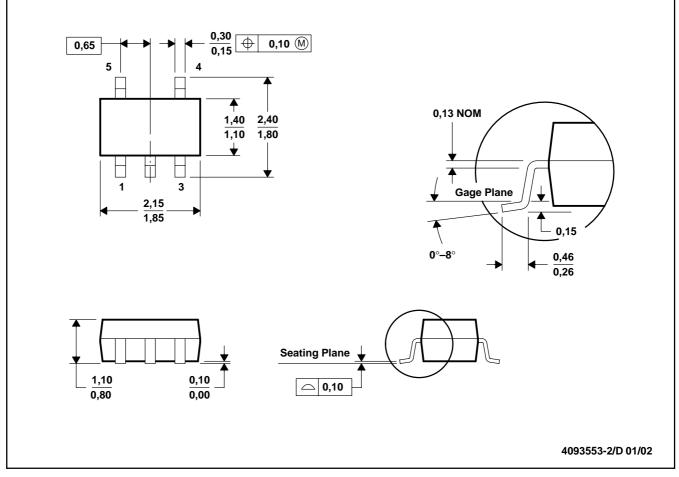
Appendix B. Mechanical Data

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178


Figure 21. Plastic Small Outline (DBV)

SCEA027A

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

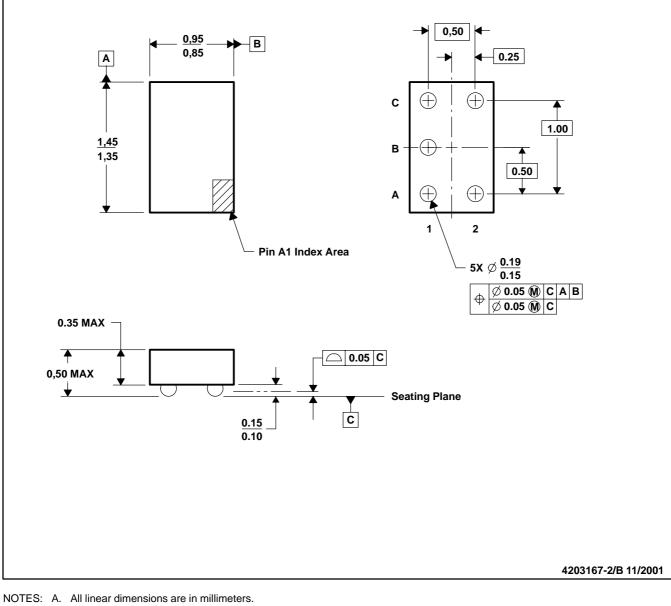

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

Figure 22. Plastic Small Outline (DCK)

YEA (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

B. This drawing is subject to change without notice.
C. NanoStar™ package configuration.
D. Package complies to JEDEC MO-211.

Figure 23. Die-Size Ball Grid Array (YEA or YZA)

NanoStar is a trademark of Texas Instruments.

General Information	1
AUC Single Gates	2
AUC Widebus™	3
AUC Widebus+™	4
Application Reports	5
Mechanical Data	6

Contents

Page
6–3
6–7
6–7
6–8
6–9
6–10
6–11
6–12
6–13
6–14

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.

Factory orders for circuits described in this data book should include a four-part type number as explained in the following example.

		EXAMPLE:	SN	AUC16244	DGV	R
Prefix			_/			
SN = Standar SNJ = Complia	d prefix ant to MIL-PRF-38535 (QML)					
Unique Circuit Des	scription		/			
MUST CONTAIN SI	EVEN TO NINE CHARACTERS					
Examples: AL						
AL	CH16374					
Package ———				_/ /		
MUST CONTAIN O	NE TO THREE LETTERS					
DBV, DCK DGG DGV GQL, YEA, YZ	 = plastic small-outline transistor = plastic thin shrink small-outline package = plastic thin very small-outline package A = ball grid array 					
Tape and Reel Pac	kaging	/				

Valid for surface-mount packages only. All orders for tape and reel must be for whole reels.

MUST CONTAIN ONE LETTER

R = Standard tape and reel (required for DBV, DCK, DGG, DGV, GQL, YEA, and YZA.

CARRIER-TAPE WIDTH (mm)	COVER-TAPE WIDTH (mm)	REEL WIDTH (mm)	REEL DIAMETER (mm)
8	5.4	9.0	178
12	9.2	12.4	330
16	13.3	16.4	330
24	21.0	24.4	330
32	25.5	32.4	330
44	37.5	44.4	330
56	49.5	56.4	330

Table 1. Normal Dimensions of Packing Materials

All material meets or exceeds industry guidelines for ESD protection.

Dimensions are selected based on package size and design configurations. All dimensions are established to be within the recommendations of the Electronics Industry Association Standard EIA-481-1,2,3.

Common dimensions of particular interest to the end user are carrier-tape width, pocket pitch, and quantity per reel (see Figure 1 and Table 2).

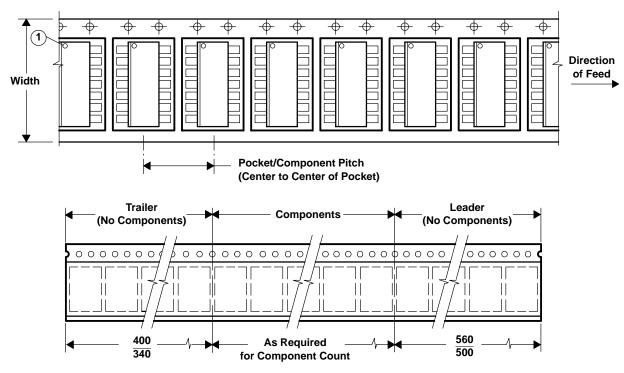
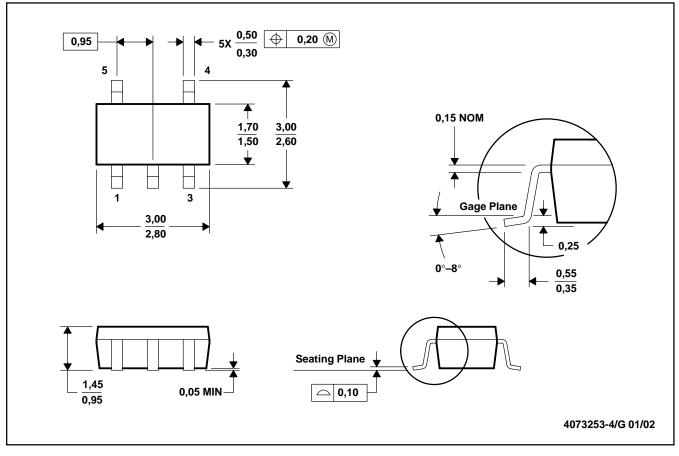


Figure 1. Typical Carrier-Tape Design

PACKA	AGE	NO. OF PINS	CARRIER-TAPE WIDTH (mm)	POCKET PITCH (mm)	QTY/REEL
DSBGA	YEA	5	8.00	4.00	3000
DSBGA	YZA	5	8.00	4.00	3000
LFBGA	GKE	96	24.00	8.00	1000
SOT	DBV	5	8.00	4.00	3000
301	DCK	5	8.00	4.00	3000
		48	24.00	12.00	2000
TSSOP	TSSOP DGG	56	24.00	12.00	2000
		64	24.00	12.00	2000
		14	16.00	8.00	2000
		16	16.00	8.00	2000
TVSOP	DGV	20	16.00	8.00	2000
1050P		24	16.00	8.00	2000
		48	16.00	8.00	2000
		56	24.00	8.00	2000
VFBGA	GQL	56	16.00	8.00	1000


Table 2. Selected Tape-and-Reel Specifications

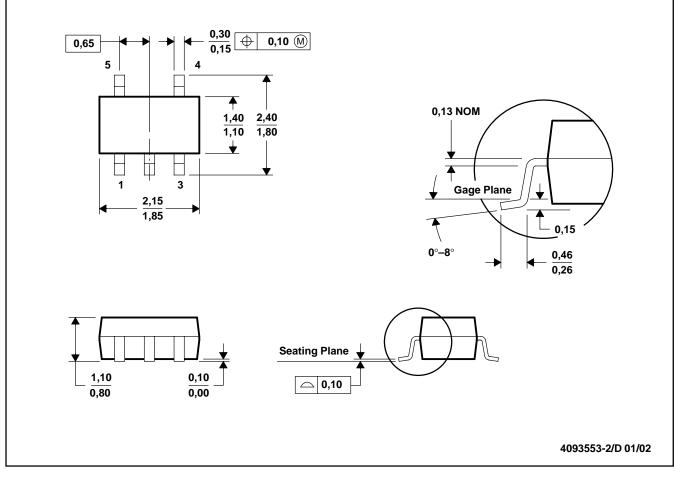
MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

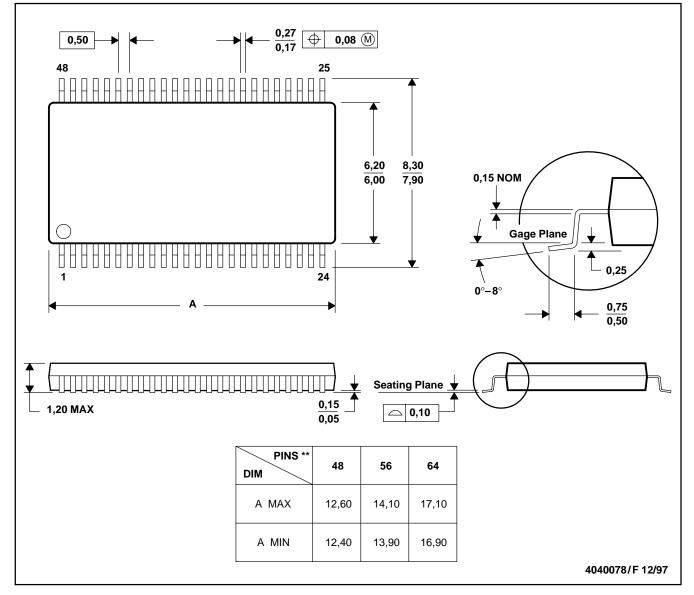

- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

MECHANICAL DATA

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

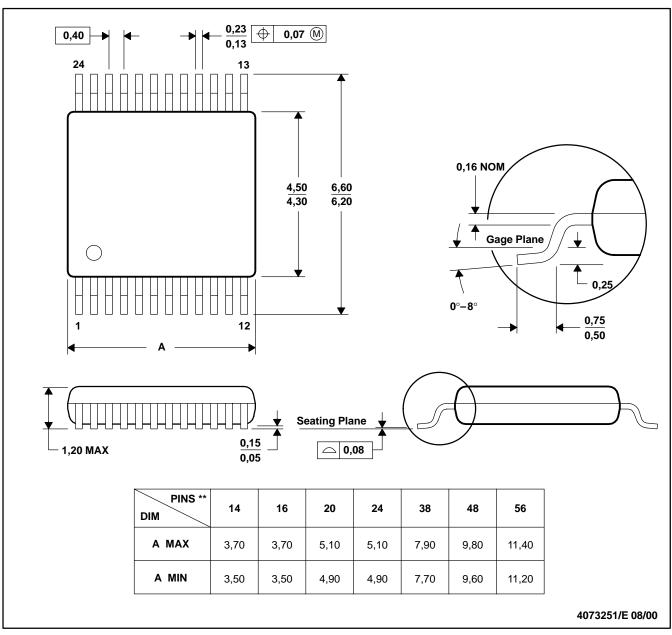
48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153



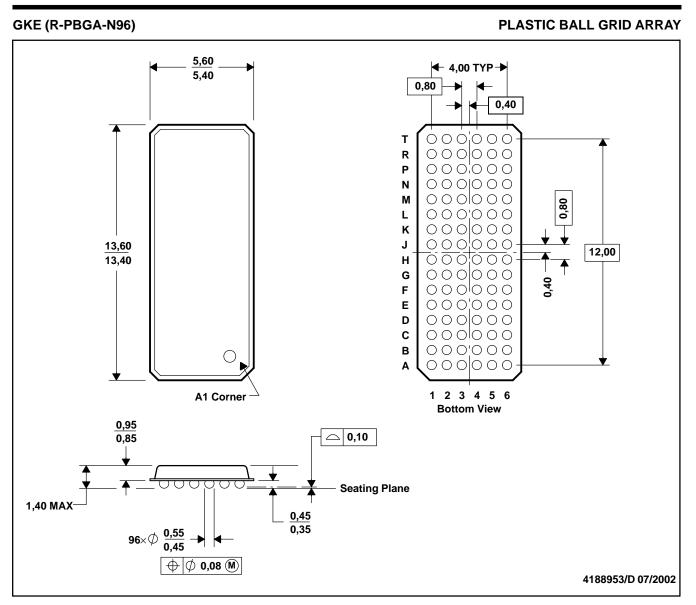
MECHANICAL DATA

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

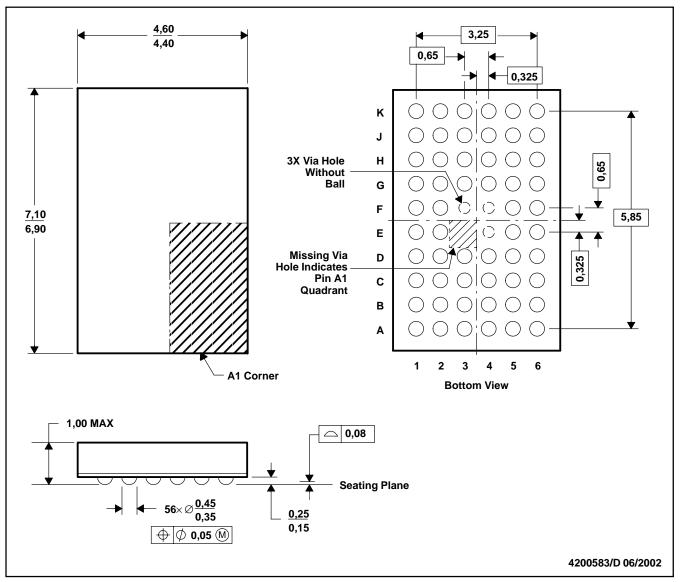
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins – MO-194

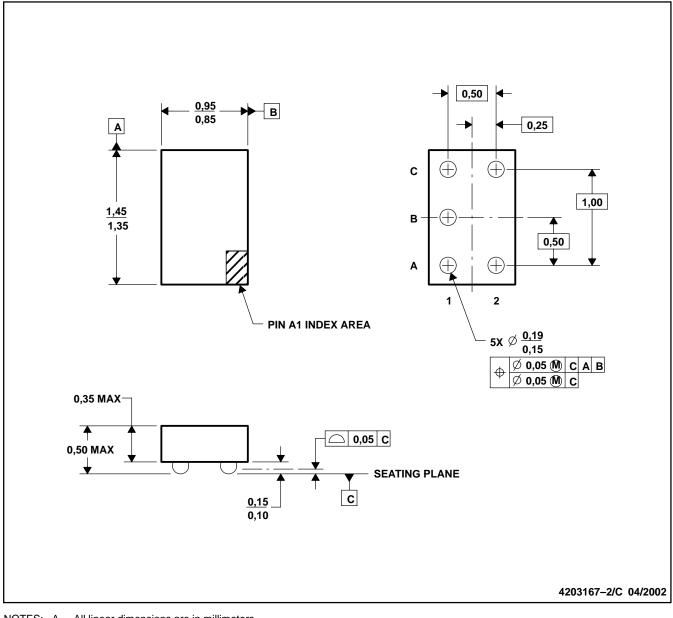

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar BGA[™] configuration
- D. Falls within JEDEC MO-205 variation CC.
- E. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

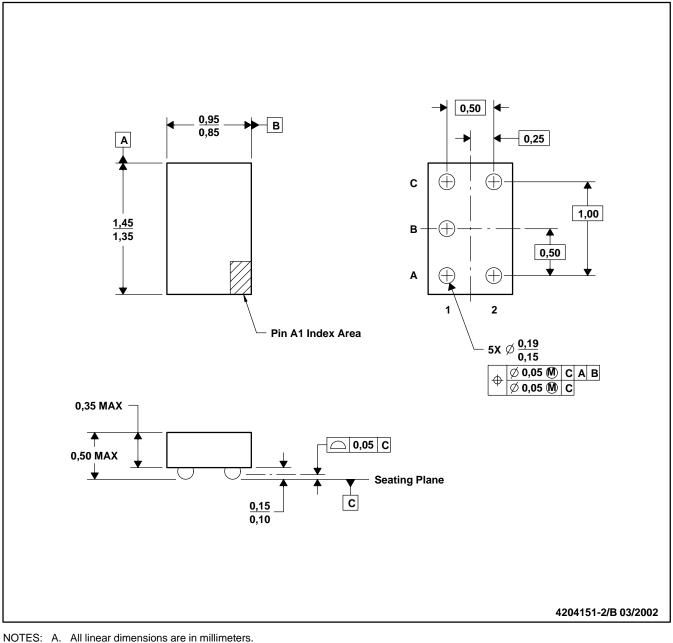

- B. This drawing is subject to change without notice.
- C. MicroStar Junior™ BGA configuration
- D. Falls within JEDEC MO-225 variation BA.
- E. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

MicroStar Junior is a trademark of Texas Instruments.

YEA (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. NanoStar package configuration.
- D. Package complies to JEDEC MO-211 variation EA.
- E. This package is tin-lead (SnPb). Refer to the 5 YZA package (drawing 4204151) for lead-free.

MECHANICAL DATA

YZA (R-XBGA-N5)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoFree[™] package configuration.
- D. Package complies to JEDEC MO-211 variation EA.
- E. This package is lead-free. Refer to the 5 YEA package (drawing 4203167) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

