This user’s guide describes the characteristics, operation and use of the AFE4403EVM demonstration kit. This demonstration kit is an evaluation module for the AFE4403 device. The family of devices are fully-integrated AFE, ideally suited for Pulse Oximeter applications. The EVM is intended for prototyping and evaluation. This user’s guide includes a complete circuit description, schematic diagram and bill of materials.

The following related documents are available through the Texas Instruments web site at www.ti.com:

<table>
<thead>
<tr>
<th>Device</th>
<th>Literature Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFE4403</td>
<td>SBAS650</td>
</tr>
</tbody>
</table>

Contents

1 AFE4403EVM Overview .. 4
1.1 Important Disclaimer Information ... 4
2 Overview .. 5
2.1 Introduction ... 5
2.2 AFE4403EVM Kit Contents ... 5
2.3 Features Supported in this Version ... 5
3 Software Installation ... 7
3.1 Minimum Requirements ... 7
3.2 Installing the Software (PC Application) .. 7
3.3 Installing the USB Drivers .. 10
4 Running the Software .. 19
4.1 Overview of the Features .. 19
5 AFE4403EVM Hardware .. 29
5.1 Power Supply ... 30
5.2 Clock ... 30
5.3 Accessing AFE4403 Digital Signals ... 30
5.4 USB Interface ... 30
5.5 On-Board Key Interface .. 31
5.6 Visual Indication .. 31
6 USB-Based Firmware Upgrade ... 31
7 AFE4403EVM Firmware Upgrade Without GUI .. 33
8 Connector Interface ... 35
8.1 DB9 Pulse Oximeter Connector ... 35
8.2 Micro-USB Connector .. 36
8.3 8-Pin Connector .. 37
9 AFE4403EVM Reflective Sensing Quick Start Guide .. 37
10 AFE4403EVM FAQs ... 41
10.1 EVM communicating with the PC application ... 41
10.2 ADC_RDY signal ... 41
10.3 Check TXP and TXN Waveforms ... 42
10.4 Diagnostics ... 43
10.5 Automation of Register Read and Write Operations ... 43
10.6 Optimum Viewing Experience on Windows 7 OS ... 43
10.7 Windows 8 Support for Device GUIs ... 44
10.8 COM Port .. 50
List of Figures

1 AFE4403 Demonstration Kit .. 5
2 PC Application Installation - Screen 1 ... 7
3 PC Application Installation - Screen 2 ... 8
4 PC Application Installation - Screen 3 ... 8
5 PC Application Installation - Screen 4 ... 9
6 PC Application Installation - Screen 5 ... 9
7 Python Installation ... 10
8 USB Driver Installation - Screen 1 (Windows 7 OS only) .. 10
9 USB Driver Installation - Screen 2 .. 11
10 USB Driver Installation - Screen 3 ... 12
11 Windows Publisher Verification Warning .. 13
12 USB Driver Installation - Screen 4 ... 13
13 Device Manager Screen ... 14
14 Windows 8 Installing Unsigned Drivers - Screen 1 .. 15
15 Windows 8 Installing Unsigned Drivers - Screen 2 .. 16
16 Windows 8 Installing Unsigned Drivers - Screen 3 .. 16
17 Windows 8 Installing Unsigned Drivers - Screen 4 .. 17
18 Windows 8 Installing Unsigned Drivers - Screen 5 .. 17
19 Windows 8 Installing Unsigned Drivers - Screen 6 .. 18
20 Windows 8 Installing Unsigned Drivers - Screen 7 .. 18
21 AFE4403EVM Not Connected Error Message ... 19
22 Product Safety Warnings, Restrictions and Disclaimers .. 20
23 AFE4403: Device Configuration: Global Settings ... 21
24 AFE4403: Device Configuration: Tx Stage .. 22
25 AFE4403: Device Configuration: Rx Stage .. 23
26 AFE4403: Device Configuration: Timing Controls ... 24
27 Device Configuration: Low Level Configuration ... 25
28 ADC Capture and Analysis Tab .. 27
29 Scope Analysis: Test Results ... 27
30 Save Tab ... 28
31 AFE4403EVM Block Diagram .. 29
32 PC Application Firmware Upgrade – 1 ... 31
33 PC Application Firmware Upgrade – 2 ... 32
34 PC Application Firmware Upgrade – 3 ... 32
35 PC Application Firmware Upgrade – 4 ... 33
36 Firmware Loader Application: Select Firmware .. 33
37 Firmware Loader Application: Found Device ... 34
38 Firmware Loader Application: Programming Status .. 34
39 DB9 Pulse Oximeter Connector Pin Outs ... 35
40 USB Micro Connector Pin Outs ... 36
41 8-Pin Connector .. 37

Copyright © 2014, Texas Instruments Incorporated
Submit Documentation Feedback
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Setting Font Size on Windows 7 Operating System</td>
</tr>
<tr>
<td>52</td>
<td>Broken Arrow Error</td>
</tr>
<tr>
<td>53</td>
<td>Method 1 (Screen 1)</td>
</tr>
<tr>
<td>54</td>
<td>Method 1 (Screen 2)</td>
</tr>
<tr>
<td>55</td>
<td>Method 1 (Screen 3)</td>
</tr>
<tr>
<td>56</td>
<td>Method 1 (Screen 4)</td>
</tr>
<tr>
<td>57</td>
<td>Method 1 (Screen 5)</td>
</tr>
<tr>
<td>58</td>
<td>Method 1 (Screen 6)</td>
</tr>
<tr>
<td>59</td>
<td>Method 2 (Screen 1)</td>
</tr>
<tr>
<td>60</td>
<td>Method 2 (Screen 2)</td>
</tr>
<tr>
<td>61</td>
<td>Method 2 (Screen 3)</td>
</tr>
<tr>
<td>62</td>
<td>Method 2 (Screen 4)</td>
</tr>
<tr>
<td>63</td>
<td>AFE4403EVM Top Overlay</td>
</tr>
<tr>
<td>64</td>
<td>Top Solder</td>
</tr>
<tr>
<td>65</td>
<td>Top Copper (Layer 1)</td>
</tr>
<tr>
<td>66</td>
<td>GND (Layer 2)</td>
</tr>
<tr>
<td>67</td>
<td>Signal 1 and GND (Layer 3)</td>
</tr>
<tr>
<td>68</td>
<td>Signal 2 and GND (Layer 4)</td>
</tr>
<tr>
<td>69</td>
<td>Power Plane (Layer 5)</td>
</tr>
<tr>
<td>70</td>
<td>Bottom Copper (Layer 6)</td>
</tr>
<tr>
<td>71</td>
<td>Bottom Solder</td>
</tr>
<tr>
<td>72</td>
<td>Bottom Overlay</td>
</tr>
<tr>
<td>73</td>
<td>SFH7050 Sensor Board Top Silk Screen</td>
</tr>
<tr>
<td>74</td>
<td>SFH7050 Sensor Board Top Solder Mask</td>
</tr>
<tr>
<td>75</td>
<td>SFH7050 Sensor Board Top Copper</td>
</tr>
<tr>
<td>76</td>
<td>SFH7050 Sensor Board Bottom Copper</td>
</tr>
<tr>
<td>77</td>
<td>SFH7050 Sensor Board Bottom Solder Mask</td>
</tr>
<tr>
<td>78</td>
<td>SFH7050 Sensor Board Bottom Silk Screen</td>
</tr>
<tr>
<td>79</td>
<td>NJL5310R Sensor Board Top Silk Screen</td>
</tr>
<tr>
<td>80</td>
<td>NJL5310R Sensor Board Top Solder Mask</td>
</tr>
<tr>
<td>81</td>
<td>NJL5310R Sensor Board Top Copper</td>
</tr>
<tr>
<td>82</td>
<td>NJL5310R Sensor Board Bottom Copper</td>
</tr>
<tr>
<td>83</td>
<td>NJL5310R Sensor Board Bottom Solder Mask</td>
</tr>
<tr>
<td>84</td>
<td>NJL5310R Sensor Board Bottom Silk Screen</td>
</tr>
<tr>
<td>85</td>
<td>AFE4403EVM Schematics (1 of 4)</td>
</tr>
<tr>
<td>86</td>
<td>AFE4403EVM Schematics (2 of 4)</td>
</tr>
<tr>
<td>87</td>
<td>AFE4403EVM Schematics (3 of 4)</td>
</tr>
<tr>
<td>88</td>
<td>AFE4403EVM Schematics (4 of 4)</td>
</tr>
<tr>
<td>89</td>
<td>SFH7050 Sensor Board Schematic</td>
</tr>
</tbody>
</table>
AFE4403EVM Overview

1 AFE4403EVM Overview

1.1 Important Disclaimer Information

CAUTION

The AFE4403EVM is intended for feasibility and evaluation testing only in laboratory and development environments. This product is not for diagnostic use. This product is not for use with a defibrillator.

Only use the AFE4403EVM under the following conditions:

- The AFE4403EVM demonstration kit is intended only for electrical evaluation of the features of the AFE4403 devices in a laboratory, simulation, or development environment.
- The AFE4403EVM demonstration kit is not intended for direct interface with a patient, or patient diagnostics.
- The AFE4403EVM demonstration kit is intended for development purposes ONLY. It is not intended to be used as all or part of an end-equipment application.
- The AFE4403EVM demonstration kit should be used only by qualified engineers and technicians who are familiar with the risks associated with handling electrical and mechanical components, systems, and subsystems.
- The user is responsible for the safety of themselves, fellow employees and contractors, and co-workers when using or handling the AFE4403EVM. Furthermore, the user is fully responsible for the contact interface between the human body and electronics; consequently, the user is responsible for preventing electrical hazards such as shock, electrostatic discharge, and electrical overstress of electric circuit components.
2 Overview

2.1 Introduction

The EVM is intended for evaluating AFE4403 device. The family of devices consist of a low-noise receive channel, the LED transmit section, and diagnostics for sensor and LED fault detection. The AFE4403 has a highly configurable timing controller, enabling complete control of the device’s timing characteristics. The device also has an integrated oscillator working off from two clock sources: either an external crystal or the clock from an external host processor to ease clocking requirements and provide a low-jitter clock to the AFE4403. The device communicates to an external host processor using the Serial Peripheral Interface (SPI). The purpose of the EVM is to expedite evaluation and system development activities related to AFE4403 devices. The demonstration kit is shown in Figure 1.

![AFE4403 Demonstration Kit](image)

Throughout the document, the term demonstration kit is synonymous with AFE4403EVM.

2.2 AFE4403EVM Kit Contents

- AFE4403EVM Demonstration Kit
- USB-to-micro USB cable
- DB9 to 8 pin header sensor cable
- NJRC NJL5310R sensor board
- OSRAM SFH7050 sensor board

2.3 Features Supported in this Version

1. DB9 pulse oximeter sensor cable support
2. Acquire data at up to 3000 Hz in evaluation mode
3. USB-based power and PC application connectivity
4. Access to all AFE4403 registers via an easy-to-use GUI
5. Built-in time domain, histogram, and FFT on the PC application
6. USB-based firmware upgrade option
3 Software Installation

The latest AFE4403EVM PC application software (GUI) is available from the TI website at www.ti.com. Download the zipped file to a temporary directory on the PC.

3.1 Minimum Requirements

Before installing the software, verify that your PC meets the minimum requirements outlined in this section.

3.1.1 Required Setup for AFE4403EVM Demo Software

- IBM PC-compatible computer
- Pentium® III/ Celeron® 866 MHz or equivalent processor
- Minimum 256MB of RAM (512MB or greater recommended)
- Hard disk drive with at least 200 MB free space
- Microsoft® Windows® XP SP2 operating system or Windows 7 operating system
- 1280 × 1024 or greater display screen resolution

3.2 Installing the Software (PC Application)

Before installing the software, make sure the AFE4403EVM is NOT connected to the PC. If using a machine with Windows 7 OS, we recommend having administrator rights to avoid problems during installation. Unzip the installer file, and then find and double click setup.exe to install the software. Unless otherwise specified during the install process, the software installs at the following location:

- On a Windows XP machine
 - C:\Program Files\Texas Instruments\AFE4403EVM GUI
- On a Windows 7 machine
 - C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI

It creates a program menu item, AFE4403EVM GUI under Programs→Texas Instruments→AFE4403EVM GUI to execute the software. The following steps ensure proper installation of the PC application.

Click setup.exe and follow the prompts to continue with the installation process.

Select the destination directory and click the Next> button.

![Figure 2. PC Application Installation - Screen 1](image-url)
Accept the NI Software License Agreement and click the **Next>>** button.

![Figure 3. PC Application Installation - Screen 2](image)

Figure 3. PC Application Installation - Screen 2

Accept the license agreement and click the **Next>>** button.

![Figure 4. PC Application Installation - Screen 3](image)

Figure 4. PC Application Installation - Screen 3
Click the **Next>>** button to begin the installation.

![Figure 5. PC Application Installation - Screen 4](image)

The application software is now installed. Once the installation is complete, click the **Next>>** button to continue with the installation of Python v2.7.

![Figure 6. PC Application Installation - Screen 5](image)

Once the Python v2.7 is installed, click the **OK** button. The PC application is now ready to use.
3.3 Installing the USB Drivers

The communication interface between the AFE4403EVM board and PC is through the USB, using the
CDC profile. A one-time installation of the USB driver is required for the communication between the
AFE4403EVM and PC application.

Following the steps below ensures proper installation of the USB drivers:

1. Plug the USB-to-mini USB cable to J4 of AFE4403EVM and the other end to the USB port on the
 PC.

2. Win XP OS starts up the New Hardware Wizard to enable the user to install the USB driver for the new
 hardware. The Windows 7 OS attempts to find the driver for the new hardware found automatically and
 if the driver is not found, there is no pop-up message to indicate that the driver installation failed. In the
 Windows 7 OS, click on Device Manager, right click on MSP430-USB example under Other devices
 and click on Update Driver Software as shown in Figure 8. This step is not required for the Windows
 XP OS.

3. Select the Browse my computer for driver software option
Figure 9. USB Driver Installation - Screen 2
4. As shown in Figure 10, navigate to the directory where the AFE44xx.inf file is located by clicking the **Browse** button. The file is located at the following path:
 - On a Windows XP machine:
 - `C:\Program Files\Texas Instruments\AFE4403EVM GUI\USB Driver`
 - On a Windows 7 machine:
 - `C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\USB Driver`
 Click the **Next** button to continue. The Driver file is copied to the system directory after clicking the **Next** button.

![Figure 10. USB Driver Installation - Screen 3](image)

5. There may be a warning that Windows can't verify the publisher of this driver software, as shown in Figure 11. Choose to install the driver software anyway to proceed.
6. Click the Close button once the driver installation is complete (Figure 12).

7. The AFE4403EVM is now recognized as Virtual COM Port under the Device Manager as shown in Figure 13.
The USB driver installation is now complete and the EVM is ready to use.
3.3.1 Windows 8 Installing Unsigned Drivers

Perform an advanced startup sequence to let Windows 8 install unsigned drivers.

Move the cursor to the top right of the screen, click settings, then power, then HOLD SHIFT and click Restart as shown in Figure 14.

Figure 14. Windows 8 Installing Unsigned Drivers - Screen 1
After a loading screen, three options appear. Choose Troubleshoot as shown in Figure 15.

Figure 15. Windows 8 Installing Unsigned Drivers - Screen 2

Choose advanced options as shown in Figure 16.

Figure 16. Windows 8 Installing Unsigned Drivers - Screen 3
Choose startup Settings as shown in Figure 17.

Figure 17. Windows 8 Installing Unsigned Drivers - Screen 4

Next a list of options displays. Click Restart at the bottom right as shown in Figure 18.

Figure 18. Windows 8 Installing Unsigned Drivers - Screen 5
After the computer restarts, the following screen appears (see Figure 19). Press F7 to disable driver signature enforcement.

![Figure 19. Windows 8 Installing Unsigned Drivers - Screen 6](image)

Now, the user can install unsigned drivers. A warning may appear as shown in Figure 20; choose Install this driver software anyway.

![Figure 20. Windows 8 Installing Unsigned Drivers - Screen 7](image)

Restart the computer again to re-enable driver signature enforcement after the installation is complete.
4 Running the Software

Run the GUI software from the Start menu by selecting All Programs→Texas Instruments→AFE4403EVM GUI. Unless the hardware has been disconnected, observe messages that confirm the connection has been established and the program waits in idle mode for user input.

If the connection to the AFE4403EVM board is not established, the program prompts to continue to run the GUI in Simulation mode, or to Stop and Close the GUI and check if the AFE4403EVM is connected to the PC.

![Device Communication Error]

Figure 21. AFE4403EVM Not Connected Error Message

4.1 Overview of the Features

This section provides a quick overview of the various features and functions of the AFE4403EVM software GUI. The GUI allows the user to easily configure the various functions of the AFE, such as receiver gain, bandwidth settings, LED current settings, and timing/clocking control settings.

Operations in the GUI should only be performed after the status bar (located at the bottom of the GUI) displays Ready For New Command.

The main tabs consist of:
- About – Product Safety Warnings, Restrictions and Disclaimers (see Figure 22).
- Device Configuration – Configures all the AFE4403 user registers in a series of related subtabs.
 - Global Settings
 - Tx Stage
 - Rx Stage
 - Timing Controls
 - Low Level Configuration
- ADC Capture & Analysis – For viewing and analyzing the raw data.
- Save – For writing data samples and analysis results to a file.
4.1.1 Device Configuration Tab

The Device Configuration tab allows configuration of the various registers of the AFE4403 device. This subtab contains five subtabs: Global Settings, Tx Stage, Rx Stage, Timing Controls and Low Level Configuration.

4.1.1.1 Global Settings Subtab

The Global Settings subtab for the AFE4403 device shown in Figure 23 has the following features:

1. View the Device ID and Firmware Revision
2. Device Reset button that resets the device. (Please note that after a device reset is issued, the AFE4403 device registers must be programmed correctly for the PC application GUI to function properly. See Reset to EVM Defaults on how to issue a device reset and also program the AFE4403 registers to the EVM default register settings)
3. Reset to EVM Defaults button that resets the device and sets up the board to the EVM default register settings.
4. Enables the user to set or reset:
 (a) SPI Read
 (b) XTAL Disable
 (c) Powerdown AFE
 (d) Powerdown TX
 (e) Powerdown RX
 (f) Enable Slow Diag Clock
 (g) Four controls for dynamic powerdown
 (h) CLKOUT Output State

![Figure 22. Product Safety Warnings, Restrictions and Disclaimers](image)
(i) SOMI Output State

5. Enables the user to control the clock divider ratio settings. When the user enters an input clock, the GUI will automatically choose a divide by value so that the output clock is within 4–6 MHz.

6. Click on Diagnostic Enable and view the Alarm status flags triggered through Diagnostic Enable.

Figure 23. AFE4403: Device Configuration: Global Settings
4.1.1.2 **Tx Stage Subtab**

Figure 24 shows the *Tx Stage* subtab under the *Device Configuration* tab consisting of the settings to:

1. Set LED1 and LED2/LED3 currents
2. Program LED current control DAC through a pull-down menu
3. Program the transmitter reference voltage through a pull-down menu
4. Select between H-bridge mode and Push-pull mode
5. Enable TX3 Mode

![Figure 24. AFE4403: Device Configuration: Tx Stage](image)

4.1.1.3 **Rx Stage Subtab**

Figure 25 shows the *Rx Stage* subtab under the *Device Configuration* tab consisting of the settings to:

1. Enable separate gain mode
2. Set feedback resistance and capacitance for the trans-impedance amplifier with separate gain mode disabled
3. Set feedback resistance and capacitance for the trans-impedance amplifier with separate gain mode enabled
4. Enable second-stage and set gain for the second-stage amplifier
5. Set ambient DAC current
6. Select filter corner frequency
4.1.1.4 Timing Controls Subtab

The Timing Controls subtab under the Device Configuration tab, shown in Figure 26, consists of the following settings:

1. Enter the Pulse Repetition Frequency (PRF) and Duty Cycle % and click the SET button to automatically set the following:
 (a) LED1 and LED2/LED3 ON and OFF time,
 (b) Rx sample start and end time for 4 channels (LED1, LED1 Ambient, LED2/LED3, LED2/LED3 Ambient)
 (c) Rx convert start and end time for 4 channels (LED1, LED1 Ambient, LED2/LED3, LED2/LED3 Ambient)

2. Manually control timing settings for on time, sample time, conversion time, ADC reset time, and power down cycle time by changing the numbers on the left

3. Save the timing settings based on PRF and duty cycle to a configuration file

4. Load the timing settings based on PRF and duty cycle from a configuration file

5. Load a preset configuration file from a list of options in the drop down menu

6. Timer Enable selector

7. Timer Counter RESET button

8. Set Number of Averages
4.1.1.5 Low Level Configuration Subtab

The Low Level Configuration subtab under the Device Configuration tab is used to directly configure the various registers of the AFE4403 devices. Refer to the AFE4403 data sheet (SBAS650) for the register details of the chip.

Figure 27 shows the low-level configuration registers of the AFE4403 devices. The Register Map portion of the sub-tab shows the EVM default values of the registers after the GUI is loaded under the EVM Default column. The LW* column shows the latest written values of the AFE4403 register and the LR* column shows the latest read values of the AFE4403 registers. From the Register Map section, when any register is selected, the bit-level details about the register are explained in the Register Description section. The ability to read and write the register and modify the individual bits of the register are provided in the Register Data section. The values of all the registers are read by clicking the Read All button.

Click on Transfer Read to Write to copy the contents of the Read Data to Write Data. Then click on Write Register to write to the data to the register of the AFE4403.

By clicking on the Save Config button, the register configuration is saved to a configuration file. The register configuration is loaded from a configuration file by clicking the Load Config button.
When a selection is made on any of the tabs on the GUI, multiple fields of various registers are modified. Click on the lower-left corner of the GUI to view the registers that are modified when a selection is made.

4.1.2 ADC Capture and Analysis

The **ADC Capture and Analysis** tab consists of various analysis routines and displays. This tab is used to:

- Set the capture mode to finite or continuous
- Set the number of samples (block size) in Finite Capture mode
- Set the display to volts or codes
- Set the filter type to None or Notch
- Set the Notch Freq to 50 or 60 Hz when the filter type is set to Notch
- Set Analysis Type to All Domain or Time Domain only
- Auto save after capture selector
- Acquire the data by clicking the **Capture** button
- When the user selects the auto save after capture selector under the **ADC Capture & Analysis** tab, the GUI uses the settings selected under **Analysis to Save, Channels to Save, Data to Save, and Save File Settings**. A **Results saved successfully!** notification is given after every capture.

The captured data can be analyzed in time domain and frequency domain; the data can also be displayed in a histogram format. The **ADC Capture and Analysis** tab is shown in [Figure 28](#).

By selecting the Time Domain plot, the data are displayed in time domain format. The units can be converted from codes to volts using the drop-down window in the top-left corner of the GUI. For the time domain plot, the mean voltage, root mean square (RMS) voltage, and peak-to-peak voltage are displayed in the **Test Results** section, which is a pop-up window that opens when the **Scope Analysis** button is clicked. The Scope Analysis: Test Results section pop-up window is shown in [Figure 29](#).
By selecting the FFT plot, the data are displayed in the frequency domain by performing an FFT on the channel selected. Details of the FFT (including SNR, THD, and so on) are shown in the Test Results section located in the left side of the GUI.

Selecting the Histogram plot displays the data in a histogram format for the channel selected. The data are arranged in the total number of histogram bins set within the tab following acquisition. The histogram analysis (shown in the Test Results section of the GUI) is used to view the mean voltage, root mean square (RMS) voltage, and peak-to-peak voltage.

Four plot modes can be selected: Single Plot mode, Double Plot mode, Three Plot mode and Four Plot mode. In Single Plot mode, only one plot (Time, FFT, or Histogram) can be viewed and analyzed for post processing. In Double Plot mode, any two plots (Time, FFT or Histogram) can be viewed and analyzed. In Three Plot mode, any three plots and in Four Plot mode, any four plots (Time, FFT or Histogram) can be viewed and analyzed.

The following algorithms have been used to find the # of samples for FFT calculation:

(a) # of samples for FFT calc. which is power of 2 ≤ min ((Data rate (sps) × N where N is the value in the Show data for the last N secs column) , No. of samples)

(b) If ((# of samples for FFT calc. == No. of samples) && (Filter Type == “None”)) then # of samples for FFT calc. = No. of samples

(c) If ((# of samples for FFT calc. == No. of samples) && (Filter Type == “Notch”)) then # of samples for FFT calc. = No. of samples / 2. This is to allow for filter settling.

(d) If (# of samples for FFT calc. < 32 samples) then an error msg “Insufficient # of samples for FFT calculation” will be displayed.

Examples:

1. No. of samples = 3
 Data rate (sps) = 500
 Show data for the last 5 secs
 Then # of samples for FFT calc. which is power of 2 = 2048 ≤ min ((500 × 5) , 8192)

2. No. of samples = 8192
 Data rate (sps) = 500
 Show data for the last 8 secs
 Then # of samples for FFT calc. which is power of 2 = 2048 ≤ min ((500 × 8) , 8192)

3. No. of samples = 8192
 Data rate (sps) = 500
 Show data for the last 20 secs
 # of samples for FFT which is power of 2 = 8192 ≤ min ((500 × 20) , 8192)
 Since (# of samples for FFT calc. == No. of samples) and if (Filter Type = None) then # of samples for FFT which is power of 2 = 8192
 Since (# of samples for FFT calc. == No. of samples) and if (Filter Type = Notch) then # of samples for FFT which is power of 2 = 8192 / 2

4. No. of samples = 30
 Data rate (sps) = 500
 Show data for the last 1 secs
 Then display Error message “Insufficient # of samples for FFT calculation” since # of samples for FFT which is power of 2 = 16 ≤ min ((500 × 1) , 30)

5. No. of samples = 32
 Data rate (sps) = 500
 Show data for the last 2 secs
 # of samples for FFT which is power of 2 = 32 ≤ min ((500 × 2) , 32)
 Since (# of samples for FFT calc. == No. of samples) and If (Filter Type = None) then # of samples for FFT calc. which is power of 2 = 32
 Since (# of samples for FFT calc. == No. of samples) and If (Filter Type = Notch) then an error msg “Insufficient # of samples for FFT calculation” will be displayed since # of samples for FFT calc. which is power of 2 = (32 / 2) < 32 samples
Figure 28. ADC Capture and Analysis Tab

Figure 29. Scope Analysis: Test Results
4.1.3 Save Tab

The Save tab shown in Figure 30 provides provisions to save the analysis or data to a file. By default, the data are saved to the following location:

- On a Windows XP machine
 - \(C:\)\Program Files\Texas Instruments\AFE4403EVM GUI\Log

- On a Windows 7 machine
 - \(C:\)\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\Log

Use the Directory to Save Files option to select the folder where data are to be saved. In the pop-up window, navigate to the folder where the data file is to be saved and select Use Current Folder. Then select Save to File to save the file.

When the user selects the auto save after capture selector under the ADC Capture & Analysis tab, the GUI uses the settings selected under Analysis to Save, Channels to Save, Data to Save, and Save File Settings. A Results saved successfully! notification is given after every capture.

![Figure 30. Save Tab](image)

Table 1 contains the Save tab control descriptions.

<table>
<thead>
<tr>
<th>Button/Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Analysis</td>
<td>Saves the scope analysis result. The result is saved in the file Device_<record number>_Analysis.xls.</td>
</tr>
<tr>
<td>FFT Analysis</td>
<td>Saves the FFT analysis result. The result is saved in the file Device_<record number>_Analysis.xls.</td>
</tr>
<tr>
<td>Histogram Analysis</td>
<td>Saves the histogram analysis result. The result is saved in the file Device_<record number>_Analysis.xls.</td>
</tr>
<tr>
<td>Register Settings</td>
<td>All the current register values are read from the EVM and stored. The result is saved in the file Device_<record number>_Analysis.xls.</td>
</tr>
<tr>
<td>Data - Codes</td>
<td>Acquired data sample values are stored to the file Device_<record number>_Codes.xls.</td>
</tr>
</tbody>
</table>
Table 1. Save Tab Control Descriptions (continued)

<table>
<thead>
<tr>
<th>Button/Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT Data</td>
<td>Acquired data sample’s FFT values are stored to the file Device_<record number>_FFT.xls.</td>
</tr>
<tr>
<td>Histogram Data</td>
<td>Acquired data sample’s histogram values are stored to the file Device_<record number>_Histogram.xls.</td>
</tr>
</tbody>
</table>

The Record Number saves files with the provided number in the file name. User notes can also be added to the file by typing the notes in the User Comments control.

5 AFE4403EVM Hardware

CAUTION
Many of the components on the AFE4403EVM are susceptible to damage by electrostatic discharge (ESD). Customers are advised to observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap, bootstraps, or mats at an approved ESD workstation. Safety glasses should also be worn.

The key features of the AFE4403 Analog Front End demonstration board are:
- Based on MSP430F5529
- DB9 pulse oximeter sensor cable support
- Acquire data at up to 3000 Hz in evaluation mode
- SPI Data interface

The AFE4403EVM board can be used as a demo board for pulse oximeter and heart rate applications. The BOM is provided in Section 11. The printed circuit board (PCB) and schematic are shown in Section 12.1 and Section 12.4, respectively.

MSP430F5529 (U2 – see Section 12.4) is the microcontroller used on the board. For more details of the MSP430F5529 please visit http://focus.ti.com/docs/prod/folders/print/msp430f5529.html

The following sections explain the main hardware components available on the EVM. Figure 31 shows the functional block diagram for the EVM.

![Figure 31. AFE4403EVM Block Diagram](context url)
5.1 Power Supply

AFE4403 can operate from 2.0- to 3.6-V Rx analog supply (RX_ANA_SUP), 2.0- to 3.6-V Rx digital supply (RX_DIG_SUP), 3.0- to 5.25-V Tx Control supply (TX_CTRL_SUP) and LED driver supply (LED_DRV_SUP).

The power for the board is derived from the USB input (J4) through a forward-biased diode (D5) to avoid reverse current flow. The USB data bus is ESD protected using TI's ESD protection diode array TPD4E004DRYR (U7). The USB VBUS is fed to the integrated Li-ion linear charger and system power-path management module, BQ24032ARHLR (U12), which generates greater than 4.2-V output (VCC_BAT). This output is fed to TI's low-input boost converter with integrated power diode and input/output isolation, TPS61093 (U9), for generating a boosted voltage of 8.97 V. This output is fed to low-noise voltage regulator LP3878-ADJ (U8) for generating 5 V for the LED_DRV_SUP and TX_CTRL_SUP. The boost converter output is also fed to the ultralow-noise linear voltage regulator TPS7A4901DGN (U13) for generating 3 V for the RX_ANA_SUP and RX_DIG_SUP. The boost converter output is also fed to the ultralow-noise linear voltage regulator TPS7A4901DGN (U14) for generating 3 V for MSP_DVCC and MSP_AVCC.

Test point and series jumper resistors are provided to make sure the power supplies to the board are correct. The corresponding voltages on AFE4403EVM are given in Table 2.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Test Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP36</td>
<td>5 V</td>
</tr>
<tr>
<td>2</td>
<td>R76</td>
<td>5 V</td>
</tr>
<tr>
<td>3</td>
<td>R65</td>
<td>5 V</td>
</tr>
<tr>
<td>4</td>
<td>R55</td>
<td>3 V</td>
</tr>
<tr>
<td>5</td>
<td>R54</td>
<td>3 V</td>
</tr>
<tr>
<td>6</td>
<td>L3, pin # 2</td>
<td>3 V</td>
</tr>
</tbody>
</table>

Table 2. Test Points for Measuring Voltages on the AFE4403SPO2EVM

5.2 Clock

The EVM has the option to use the on-board 8-MHz crystal or the clock for the AFE4403 from the MSP430. The EVM is shipped to use the on-board 8-MHz crystal. The 4-MHz buffered output clock from the AFE4403 can be accessed through an accessible via labeled CLKOUT.

5.3 Accessing AFE4403 Digital Signals

AFE4403 SPI interface and other digital signals with MSP430 can be accessed through the series resistor jumpers given in Table 3.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Signal</th>
<th>Jumper Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STE</td>
<td>R29</td>
</tr>
<tr>
<td>2</td>
<td>SIMO</td>
<td>R31</td>
</tr>
<tr>
<td>3</td>
<td>SOMI</td>
<td>R33</td>
</tr>
<tr>
<td>4</td>
<td>SCLK</td>
<td>R35</td>
</tr>
<tr>
<td>5</td>
<td>ADC_RDY</td>
<td>R26</td>
</tr>
<tr>
<td>6</td>
<td>DIAG_END</td>
<td>R38</td>
</tr>
<tr>
<td>7</td>
<td>AFE_PDNZ</td>
<td>R42</td>
</tr>
</tbody>
</table>

Table 3. AFE4403 Digital Signals

5.4 USB Interface

The EVM has a micro-USB interface for PC application connectivity requiring a standard micro-USB to USB cable for connection. AFE4403EVM is designed to work in the slave mode.
5.5 **On-Board Key Interface**

The EVM has 2 switches. The function of each switch is defined in Table 4

<table>
<thead>
<tr>
<th>Switch Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>This switch is used for hard reset of the board. The board resets and starts again with the firmware loaded.</td>
</tr>
<tr>
<td>SW2</td>
<td>This switch is used to enable boot strap loader (BSL) MSP430 firmware. (1)</td>
</tr>
</tbody>
</table>

(1) To enable BSL, disconnect device and then reconnect while holding down SW2. The device will appear as an HID device in the device manager.

5.6 **Visual Indication**

The blue LED (LED3) indicates the USB power connection. The blue LED (LED1) indicates that the microcontroller is busy servicing the requests from the PC application.

6 **USB-Based Firmware Upgrade**

The firmware on the AFE4403EVM can be changed from the PC application by selecting the *Firmware Upgrade* menu option on the PC application. At the end of the firmware upgrade, the system issues a reset command and reloads with new firmware. The firmware upgrade process steps are represented in the screen shots below:

- From the PC application, click on *File* → *Firmware Upgrade*
- A pop-up window opens as shown in Figure 32. Follow the instructions to continue to Firmware Upgrade or to cancel the operation.

![Figure 32. PC Application Firmware Upgrade – 1](image)

- The firmware upgrade application detects the connected EVM. (Figure 33)
USB-Based Firmware Upgrade

• Browse and select the appropriate firmware binary file (example: AFE4403_EVM_FW_V2.1.txt file) and click Upgrade Firmware as shown in Figure 34. The default firmware is available from:
 – On a Windows XP machine:
 • C:\Program Files\Texas Instruments\AFE4403EVM GUI\Firmware Updater
 – On a Windows 7 machine:
 • C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\Firmware Updater

• Once the device is programmed successfully, as shown in Figure 35, the device resets and reloads with the new firmware. Close the Firmware Upgrade application by clicking on the Close button and the PC GUI application automatically restarts the GUI after 4-5 seconds.
7 AFE4403EVM Firmware Upgrade Without GUI

Use the following steps to upgrade the AFE4403EVM firmware without the GUI:

1. Open the firmware loader application by clicking the BSL_USB_GUI.exe located at the following location:
 - On a Windows 7 or Windows 8 operating system (OS):
 "C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\Firmware Updater"
 - On a Windows XP OS:
 "C:\Program Files\Texas Instruments\AFE4403EVM GUI\Firmware Updater"

2. Click the Browse button and load the AFE4403 firmware. Figure 36 shows the firmware loader application with the appropriate firmware selected. The firmware is located in the "C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\Firmware Updater" directory.

3. Press SW2 switch on the EVM while plugging in the micro-USB interface cable to the J4 micro-USB connector on the EVM.
4. Release the SW2 switch when the application displays *Found 1 device*. If the application does not detect the device and displays *No Device Connected*, then repeat step 3. Click on the *Upgrade Firmware* button. (see **Figure 37**)

![Figure 37. Firmware Loader Application: Found Device](image)

5. The text box will display the status of the firmware programming. If programming is successful, *Done!* message is displayed in the text box. **Figure 38** shows the status of the successful programming.

![Figure 38. Firmware Loader Application: Programming Status](image)
8 Connector Interface

The following connectors are used for external interface to the AFE4403 Pulse Oximeter board.

- DB9
- Micro-USB connector

8.1 DB9 Pulse Oximeter Connector

The DB9 pulse oximeter connector pin-outs are shown in Figure 39. The description of the pin-outs is provided in Table 5

![Figure 39. DB9 Pulse Oximeter Connector Pin Outs](image-url)
Table 5. DB9-based Pulse Oximeter Connector Pin Out Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX_LED_3</td>
<td>Cathode of LED3<sup>(1)</sup></td>
</tr>
<tr>
<td>2</td>
<td>TX_LED_P</td>
<td>Anode of LED1, cathode of LED2<sup>(1)</sup></td>
</tr>
<tr>
<td>3</td>
<td>TX_LED_N</td>
<td>Cathode of LED1, anode of LED2<sup>(1)</sup></td>
</tr>
<tr>
<td>4</td>
<td>VCM</td>
<td>Common-mode voltage output</td>
</tr>
<tr>
<td>5</td>
<td>DET_N</td>
<td>Photodiode anode</td>
</tr>
<tr>
<td>6</td>
<td>LED_DRV_SUP</td>
<td>LED driver supply pin. Connected to anode of LED3<sup>(1)</sup></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>DET_P</td>
<td>Photodiode cathode</td>
</tr>
</tbody>
</table>

⁽¹⁾ Anode and cathode connections are only applicable for default H-Bridge mode. For push-pull (common anode), the anodes of all three LEDs are connected to LED_DRV_SUP and the cathodes LED1, LED2, and LED3 are connected to TXN, TXP, and TX3, respectively.

8.2 Micro-USB Connector

The USB micro connector pin-outs are shown in Figure 40. The description of the pin-outs is provided in Table 6.

![Figure 40. USB Micro Connector Pin Outs](image)

Table 6. USB Micro Connector Pin Out Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>USB power 5 V</td>
</tr>
<tr>
<td>2</td>
<td>D−</td>
<td>USB DM</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>USB DP</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>
8.3 8-Pin Connector

The 8-pin connector pin-outs are shown in Figure 41. The description is provided in Table 7.

![Figure 41. 8-Pin Connector](image)

Table 7. 8-Pin Connector Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED_DRV_SUP</td>
<td>LED driver supply pin. Connected to anode of LED3(1)</td>
</tr>
<tr>
<td>2</td>
<td>TX_3</td>
<td>Cathode of LED3(1)</td>
</tr>
<tr>
<td>3</td>
<td>TX_P</td>
<td>Anode of LED1, cathode of LED2(1)</td>
</tr>
<tr>
<td>4</td>
<td>TX_N</td>
<td>Cathode of LED1, anode of LED2(1)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DET_N</td>
<td>Photodiode anode</td>
</tr>
<tr>
<td>7</td>
<td>DET_P</td>
<td>Photodiode cathode</td>
</tr>
<tr>
<td>8</td>
<td>VCM</td>
<td>Common-mode voltage output</td>
</tr>
</tbody>
</table>

9 AFE4403EVM Reflective Sensing Quick Start Guide

Use the following steps as a quick start guide for AFE4403EVM reflective sensing:

1. Update the MSP430 firmware:
 (a) Download the AFE4403EVM GUI from the TI website, (http://www.ti.com/tool/AFE4403EVM)
 (b) Run AFE4403EVM GUI which is found in the chosen installation directory (by default this is ROOT:\Program Files (x86)\Texas Instruments\AFE4403SPO2EVM GUI).
 (c) Click on File at the top left of the window followed by Firmware Upgrade. A window pops up, click the Continue button.
 (d) Click the Browse button and choose the desired hex file. This file should have a .txt extension (example: AFE4403_EVM_FW_V2.1.txt).

2. Test setup:
 (a) Each sensor board has two different configurations:
 - The NJRC NJL5310R sensor board has two green LEDs that can be connected in parallel or back to back. RA1 and RA2 connects them in parallel and RB1 and RB2 connects them back to back, as shown in Figure 42. Note that when in parallel, both LEDs represent LED2 and when back to back, one represents LED1 and the other LED2. This board does not support TX3 mode.
Figure 42. NJRC NJL5310R Sensor Board LED Connections

- The OSRAM SFH7050 sensor board has one infrared, one red, and one green LED. This board can be configured in H-Bridge mode with jumpers RHB1 and RHB2 or push-pull (common anode) mode with jumpers RCA1 and RCA2, shown in Figure 43. By default, the IR and red LEDs are on, and the third green LED can be enabled with TX3 mode in the TX Stage tab.

Figure 43. OSRAM SFH7050 Sensor Board LED Connections

(b) Connect the sensor module to the EVM DB-9 connector with the cable provided. Make sure that the sensor is connected in the correct orientation – pin 1 should line up with the marking on the cable, as shown on Figure 44.
Figure 44. Sensor Board Cable Connections

(c) Place the sensor side of the sensor board on the wrist and tie it snugly. Figure 45 shows the sensor board being held with a velcro strap. Holding the sensor down with a finger is not recommended because a high level of motion noise is likely to occur due to small movements and changes in pressure.

Figure 45. Setup for Obtaining Measurements from the Wrist
3. Capturing Data
 (a) Run the AFE4403EVM GUI found in the installation directory.
 (b) Click on the ADC Capture & Analysis tab near the top of the window
 (c) Click the Capture button to begin capturing data. Figure 46 shows a sample waveform:

![Sample Waveform](image)

Figure 46. Sample Waveform of Green LED Captured on the Wrist with OSRAM SFH7050
10 AFE4403EVM FAQs

10.1 EVM communicating with the PC application

A quick and simple check to verify serial register write operation is to put the AFE4403 in power-down mode. Follow the sequence to check if the GUI is communicating with the EVM.

- In Device Configuration→Global Settings tab, select Powerdown_AFE
- This powers down the AFE and the VCM output voltage of the AFE drops to 0 V
- VCM is measured at the VCM_AFE serial jumper resistor R28 on the board

10.2 ADC_RDY signal

After executing the GUI, observe the ADC_RDY waveform at series jumper resistor R26. This should be at the same frequency as the PRF. Figure 47 shows the ADC_RDY waveform at 500-Hz PRF.

![ADC_RDY Waveform at 500-Hz PRF](image)
10.3 Check TXP and TXN Waveforms

TXP and TXN waveforms are observed at TX_P (TP23) and TX_N (TP17). Figure 48 shows TXP and TXN waveforms without connecting the pulse oximeter cable. Figure 49 shows TXP and TXN waveforms after connecting the pulse oximeter cable.

![Figure 48. TXP and TXN Without Pulse Oximeter Cable](image)

![Figure 49. TXP and TXN After Connecting the Pulse Oximeter Cable](image)
10.4 Diagnostics

The device includes diagnostics to detect open or short conditions of the LED and photo-sensor, LED current profile feedback, and cable on or off detection. The EVM supports the diagnostic feature of the device.

The diagnostic feature is enabled from the Global Settings under the Device Configuration tab. Clicking the Diagnostic Enable button enables the diagnostic function and once the diagnostic function is completed, the status of the fault flags are updated on the Global Settings tab. Figure 50 shows the diagnostic mode fault flags when no sensor was connected to the EVM.

![Figure 50. Diagnostic Feature Fault Flags with No Sensor Connected to the EVM](image)

10.5 Automation of Register Read and Write Operations

Refer to the Scripting document located in the Documentation directory for detailed instruction on how to use automation functions for register read and write operations.

Documentation directory is located at the following location:

- On a Windows XP machine – C:\Program Files\Texas Instruments\AFE4403EVM GUI\Documentation
- On a Windows 7 machine – C:\Program Files(x86)\Texas Instruments\AFE4403EVM GUI\Documentation

10.6 Optimum Viewing Experience on Windows 7 OS

Change the size of text to Smaller - 100% for optimum viewing experience on Windows 7 operating system as shown in Figure 51.
10.7 Windows 8 Support for Device GUIs

At GUI Start up, sometimes the GUI might show a broken arrow as seen in Figure 52. One of the reasons for this issue may be due to a missing update of .NET FRAMEWORK 3.5 (includes .NET 2.0 and .NET 3.0).

The .NET FRAMEWORK 3.5 is needed for the GUI to:

- Check if Python is Installed
- Checking and setting environment variables needed for the scripting feature in the GUI

Points to Remember:
- There is no download for the .NET Framework 3.5 for Windows 8 or Windows 8.1. The user must enable the .NET Framework 3.5 in Control Panel by following the instructions provided in this article.
• Use the .NET Framework 3.5 for apps built for versions 2.0 and 3.0 as well as 3.5.
• Installing a Windows language pack before installing the .NET Framework 3.5 will cause the .NET Framework 3.5 installation to fail. Install the .NET Framework 3.5 before installing any Windows language packs. (Source: http://msdn.microsoft.com/library/hh506443(v=VS.110).aspx)

There are two methods to resolve this.

10.7.1 Method 1 (Enabling the .NET Framework 3.5 in Control Panel)

In Control Panel, choose Programs and Features, choose Turn Windows features on or off, and then select the .NET Framework 3.5 (includes .NET 2.0 and 3.0) check box. This option requires an Internet connection. The user does not need to select the child items.

![Figure 53. Method 1 (Screen 1)](image-url)
Select Download and Install this feature.

Select Download and Install this feature.

Figure 54. Method 1 (Screen 2)

Select Download and Install this feature.

Select Download and Install this feature.

Figure 55. Method 1 (Screen 3)
Select Download Files from Windows Update.

Figure 56. Method 1 (Screen 4)

Figure 57. Method 1 (Screen 5)
10.7.2 Method 2 (Enabling .NET Framework 3.5 on Windows 8 in Offline Mode)

This is basically using Windows 8 CD to enable/install .NET FRAMEWORK 3.5 in the PC. This method does not require an internet connection.

Step 1: Insert Windows 8 DVD or mount ISO image. The source of this feature can be found in folder E:sources\sxs. (In this case E: is the user’s drive letter on which the user has loaded Windows 8 Media.)
Step 2: Open Command prompt as administrator.

Figure 60. Method 2 (Screen 2)

Figure 61. Method 2 (Screen 3)
Step 3: Run the following command `Dism.exe /online /enable-feature /featurename:NetFX3 /All /Source:E:sources\sxs /LimitAccess`, and hit Enter. Make sure to choose the appropriate drive letter (in this case it is E:).

![Administrator: Command Prompt](image)

Figure 62. Method 2 (Screen 4)

Method 2 source: http://support.microsoft.com/kb/2785188

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable .NET Framework 3.5 on Windows 8 in Offline Mode</td>
<td>http://support.microsoft.com/kb/2785188</td>
</tr>
<tr>
<td>.NET Framework 3.5 installation error: 0x800F0906, 0x800F0907</td>
<td>http://support.microsoft.com/kb/2734782</td>
</tr>
</tbody>
</table>

Table 8. Troubleshoot and Links

10.8 COM Port

It has been observed that on certain machines, the GUI will not work for lower COM ports. When the GUI and the USB drivers are installed correctly and the Device Manager shows the AFE44x0SPO2EVM recognized as a virtual COM port, but the GUI cannot establish communication to the AFE44x0SPO2EVM and shows the Device Communication Error, change the COM port to a higher number (greater than 25).
Table 9. AFE4403EVM Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Designator</th>
<th>Description</th>
<th>RoHS</th>
<th>Manufacturer</th>
<th>PartNumber</th>
<th>Quantity</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25, TP26, TP27, TP28, TP29, TP30, TP31, TP32, TP33, TP34, TP35, TP36, TP37, TP38, TP39, TP40, TP41, TP42, TP43, TP44, TP45</td>
<td>Test Point Pad, 10mil Hole, 20mil Pad</td>
<td>TBD</td>
<td>N/A</td>
<td>Pads Only - Non-BOM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C1, C3, C4, C30, C33, C34, C37, C49, C66</td>
<td>CAP, CERAMIC, 0.1uF, 16 V, 10%, X7R, 0402</td>
<td>Y</td>
<td>TDK</td>
<td>C1005X7R1C104K050BC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C20, C22</td>
<td>CAP, CERAMIC, 0.1uF, 16 V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155R71C104K88D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C23</td>
<td>CAP, CERAMIC, 10000 PF, 50V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GCM155R71H103K45D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C2, C45</td>
<td>CAP, CERAMIC, 10uF, 6.3 V, 20%, X5R, 0402</td>
<td>Y</td>
<td>AVX</td>
<td>06036D106MAT2A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C19</td>
<td>CAP, CERAMIC, 2200pF, 50V, 10%, X7R, 0402</td>
<td>Y</td>
<td>AVX</td>
<td>TLJN226M006R5400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>J5</td>
<td>CONN, HEADER 2POS .100 VERT, TIN</td>
<td>Y</td>
<td>MOLEX</td>
<td>22-27-2021</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>J6</td>
<td>CONN, MEMORY CARD PUSH PUSH TYPE, SMT, 8-PIN</td>
<td>Y</td>
<td>MOLEX</td>
<td>473340001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
<td>DIODE, ZENER DUAL, 5.6V, SOT23-3</td>
<td>Y</td>
<td>MICRO COMMERCIAL</td>
<td>AZ23C5V6-TP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>U3, U5</td>
<td>IC, FRAM 2MBIT, 40MHz, 8-SSOC</td>
<td>Y</td>
<td>CYRESS SEMICONDUCTOR</td>
<td>FM25V20-GTR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>U10</td>
<td>IC, GAS GAUGE LI-ION/LIPOL, 10-SOJ</td>
<td>Y</td>
<td>TEXAS INSTRUMENTS</td>
<td>BUZ72000DRKR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>U6</td>
<td>IC, GYRO/ACCELEROMETER 9-AXIS, 24-LGA</td>
<td>Y</td>
<td>INVENSENSE</td>
<td>MPU9150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>U4</td>
<td>IC, TSV DIODE, 10VC, 8-WSON</td>
<td>Y</td>
<td>TEXAS INSTRUMENTS</td>
<td>TPDNE6000DQR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>R114</td>
<td>RESISTOR, METAL ELEMENT, 0.02 OHM, 1%, 0.25 W, SMT1206</td>
<td>Y</td>
<td>VISHAY</td>
<td>WSL1206R2000F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>R8, R15, R18, R19, R20</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.063W, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW04020000Z0ED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>R58</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1 W, SMT0603</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW06030000Z0EA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>R108, R109, R116, R117</td>
<td>RESISTOR, THICK FILM, 100 OHM, 5%, 0.0625 W, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402010F0UNED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>R56</td>
<td>RESISTOR, THICK FILM, 10K OHM, 5%, 0.0625 W, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0602010K0UNED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>R10, R11, R12, R64, R78, R98, R104, R111</td>
<td>RESISTOR, THICK FILM, 10K OHM, 5%, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ103X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>R70, R80, R118</td>
<td>RESISTOR, THICK FILM, 1K OHM, 5%, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ102X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>R46, R47</td>
<td>RESISTOR, THICK FILM, 4.7K OHM, 5%, 0.1 W, SMT0603</td>
<td>Y</td>
<td>YAGEO</td>
<td>RC0603JR-104K7L</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>J3</td>
<td>TAG CONNECT</td>
<td>TBD</td>
<td>TAG-CONNECT</td>
<td>TC2050-IDC-FP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>U1</td>
<td>BGA, 36 PINS</td>
<td>TBD</td>
<td>TEXAS INSTRUMENTS</td>
<td>AFE4403Y2PR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>C50, C53, C57</td>
<td>CAP, CERAMIC, 0.1uF, 16 V, 10%, X7R, 0402</td>
<td>Y</td>
<td>TDK</td>
<td>C1005X7R1C104K050BC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>C8, C9, C10, C14, C16, C26, C31, C38, C43</td>
<td>CAP, CERAMIC, 0.1uF, 16 V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155R71C104K88D</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>C5</td>
<td>CAP, CERAMIC, 0.47uF, 6.3 V, 10%, X5R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155R66474KE19D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>C36</td>
<td>CAP, CERAMIC, 1000 PF, 50V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155R71H102KA01D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item</td>
<td>Designator</td>
<td>Description</td>
<td>RoHS</td>
<td>Manufacturer</td>
<td>PartNumber</td>
<td>Quantity</td>
<td>Required</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>30</td>
<td>C12, C27, C55, C58, C59, C62</td>
<td>CAP, CERAMIC, 10000 PF, 50V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GCM155R71H103KA55D</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>C17, C18, C21, C24</td>
<td>CAP, CERAMIC, 10PF, 50V, 5%, NP0, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155SC1H1010AN01D</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>C28, C29, C32, C46, C47, C48, C52, C54, C56, C60, C61, C63, C64, C65</td>
<td>CAP, CERAMIC, 10uf, 16V, 10%, X5R, 0805</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM21BR61C106KE15L</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>33</td>
<td>C11, C13</td>
<td>CAP, CERAMIC, 12PF, 50V, 5%, NP0, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM1555C1H120JA01D</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>C15</td>
<td>CAP, CERAMIC, 1uf, 10V, 10%, X5R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM1555R61A105KE15D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>C35</td>
<td>CAP, CERAMIC, 1uf, 6.3V, 5%, X5R, 0603</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155SC80J103KE26D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>C40, C41, C42</td>
<td>CAP, CERAMIC, 2200pF, 50V, 10%, X7R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>GRM155R71H222KA01D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>C39</td>
<td>CAP, CERAMIC, 4.7uF, 6.3 V, 20%, X5R, 0402</td>
<td>Y</td>
<td>MURATA</td>
<td>JMK105BBJ475MV-F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>C64, C65</td>
<td>CHOKE, COMMON MODE, 90 OHM, 1206</td>
<td>Y</td>
<td>MURATA</td>
<td>DLW31SN900SQ2L</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>L1</td>
<td>CHOKE, COMMON MODE, 90 OHM, 1206</td>
<td>Y</td>
<td>MURATA</td>
<td>K202XHT-E9S-N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>J2</td>
<td>CONNECTOR, D-SUB STANDARD CONNECTORS, SMT, D-9</td>
<td>Y</td>
<td>KYCON, INC</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>J4</td>
<td>CONNECTOR, MICRO-USB-AB, RECEPTACLE, RIGHT ANGLE, 5-PIN, SMT</td>
<td>Y</td>
<td>HIROSE</td>
<td>ZX62D-AB-S8P</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Y3</td>
<td>CRYSTAL, 24MHz, 10PF, SMD, 4-PIN</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Y2</td>
<td>CRYSTAL, 32.768KHZ, 12.5PF, SMD, 2-PIN</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>D1, D2, D3, D4, D7</td>
<td>DIODE, ARRAY, 75V, 150MA, SOT323</td>
<td>Y</td>
<td>DIODES INC</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>U11</td>
<td>IC, 2.93V SUPPLY MONITOR, SOT23-5</td>
<td>Y</td>
<td>TEXAS INSTRUMENTS</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>D5</td>
<td>ROHM SEMICONDUCTOR</td>
<td>Absolutely no</td>
<td>ROHM SEMICONDUCTOR</td>
<td>SMLE126C7T86</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Y3</td>
<td>IC, L-ION LINEAR CHRG MGMT, 20-QFN</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>U9</td>
<td>IC, REG LDO ADJ, 0.15A, 8-MSOP</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>U8</td>
<td>IC, REG LDO ADJ, 0.8A, 8-SOP</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>U7</td>
<td>IC, TYS DIODE, 6-SO</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>L3, L4</td>
<td>Inductor, Shielded, 10uH, 640mA, 0.54 ohm, SMT</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>LED2, LED3</td>
<td>LED, 470NM, BLUE CLEAR, 0603, SMT</td>
<td>Y</td>
<td>ROHM SEMICONDUCTOR</td>
<td>SMLE126C7T86</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>LED1</td>
<td>LED, 527NM, BLUSHISH GREEN, 0603, SMT</td>
<td>Y</td>
<td>ROHM SEMICONDUCTOR</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>Y1</td>
<td>OSC, CER RESONATOR, 8.000MHz, 5000ppm, 3-PIN</td>
<td>Y</td>
<td>MURATA</td>
<td>Absolutely no</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>R2, R5, R16, R17, R68, R73, R82, R91, R124</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.063W, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402000020ED</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>56</td>
<td>R44, R48, R54, R55, R60, R65, R66, R67, R69, R71, R76, R119, R120, R121, R122, R123</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, 100PPM/K, SMT0603</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0603000020EA</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>57</td>
<td>R96</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, 100PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402000020ED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>R42, R84, R85, R86, R87, R88, R89, R90, R93, R94</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402010R0UNED</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>59</td>
<td>R53, R95</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402010R0UNED</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>R59, R62, R99, R100, R101, R105, R107, R110, R112, R113</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402130R0UNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Item</td>
<td>Designator</td>
<td>Description</td>
<td>RoHS</td>
<td>Manufacturer</td>
<td>PartNumber</td>
<td>Quantity</td>
<td>Required</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>64</td>
<td>R74</td>
<td>RESISTOR, THICK FILM, 15.4K OHM, 1%, 0.1W, 100PPM/K, SMT0603</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW060315K4FKEA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>R28</td>
<td>RESISTOR, THICK FILM, 1K OHM, 1%, 0.063W, 100PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW04021K00FKED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>R79</td>
<td>RESISTOR, THICK FILM, 1K OHM, 5%, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW04021K00JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>R52</td>
<td>RESISTOR, THICK FILM, 1MEG OHM, 5%, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW04021M00JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td>R75</td>
<td>RESISTOR, THICK FILM, 200K OHM, 5%, 0.063W, 200PPM/K, SMT00402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402200K0JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>69</td>
<td>R4</td>
<td>RESISTOR, THICK FILM, 220 OHM, 5%, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402220R0JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>R72</td>
<td>RESISTOR, THICK FILM, 261K OHM, 1%, 0.1W, 100PPM/K, SMT0603</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0603261K0JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>71</td>
<td>R57, R61</td>
<td>RESISTOR, THICK FILM, 33 OHM, 5%, 0.063W, 200PPM/K, SMT00402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402330R0JNED</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>R21</td>
<td>RESISTOR, THICK FILM, 33K, 5%, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ33X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>R77</td>
<td>RESISTOR, THICK FILM, 4.02K OHM, 1%, 0.063W, 200PPM/K, SMT00402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW0402402K0JNED</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>R81, R92</td>
<td>RESISTOR, THICK FILM, 4.7K OHM, 5%, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW040247K0JNED</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>R83, R103, R115</td>
<td>RESISTOR, THICK FILM, 47K OHM, 5%, 0.063W, 200PPM/K, SMT0402</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW040247K0JNED</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>76</td>
<td>R102</td>
<td>RESISTOR, THICK FILM, 47K OHM, 5%, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ47X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>R63, R106</td>
<td>RESISTOR, THICK FILM, 75K OHM, 1%, 0.063W, 100PPM/K, SMT0603</td>
<td>Y</td>
<td>VISHAY</td>
<td>CRCW040275K0JNED</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>SW1, SW2</td>
<td>SWITCH, TACTILE SPST, 50 mA, 12 VDC, SMT-2 PIN</td>
<td>Y</td>
<td>C&K COMPONENTS</td>
<td>PTS635SL25SMT</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>Q1</td>
<td>TRANS, NPN, 25V, 50MA, SOT23</td>
<td>Y</td>
<td>ON SEMICONDUCTOR</td>
<td>MMBT5089LTIG</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 10. OSRAM SFH7050 Sensor Board Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Designator</th>
<th>Description</th>
<th>RoHS</th>
<th>Manufacturer</th>
<th>PartNumber</th>
<th>Quantity</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>CONN, HEADER, 50 MIL PITCH, 8-PIN, RIGHT ANGLE, TH</td>
<td>Y</td>
<td>MILL-MAX</td>
<td>850-10-008-20-001000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>RHB1, RHB2</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GE0R00X</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>U1</td>
<td>SENSOR, Multichip LED and photodiode package with a Green LED, Red LED, IR LED and a photodetector, 8-Lead</td>
<td>Y</td>
<td>OSRAM</td>
<td>SFH7050</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>RCA1, RCA2</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GE0R00X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 11. NJRC NJL5310R Sensor Board Bill of Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Designator</th>
<th>Description</th>
<th>RoHS</th>
<th>Manufacturer</th>
<th>PartNumber</th>
<th>Quantity</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>CONN, HEADER, 50 MIL PITCH, 8-PIN, RIGHT ANGLE, TH</td>
<td>Y</td>
<td>MILL-MAX</td>
<td>850-10-008-20-001000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>RA1, RA2</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GE0R00X</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>U1</td>
<td>SENSOR, LED, Multichip LED and photodiode package with two Green LEDs and a photodetector, 7-Lead</td>
<td>Y</td>
<td>NJRC</td>
<td>NJLS310R</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>RB1, RB2</td>
<td>RESISTOR, THICK FILM, 0 OHM, JUMPER, 0.1W, SMT0402</td>
<td>Y</td>
<td>PANASONIC</td>
<td>ERJ-2GE0R00X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
12 PCB Layouts and Schematics

12.1 AFE4403EVM PCB Layouts

Figure 63 through Figure 72 show the EVM PCB layouts.

Figure 63. AFE4403EVM Top Overlay

Figure 64. Top Solder
Figure 65. Top Copper (Layer 1)

Figure 66. GND (Layer 2)
Figure 67. Signal 1 and GND (Layer 3)

Figure 68. Signal 2 and GND (Layer 4)
Figure 69. Power Plane (Layer 5)

Figure 70. Bottom Copper (Layer 6)
Figure 71. Bottom Solder

Figure 72. Bottom Overlay
12.2 SFH7050 Sensor Board Layouts

Figure 73 through Figure 78 show the SFH7050 sensor board layouts.
Figure 75. SFH7050 Sensor Board Top Copper

Figure 76. SFH7050 Sensor Board Bottom Copper

Figure 77. SFH7050 Sensor Board Bottom Solder Mask

Figure 78. SFH7050 Sensor Board Bottom Silk Screen
12.3 NJL5310R Sensor Board Layouts

Figure 79 through Figure 84 show the NJL5310R sensor board layouts.

Figure 79. NJL5310R Sensor Board Top Silk Screen

Figure 80. NJL5310R Sensor Board Top Solder Mask
Figure 81. NJL5310R Sensor Board Top Copper
Figure 82. NJL5310R Sensor Board Bottom Copper
Figure 83. NJL5310R Sensor Board Bottom Solder Mask
Figure 84. NJL5310R Sensor Board Bottom Silk Screen
12.4 Schematics

This section includes the AFE4403EVM, SFH7050 sensor board, and NJL5310R sensor board schematics.

12.4.1 AFE4403EVM Schematics

Figure 85 through Figure 88 illustrate the AFE4403EVM schematics.

Figure 85. AFE4403EVM Schematics (1 of 4)
Figure 86. AFE4403EVM Schematics (2 of 4)
Figure 87. AFE4403EVM Schematics (3 of 4)
Battery Fuel Gauge

Battery Management

microSD CARD I/F

Serial FRAM

Figure 88. AFE4403EVM Schematics (4 of 4)
12.4.2 SFH7050 Sensor Board Schematic

Figure 89 illustrates the SFH7050 sensor board schematic.

12.5 NJL5310R Sensor Board Schematic

Figure 90 illustrates the NJL5310R sensor board schematic.
Revision History

Changes from Original (June 2014) to A Revision

- Changed JRC to NJRC globally, beginning in *AFE4403EVM Kit Contents* section. ... 5
- Changed TBD to 'Y' in RoHS column, row number 3 in the *OSRAM SFH7050 Sensor Board Bill of Materials* table. 54
- Changed the Description, RoHS, Manufacturer, and PartNumber columns in row 3 of the *NJRC NJL5310R Sensor Board Bill of Materials* table. .. 54

Changes from A Revision (July 2014) to B Revision

- Changed AFE4403.inf to AFE44xx.inf, in step 4………………………………………………………………………………………………… 12
- Changed *USB Driver Installation - Screen 4* image. .. 13
- Changed *Device Manager Screen* image.. 14

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR EVALUATION MODULES

Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following:

1. User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree, and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and indemnity provisions included in this document.

2. Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

3. User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product.

4. User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI.

5. User must read the user's guide and all other documentation accompanying EVMs, including any provision without any liability or warranty notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example, temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

6. User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs.

7. Should any EVM not meet the specifications indicated in the user's guide or other documentation accompanying such EVM, the EVM may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE HANDLING OR USE OF ANY EVM.

8. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI's arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services with respect to the handling or use of EVMs.

9. User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling and use of EVMs and, if applicable, compliance in all respects with such laws and regulations.

10. User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees, affiliates, contractors or designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

11. User shall employ reasonable safeguards to ensure that user’s use of EVMs will not result in any property damage, injury or death, even if EVMs should fail to perform as described or expected.

12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local requirements.

Certain Instructions. User shall operate EVMs within TI’s recommended specifications and environmental considerations per the user’s guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user's guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using EVMs’ schematics located in the applicable EVM user’s guide. When placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use EVMs.

Agreement to Defend, Indemnify and Hold Harmless. User agrees to defend, indemnify, and hold TI, its directors, officers, employees, agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, and liabilities (collectively, “Claims”) arising out of, or in connection with, any handling and/or use of EVMs. User’s indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as described or expected.

Safety-Critical or Life-Critical Applications. If user intends to use EVMs in evaluations of safety critical applications (such as life support), and a failure of a TI product considered for purchase by user for use in user’s product would reasonably be expected to cause severe personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
RADIO FREQUENCY REGULATORY COMPLIANCE INFORMATION FOR EVALUATION MODULES

Texas Instruments Incorporated (TI) evaluation boards, kits, and/or modules (EVMs) and/or accompanying hardware that is marketed, sold, or loaned to users may or may not be subject to radio frequency regulations in specific countries.

General Statement for EVMs Not Including a Radio

For EVMs not including a radio and not subject to the U.S. Federal Communications Commission (FCC) or Industry Canada (IC) regulations, TI intends EVMs to be used only for engineering development, demonstration, or evaluation purposes. EVMs are not finished products typically fit for general consumer use. EVMs may nonetheless generate, use, or radiate radio frequency energy, but have not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or the ICES-003 rules. Operation of such EVMs may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: For EVMs including a radio, the radio included in such EVMs is intended for development and/or professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability in such EVMs and their development application(s) must comply with local laws governing radio spectrum allocation and power limits for such EVMs. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by TI unless user has obtained appropriate experimental and/or development licenses from local regulatory authorities, which is the sole responsibility of the user, including its acceptable authorization.

U.S. Federal Communications Commission Compliance

For EVMs Annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Industry Canada Compliance (English)

For EVMs Annotated as IC – INDUSTRY CANADA Compliant:

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs Including Radio Transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs Including Detachable Antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Canada Industry Canada Compliance (French)
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détaçables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.

Important Notice for Users of EVMs Considered “Radio Frequency Products” in Japan
EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of Japan.
If user uses EVMs in Japan, user is required by Radio Law of Japan to follow the instructions below with respect to EVMs:
1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after user obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after user obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless user gives the same notice above to the transferee. Please note that if user does not follow the instructions above, user will be subject to penalties of Radio Law of Japan.

http://www.tij.co.jp

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】本開発キットは技術基準適合証明を受けておりません。本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Applications

Automotive and Transportation	www.ti.com/automotive
Communication and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated