

# TLV320AIC36EVM-K

This user's guide describes the characteristics, operation, and use of the TLV320AIC36EVM-K. This evaluation module (EVM) features a complete stereo audio codec with several inputs and outputs, extensive audio routing, mixing, and effects capabilities. A complete circuit description, schematic diagram, and bill of materials are also included.

The following related documents are available through the Texas Instruments Web site at www.ti.com.

| Device       | Literature Number |
|--------------|-------------------|
| TLV320AIC36  | SBAS387           |
| TAS1020B     | SLES025           |
| TPS767D318   | SLVS209           |
| SN74LVC125A  | SCAS290           |
| SN74LVC1G125 | SCES223           |
| SN74LVC1G07  | SCES296           |

### **EVM-Compatible Device Data Sheets**

#### Contents

| 1      | EVM C | Dverview                           | 3  |
|--------|-------|------------------------------------|----|
| 2      | EVM D | Description and Basics             | 3  |
|        |       | 0AIC36EVM-K Setup and Installation |    |
| 4      | AIC36 | Control Software                   | 11 |
| Append | A xib | EVM Connector Descriptions         | 29 |
| Append | dix B | TLV320AIC36EVM Schematic           | 33 |
| Append | dix C | TLV320AIC36EVM Layout Views        | 34 |
| Append | dix D | TLV320AIC36EVM Bill of Materials   | 38 |
| Append | dix E | USB-MODEVM Schematic               | 40 |
| Append | dix F | USB-MODEVM Bill of Materials       | 41 |
| Append | dix G | USB-MODEVM Protocol                | 43 |

### List of Figures

| 1  | TLV320AIC36EVM-K Block Diagram              | 4  |
|----|---------------------------------------------|----|
| 2  | Initial Screen of TLV320AIC36EVM-K Software | 9  |
| 3  | Compatibility Tab                           | 10 |
| 4  | Playback Script Tab                         | 12 |
| 5  | Playback Panel                              | 13 |
| 6  | Differential Microphone                     | 14 |
| 7  | Recording Panel                             | 14 |
| 8  | DRC Information Tab                         | 15 |
| 9  | Program Codec Pop-Up Window                 | 15 |
| 10 | ADC Biquad Filter Tool                      | 16 |

 $I^2S,\,I^2C$  are trademarks of Koninklijke Philips Electronics N.V. Windows is a trademark of Microsoft Corporation. SPI is a trademark of Motorola, Inc.  $I^2C$  is a trademark of Philips Corporation.

1



| 11 | DAC Biquad Filter Tool          | 18 |
|----|---------------------------------|----|
| 12 | Automatic Gain Control Panel    | 20 |
| 13 | Dynamic Range Compression Panel | 21 |
| 14 | Headset Detection Circuit       | 22 |
| 15 | Headset Detection Panel         | 23 |
| 16 | DC Measurement Panel            | 24 |
| 17 | Audio Inputs Panel              | 25 |
| 18 | EEPROM Writer Panel             | 25 |
| 19 | Status Flags Panel              | 26 |
| 20 | Register Tables Panel           | 27 |
| 21 | Command-line Interface Panel    | 28 |
| 22 | Top Layer                       | 34 |
| 23 | Mid-Layer 1                     | 34 |
| 24 | Mid-Layer 2                     | 35 |
| 25 | Bottom Layer                    | 35 |
| 26 | Top Overlay                     | 36 |
| 27 | Bottom Overlay                  | 36 |
| 28 | Drill Drawing                   | 37 |
| 29 | Composite                       | 37 |
|    |                                 |    |

### List of Tables

| USB-MODEVM SW2 Settings                       | 5                                                                                                                                                                                                                  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of Jumpers                               | 5                                                                                                                                                                                                                  |
| Jumper Settings for Headset Detection Example | 22                                                                                                                                                                                                                 |
| Analog Interface Pinout                       | 29                                                                                                                                                                                                                 |
| Alternate Analog Connectors                   | 30                                                                                                                                                                                                                 |
| Digital Interface Pinout                      | 31                                                                                                                                                                                                                 |
| Power Supply Pin Out                          | 32                                                                                                                                                                                                                 |
| TLV320AIC36EVM Bill of Materials              | 38                                                                                                                                                                                                                 |
| USB-MODEVM Bill of Materials                  | 41                                                                                                                                                                                                                 |
|                                               | List of Jumpers<br>Jumper Settings for Headset Detection Example<br>Analog Interface Pinout<br>Alternate Analog Connectors<br>Digital Interface Pinout<br>Power Supply Pin Out<br>TLV320AIC36EVM Bill of Materials |

2



### 1 EVM Overview

### 1.1 Features

- Full-featured evaluation board for the TLV320AIC36 stereo audio codec.
- USB connection to PC provides power, control, and streaming audio data for easy evaluation.
- Onboard microphone for ADC evaluation
- Connection points for external control and digital audio signals for quick connection to other circuits/input devices.

The TLV320AIC36EVM-K is a complete evaluation kit, which includes a universal serial bus (USB)-based motherboard and evaluation software for use with a personal computer running Microsoft Windows<sup>™</sup> XP.

### 1.2 Introduction

The TLV320AIC36EVM is in the Texas Instruments (TI) modular EVM form factor, which allows direct evaluation of the device performance and operating characteristics and eases software development and system prototyping.

The TLV320AIC36EVM-K is a complete evaluation/demonstration kit, which includes a USB-based motherboard called the USB-MODEVM Interface board and evaluation software for use with a personal computer (PC) running the Microsoft Windows XP operating system.

The TLV320AIC36EVM-K is operational with one USB cable connection to a PC. The USB connection provides power, control, and streaming audio data to the EVM for reduced setup and configuration. The EVM also allows external control signals, audio data, and power for advanced operation, which allows prototyping and connection to the rest of the development or system evaluation.

### 2 EVM Description and Basics

This section provides information on the analog input and output, digital control, power, and general connection of the TLV320AIC36EVM-K.

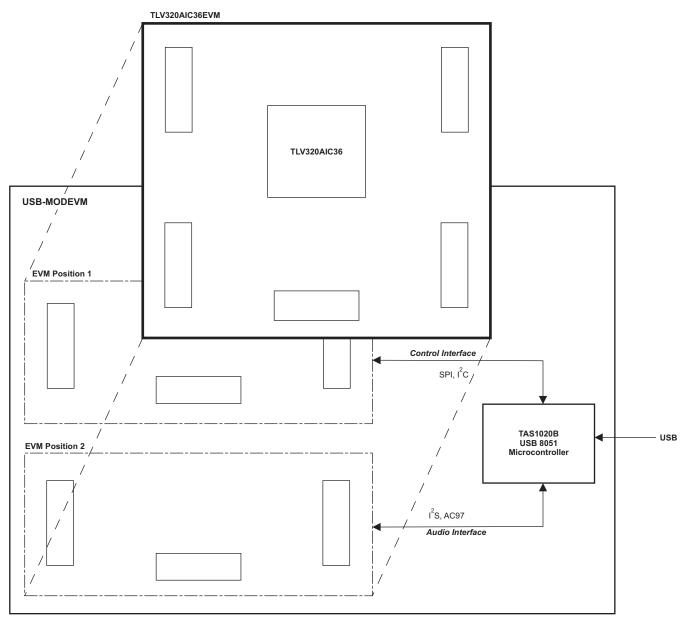
### 2.1 TLV320AIC36EVM-K Block Diagram

The TLV320AIC36EVM-K consists of two separate circuit boards, the USB-MODEVM and the TLV320AIC36EVM. The USB-MODEVM is built around the TAS1020B streaming audio USB controller with an 8051-based core. The motherboard features two positions for modular EVMs, or one double-wide serial modular EVM can be installed. The TLV320AIC36EVM is one of the double-wide modular EVMs that is designed to work with the USB-MODEVM.

The simple diagram of Figure 1 shows how the TLV320AIC36EVM is connected to the USB-MODEVM. The USB-MODEVM Interface board is intended to be used in USB mode, where control of the installed EVM is accomplished using the onboard USB controller device. Provision is made, however, for driving all the data buses ( $I^2C^{TM}$ , SPI<sup>TM</sup>,  $I^2S$ , etc.) externally. The source of these signals is controlled by SW2 on the USB-MODEVM. See Table 1 for details on the switch settings.

The USB-MODEVM has two EVM positions that allow for the connection of two small evaluation module or one larger evaluation module. The TLV320AIC36EVM is designed to fit over both of the smaller evaluation module slots as shown in Figure 1




EVM Description and Basics

# 2.1.1 USB-MODEVM Interface Board

The simple diagram of Figure 1 shows only the basic features of the USB-MODEVM Interface board.

Because the TLV320AIC36EVM is a double-wide modular EVM, it is installed with connections to both EVM positions, which connects the TLV320AIC36 digital control interface to the I<sup>2</sup>C port realized using the TAS1020B, as well as the TAS1020B digital audio interface.

In the factory configuration, the board is ready to be used with the USB-MODEVM. To view all the functions and configuration options available on the USB-MODEVM board, see the USB-MODEVM Interface Board schematic in Appendix G.



# Figure 1. TLV320AIC36EVM-K Block Diagram

4

# 2.2 Default Configuration and Connections

### 2.2.1 USB-MODEVM

Table 1 provides a list of the SW2 settings on the USB-MODEVM. For use with the TLV320AIC36EVM, SW-2 positions 1, 3, 4, 5, 6, and 7 must be set to ON, whereas SW-2.2 and SW-2.8 must be set to OFF. If the TLV320AIC36EVM is to be used with an external audio interface, SW2.4 and SW2.5 also need to be set to OFF and such interface must be connected as explained in Section 2.4

| SW-2 Switch Number | Label                | Switch Description                                                                                                                            |  |
|--------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1                  | AO                   | USB-MODEVM EEPROM I <sup>2</sup> C Address A0<br>ON: A0 = 0<br>OFF: A0 = 1                                                                    |  |
| 2                  | A1                   | USB-MODEVM EEPROM I <sup>2</sup> C Address A1<br>ON: A1 = 0<br>OFF: A1 = 1                                                                    |  |
| 3                  | A2                   | USB-MODEVM EEPROM I <sup>2</sup> C Address A2<br>ON: A2 = 0<br>OFF: A2 = 1                                                                    |  |
| 4                  | USB I <sup>2</sup> S | I <sup>2</sup> S Bus Source Selection<br>ON: I <sup>2</sup> S Bus connects to TAS1020<br>OFF: I <sup>2</sup> S Bus connects to USB-MODEVM J14 |  |
| 5                  | USB MCK              | I <sup>2</sup> S Bus MCLK Source Selection<br>ON: MCLK connects to TAS1020<br>OFF: MCLK connects to USB-MODEVM J14                            |  |
| 6                  | USB SPI              | SPI Bus Source Selection<br>ON: SPI Bus connects to TAS1020<br>OFF: SPI Bus connects to USB-MODEVM J15                                        |  |
| 7                  | USB RST              | RST Source Selection<br>ON: EVM Reset Signal comes from TAS1020<br>OFF: EVM Reset Signal comes from USB-MODEVM J15                            |  |
| 8                  | EXT MCK              |                                                                                                                                               |  |

### Table 1. USB-MODEVM SW2 Settings

### 2.2.2 TLV320AIC36 Jumper Locations

Table 2 provides a list of jumpers found on the EVM and their factory default conditions.

### Table 2. List of Jumpers

| Jumper | Default<br>Position | Jumper Description                                                                                                                                                                                                                                                                                                                        |  |
|--------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| W1     | 2-3                 | When connecting 2-3, microphone bias comes from the EXT_MICBIAS pin on the device; when connecting 1-2, microphone (mic) bias is supplied by the AVDD_BIAS node. The AVDD_BIAS node can be sourced by two different supplies depending on the jumper W13 setting or can be sourced by an external supply through TP34 (with W13 removed). |  |
| W2     | Installed           | Connects onboard Mic negative terminal to the circuit.                                                                                                                                                                                                                                                                                    |  |
| W3     | Installed           | Connects onboard Mic positive terminal to the circuit.                                                                                                                                                                                                                                                                                    |  |
| W4     | Open                | Connects the DETECT pin to J11.2.                                                                                                                                                                                                                                                                                                         |  |
| W5     | Installed           | Provides mic bias to J11.2 through a 2.2kΩ equivalent resistance (W6 not installed) or 1kΩ resistor (W6 installed).                                                                                                                                                                                                                       |  |
| W6     | Installed           | Sets the mic bias resistance to 1 k $\Omega$ . Use for differential electret mic configurations.                                                                                                                                                                                                                                          |  |
| W7     | Installed           | Connects J11.3 to the circuit.                                                                                                                                                                                                                                                                                                            |  |
| W8     | 2-3                 | Connects J11.3 to ground or $1-k\Omega$ resistor.                                                                                                                                                                                                                                                                                         |  |
| W9     | Open                | Connects a 1kΩ load to INT_MICBIAS.                                                                                                                                                                                                                                                                                                       |  |
| W10    | Installed           | Connects HP_COM to ground.                                                                                                                                                                                                                                                                                                                |  |
| W11    | 1-2                 | Connects AVDD_CP to the on-board regulator (U2) or an external +2.5V supply (through J18.3).                                                                                                                                                                                                                                              |  |
| W12    | 1-2                 | Connects AVDD_REG to the on-board regulator (U2) or an external +2.5V supply (through J18.3).                                                                                                                                                                                                                                             |  |
| W13    | 1-2                 | Connects AVDD_BIAS to the on-board regulator (U2) or an external +2.5V supply (through J18.3).                                                                                                                                                                                                                                            |  |



### Table 2. List of Jumpers (continued)

| Jumper | Default<br>Position | Jumper Description                                                                                               |  |
|--------|---------------------|------------------------------------------------------------------------------------------------------------------|--|
| W14    | 1-2                 | Connects AVDD_ADC to AVDD2 or an external +1.8V supply (through J17.3).                                          |  |
| W15    | Open                | Connects AVSS_REG to an external –2.5V supply (through J18.1). Do not connect if the charge pump is enabled.     |  |
| W16    | 1-2                 | Connects AVDD_DAC to AVDD1 or an external +1.8V supply (through J17.3).                                          |  |
| W17    | 1-2                 | Connects AVSS_DAC to AVSS1 or an external –1.8V supply (through J17.1).                                          |  |
| W18    | 1-2                 | Connects AVDD_HP to AVDD1 or an external +1.8V supply (through J17.3).                                           |  |
| W19    | 1-2                 | Connects AVSS_HP to AVSS1 or an external -1.8V supply (through J17.1).                                           |  |
| W20    | 2-3                 | Connects I2C_ADDR0 to IOVDD or ground.                                                                           |  |
| W21    | 2-3                 | Connects I2C_ADDR1 to IOVDD or ground.                                                                           |  |
| W22    | Open                | Connects GPIO1 to J4.2/P4.2.                                                                                     |  |
| W23    | Open                | Connects GPIO2 to J4.6/P4.6.                                                                                     |  |
| W24    | Installed           | Provides a means of measuring IOVDD current.                                                                     |  |
| W25    | Installed           | Provides a means of measuring DVDD current.                                                                      |  |
| W26    | 1-2                 | Connects DVDD to +1.8VD (provided by P3.7/J3.7) or an external +1.8V supply (through J17.3).                     |  |
| W27    | Open                | Provides a means to connect IOVDD to +1.8VD (provided by P3.7/J3.7) or an external +1.8V supply (through J17.3). |  |
| W28    | 1-2                 | Connects IOVDD to +3.3VD (provided by P3.9/J3.9) or the source provided by the W27 setting.                      |  |
| W29    | N/A                 | N/A                                                                                                              |  |
| W30    | Open                | When installed, connects J4.8/P4.8 to RESETB.                                                                    |  |
| W31    | Installed           | When installed, it selects onboard EEPROM as firmware source.                                                    |  |

### 2.3 Analog Signal Connections

### 2.3.1 Analog Inputs

The analog input sources can be applied directly to terminal blocks J7, J8, J9 and J10 or input jacks J6 and J11. The connection details can be found in Appendix A.

### 2.3.2 Analog Output

The analog outputs are available from terminal blocks J13, J14, J15 and J16 or output jack J12. The connection details can be found in Appendix A.

### 2.4 Digital Signal Connections

The digital inputs and outputs of the EVM can be monitored through P4 and P5. If external signals need to be connected to the EVM, digital inputs must be connected via J14 and J15 on the USB-MODEVM and the SW2 switch must be changed accordingly (see Section 2.2.1). The connector details are available in Section A.2.

### 2.5 Power Connections

The TLV320AIC36EVM can be powered independently when being used in stand-alone operation or by the USB-MODEVM when it is plugged onto the motherboard.



### 2.5.1 Stand-Alone Operation

When used as a stand-alone EVM, power is applied to P3/J3 directly, making sure to reference the supplies to the appropriate grounds on that connector.

TLV320AIC36EVM-K Setup and Installation

### CAUTION

Verify that all power supplies are within the safe operating limits shown on the TLV320AIC36 data sheet before applying power to the EVM.

P3/J3 provides connection to the common power bus for the TLV320AIC36EVM. Power is supplied on the pins listed in Table 7.

The TLV320AIC36EVM-K motherboard (the USB-MODEVM Interface board) supplies power to J3 of the TLV320AIC36EVM. Power for the motherboard is supplied either through its USB connection or via terminal blocks on that board.

### 2.5.2 USB-MODEVM Operation

The USB-MODEVM Interface board can be powered from several different sources:

- USB
- 6-Vdc to 10-Vdc AC/DC external wall supply (not included)
- Laboratory power supply

When powered from the USB connection, JMP6 must have a shunt from pins 1–2 (this is the default factory configuration). When powered from 6-Vdc to 10-Vdc power supply, either through the J8 terminal block or J9 barrel jack, JMP6 must have a shunt installed on pins 2–3. If power is applied in any of these ways, onboard regulators generate the required supply voltages, and no further power supplies are necessary.

If laboratory supplies are used to provide the individual voltages required by the USB-MODEVM Interface, JMP6 must have no shunt installed. Voltages are then applied to J2 (+5VA), J3 (+5VD), J4 (+1.8VD), and J5 (+3.3VD). The +1.8VD and +3.3VD can also be generated on the board by the onboard regulators from the +5VD supply; to enable this configuration, the switches on SW1 need to be set to enable the regulators by placing them in the ON position (lower position, looking at the board with text reading right-side up). If +1.8VD and +3.3VD are supplied externally, disable the onboard regulators by placing SW1 switches in the OFF position.

Each power supply voltage has an LED (D1-D7) that illuminates when the power supplies are active.

### 3 TLV320AIC36EVM-K Setup and Installation

The following section provides information on using the TLV320AIC36EVM-K, including setup, program installation, and program usage.

**NOTE:** If using the EVM in stand-alone mode, the software must be installed per the following instructions, but the hardware configuration may be different.

### 3.1 Software Installation

- 1. Download the latest version of the AIC36 Control Software (CS) located in the <u>TLV320AIC36EVM-K</u> <u>Product Folder</u>.
- 2. Open the self-extracting installation file.
- 3. Extract the software to a known folder.
- 4. Install the EVM software by double-clicking the **Setup** executable, and follow the directions. The user may be prompted to restart their computer.

This installs all the TLV320AIC36EVM-K software.



### 3.2 EVM Connections

- 1. Ensure that the TLV320AIC36EVM is installed on the USB-MODEVM Interface board, aligning J1, J2, J3, J4, and J5 with the corresponding connectors on the USB-MODEVM.
- 2. Verify that the jumpers and switches are in their default conditions.
- 3. Attach a USB cable from the PC to the USB-MODEVM Interface board. The default configuration provides power, control signals, and streaming audio via the USB interface from the PC. On the USB-MODEVM, LEDs D3, D4, D5, and D7 illuminate to indicate that the USB is supplying power.
- For the first connection, the PC recognizes new hardware and begins an initialization process. The TLV320AIC36EVM-K will enumerate as a "USB Human Interface Device" and as a "USB Audio Device".
- 5. Once the PC confirms that the hardware is operational, D2 on the USB-MODEVM illuminates to indicate that the firmware has been loaded and the EVM is ready for use. If D2 does not illuminate, verify that the EEPROM jumper and switch settings conform to Table 1 and Table 2.

After the TLV320AIC36EVM-K software installation (described in Section 3.2) is complete, evaluation and development with the TLV320AIC36 can begin.

8



The TLV320AIC36EVM-K software can now be launched. The user sees an initial screen that looks similar to Figure 2.

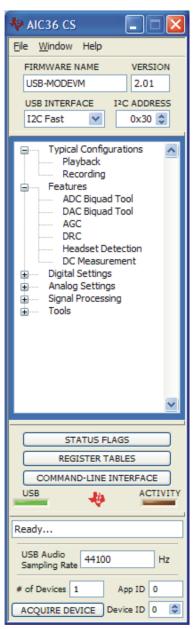



Figure 2. Initial Screen of TLV320AIC36EVM-K Software



TLV320AIC36EVM-K Setup and Installation

www.ti.com

If running the software in Windows Vista or Windows 7, right-click the AIC36EVM-K CS shortcut and select *Properties*. Configure the *Compatibility* tab as shown in Figure 3

| * CS Properties                               |                                                                                                                                                                         |                   |  |  |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Security                                      | Details                                                                                                                                                                 | Previous Versions |  |  |  |  |
| General                                       | Shortcut                                                                                                                                                                | Compatibility     |  |  |  |  |
| an earlier version of<br>matches that earlier | If you have problems with this program and it worked correctly on<br>an earlier version of Windows, select the compatibility mode that<br>matches that earlier version. |                   |  |  |  |  |
| Help me choose t                              | -                                                                                                                                                                       |                   |  |  |  |  |
| Compatibility mod                             |                                                                                                                                                                         |                   |  |  |  |  |
| Run this prog                                 | gram in compatibility m                                                                                                                                                 | ode for:          |  |  |  |  |
| Windows XP (S                                 | Service Pack 3)                                                                                                                                                         | <b>-</b>          |  |  |  |  |
| Settings                                      | olors                                                                                                                                                                   |                   |  |  |  |  |
| 🔲 Run in 640 x                                | 480 screen resolution                                                                                                                                                   | 1                 |  |  |  |  |
| 📃 Disable visua                               | al themes                                                                                                                                                               |                   |  |  |  |  |
| 📃 Disable desk                                | top composition                                                                                                                                                         |                   |  |  |  |  |
| 🔲 Disable displ                               | ay scaling on high DP                                                                                                                                                   | l settings        |  |  |  |  |
| Privilege Level                               |                                                                                                                                                                         |                   |  |  |  |  |
| Run this program as an administrator          |                                                                                                                                                                         |                   |  |  |  |  |
| 🔞 Change setti                                | Change settings for all users                                                                                                                                           |                   |  |  |  |  |
|                                               | ОК                                                                                                                                                                      | Cancel Apply      |  |  |  |  |

Figure 3. Compatibility Tab

# 4 AIC36 Control Software

The AIC36 Control Software (CS) is an intuitive, easy-to-use, powerful tool to learn, evaluate, and control the TLV320AIC36. This tool was specifically designed to make learning the TLV320AIC36 easy. The following sections describe the operation of this software.

**NOTE:** For configuration of the codec, the TLV320AIC36 block diagram located in the <u>TLV320AIC36</u> data sheet is a good reference to help determine the signal routing.

### 4.1 Main Panel Window

The Main Panel window, shown in Figure 2, provides easy access to all the features of the AIC36 CS. The Firmware Name and Version boxes provide information about the firmware loaded into the EVM's EEPROM.

The USB Interface drop-down menu allows the user to select which communication protocol the TAS1020B USB Controller uses to communicate with the TLV320AIC36 or to toggle the TAS1020B GPIO pins. The USB-MODEVM Interface selection is global to all panels, including the Command-Line Interface. The I<sup>2</sup>C Address box sets the global I<sup>2</sup>C address to be used by controls and indicators. Note that scripts executed in the command line interface and in other panels use the I<sup>2</sup>C address provided in each command and not the global I<sup>2</sup>C address.

The Panel Selection Tree provides access to typical configurations, features, and other panels that allow the user to control the TLV320AIC36. The tree is divided into several categories which contain items that pop up panels. A panel can be opened by double-clicking any item inside a category in the Panel Selection Tree.

Below the Panel Selection Tree are three buttons that pop up the following:

- Status Flags Allows the user to monitor the TLV320AIC36 status flags.
- Register Tables A tool to monitor register pages.
- Command-Line Interface A tool to execute/generate scripts and monitor register activity.

The USB LED indicates if the EVM kit is recognized by the software and the ACTIVITY LED illuminates every time a command request is sent.

The dialog box at the bottom of the Main Panel provides feedback of the current status of the software.

For USB-MODEVM firmware versions 2.01 and above, it is possible to update the firmware on-the-fly. This is useful for cases in which different USB Audio sampling rates are desired, or when a new firmware version is released. The "USB Audio Sampling Rate" dialog box displays the current USB audio sampling rate supported by a particular firmware. Details on how to re-program the firmware are available in Section 4.1.4.



### 4.1.1 Typical Configurations

This category can help users to quickly become familiar with the TLV320AIC36. Each of the panels that can be accessed through this menu have controls relevant to the selected configuration; a tab shows the script that will be loaded for that particular configuration. Each script includes a brief description of the selected configuration, as shown in Figure 4.

| 🌵 Audio Playback                                                                                   | . – 🛛    |
|----------------------------------------------------------------------------------------------------|----------|
| Audio Playback Configuration Setup and Script                                                      |          |
| Below is the script generated by the selected configuration:                                       |          |
| ######################################                                                             |          |
| <pre># Headphones can be connected to HPL and<br/># HPR (J12).<br/>#</pre>                         |          |
| # The receiver and line outputs are routed                                                         |          |
| <pre># and can be powered and unmuted using the # respective controls for monitoring through</pre> |          |
| # screw terminals.                                                                                 |          |
| #<br># For normal USB Audio, no hardware change<br># is required.<br>#                             |          |
| # If using an external interface, SW2.4 and                                                        | <b>~</b> |
| REF                                                                                                | RESH     |

Figure 4. Playback Script Tab

### 4.1.1.1 Playback

The Playback panel (shown in Figure 5) has the following configurations:

- Stereo DAC Playback this configuration programs the TLV320AIC36 for stereo playback through the headphone outputs. The DAC is also connected to the line and receiver driver mixers but are powered down and muted by default.
- Stereo ADC Record and DAC Playback this configuration is the same as Stereo DAC Playback, but with the LINEIN inputs connected to the ADC.
- LINEIN Analog Bypass this configuration routes LINEIN to all output mixers. Only the HP outputs are powered and unmuted.
- PGA Analog Bypass this configuration routes LINEIN to the analog input amplifier (Mic PGA) which is then routed all output mixers. Only the HP outputs are powered and unmuted.

The analog inputs and outputs used for these configurations can be accessed as follows:

- 1. Line inputs Jack J6 or terminal block J7.
- 2. Line outputs Terminal blocks J14 and J15.
- 3. Receiver outputs Terminal block J16.
- 4. Headphone outputs Jack J12. A filtered version is available at J13 (for high impedance loads only).



| Audio Playback Audio Playback Configuration Setup and Script                                                                  |          |                                     |                          |                               |
|-------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|--------------------------|-------------------------------|
| Typical Playback Configurations                                                                                               | DAC Gain | Line Outputs                        | Headphone<br>Outputs     | Receiver<br>Outputs           |
| <ul> <li>Stereo ADC Record and DAC Playback</li> <li>LINEIN Analog Bypass</li> <li>PGA Analog Bypass</li> <li>LOAD</li> </ul> | 24       | 9-<br>8-<br>6-<br>4-<br>2-<br>0- dB | 9<br>8<br>4<br>2<br>0 dB | 9-<br>8-<br>4-<br>2-<br>0- dB |
| NOTE: Open the<br>"Analog Settings > Audio Outputs" panel for<br>more mixing options.                                         | 0        | 0                                   | 0                        | 0 🗢<br>Power<br>V Mute        |
|                                                                                                                               |          |                                     |                          | REFRESH                       |

Figure 5. Playback Panel

# 4.1.1.2 Recording

The Recording panel (shown in Figure 7) has the following configurations:

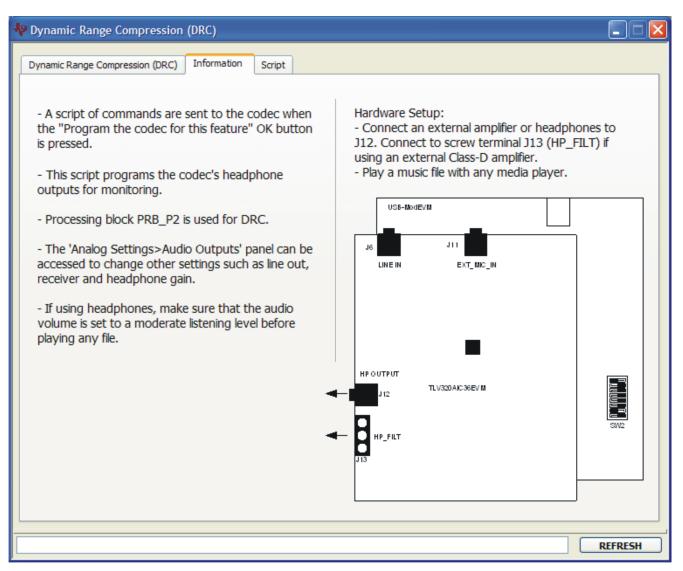
- Stereo ADC Recording LINEIN\_L and LINEIN\_R are routed to the left ADC and right ADC, respectively, in a single ended fashion.
- Differential On-Board Mic The on-board microphone is routed to EXTMIC and to the left ADC. The jumper settings for this configuration are shown in Figure 6.

The analog inputs used for these configurations can be accessed as follows:

1. Line inputs - Jack J6 or terminal block J7.

| INPUT TYPE                         | Þ=                   |                       |
|------------------------------------|----------------------|-----------------------|
| MODE                               | DIFFERENTIAL<br>MONO |                       |
| CODEC<br>INPUTS                    |                      | EXTMIC_P<br>EXTMIC_M  |
| ONBOARD MIC<br>JUMPERS             | W2<br>W3             | IN<br>IN              |
| INPUT CONFIG<br>JUMPER<br>SETTINGS | W5<br>W6<br>W7<br>W8 | IN<br>IN<br>IN<br>2-3 |

| Figure 6. | Differential | Microphone |
|-----------|--------------|------------|
|-----------|--------------|------------|


| 🏘 Audio Recording                                                                                                                                                                                                                        |         |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| Audio Recording Configuration Setup and Script Typical Recording Configurations Stereo ADC Recording (LINEIN) Differential On-Board Mic (EXTMIC) LOAD NOTE: Refer to the 'Analog Settings > Audio Inputs' panel for more routing options | Mic PGA | ADC Gain |
|                                                                                                                                                                                                                                          |         | REFRESH  |

### Figure 7. Recording Panel

### 4.1.2 Features

The **Features** category allows the user to evaluate various features of the TLV320AIC36. Each of the **Features** panels include an **Information** tab that explains the feature and provides hardware setup information for easy evaluation, as seen in Figure 8.





### Figure 8. DRC Information Tab

Any item in the **Features** category can be accessed by a double-click. As soon as a **Features** panel opens, a pop-up message appears asking to program the codec for that feature (see Figure 9). A command script is sent to the codec if the **OK** button is clicked. This script programs all registers necessary to evaluate the feature. This can be bypassed by clicking the **Cancel** button.

| *                   |                  |
|---------------------|------------------|
| Program the codec f | or this feature? |
| ОК                  | Cancel           |

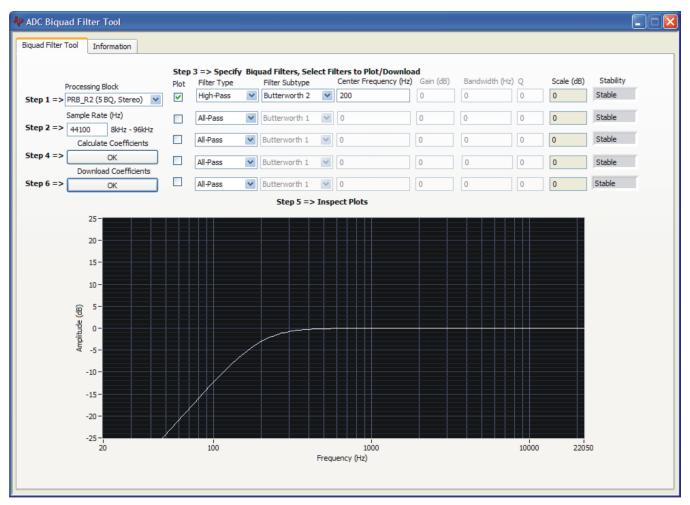
Figure 9. Program Codec Pop-Up Window

The script corresponding to each feature can be accessed at the [Installation Directory]\DATA\EVM folder. Also, each script can be manually customized and loaded as the feature's start-up script as long as the file name remains the same.



#### AIC36 Control Software

# 4.1.2.1 ADC Biquad Filter Tool


The ADC Biquad Filter Tool allows the user to specify the following biquad filters downloadable to the TLV320AIC36:

- All-pass

- High-pass (Butterworth first-order, Butterworth second-order, Bessel second-order, Linkwitz-Riley second-order, and variable-Q second-order)

- Low-pass (Butterworth first-order, Butterworth second-order, Bessel second-order, Linkwitz-Riley second-order, and variable-Q second-order)

- EQ (equalizer)
- Notch
- Treble shelf
- Bass shelf



### Figure 10. ADC Biquad Filter Tool

To use the default EVM settings with the Biquad Filter Tool click on the "Recording" application and download for example the line-input script to setup EVM for line-in recording then proceed to use the Biquad Filter Tool.

Step 1: Select the Processing Block - This specifies the number of biquads available (3 or 5) and stereo or mono (right). For best results use Processing Block PRB\_R2 as this works well with the default EVM setup.



Step 2: Specify the Sample Rate - This is a key design parameter input to the Biquad Tool. The default is 44.1kHz which is the sample rate used on the EVM. The tool will work with any sample rate from 8kHz to 96kHz, however, if a sample rate other than 44.1kHz is selected then the user must go the the clock panel to modify the PLL and/or clock settings so that the desired sample rate is setup properly when used with an external audio interface.

Step 3: Specify the Biquad Filters - Select the filter type and subtype and enter any required parameters. Note that the parameters not used will be grayed out. Use the "Plot" Check-Box to select the filters to plot and/or download.

Step 4: Calculate the Coefficients - Click on the "Calculate Coefficients" OK button. This calculates all the selected filters and plots the combined response of all the checked filters. If a filter is not checked it is treated as an All-Pass filter.

Step 5: Inspect the Plots - Based on the selected filters determine if this is the total desired response. Also, inspect the Scale (dB) display. Some filters may create a negative gain error which is reflected in the scale. For example, if the Scale displays 0.5 there is a - 0.5dB gain error which can be corrected in the analog PGA or the digital Volume. In the last column the stability of the filter is indicated. If the roots of the filter denominator are less than 1 then the filter is stable and this field will display the text "Stable". Otherwise, it will display the text "Unstable" meaning that the unstable filter should be re-specified until it is stable.

Step 6: Download the Coefficients - Click on the "Download Coefficients" OK button. This action will download the filter coefficients to the device. Note that in order to download coefficients into the device, the following register writes are done:

- 1. Page 0 Select processing block and Power-Down both ADCs
- 2. Page 4 Write filter coefficients to both left and right channels as required
- 3. Page 0 Power-Up both ADCs

Note that the filter coefficients can be saved as an I2C script by using the Command-Line Interface Record Button. The I2C commands will be displayed in the Command Buffer which can be selected and copied to a text command file.

### 4.1.2.2 DAC Biquad Filter Tool

The DAC Biquad Filter Tool allows the user to specify the following biquad filters downloadable to the TLV320AIC36:

- All-pass

- High-pass (Butterworth first-order, Butterworth second-order, Bessel second-order, Linkwitz-Riley second-order, and variable-Q second-order)

- Low-pass (Butterworth first-order, Butterworth second-order, Bessel second-order, Linkwitz-Riley second-order, and variable-Q second-order)

- EQ (equalizer)
- Notch
- Treble shelf
- Bass shelf



AIC36 Control Software

🖗 DAC Biguad Filter Tool X DAC Biguad Filter Tool Information Step 3 => Specify Biquad Filters, Select Filters to Plot/Download Bandwidth (Hz) Q Scale (dB) Stability Filter Type Filter Subtype Center Frequency (Hz) Gain (dB) Plot Processing Block High-Pass Butterworth 2 200 -6 50 0 **~** ~ \* 0 Stable Step 1 => PRB\_P2 (6 BQ, Stereo) Sample Rate (Hz) All-Pass Butterworth 1 ✓ 0 0 0 0 Stable Step 2 => 44100 8kHz - 96kHz All-Pass Butterworth 1 × 0 0 0 Stable ¥ 0 Calculate Coefficients Step 4 => OK 0 0 All-Pass Butterworth 1 × 0 0 Stable Download Coefficients 0 0 Step 6 => All-Pass Butterworth 1 × 0 0 0 Stable OK All-Pass 0 0 Butterworth 1 ✓ 0 0 0 Stable Step 5 => Inspect Plots 25 20 -15-10 -5 Amplitude (dB) 0--5--10 --15--20 --25-100 10000 22050 20 1000 Frequency (Hz)

Figure 11. DAC Biquad Filter Tool

To test the filters with USB Audio, select a configuration from the 'Typical Configurations>Playback' panel. The 'Stereo DAC Playback' configuration is optimized for any 'Filter A' processing block. Alternatively, a custom script can be loaded into the Command-Line Interface panel before downloading coefficients. This tool assumes that Adaptive Filtering is enabled for real-time filtering.

Step 1: Select the Processing Block - This specifies the number of biquads available and stereo or mono (left). For best results, use Processing Block PRB\_P2 as this works well with the default EVM setup. To change the processing block on the device:

1. Go to the 'Analog Settings>Audio Outputs' panel to uncheck the 'Enable DACs' box.

2. Go to the 'Signal Processing>Processing Blocks' panel to select the DAC processing block.

3. Go to the 'Analog Settings>Audio Outputs' panel to check the 'Enable DACs' box.

Step 2: Specify the Sample Rate - This is a key design parameter input to the Biquad Tool. The default is 44.1kHz which is the sample rate used on the EVM. The tool will work with any sample rate from 8kHz to 96kHz, however, if a sample rate other than 44.1kHz is selected then the user must go the the clock panel to modify the PLL and/or clock settings so that the desired sample rate is setup properly when used with an external audio interface.



Step 3: Specify the Biquad Filters - Select the filter type and subtype and enter any required parameters. Note that the parameters not used will be grayed out. Use the "Plot" Check-Box to select the filters to plot and/or download.

Step 4: Calculate the Coefficients - Click on the "Calculate Coefficients" OK button. This calculates all the selected filters and plots the combined response of all the checked filters. If a filter is not checked it is treated as an All-Pass filter.

Step 5: Inspect the Plots - Based on the selected filters determine if this is the total desired response. Also, inspect the Scale (dB) display. Some filters may create a negative gain error which is reflected in the scale. For example, if the Scale displays 0.5 there is a - 0.5dB gain error which can be corrected with the Digital PGA and amplifier gain. In the last column the stability of the filter is indicated. If the roots of the filter denominator are less than 1 then the filter is stable and this field will display the text "Stable". Otherwise, it will display the text "Unstable" meaning that the unstable filter should be re-specified until it is stable.

Step 6: Download the Coefficients - Click on the "Download Coefficients" OK button. This action will download the filter coefficients to the device. Note that in order to download coefficients into the device, the following register writes are done:

- 1. Page 8 Write filter coefficients to both left and right channels as required
- 2. Page 8 Switch Buffers and wait for flag to clear.
- 3. Page 8 Re-write filter coefficients to both left and right channels as required

Note that the filter coefficients can be saved as an I2C script by using the Command-Line Interface Record Button. The I2C commands will be displayed in the Command Buffer which can be selected and copied to a text command file.

### 4.1.2.3 Automatic Gain Control

The left-channel Automatic Gain Control (AGC) can be enabled by checking the **Enable Left AGC** box (Figure 12). Pressing the **Capture Audio** button records the left-channel audio. Its corresponding data is displayed in the audio capture graph window. The small white window located at the bottom right of the AGC tab displays the audio waveform of the recorded data. Ensure that the AIC32x4 EVM is selected as the computer's default audio capture device before pressing this button. To set the TLV320AIC36EVM-K as the default audio device, open the Windows<sup>TM</sup> Control Panel  $\rightarrow$  Sounds and Audio Devices Properties and set the AIC32x4 EVM as the default audio recording device. Also, do not use any other media player or audio recording software while the control software is recording.

The **target level** and **noise threshold** parameters can be modified by dragging the horizontal cursor lines located at the audio capture graph window. Its numeric values are displayed to the right of the graph. Noise threshold can be disabled by unchecking the **Enable Noise Threshold** box. The **AGC Max Gain** control sets the maximum allowed AGC PGA Gain. The **AGC Gain** indicator bar continuously displays the contents of Page 0/Register 93 if the **Enable Polling** box is checked.

Other parameters can be accessed by checking the **Advanced** box. For more information about AGC, see the **Information** tab and the data sheet.

Other flags related to this feature can be accessed at the **Status Flags** panel.



#### AIC36 Control Software

www.ti.com

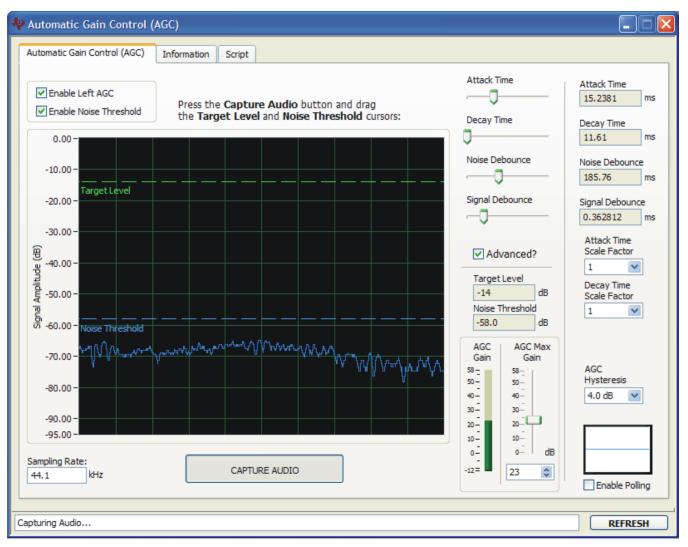



Figure 12. Automatic Gain Control Panel

### 4.1.2.4 Dynamic Range Compression

Dynamic Range Compression (DRC) can be enabled by checking the **Enable Left DRC** and **Enable Right DRC** boxes.

The level transfer characteristic graph is a function of the applied digital gain and the threshold parameter. The graph line is separated into two piece-wise linear regions where the red line represents the level range in which the DRC attenuation takes place, and the green line represents the level range in which the signal is not affected by DRC. As an example, setting the threshold to -24 dB with a gain to 24 dB implies that an input signal strength variation from -48 dB (threshold - gain) to 0 dB results in an output signal strength variation from -24 dB to 0 dB, or a compression ratio of 2:1. Similarly, a threshold of -3 dB with a gain of 24 dB implies that an input signal strength variation from -27 dB to 0 dB results in an output signal strength variation from -3 dB to 0 dB, or a ratio of 9:1. Note that a gain less than 0 dB does not result in expansion.

The **Attack** and **Decay** are time domain parameters that control the rate in which the applied gain reaches the target gain after the threshold level is crossed. As an example, a fast attack rate quickly reaches the target gain once the output signal crosses the programmed threshold region.

Other flags related to this feature can be accessed at the Status Flags panel.



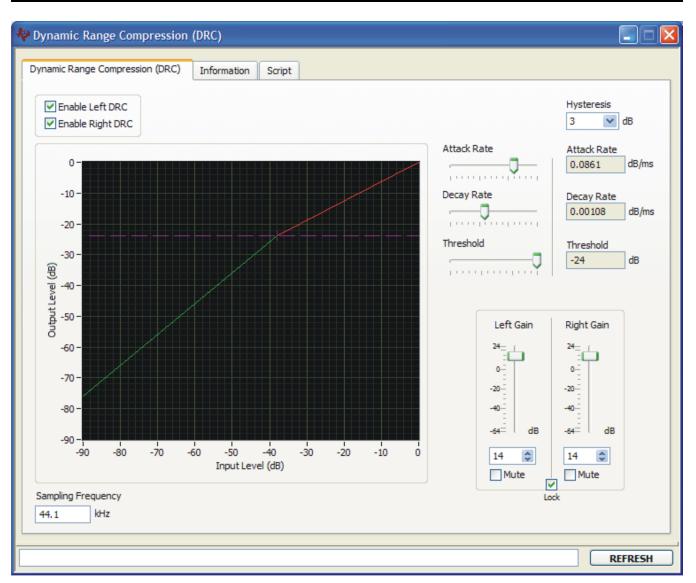



Figure 13. Dynamic Range Compression Panel

### 4.1.2.5 Headset Detection

Screw terminal J10 (EXT MIC IN) is provided to connect an external microphone, as well as unique push button combinations. As an example, the circuit shown below, connects a push button-resistor combination.



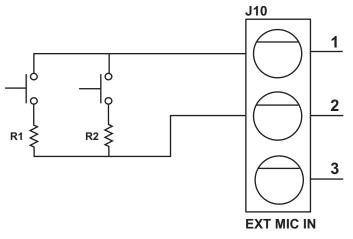



Figure 14. Headset Detection Circuit

This circuit can be used in combination with the on-board differential microphone (MK1) by using the following jumper settings:

| Jumper | Setting  |
|--------|----------|
| W1     | 2-3      |
| W2     | Inserted |
| W3     | Inserted |
| W4     | Inserted |
| W5     | Inserted |
| W6     | Open     |
| W7     | Inserted |
| W8     | 1-2      |

### Table 3. Jumper Settings for Headset Detection Example



The DETECT SAR section in the image below shows a result of 19 as its Raw detect value. The WINDOW COMPARATOR section is configured for three windows separated by two threshold levels: window 0 (bits 0 to 13), window 1 (bits 14 to 27) and window 2 (bits 28 to 31). The detected window is "window 1" (raw detect value of 19) as shown in the PULSE DETECT sections.

| leadset Detection Scrip                                                                   | pt                                                                               |                                                                                                                                                               |                                                                                                                     |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 256 ♀<br>✓ Enable<br>LOW-Z DETECTION<br>Manual Polling<br>HPL HPL<br>HPR HPR<br>RECL RECL | kHz     Divider 2     15.4       250     Image: Continuous     Image: Continuous | 52 Hz<br>WINDOW COMPARATOR<br>Threshold 7 28 2 Enable<br>Threshold 6 24 2 Enable<br>Threshold 5 20 2 Enable<br>Threshold 4 16 Enable<br>Threshold 3 12 Enable | SHORT PULSE DETECT                                                                                                  |
| RECR RECR Hook Hook                                                                       | Single Read                                                                      | Threshold 2 28 V Enable<br>Threshold 1 14 V Enable<br>Detection status<br>Detection complete                                                                  | Detected Window (Debounced)  Detected Window (Latched)  NOTE: Latched value is held until the interrupt is cleared. |

Figure 15. Headset Detection Panel

The Enable Polling button must be checked in order to update all dialog boxes, even if continuous mode or a single read is used.

### 4.1.2.6 DC Measurement

Terminal block J3 on the TLV320AIC36EVM can be used to evaluate the DC measurement feature. The **Information** tab provides the hardware setup information.

The Left ADC (V) and Right ADC (V) boxes convert the register data to voltage. The voltage is derived from the References shown at the upper right corner of the DC Measurement tab. The DC measurement register data is in 2.22, 2s complement format.

Checking the **Enable Polling** box displays the DC measurement data.

Other flags related to this feature can be accessed at the Status Flags panel.



| 🍄 DC Measurement                                                                                                                      |                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| DC Measurement Information Script                                                                                                     |                                                            |
| Enable LADC DC Measurement Filter Mode Mode A                                                                                         | References<br>Offset (V) Range (±V)<br>0.9 0.9             |
| D                                                                                                                                     | DC Measurement                                             |
| 19 <b>NOTE:</b><br>In Mode A, D is the length of the averaging filter.<br>In Mode B, the IIR filter coefficients are a function of D. | Left ADC (V) Right ADC (V) 0.898449 0.896635 Register Data |
| Latch DC Measurement<br>R (Mode B Filter)                                                                                             | L D(23:16) R D(23:16)<br>255 255                           |
| Filter Reset (Mode B Filter)                                                                                                          | L D(15:8) R D(15:8) 227 194                                |
| NOTES:<br>1. Averaging time is 2^R ADC_MOD_CLKs.                                                                                      | L D(7:0) R D(7:0) 198 190                                  |
| <ol> <li>R = 0 is infinite average.</li> <li>If the filter is periodically reset, D &lt; R.</li> </ol>                                | ✓ Enable Polling                                           |
| Polling                                                                                                                               | REFRESH                                                    |

Figure 16. DC Measurement Panel

### 4.1.3 Control Categories

The **Digital Settings**, **Analog Settings**, and **Signal Processing** categories provide control of many registers and other features of the TLV320AIC36. These categories are intended for the advanced user. Hovering the mouse cursor on top of a control displays a tip strip that contains page, register, and bit information. As an example, hovering on top of an input in the Audio Inputs panel, as shown in Figure 17 displays p1\_r55\_b7-6 which means that this control writes to Page 1/Register 55/Bits D7 to D6.



| Disconnected V | + |         |
|----------------|---|---------|
| Disconnected V | • |         |
| Disconnected V |   |         |
| p1_r55_b7-6    |   |         |
|                |   | REFRESH |

### Figure 17. Audio Inputs Panel

All controls update their status with respect to the register contents in the following conditions:

- A panel is opened.
- The Execute Command Buffer button in the Command-Line Interface is pressed.
- The **Refresh** button at the bottom right of a panel is pressed.

### 4.1.4 EEPROM Writer

The EEPROM Writer allows the user to upgrade the firmware used by the TAS1020B USB Controller. More information about this panel can be found by double-clicking the "Tools > EEPROM Writer" item, as shown below.

| EEPROM Writer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEPROM Writer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The USB-MODEVM (the EVM kit motherboard) has a USB controller<br>(called the TAS 1020B) that streams USB audio data and controls<br>the device under evaluation. When USB power is provided to the<br>EVM kit, the TAS 1020B will look for an EEPROM device with 12C<br>data is loaded, the EVM kit will be recognized by the PC operating<br>system as a Human Interface Device and as a USB Audio Device.<br>The TAS 1020B provides all the necessary clocks (WCLK, BCLK and<br>firmware operates at a sampling rate of 44. 1kHz. With the<br>EBPCOM Writer, it is possible to switch to different sampling rates<br>for endpoint of the the device under evaluation. The default<br>firmware operates at a sampling rate of 44. 1kHz. With the<br>EBPCOM Writer, it is possible to switch to different sampling rates<br>be control software displays version 2.01 and above, sas<br>the control software displays version 2.01 and above, so<br>the control software displays version 2.01 and above, so<br>the MODEVM $(2.01)$<br>WEMODEVM (2.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The "[Installation Folder] \USBfirmware\mage" directory<br>contains several firmware images to support different USB<br>audio sampling rates:<br>8kHz sampling rate (USBMODEVMxxxx, 8kHz, BIN):<br>MCLK = 4.096 MHz, BLCK = 512 kHz, WCLK = 8 kHz<br>16kHz sampling rate (USBMODEVMxxxx, 20kHz, BIN):<br>MCLK = 4.096 MHz, BLCK = 1.024 MHz, WCLK = 16 kHz<br>32kHz sampling rate (USBMODEVMxxxx, 20kHz, BIN):<br>MCLK = 12.288 MHz, BLCK = 2.048 MHz, WCLK = 16 kHz<br>48kHz sampling rate (USBMODEVMxxxx, 20kHz, BIN):<br>MCLK = 12.288 MHz, BLCK = 2.048 MHz, WCLK = 48 kHz<br>11.025kHz sampling rate (USBMODEVMxxxx, 248 kHz, BIN):<br>MCLK = 12.288 MHz, BLCK = 3.072 MHz, WCLK = 48 kHz<br>22.050kHz sampling rate (USBMODEVMxxx, 2205 kHz, BIN):<br>MCLK = 1.12896 MHz, BLCK = 1.4112 MHz, WCLK = 22.05 kHz<br>44.100kHz sampling rate (USBMODEVMxxx, 2205 KHZ, BIN):<br>MCLK = 11.2896 MHz, BLCK = 2.8224 MHz, WCLK = 44.1 kHz |
| Step 1: Browse the desired firmware image (e.g. USBMODEVMXXXX_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _8KHZ.BIN):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Step 2: Program the EEPROM by pressing the button below. Wait un  2. PROGRAM EEPROM  Step 3: Verify that the USB Audio Sampling Rate dialog box in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | til the button is released:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sector         Image: Sector </td <td>IMPORTANT NOTE:<br/>- Scripts loaded by other panels are designed for a 44.1 kHz<br/>sampling rate. For other sampling rates, load custom scripts<br/>in the Command-line interface, or modify existing ones<br/>found in the "[Installation Folder]]DATA\EVM" directory.</td> | IMPORTANT NOTE:<br>- Scripts loaded by other panels are designed for a 44.1 kHz<br>sampling rate. For other sampling rates, load custom scripts<br>in the Command-line interface, or modify existing ones<br>found in the "[Installation Folder]]DATA\EVM" directory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Step 4: Disconnect and re-connect the USB cable. Upon re-connection verify the sampling rate as in Step 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Figure 18. EEPROM Writer Panel



### 4.2 Status Flags Panel

The TLV320AIC36 status flags can monitored in the **Status Flags** panel (Figure 19) which is located below the **Panel Selection Tree**. Pressing the **POLL** button continuously reads all the registers relevant to each flag and updates those flags accordingly. The rate at which the registers are read can be modified by chang

ing the value in the **Polling Interval** numeric control. Note that a smaller interval reduces responsiveness of other controls, especially volume sliders, due to bandwidth limitations. By default, the polling interval is 200 ms and can be set to a minimum of 20 ms.

The **Sticky Flags** tab contains indicators whose corresponding register contents clear every time a read is performed to that register. To read all the sticky flags, click the **Read Sticky Flags** button.

| 🏘 Status Fl                   | ags                                                                          |                             |           |                                                                                                  |                           |
|-------------------------------|------------------------------------------------------------------------------|-----------------------------|-----------|--------------------------------------------------------------------------------------------------|---------------------------|
| ADC Flags                     | DAC Flags                                                                    | General Purpose / mini      | DSP Flags | Sticky Flags                                                                                     |                           |
| Audio O                       | utput Flags                                                                  |                             |           |                                                                                                  |                           |
| IDAC<br>LDAC<br>HPL F<br>RECL | PGA gain = pro<br>powered up<br>overflow<br>Programmed Gai<br>Programmed Gai | ins Applied<br>ains Applied | RDAC      | PGA gain = prop<br>powered up<br>overflow<br>rogrammed Gain<br>Programmed Gain<br>rogrammed Gain | ns Applied<br>ins Applied |
| DRC Fla                       | -                                                                            |                             | 1         |                                                                                                  |                           |
|                               | organon di fika                                                              | shold exceeded              |           | DRC signal thres                                                                                 |                           |
| Polling Interva               | il: 200 🛟 ms                                                                 | Polling                     |           |                                                                                                  | POLLING                   |
| 1 Oning 1100 Vo               | 200 💌 115                                                                    | r oming                     |           |                                                                                                  | PULLING                   |

Figure 19. Status Flags Panel

### 4.3 Register Tables Panel

The contents of configuration and coefficient pages of the TLV320AIC36 can be accessed through the **Register Tables** panel (Figure 20).

The **Page Number** control changes to the page to be displayed in the register table. The register table contains page information such as the register name, reset value, current value, and a bitmap of the current value. The contents of the selected page can be exported into a spreadsheet by clicking the **Dump to Spreadsheet** button.



|             |      |                                              |      |               |   |   |   |       |   |    |    |       | _        |
|-------------|------|----------------------------------------------|------|---------------|---|---|---|-------|---|----|----|-------|----------|
| Page Numbe  | r    |                                              |      |               |   |   |   |       |   |    |    |       |          |
| 0           |      |                                              |      |               |   |   |   |       |   |    |    |       |          |
|             | 1    |                                              |      |               |   |   |   | 1.0.4 | 1 | 1  |    | 1.0.0 | -        |
| Register    | Hex  | Register Name                                |      | Current Value |   |   |   |       |   | D2 | D1 | DO    |          |
| Register 0  | 0x00 | Page Select Register                         | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     |          |
| Register 1  | 0x01 | Software Reset Register                      | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     | -        |
| Register 2  | 0x02 | 2                                            | 0x12 | 0x12          | 0 | 0 | 0 | 1     | 0 | 0  | 1  | 0     | 4        |
| Register 3  | 0x03 | Reserved Register                            | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     |          |
| Register 4  | 0x04 | Clock Setting Register 1, Multiplexers       | 0x00 | 0x08          | 0 | 0 | 0 | 0     | 1 | 0  | 0  | 0     |          |
| Register 5  | 0x05 | Clock Setting Register 2, PLL P&R Values     | 0x11 | 0x91          | 1 | 0 | 0 | 1     | 0 | 0  | 0  | 1     |          |
| Register 6  | 0x06 | Clock Setting Register 3, PLL J Values       | 0x04 | 0x08          | 0 | 0 | 0 | 0     | 1 | 0  | 0  | 0     |          |
| Register 7  | 0x07 | Clock Setting Register 4, PLL D Values (MSB) | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     |          |
| Register 8  | 0x08 | Clock Setting Register 5, PLL D Values (LSB) | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     | 1        |
| Register 9  | 0x09 | Reserved Register                            | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     | 1        |
| Register 10 | 0x0A | Reserved Register                            | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     | 1        |
| Register 11 | 0x0B | Clock Setting Register 6, NDAC Values        | 0x01 | 0x82          | 1 | 0 | 0 | 0     | 0 | 0  | 1  | 0     | 1        |
| Register 12 | 0x0C | Clock Setting Register 7, MDAC Values        | 0x01 | 0x88          | 1 | 0 | 0 | 0     | 1 | 0  | 0  | 0     | 1        |
| Register 13 | 0x0D | DAC OSR Setting Register 1, MSB Value        | 0x00 | 0x00          | 0 | 0 | 0 | 0     | 0 | 0  | 0  | 0     | ~        |
|             |      | •                                            | ·    |               |   |   |   |       | _ | ·  | ·  | ·     | <u> </u> |

Figure 20. Register Tables Panel

### 4.4 Command-Line Interface Panel

The **Command-Line Interface** panel provides a means to communicate with the TLV320AIC36 using a simple scripting language (described in Section G.1). The TAS1020B USB Controller (located on the USB-MODEVM motherboard) handles all communication between the PC and the TLV320AIC36.

A script is loaded into the command buffer, either by loading a script file using the **File** menu or by pasting text from the clipboard using the Ctrl-V key combination (Figure 21).

When the command buffer is executed, the return data packets which result from each individual command are displayed in the **Command History** control. This control is an array (with a maximum size of 100 elements) that contains information about each command as well as status. The **Interface** box displays the interface used for a particular command in the **Command History** array. The Command box displays the type of command executed (i.e., write, read) for a particular interface. The Flag Retries box displays the number of read iterations performed by a **Wait for Flag** command (see Section G.1 for details). The **Register Data** array displays the register number and data bytes that correspond to a particular command.

The **Information** tab provides additional information related to the **Command History** as well as additional settings. The **Syntax** and **Examples** tabs provide useful information related to the scripting language.

The **File** menu provides some options for working with scripts. The first option, *Open Script File...*, loads a command file script into the command buffer. This script can then be executed by pressing the **Execute Command Buffer** button. The contents of the **Command Buffer** can be saved using the *Save Script File...* option.

Both the **Command Buffer** and **Command History** can be cleared by clicking their corresponding **Clear** buttons.

The **Record** button generates script commands based on data written by other panels.



### AIC36 Control Software

www.ti.com

| 🌵 Command-line Interface                           |                                                                         |
|----------------------------------------------------|-------------------------------------------------------------------------|
| File <u>W</u> indow                                |                                                                         |
| Command-line Interface Syntax Examples             | Command History Information                                             |
| Command Buffer                                     | COMMAND HISTORY                                                         |
| **************************************             | € 0<br>STATUS<br>Request Bus Request<br>Bror Bror Done<br>Tor Bror Done |
| # # Select Page 0 w 30 00 00 #                     | INTERFACE<br>I2C Fast                                                   |
| <pre># Assert software reset w 30 01 01 #</pre>    | COMMAND FLAG RETRIES<br>Write 0                                         |
| <pre># Release software reset w 30 01 00 # #</pre> | REGISTER DATA                                                           |
|                                                    | 58 0x3A 0x0D                                                            |
| <pre>####################################</pre>    | REGISTER REGISTER DATA<br>(DECIMAL) (HEX) (HEX)                         |
| # Select Page 2<br>w 30 00 02                      | REGISTER REGISTER DATA<br>(DECIMAL) (HEX) (HEX)                         |
| Record     Execute Command Buffer                  | Clear                                                                   |

Figure 21. Command-line Interface Panel



# Appendix A EVM Connector Descriptions

This appendix contains the connection details for each of the main connectors on the EVM.

### A.1 Analog Interface Connectors

### A.1.1 Analog Dual-Row Socket Details, J1 and J2

The TLV320AIC36EVM has two analog dual-row sockets located at the bottom of the board. These sockets provide support to the EVM and connect the analog ground plane of the EVM to the USB-MODEVM analog ground. Consult Samtec at <u>www.samtec.com</u> or call 1-800-SAMTEC-9 for a variety of mating connector options. Table 4 summarizes the analog interface pinout for the TLV320AIC36EVM.

| J1.1NCNot ConnectedJ1.2NCNot ConnectedJ1.3NCNot ConnectedJ1.4NCNot ConnectedJ1.5NCNot ConnectedJ1.6NCNot ConnectedJ1.7NCNot ConnectedJ1.8NCNot ConnectedJ1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.14NCNot ConnectedJ2.2NCNot ConnectedJ2.4NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NCNot ConnectedJ2.4NC <th>PIN NUMBER</th> <th>SIGNAL</th> <th>DESCRIPTION</th>                                                                                                                                                                                                                                                                                                          | PIN NUMBER | SIGNAL | DESCRIPTION   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------------|
| J1.3NCNot ConnectedJ1.4NCNot ConnectedJ1.5NCNot ConnectedJ1.7NCNot ConnectedJ1.7NCNot ConnectedJ1.7NCNot ConnectedJ1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14AGNDAnalog GroundJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.1NCNot ConnectedJ2.1NCNot ConnectedJ2.1NCNot ConnectedJ2.1AGND                                                                                                                                                                                                                                                                                                                                                               | J1.1       | NC     | Not Connected |
| J1.4         NC         Not Connected           J1.5         NC         Not Connected           J1.7         NC         Not Connected           J1.7         NC         Not Connected           J1.8         NC         Not Connected           J1.9         AGND         Analog Ground           J1.10         NC         Not Connected           J1.11         AGND         Analog Ground           J1.12         NC         Not Connected           J1.13         AGND         Analog Ground           J1.14         NC         Not Connected           J1.15         NC         Not Connected           J1.16         NC         Not Connected           J1.17         AGND         Analog Ground           J1.18         NC         Not Connected           J1.19         AGND         Analog Ground           J1.19         AGND         Analog Ground           J1.19         AGND         Analog Ground           J1.19         AGND         Analog Ground           J1.20         NC         Not Connected           J2.1         NC         Not Connected           J2.2         NC         Not Connected | J1.2       | NC     | Not Connected |
| J1.5NCNot ConnectedJ1.6NCNot ConnectedJ1.7NCNot ConnectedJ1.8NCNot ConnectedJ1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.21NCNot ConnectedJ2.31AGNDAnalog GroundJ2.41NCNot ConnectedJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.                                                                                                                                                                                                                                                                                                                                                      | J1.3       | NC     | Not Connected |
| J1.6NCNot ConnectedJ1.7NCNot ConnectedJ1.8NCNot ConnectedJ1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19NCNot ConnectedJ1.19NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.9AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                    | J1.4       | NC     | Not Connected |
| J1.7NCNet ConnectedJ1.8NCNot ConnectedJ1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19NCNot ConnectedJ1.19NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                             | J1.5       | NC     | Not Connected |
| J1.8NCNet ConnectedJ1.9AGNDAnalog GroundJ1.10NCNet ConnectedJ1.11AGNDAnalog GroundJ1.12NCNet ConnectedJ1.13AGNDAnalog GroundJ1.14NCNet ConnectedJ1.15NCNet ConnectedJ1.16NCNet ConnectedJ1.17AGNDAnalog GroundJ1.18NCNet ConnectedJ1.19AGNDAnalog GroundJ1.17AGNDAnalog GroundJ1.18NCNet ConnectedJ1.19AGNDAnalog GroundJ1.20NCNet ConnectedJ2.1NCNet ConnectedJ2.2NCNet ConnectedJ2.3NCNet ConnectedJ2.4NCNet ConnectedJ2.5NCNet ConnectedJ2.6NCNet ConnectedJ2.7NCNet ConnectedJ2.8NCNet ConnectedJ2.9AGNDAnalog GroundJ2.10NCNet ConnectedJ2.21NCNet ConnectedJ2.29AGNDAnalog GroundJ2.10NCNet ConnectedJ2.11AGNDAnalog GroundJ2.12NCNet ConnectedJ2.14NCNet ConnectedJ2.15NCNet ConnectedJ2.16NCNet ConnectedJ2.16NCNet ConnectedJ2.16NCNet ConnectedJ2.16                                                                                                                                                                                                                                                                                                                                                      | J1.6       | NC     | Not Connected |
| J1.9AGNDAnalog GroundJ1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19NGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                               | J1.7       | NC     | Not Connected |
| J1.10NCNot ConnectedJ1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                             | J1.8       | NC     | Not Connected |
| J1.11AGNDAnalog GroundJ1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.19NCNot ConnectedJ2.1NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                      | J1.9       | AGND   | Analog Ground |
| J1.12NCNot ConnectedJ1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.10NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J1.10      | NC     | Not Connected |
| J1.13AGNDAnalog GroundJ1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.11NCNot ConnectedJ2.11AGNDAnalog GroundJ2.11NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J1.11      | AGND   | Analog Ground |
| J1.14NCNot ConnectedJ1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.11AGNDAnalog GroundJ2.11NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J1.12      | NC     | Not Connected |
| J1.15NCNot ConnectedJ1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J1.13      | AGND   | Analog Ground |
| J1.16NCNot ConnectedJ1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J1.14      | NC     | Not Connected |
| J1.17AGNDAnalog GroundJ1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J1.15      | NC     | Not Connected |
| J1.18NCNot ConnectedJ1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J1.16      | NC     | Not Connected |
| J1.19AGNDAnalog GroundJ1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J1.17      | AGND   | Analog Ground |
| J1.20NCNot ConnectedJ2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J1.18      | NC     | Not Connected |
| J2.1NCNot ConnectedJ2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J1.19      | AGND   | Analog Ground |
| J2.2NCNot ConnectedJ2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J1.20      | NC     | Not Connected |
| J2.3NCNot ConnectedJ2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J2.1       | NC     | Not Connected |
| J2.4NCNot ConnectedJ2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J2.2       | NC     | Not Connected |
| J2.5NCNot ConnectedJ2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J2.3       | NC     | Not Connected |
| J2.6NCNot ConnectedJ2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J2.4       | NC     | Not Connected |
| J2.7NCNot ConnectedJ2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J2.5       | NC     | Not Connected |
| J2.8NCNot ConnectedJ2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J2.6       | NC     | Not Connected |
| J2.9AGNDAnalog GroundJ2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J2.7       | NC     | Not Connected |
| J2.10NCNot ConnectedJ2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J2.8       | NC     | Not Connected |
| J2.11AGNDAnalog GroundJ2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J2.9       | AGND   | Analog Ground |
| J2.12NCNot ConnectedJ2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J2.10      | NC     | Not Connected |
| J2.13AGNDAnalog GroundJ2.14NCNot ConnectedJ2.15NCNot ConnectedJ2.16NCNot Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J2.11      | AGND   | Analog Ground |
| J2.14     NC     Not Connected       J2.15     NC     Not Connected       J2.16     NC     Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J2.12      | NC     | Not Connected |
| J2.15         NC         Not Connected           J2.16         NC         Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J2.13      | AGND   | Analog Ground |
| J2.16 NC Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J2.14      | NC     | Not Connected |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J2.15      | NC     | Not Connected |
| J2.17 AGND Analog Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J2.16      | NC     | Not Connected |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J2.17      | AGND   | Analog Ground |
| J2.18 NC Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J2.18      | NC     | Not Connected |
| J2.19 AGND Analog Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J2.19      | AGND   | Analog Ground |

### **Table 4. Analog Interface Pinout**



 Table 4. Analog Interface Pinout (continued)

| PIN NUMBER | SIGNAL | DESCRIPTION   |
|------------|--------|---------------|
| J2.20      | NC     | Not Connected |

### A.1.2 Analog Screw Terminal and Audio Jack Details, J6 to J18

The analog inputs and outputs can be accessed through screw terminals or audio jacks. Also, provision is made to connect power supply sources to screw terminals.

Table 5 summarizes the screw terminals and audio jacks available on the TLV320AIC36EVM.

| Table 5. Alternate Analog Connectors |                   |                |                   |                   |                  |  |  |
|--------------------------------------|-------------------|----------------|-------------------|-------------------|------------------|--|--|
| DESIGN<br>ATOR                       | PIN 1             | PIN 2          | PIN3              | PIN4              | PIN5             |  |  |
| J6 (LINE<br>IN)                      | AGND              | LINEIN_L       | LINEIN_R          | NC                | NC               |  |  |
| J7 (LINE<br>IN)                      | LINEIN_R          | AGND           | LINEIN_L          |                   |                  |  |  |
| J8 (MIC 1<br>IN)                     | MIC1_P            | AGND           | MIC1_M            |                   |                  |  |  |
| J9 (MIC 2<br>IN)                     | MIC2_P            | AGND           | MIC2_M            |                   |                  |  |  |
| J10 (EXT<br>MIC IN)                  | EXTMIC_<br>P / NC | AGND           | EXTMIC_<br>M / NC |                   |                  |  |  |
| J11 (EXT<br>MIC IN)                  | AGND              | EXTMIC_<br>P   | EXTMIC_<br>M      | EXTMIC<br>_P / NC | EXTMIC_M /<br>NC |  |  |
| J12<br>(HEADSE<br>T<br>OUTPUT)       | HP_COM            | HPL            | HPR               | HPL /<br>NC       | HPR / NC         |  |  |
| J13<br>(HP_FILT<br>)                 | HPL / NC          | HP_COM         | HPR / NC          |                   |                  |  |  |
| J14<br>(LO_LEF<br>T)                 | LINEOUT<br>_LP    | LINEOUT<br>_LM |                   |                   |                  |  |  |
| J15<br>(LO_RIG<br>HT)                | LINEOUT<br>_RP    | LINEOUT<br>_RP |                   |                   |                  |  |  |
| J16<br>(REC_OU<br>T)                 | RECL              | AGND           | RECR              |                   |                  |  |  |

**Table 5. Alternate Analog Connectors** 



# A.2 Digital Interface Connectors, P4/J4 and P5/J5

The TLV320AIC36EVM is designed to easily interface with multiple control platforms. Samtec part numbers SSW-110-22-F-D-VS-K and TSM-110-01-T-DV-P provide a convenient 10-pin, dual-row header/socket combination at P4/J4 and P5/J5. These headers/sockets provide access to the digital control and serial data pins of the device. Consult Samtec at <u>www.samtec.com</u> or call 1-800- SAMTEC-9 for a variety of mating connector options. Table 6 summarizes the digital interface pinout for the TLV320AIC36EVM.

| PIN NUMBER  | SIGNAL | DESCRIPTION                                     |
|-------------|--------|-------------------------------------------------|
| P4.1/J4.1   | NC     | Not Connected                                   |
| P4.2/J4.2   | NC     | Not Connected                                   |
| P4.3/J4.3   | NC     | Not Connected                                   |
| P4.4/J4.4   | DGND   | Digital Ground                                  |
| P4.5/J4.5   | NC     | Not Connected                                   |
| P4.6/J4.6   | NC     | Not Connected                                   |
| P4.7/J4.7   | NC     | Not Connected                                   |
| P4.8/J4.8   | RESET  | TAS1020B Reset                                  |
| P4.9/J4.9   | NC     | Not Connected                                   |
| P4.10/J4.10 | DGND   | Digital Ground                                  |
| P4.11/J4.11 | NC     | Not Connected                                   |
| P4.12/J4.12 | NC     | Not Connected                                   |
| P4.13/J4.13 | NC     | Not Connected                                   |
| P4.14/J4.14 | RESET  | TAS1020B Reset                                  |
| P4.15/J4.15 | NC     | Not Connected                                   |
| P4.16/J4.16 | NC     | Not Connected                                   |
| P4.17/J4.17 | NC     | Not Connected                                   |
| P4.18/J4.18 | DGND   | Digital Ground                                  |
| P4.19/J4.19 | NC     | Not Connected                                   |
| P4.20/J4.20 | NC     | Not Connected                                   |
| P5.1/J5.1   | NC     | Not Connected                                   |
| P5.2/J5.2   | NC     | Not Connected                                   |
| P5.3/J5.3   | BCLK   | Audio Serial Data Bus Bit Clock (Input/Output)  |
| P5.4/J5.4   | DGND   | Digital Ground                                  |
| P5.5/J5.5   | NC     | Not Connected                                   |
| P5.6/J5.6   | NC     | Not Connected                                   |
| P5.7/J5.7   | WCLK   | Audio Serial Data Bus Word Clock (Input/Output) |
| P5.8/J5.8   | NC     | Not Connected                                   |
| P5.9/J5.9   | NC     | Not Connected                                   |
| P5.10/J5.10 | DGND   | Digital Ground                                  |
| P5.11/J5.11 | DIN    | Audio Serial Data Bus Data Input (Input)        |
| P5.12/J5.12 | NC     | Not Connected                                   |
| P5.13/J5.13 | DOUT   | Audio Serial Data Bus Data Output (Output)      |
| P5.14/J5.14 | NC     | Not Connected                                   |
| P5.15/J5.15 | NC     | Not Connected                                   |
| P5.16/J5.16 | SCL    | I2C Serial Clock                                |
| P5.17/J5.17 | MCLK   | Master Clock Input                              |
| P5.18/J5.18 | DGND   | Digital Ground                                  |
| P5.19/J5.19 | NC     | Not Connected                                   |
| P5.20/J5.20 | SDA    | I2C Serial Data Input/Output                    |

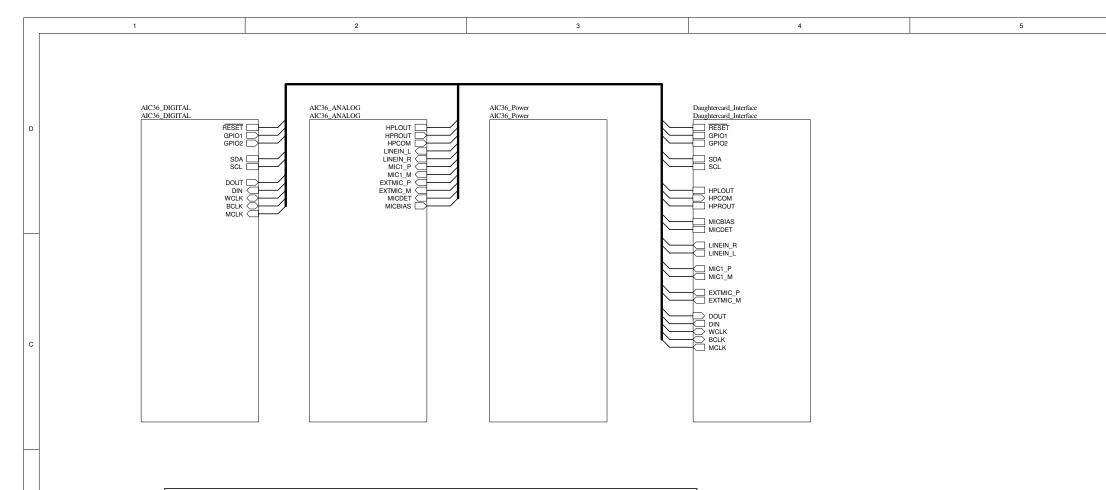
### **Table 6. Digital Interface Pinout**



Note that P5/J5 comprises the signals needed for an  $I^2S^{TM}$  serial digital audio interface and the control interface ( $I^2C^{TM}$ ).

### A.3 Power Supply Connector Pin Header, P3/J3

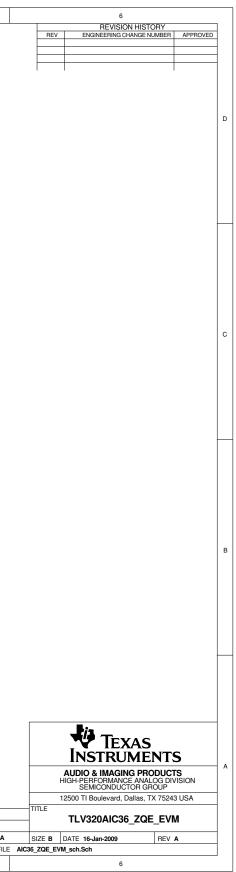
P3/J3 provides connection to the common power bus for the TLV320AIC36EVM. Power is supplied on the pins listed in Table 7.

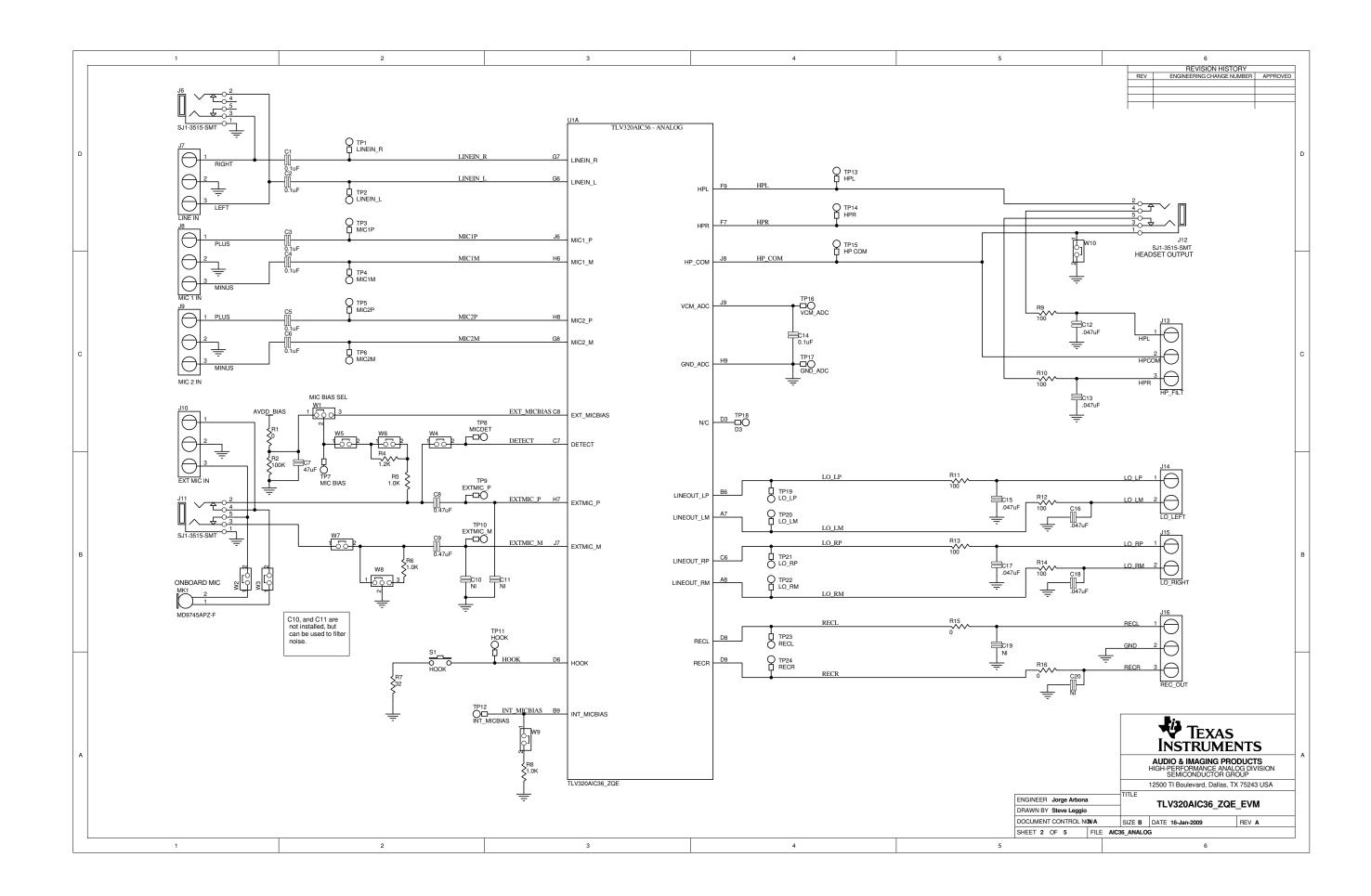

| SIGNAL | PIN NUMBER    |                 | SIGNAL |
|--------|---------------|-----------------|--------|
| NC     | P3.1/J3.<br>1 | P3.2/J3.2       | NC     |
| +5VA   | P3.3/J3.<br>3 | P3.4/J3.4       | NC     |
| DGND   | P3.5/J3.<br>5 | P3.6/J3.6       | AGND   |
| +1.8VD | P3.7/J3.<br>7 | P3.8/J3.8       | NC     |
| +3.3VD | P3.9/J3.<br>9 | P3.10/J3.<br>10 | +5VD   |

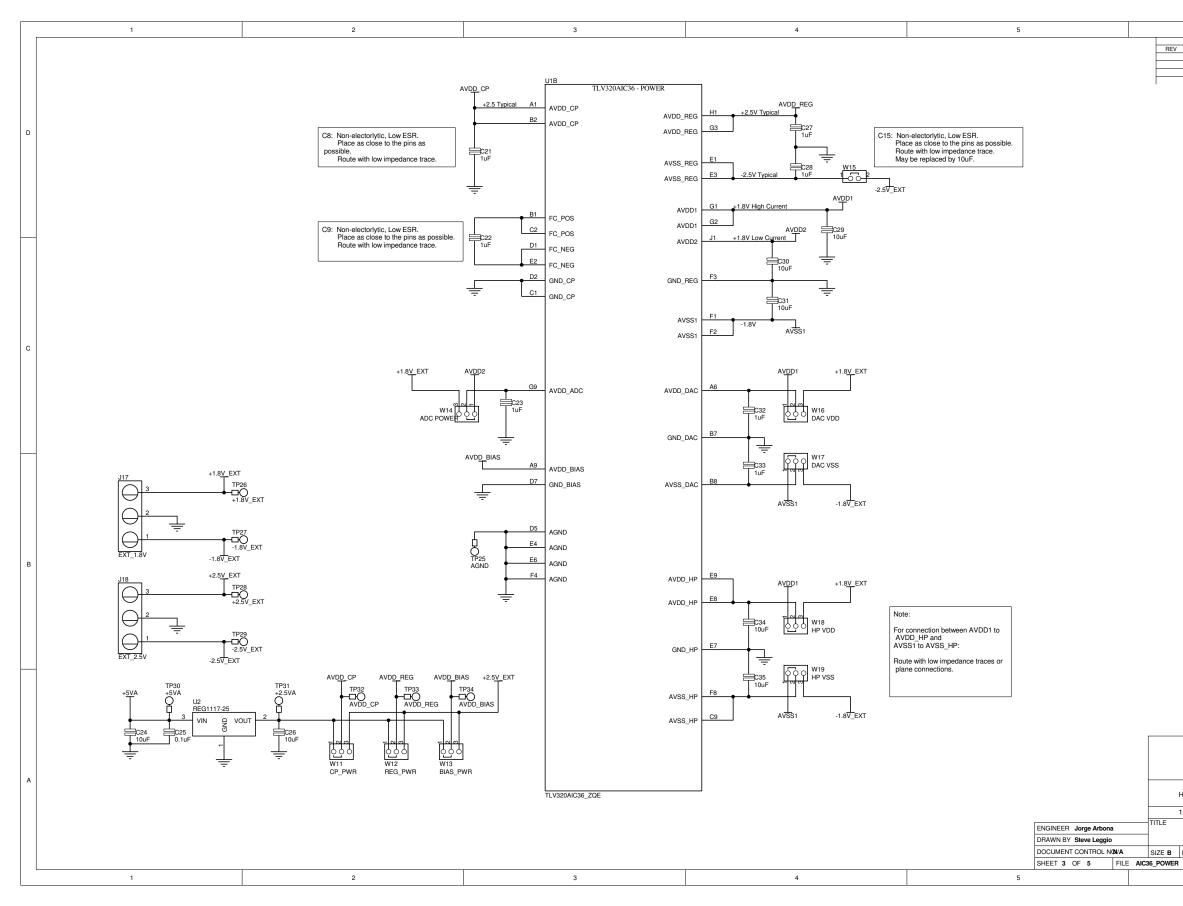
The TLV320AIC36EVM-K motherboard (the USB-MODEVM Interface board) supplies power to P3/J3 of the TLV320AIC36EVM. Power for the motherboard is supplied either through its USB connection or via terminal blocks on that board.

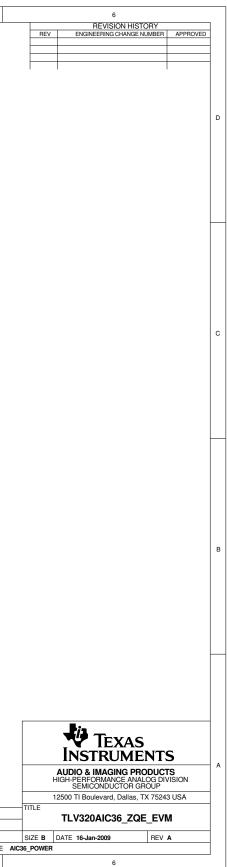


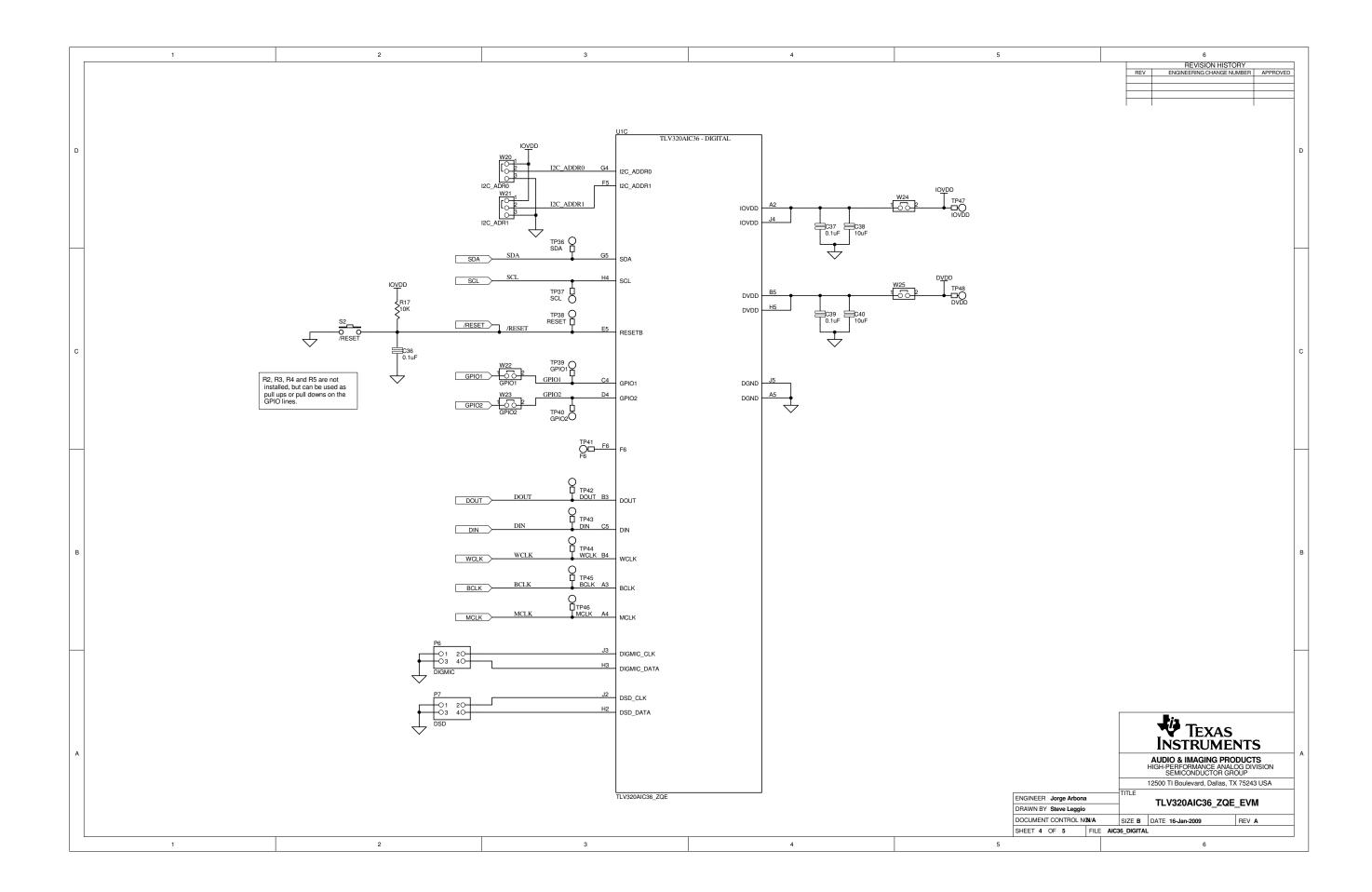
# Appendix B TLV320AIC36EVM Schematic

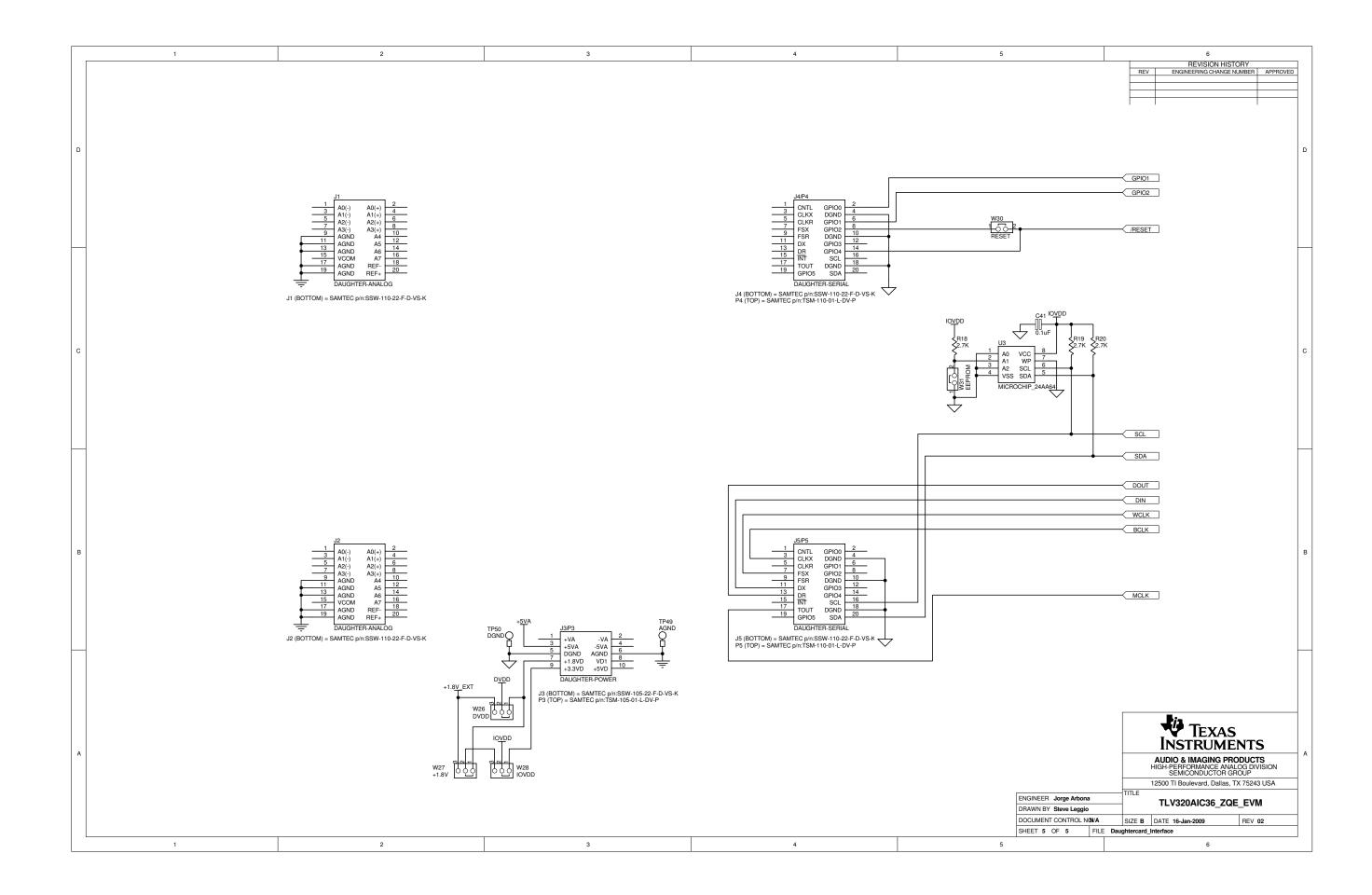

The schematic diagram for the TLV320AIC36EVM is provided as a reference.





| TYPICAL INPUT CONFIGURATIONS (EXTMIC_P & EXTMIC_M) |                                               |                                                                                                      |                                                                                                      |                                                                                                          |                                       |                                              |                                                                                        |                         |                         |
|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|-------------------------|
|                                                    | EXTERNAL ELECTRET<br>MICROPHONE CONFIGURATION |                                                                                                      | JACK LINE<br>INPUT CONFIGURATION                                                                     |                                                                                                          |                                       | ONBOARD ELECTRET<br>MICROPHONE CONFIGURATION |                                                                                        |                         |                         |
| INPUT TYPE                                         |                                               |                                                                                                      |                                                                                                      | + 1<br>- 3                                                                                               |                                       | GNDLLL                                       | +                                                                                      | Þ                       | Þ                       |
| MODE                                               |                                               | SINGLE-ENDED<br>MONO                                                                                 | SINGLE-ENDED<br>MONO                                                                                 | DIFFERENTIAL<br>MONO                                                                                     | SINGLE-ENDED<br>MONO                  | SINGLE-ENDED<br>MONO                         | DIFFERENTIAL<br>MONO                                                                   | SINGLE-ENDED<br>MONO    | DIFFERENTIAL<br>MONO    |
| CODEC<br>INPUTS                                    |                                               | EXTMIC_P                                                                                             | EXTMIC_P                                                                                             | EXTMIC_P<br>EXTMIC_M                                                                                     | EXTMIC_P                              | EXTMIC_P                                     | EXTMIC_P<br>EXTMIC_M                                                                   | EXTMIC_P                | EXTMIC_P<br>EXTMIC_M    |
| ONBOARD MIC<br>JUMPERS                             | W2<br>W3                                      | OUT<br>OUT                                                                                           | OUT<br>OUT                                                                                           | OUT<br>OUT                                                                                               | OUT<br>OUT                            | OUT<br>OUT                                   | OUT<br>OUT                                                                             | IN<br>IN                | IN<br>IN                |
| INPUT CONFIG<br>JUMPER<br>SETTINGS                 | W5<br>W6<br>W7<br>W8                          | IN<br>OUT<br>OUT<br>1-2                                                                              | IN<br>OUT<br>OUT<br>1-2                                                                              | IN<br>IN<br>IN<br>2-3                                                                                    | OUT<br>N/A<br>OUT<br>1-2              | OUT<br>N/A<br>OUT<br>1-2                     | OUT<br>N/A<br>IN<br>OUT                                                                | IN<br>OUT<br>IN<br>1-2  | IN<br>IN<br>IN<br>2-3   |
| DESCRIPTION                                        |                                               | Microphone<br>bias provided on<br>tip.<br>EXTMIC_M<br>AC coupled to<br>GND. Ring not<br>connected to | Microphone<br>bias provided on<br>tip.<br>EXTMIC_M<br>AC coupled to<br>GND. Ring not<br>connected to | Differential<br>electret<br>microphone.<br>EXTMIC_P &<br>EXTMIC_M<br>configured as<br>differential pair. | EXTMIC_M is<br>AC-coupled to<br>AVSS. | EXTMIC_M is<br>AC-coupled to<br>AVSS.        | Differential line<br>in. EXTMIC_P<br>& EXTMIC_M<br>configured as<br>differential pair. | Single Ended -<br>Mono. | Differential -<br>Mono. |


| ENGINEER Jorge Arbo | na    |
|---------------------|-------|
| DRAWN BY Steve Legg | io    |
| DOCUMENT CONTROL    | NON/A |
| SHEET 1 OF 5        | FIL   |
|                     |       |


|   |   |   |   | SHEET I OF 5 FILE |
|---|---|---|---|-------------------|
| 1 | 2 | 3 | 4 | 5                 |
|   |   |   |   |                   |
















# Appendix C TLV320AIC36EVM Layout Views

## C.1 Layout Views

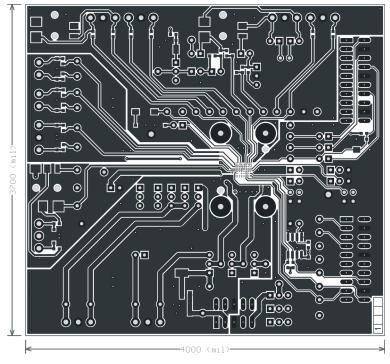



Figure 22. Top Layer

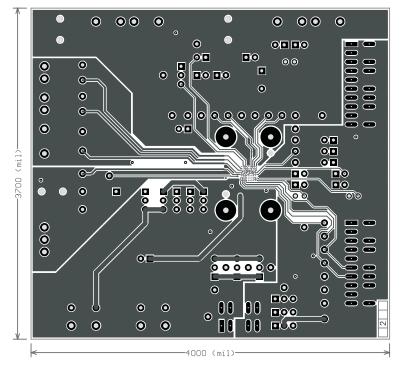
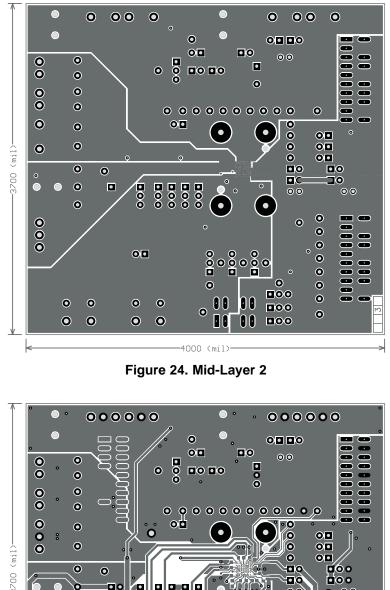




Figure 23. Mid-Layer 1



Layout Views



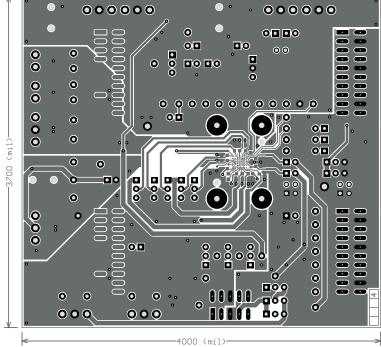



Figure 25. Bottom Layer



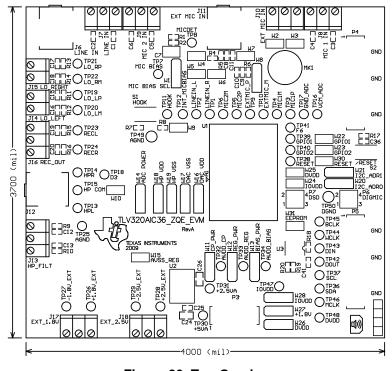



Figure 26. Top Overlay

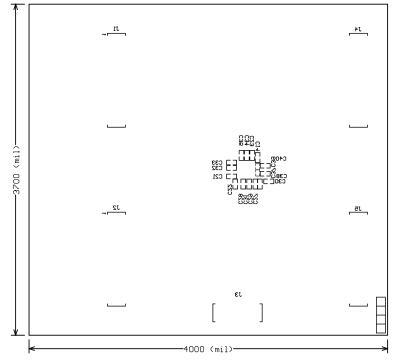



Figure 27. Bottom Overlay



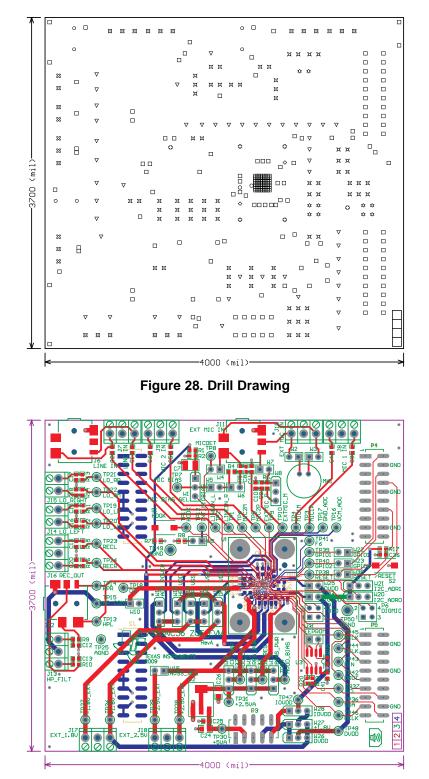



Figure 29. Composite

# Appendix D TLV320AIC36EVM Bill of Materials

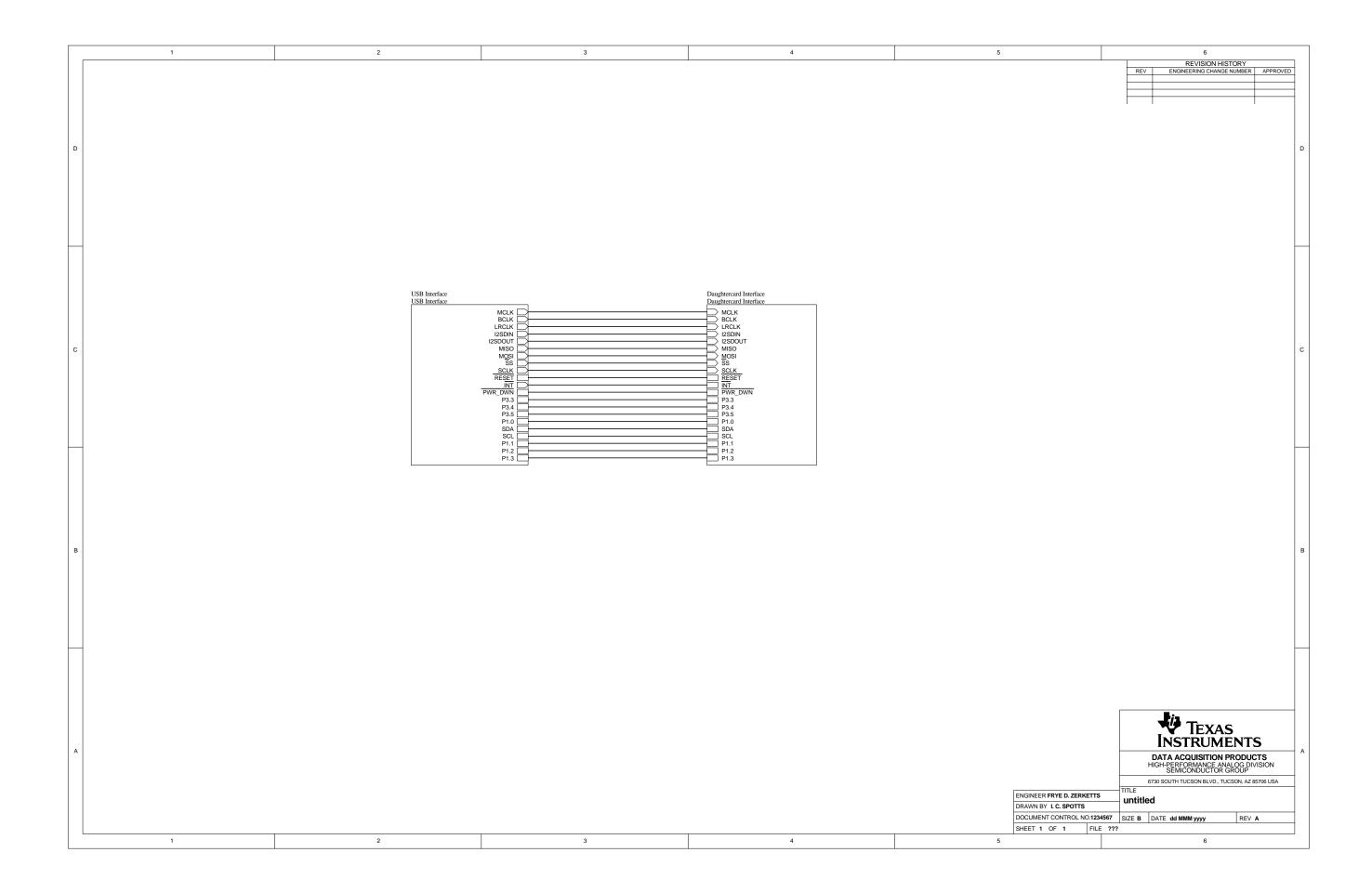
The complete bill of materials for the TLV320AIC36EVM is provided as a reference.

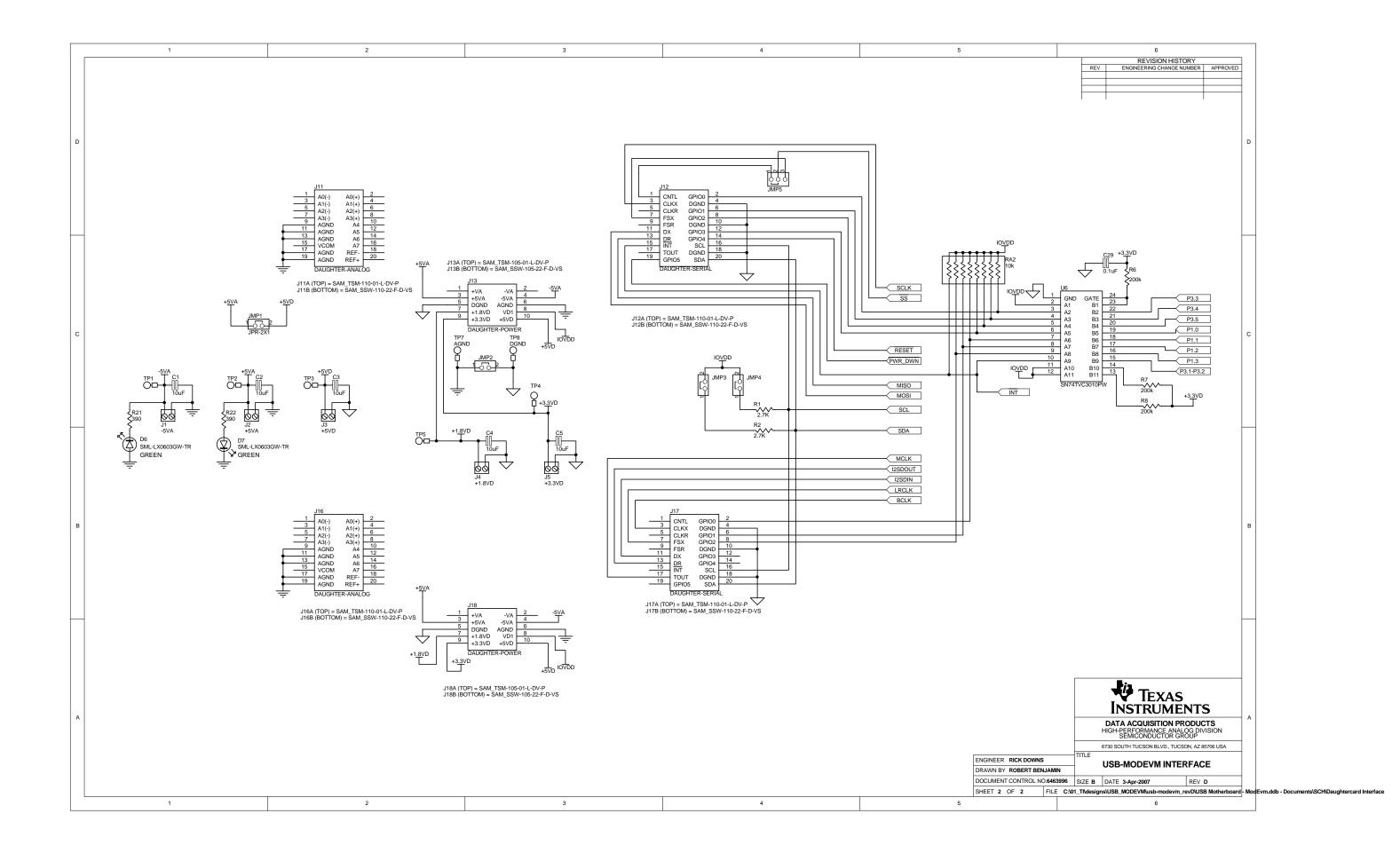
### Table 8. TLV320AIC36EVM Bill of Materials

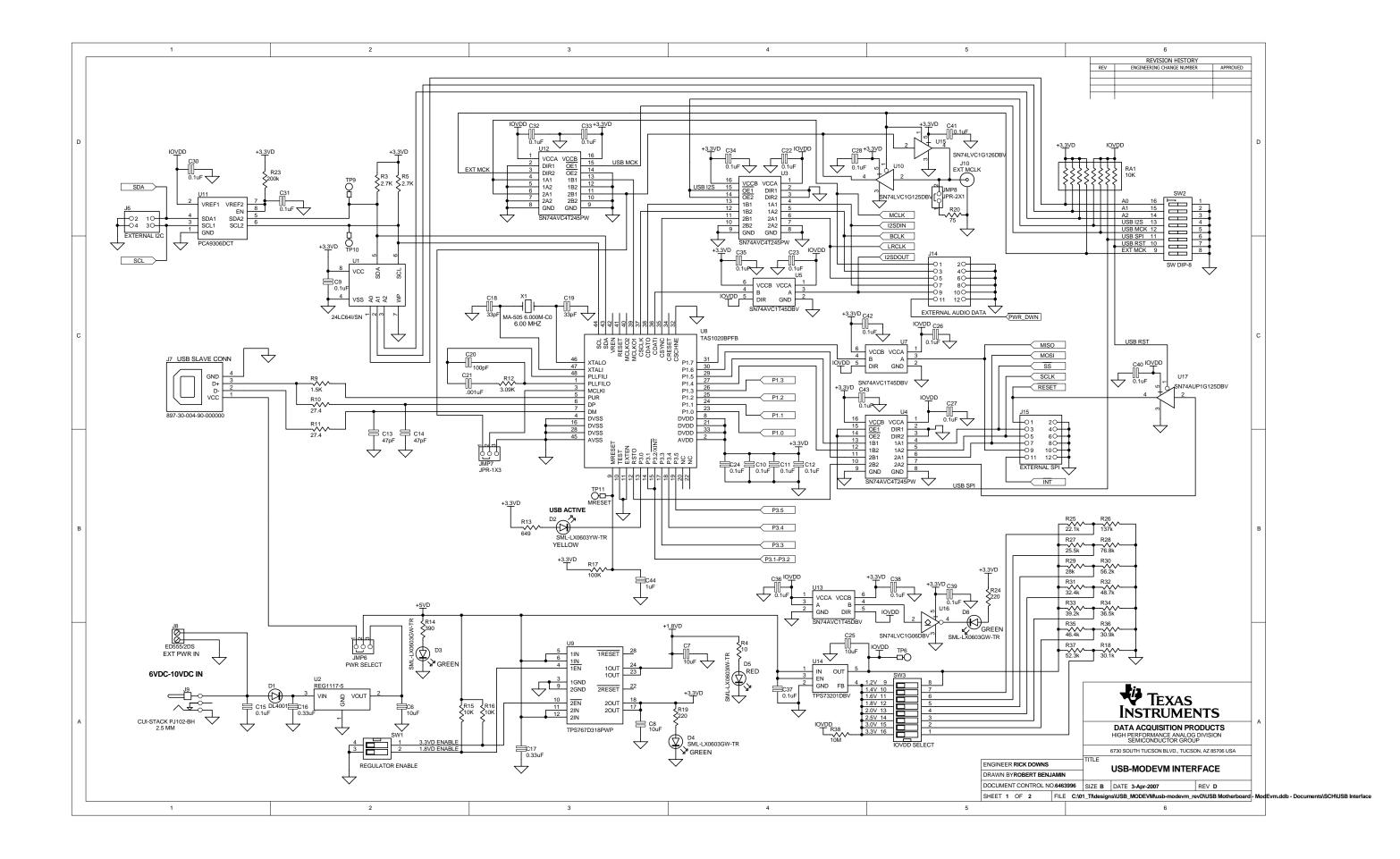
| РСВ  |                                |                                               |                                      |                          |                        |
|------|--------------------------------|-----------------------------------------------|--------------------------------------|--------------------------|------------------------|
| Qty  | Value                          | Ref Des                                       | Description                          | Vendor                   | Part number            |
| 1    |                                | N/A                                           | TLV320AIC36_ZQE_EVM_RevA (PWB)       | Texas<br>Instrument<br>s |                        |
| RES  | ISTORS                         |                                               |                                      |                          |                        |
| Qty  | Value                          | Ref Des                                       | Description                          | Vendor                   | Part number            |
| 3    | 0                              | R1, R15, R16                                  | RES ZERO OHM 1/10W 5% 0603 SMD       | Panasonic                | ERJ-3GEY0R00V          |
| 1    | 32.4                           | R7                                            | RES 32.4 OHM 1/10W 1% 0603 SMD       | Panasonic                | ERJ-3EKF32R4V          |
| 6    | 100                            | R9, R10, R11, R12, R13, R14                   | RES 100 OHM 1/10W 1% 0603 SMD        | Panasonic                | ERJ-3EKF1000V          |
| 3    | 1.0K                           | R5, R6, R8                                    | RES 1.00K OHM 1/10W 1% 0603 SMD      | Panasonic                | ERJ-3EKF1001V          |
| 1    | 1.2K                           | R4                                            | RES 2.2K OHM 1/10W 5% 0603 SMD       | Panasonic                | ERJ-3GEYJ122V          |
| 3    | 2.7K                           | R18, R19, R20                                 | RES 2.7K OHM 1/10W 5% 0603 SMD       | Panasonic                | ERJ-3GEYJ272V          |
| 1    | 10K                            | R17                                           | RES 10K OHM 1/10W 5% 0603 SMD        | Panasonic                | ERJ-3GEYJ103V          |
| 1    | 100K                           | R2                                            | RES 100K OHM 1/10W 1% 0603 SMD       | Panasonic                | ERJ-3EKF1003V          |
| CAP  | ACITORS                        |                                               |                                      |                          |                        |
| Qty  | Value                          | Ref Des                                       | Description                          | Vendor                   | Part number            |
| 6    | 0.047µF                        | C12, C13, C15, C16, C17, C18                  | CAP CER 47000PF 50V X7R 10% 0603     | TDK<br>Corporatio<br>n   | C1608X7R1H473K         |
| 2    | 0.1µF                          | C37, C39                                      | CAP CER .10UF 6.3V X5R 10% 0402      | TDK<br>Corporatio<br>n   | C1005X5R0J104K         |
| 10   | 0.1µF                          | C1, C2, C3, C4, C5, C6, C14, C25,<br>C36, C41 | CAP CER .1UF 25V X7R 0603            | TDK<br>Corporatio<br>n   | C1608X7R1E104K         |
| 2    | 0.47µF                         | C8, C9                                        | CAP CER .47UF 10V X5R 10% 0603       | Panasonic                | C1608X5R1A474K         |
| 7    | 1.0µF                          | C21, C22, C23, C27, C28, C32, C33             | CAP CERAMIC 1UF 10V X5R 0603         | Panasonic                | ECJ-BVB1A105K          |
| 7    | 10µF                           | C29, C30, C31, C34, C35, C38, C40             | CAP CERAMIC 10UF 6.3V X5R 0603       | Panasonic                | ECJ-1VB0J106M          |
| 2    | 10µF                           | C24, C26                                      | CAP CERAMIC 10UF 10V X5R 0805        | Panasonic                | ECJ-2FB1A106K          |
| 1    | 47µF                           | C7                                            | CAP CER 47UF 10V X5R 1210 CAP        | Murata                   | GRM32ER61A476KE2<br>0L |
| 4    | no value<br>- not<br>installed | C10, C11, C19, C20                            | 0603                                 | N/A                      | N/A                    |
| INTE | GRATED                         | CIRCUITS                                      |                                      |                          |                        |
| Qty  | Value                          | Ref Des                                       | Description                          | Vendor                   | Part number            |
| 1    |                                | U1                                            | Low Power Stereo Audio Codec         | Texas<br>Instrument<br>s | TLV320AIC36IZQE        |
| 1    |                                | U2                                            | 800mA 1A Low Dropout Pos Regulator   | Texas<br>Instrument<br>s | REG1117A-25            |
| 1    |                                | U3                                            | IC SERIAL EEPROM 64K 1.7V 8SOIC      | MicroChip                | 24AA64-I/SN            |
| MISC | ELLANEC                        | OUS ITEMS                                     |                                      | u.                       |                        |
| Qty  | Value                          | Ref Des                                       | Description                          | Vendor                   | Part number            |
| 1    |                                | MK1                                           | Omnidirectional Microphone Cartridge | Knowles<br>Acoustics     | MD9745APZ-F            |
|      |                                |                                               | or alternate                         | Knowles<br>Acoustics     | MD9745APA-1            |



| 2  |                                         | S1, S2                                                                                                                                                                                                           | SWITCH LT TOUCH 6X3.5 240GF SMD                        | Panasonic                  | EVQ-5PN04K          |
|----|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|---------------------|
| 3  |                                         | J6, J11, J12                                                                                                                                                                                                     | 3.5mm Audio Jack, T-R-S, SMD                           | CUI Inc.                   | SJ1-3515-SMT        |
| 2  |                                         | J14, J15                                                                                                                                                                                                         | Screw Terminal Block, 2 Position                       | On Shore<br>Technolog<br>y | ED555/2DS           |
| 8  |                                         | J7, J8, J9, J10, J13, J16, J17, J18                                                                                                                                                                              | Screw Terminal Block, 3 Position                       | On Shore<br>Technolog<br>y | ED555/3DS           |
| 2  |                                         | P6, P7                                                                                                                                                                                                           | 4 Pin SMT Plug Header                                  | Samtec                     | TSM-102-01-L-DV-P   |
| 1  |                                         | P3                                                                                                                                                                                                               | 10 Pin SMT Plug Header                                 | Samtec                     | TSM-105-01-L-DV-P   |
| 1  |                                         | J3                                                                                                                                                                                                               | 10 pin SMT Socket Header                               | Samtec                     | SSW-105-22-F-D-VS-I |
| 2  |                                         | P4, P5                                                                                                                                                                                                           | 20 Pin SMT Plug Header                                 | Samtec                     | TSM-110-01-L-DV-P   |
| 4  |                                         | J1, J2, J4, J5                                                                                                                                                                                                   | 20 pin SMT Socket Header                               | Samtec                     | SSW-110-22-F-D-VS-ł |
| 11 | not<br>installed                        | TP26, TP27, TP28, TP29, TP30, TP31,<br>TP32, TP33, TP34, TP47, TP48                                                                                                                                              | TEST POINT PC MINI .040"D RED                          | Keystone<br>Electronics    | 5000                |
| 34 | not<br>installed                        | TP1, TP2, TP3, TP4, TP5, TP6, TP7,<br>TP8, TP9, TP10, TP11, TP12, TP13,<br>TP14, TP15, TP16, TP18, TP19, TP20,<br>TP21, TP22, TP23, TP24, TP36, TP37,<br>TP38, TP39, TP40, TP41, TP42, TP43,<br>TP44, TP45, TP46 | TEST POINT PC MINI .040"D WHITE                        | Keystone<br>Electronics    | 5002                |
| 2  |                                         | TP17, TP25                                                                                                                                                                                                       | TEST POINT PC MINI .040"D BLACK                        | Keystone<br>Electronics    | 5001                |
| 2  |                                         | TP49, TP50                                                                                                                                                                                                       | TEST POINT PC MULTI PURPOSE BLK                        | Keystone<br>Electronics    | 5011                |
| 0  |                                         |                                                                                                                                                                                                                  | Bus Wire (18-22 Gauge)                                 |                            | TSW-102-07-L-S      |
| 15 |                                         | W2, W3, W4, W5, W6, W7, W9, W10,<br>W15, W22, W23, W24, W25, W30,<br>W31                                                                                                                                         | 2 Pin Thru-hole Plug Header (Jumper), 0<br>.1" spacing | Samtec                     | TSW-103-07-L-S      |
| 15 |                                         | W1, W8, W11, W12, W13, W14, W16,<br>W17, W18, W19, W20, W21, W26,<br>W27, W28                                                                                                                                    | 3 Position Jumper , 0 .1" spacing                      | Samtec                     | SNT-100-BK-T        |
|    | Installed<br>per test<br>procedur<br>e. | Installed per test procedure.                                                                                                                                                                                    | Header Shorting Block                                  | Samtec                     |                     |


# Table 8. TLV320AIC36EVM Bill of Materials (continued)


ATTENTION: All components must be Rhos compliant. Some part numbers may be either leaded or Rhos. Verify that purchased components are Rhos compliant.




# Appendix E USB-MODEVM Schematic

The schematic diagram for USB-MODEVM Interface Board is provided as a reference.









# Appendix F USB-MODEVM Bill of Materials

The complete bill of materials for USB-MODEVM Interface Board is provided as a reference.

| Designators              | Description                                  | Manufacturer                | Mfg. Part Number     |
|--------------------------|----------------------------------------------|-----------------------------|----------------------|
| R4                       | 10Ω 1/10W 5% Chip Resistor                   | Panasonic                   | ERJ-3GEYJ1300V       |
| R10, R11                 | 27.4Ω 1/16W 1% Chip Resistor                 | Panasonic                   | ERJ-3EKF27R4V        |
| R20                      | 75Ω 1/4W 1% Chip Resistor                    | Panasonic                   | ERJ-14NF75R0U        |
| R19                      | 220Ω 1/10W 5% Chip Resistor                  | Panasonic                   | ERJ-3GEYJ221V        |
| R14, R21, R22            | 390Ω 1/10W 5% Chip Resistor                  | Panasonic                   | ERJ-3GEYJ391V        |
| R13                      | 649Ω 1/16W 1% Chip Resistor                  | Panasonic                   | ERJ-3EKF6490V        |
| R9                       | 1.5KΩ 1/10W 5% Chip Resistor                 | Panasonic                   | ERJ-3GEYJ1352V       |
| R1–R3, R5–R8             | 2.7KΩ 1/10W 5% Chip Resistor                 | Panasonic                   | ERJ-3GEYJ272V        |
| R12                      | 3.09KΩ 1/16W 1% Chip Resistor                | Panasonic                   | ERJ-3EKF3091V        |
| R15, R16                 | 10KΩ 1/10W 5% Chip Resistor                  | Panasonic                   | ERJ-3GEYJ1303V       |
| R17, R18                 | 100kΩ 1/10W 5%Chip Resistor                  | Panasonic                   | ERJ-3GEYJ1304V       |
| RA1                      | 10KΩ 1/8W Octal Isolated Resistor Array      | CTS Corporation             | 742C163103JTR        |
| C18, C19                 | 33pF 50V Ceramic Chip Capacitor, ±5%, NPO    | ТДК                         | C1608C0G1H330J       |
| C13, C14                 | 47pF 50V Ceramic Chip Capacitor, ±5%, NPO    | ТДК                         | C1608C0G1H470J       |
| C20                      | 100pF 50V Ceramic Chip Capacitor, ±5%, NPO   | TDK                         | C1608C0G1H101J       |
| C21                      | 1000pF 50V Ceramic Chip Capacitor, ±5%, NPO  | ТДК                         | C1608C0G1H102J       |
| C15                      | 0.1µF 16V Ceramic Chip Capacitor, ±10%, X7R  | TDK                         | C1608X7R1C104K       |
| C16, C17                 | 0.33µF 16V Ceramic Chip Capacitor, ±20%, Y5V | TDK                         | C1608X5R1C334K       |
| C9–C12, C22–C28          | 1µF 6.3V Ceramic Chip Capacitor, ±10%, X5R   | TDK                         | C1608X5R0J1305K      |
| C1–C8                    | 10µF 6.3V Ceramic Chip Capacitor, ±10%, X5R  | TDK                         | C3216X5R0J1306K      |
| D1                       | 50V, 1A, Diode MELF SMD                      | Micro Commercial Components | DL4001               |
| D2                       | Yellow Light Emitting Diode                  | Lumex                       | SML-LX0603YW-TR      |
| D3– D7                   | Green Light Emitting Diode                   | Lumex                       | SML-LX0603GW-TR      |
| D5                       | Red Light Emitting Diode                     | Lumex                       | SML-LX0603IW-TR      |
| Q1, Q2                   | N-Channel MOSFET                             | Zetex                       | ZXMN6A07F            |
| X1                       | 6MHz Crystal SMD                             | Epson                       | MA-505 6.000M-C0     |
| U8                       | USB Streaming Controller                     | Texas Instruments           | TAS1020BPFB          |
| U2                       | 5V LDO Regulator                             | Texas Instruments           | REG1117-5            |
| U9                       | 3.3V/1.8V Dual Output LDO Regulator          | Texas Instruments           | TPS767D318PWP        |
| U3, U4                   | Quad, 3-State Buffers                        | Texas Instruments           | SN74LVC125APW        |
| U5–U7                    | Single IC Buffer Driver with Open Drain o/p  | Texas Instruments           | SN74LVC1G07DBVR      |
| U10                      | Single 3-State Buffer                        | Texas Instruments           | SN74LVC1G125DBVR     |
| U1                       | 64K 2-Wire Serial EEPROM I <sup>2</sup> C    | Microchip                   | 24LC64I/SN           |
|                          | USB-MODEVM PCB                               | Texas Instruments           | 6463995              |
| TP1–TP6. TP9–TP11        | Miniature test point terminal                | Keystone Electronics        | 5000                 |
| TP7, TP8                 | Multipurpose test point terminal             | Keystone Electronics        | 5011                 |
| J7                       | USB Type B Slave Connector Thru-Hole         | Mill-Max                    | 897-30-004-90-000000 |
| J13, J2–J5, J8           | 2-position terminal block                    | On Shore Technology         | ED555/2DS            |
| J9                       | 2.5mm power connector                        | CUI Stack                   | PJ-102B              |
| J130                     | BNC connector, female, PC mount              | AMP/Tyco                    | 414305-1             |
| J131A, J132A, J21A, J22A | 20-pin SMT plug                              | Samtec                      | TSM-110-01-L-DV-P    |
| J131B, J132B, J21B, J22B | 20-pin SMT plug<br>20-pin SMT socket         | Samtec                      | SSW-110-22-F-D-VS-K  |
| J133A, J23A              | 10-pin SMT plug                              | Samtec                      | TSM-105-01-L-DV-P    |
| J133B, J23B              | 10-pin SMT pidg<br>10-pin SMT socket         | Samtec                      | SSW-105-22-F-D-VS-K  |
| J6                       | 4-pin double row header (2x2) 0.1"           | Samtec                      | TSW-102-07-L-D       |
| J0<br>J134, J135         | 12-pin double row header (2x2) 0.1"          | Samtec                      | TSW-102-07-L-D       |
|                          | 12 pin double row neader (270) 0.1           | Jannes                      | 100-07-L-D           |

### Table 9. USB-MODEVM Bill of Materials

| Designators | Description                              | Manufacturer      | Mfg. Part Number |
|-------------|------------------------------------------|-------------------|------------------|
| JMP8–JMP14  | 2-position jumper, 0.1" spacing          | Samtec            | TSW-102-07-L-S   |
| JMP5, JMP6  | 3-position jumper, 0.1" spacing          | Samtec            | TSW-103-07-L-S   |
| JMP7        | 3-position dual row jumper, 0.1" spacing | Samtec            | TSW-103-07-L-D   |
| SW1         | SMT, half-pitch 2-position switch        | C&K Division, ITT | TDA02H0SK1       |
| SW2         | SMT, half-pitch 8-position switch        | C&K Division, ITT | TDA08H0SK1       |
|             | Jumper plug                              | Samtec            | SNT-100-BK-T     |

# Table 9. USB-MODEVM Bill of Materials (continued)



### Appendix G USB-MODEVM Protocol

#### G.1 Writing Scripts

A script is simply a text file that contains data to send to the serial control buses.

Each line in a script file is one command. No provision is made for extending lines beyond one line, except for the > command. A line is terminated by a carriage return.

The first character of a line is the command. Commands are:

- i Set interface bus to use
- r Read from the serial control bus
- **w** Write to the serial control bus
- > Extend repeated write commands to lines below a w
- # Comment
- **b** Break
- d Delay
- f Wait for Flag

The first command, **i**, sets the interface to use for the commands to follow. This command must be followed by one of the following parameters:

| i2cstd Standard mode I <sup>2</sup> C bus |                                         |
|-------------------------------------------|-----------------------------------------|
| i2cfast                                   | Fast mode I <sup>2</sup> C bus          |
| spi8                                      | SPI bus with 8-bit register addressing  |
| spi16                                     | SPI bus with 16-bit register addressing |
| gpio                                      | Use the USB-MODEVM GPIO capability      |

For example, if a fast mode I<sup>2</sup>C bus is to be used, the script begins with:

#### i i2cfast

A double quoted string of characters following the **b** command can be added to provide information to the user about each breakpoint. When the script is executed, the software's command handler halts as soon as a breakpoint is detected and displays the string of characters within the double quotes.

The Wait for Flag command, **f**, reads a specified register and verifies if the bitmap provided with the command matches the data being read. If the data does not match, the command handler retries for up to 200 times. This feature is useful when switching buffers in parts that support the adaptive filtering mode. The command f syntax follows:

f [i2c address] [register] [D7][D6][D5][D4][D3][D2][D1][D0] where 'i2c address' and 'register' are in hexadecimal format and 'D7' through 'D0' are in binary format with values of 0, 1 or X for don't care.

Anything following a comment command **#** is ignored by the parser, provided that it is on the same line.

The delay command **d** allows the user to specify a time, in milliseconds, that the script pauses before proceeding. **The delay time is entered in decimal format.** 

A series of byte values follows either a read or write command. Each byte value is expressed in hexadecimal, and each byte must be separated by a space. Commands are interpreted and sent to the TAS1020B by the program.

The first byte following an **r** (read) or **w** (write) command is the  $l^2C$  slave address of the device (if  $l^2C$  is used) or the first data byte to write (if SPI is used—note that SPI interfaces are not standardized on protocols, so the meaning of this byte varies with the device being addressed on the SPI bus). The second byte is the starting register address that data will be written to (again, with  $l^2C$ ; SPI varies). Following these two bytes are data, if writing; if reading, the third byte value is the number of bytes to read, (expressed in hexadecimal).



For example, to write the values 0xAA 0x55 to an I<sup>2</sup>C device with a slave address of 0x30, starting at a register address of 0x03, the user writes:

#example script i i2cfast w 30 03 AA 55 r 30 03 02

This script begins with a comment, specifies that a fast I<sup>2</sup>C bus will be used, then writes 0xAA 0x55 to the I<sup>2</sup>C slave device at address 0x30, writing the values into registers 0x03 and 0x04. The script then reads back two bytes from the same device starting at register address 0x03. Note that the slave device value does not change. It is unnecessary to set the R/W bit for I<sup>2</sup>C devices in the script; the read or write commands does that.

If extensive repeated write commands are sent and commenting is desired for a group of bytes, the > command can be used to extend the bytes to other lines that follow. A usage example for the > command follows:

#example script for '>' command i i2cfast # Write AA and BB to registers 3 and 4, respectively w
30 03 AA BB # Write CC, DD, EE and FF to registers 5, 6, 7 and 8, respectively > CC DD EE FF #
Place a commented breakpoint b "AA BB CC DD EE FF was written, starting at register 3" # Read
back all six registers, starting at register 3 r 30 03 06

The following example demonstrates usage of the Wait for Flag command, f:

#example script for 'wait for flag' command i i2cfast # Switch to Page 8 w 30 00 08 # Switch buffers w 30 01 05 # Wait for bit D0 to clear. 'x' denotes a don't care. f 30 01 xxxxxxx0

Any text editor can be used to write these scripts; Jedit is an editor that is highly recommended for general usage. For more information, go to: <u>http://www.jedit.org</u>.

Once the script is written, it can be used in the command window by running the program, and then selecting *Open Script File...* from the File menu. Locate the script and open it. The script is then displayed in the command buffer. The user can also edit the script once it is in the buffer and save it by selecting *Save Script File...* from the File menu.

Once the script is in the command buffer, it can be executed by pressing the *Execute Command Buffer* button. If there are breakpoints in the script, the script executes to that point, and the user is presented with a dialog box with a button to press to continue executing the script. When ready to proceed, push that button and the script continues.

#### **EVALUATION BOARD/KIT IMPORTANT NOTICE**

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

#### **FCC Warning**

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

#### **EVM WARNINGS AND RESTRICTIONS**

It is important to operate the EVM daughterboard within the input voltage range specified in Table A-4 and the EVM motherboard within the input voltage range of 6 Vdc to 10 Vdc when using an external ac/dc power source. See the USB-MODEVM Interface Power section of this manual when using laboratory power supplies.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 85°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

| Products                     |                                 | Applications                  |                                   |  |
|------------------------------|---------------------------------|-------------------------------|-----------------------------------|--|
| Audio                        | www.ti.com/audio                | Automotive and Transportation | www.ti.com/automotive             |  |
| Amplifiers                   | amplifier.ti.com                | Communications and Telecom    | www.ti.com/communications         |  |
| Data Converters              | dataconverter.ti.com            | Computers and Peripherals     | www.ti.com/computers              |  |
| DLP® Products                | www.dlp.com                     | Consumer Electronics          | www.ti.com/consumer-apps          |  |
| DSP                          | dsp.ti.com                      | Energy and Lighting           | www.ti.com/energy                 |  |
| Clocks and Timers            | www.ti.com/clocks               | Industrial                    | www.ti.com/industrial             |  |
| Interface                    | interface.ti.com                | Medical                       | www.ti.com/medical                |  |
| Logic                        | logic.ti.com                    | Security                      | www.ti.com/security               |  |
| Power Mgmt                   | power.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |  |
| Microcontrollers             | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |  |
| RFID                         | www.ti-rfid.com                 |                               |                                   |  |
| OMAP Applications Processors | www.ti.com/omap                 | TI E2E Community              | e2e.ti.com                        |  |
| Wireless Connectivity        | www.ti.com/wirelessconnectivity |                               |                                   |  |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated