

User's Guide SLAU806-October 2019

# **BP-DAC11001EVM**



This user's guide describes the characteristics, operation, and use of the BP-DAC11001 evaluation module (EVM) BoosterPack<sup>™</sup> plug-in module. This EVM is designed to evaluate the performance of the DAC11001 buffered voltage output DAC in a variety of configurations. Throughout this document, the terms evaluation board, evaluation module, and EVM are synonymous with the BP-DAC11001EVM. This document includes a schematic, reference printed-circuit board (PCB) layouts, and a complete bill of materials.

#### Contents

| 1 Overview             |       |                                              | 3   |  |
|------------------------|-------|----------------------------------------------|-----|--|
|                        | 1.1   | Kit Contents                                 | 3   |  |
|                        | 1.2   | Related Documentation from Texas Instruments | . 3 |  |
| 2                      | Syste | System Setup                                 |     |  |
|                        | 2.1   | Software Setup                               | 4   |  |
|                        | 2.2   | Hardware Setup                               | 6   |  |
| 3 Detailed Description |       |                                              | . 8 |  |
|                        | 3.1   | Hardware Description                         | . 8 |  |
|                        | 3.2   | Software Description                         | 10  |  |
| 4                      | Scher | natic, PCB Layout, and Bill of Materials     | 16  |  |
|                        | 4.1   | BP-DAC11001EVM Schematic                     | 16  |  |
|                        | 4.2   | PCB Layout                                   | 20  |  |
|                        | 4.3   | BP-DAC11001EVM Bill of Materials             | 23  |  |
|                        |       |                                              |     |  |

#### List of Figures

| BP-DAC11001EVM Software Setup | 4                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Software Installation Path    | 4                                                                                                                               |
| Launchpad Setup               | 5                                                                                                                               |
| TI Cloud Agent Installation   | 5                                                                                                                               |
| Hardware Setup                | 6                                                                                                                               |
|                               | BP-DAC11001EVM Software Setup<br>Software Installation Path<br>Launchpad Setup<br>TI Cloud Agent Installation<br>Hardware Setup |

1



| 6 |   | BP-DAC11001EVM Hardware Block Diagram | 8  |
|---|---|---------------------------------------|----|
| 7 |   | Launchpad Interface Pinout            | 9  |
| 8 |   | BP-DAC11001EVM GUI Location           | 10 |
| 9 |   | GUI Connection Detection              | 10 |
| 1 | 0 | Software Home Page                    | 11 |
| 1 | 1 | Setup Page                            | 12 |
| 1 | 2 | DAC Quick-Start Page: Basic DAC Tab   | 13 |
| 1 | 3 | Register Map Page                     | 14 |
| 1 | 4 | Register Page Options                 | 14 |
| 1 | 5 | Collateral Page                       | 15 |
| 1 | 6 | Schematic Page 1                      | 16 |
| 1 | 7 | Schematic Page 2                      | 17 |
| 1 | 8 | Schematic Page 3                      | 18 |
| 1 | 9 | Schematic Page 4                      | 19 |
| 2 | 0 | PCB Components: Top Overlay           | 20 |
| 2 | 1 | PCB Components: Bottom Overlay        | 20 |
| 2 | 2 | PCB Layout: Top Layer                 | 21 |
| 2 | 3 | PCB Layout: Ground Plane              | 21 |
| 2 | 4 | PCB Layout: Power Plane               | 22 |
| 2 | 5 | PCB Layout: Bottom Layer              | 22 |
|   |   |                                       |    |

#### List of Tables

| 1 | Kit Contents                              | 3  |
|---|-------------------------------------------|----|
| 2 | Required Components Not Included With Kit | 3  |
| 3 | Related Documentation                     | 3  |
| 4 | BP-DAC11001EVM Power Supply Inputs        | 7  |
| 5 | BP-DAC11001EVM Jumper Settings            | 7  |
| 6 | BP-DAC11001EVM Bill of Materials          | 23 |

### Trademarks

BoosterPack is a trademark of Texas Instruments Inc. Windows is a trademark of Microsoft Corporation. All other trademarks are the property of their respective owners.



#### 1 Overview

The BP-DAC11001EVM is an easy-to-use platform to evaluate the functionality and performance of the DAC11001 device. The DAC11001 is a highly accurate, low-noise, voltage-output, single-channel, digital-to-analog converter (DAC). The DAC11001 is specified monotonic by design, and offers excellent linearity of less than 4 LSB (max) across all ranges.

The unbuffered voltage output offers low-noise performance (7 nV/ $\sqrt{Hz}$ ) in combination with fast settling time (1 µs), making this device an excellent choice for low-noise, high-speed applications. The DAC11001 integrates an enhanced deglitch circuit with range- and code-independent symmetrical ultra-low glitch (1.5 nV-s) to enable clean waveform ramps with ultra-low harmonic distortion (THD).

The DAC11001 device incorporates a power-on-reset (POR) circuit so that the DAC powers on with known values in the registers. With external references, DAC output ranges from  $V_{REFNF}$  to  $V_{REFNF}$  can be achieved, including asymmetric output ranges.

The DAC11001 uses a versatile 4–wire serial interface that operates at clock rates of up to 50 MHz. The DAC11001 is specified over the industrial temperature range of –40°C to +125°C.

The EVM provides the GPIO and SPI programming interface using a PC-based graphical user interface (GUI). This EVM requires the MSP-EXP432E401Y Launchpad for interfacing with the PC-based GUI.

#### 1.1 Kit Contents

Table 1 details the contents of the EVM kit. Contact the TI Product Information Center nearest you if any component is missing. TI highly recommends that the user verify latest versions of the related software at the TI website, www.ti.com.

#### Table 1. Kit Contents

| Item                       | Quantity |
|----------------------------|----------|
| BP-DAC11001EVM BoosterPack | 1        |

#### Table 2. Required Components Not Included With Kit

| Item                      | Quantity |
|---------------------------|----------|
| MSP-EXP432E401Y Launchpad | 1        |

The MSP-EXP432E401Y Launchpad can be purchased from the MSP432E401Y tool folder on www.ti.com.

#### **1.2** Related Documentation from Texas Instruments

The following document provides information regarding Texas Instruments integrated circuits used in the assembly of the BP-DAC11001EVM. This user's guide is available from the TI web site under literature number SLAU806. Any letter appended to the literature number corresponds to the document revision that is current at the time of the writing of this document. Newer revisions may be available from the TI web site at http://www.ti.com/, or call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center at (972) 644-5580. When ordering, identify the document by both title and literature number.

| Table | 3. | Related | <b>Documentation</b> |
|-------|----|---------|----------------------|
|-------|----|---------|----------------------|

| Document                    | Literature Number |  |
|-----------------------------|-------------------|--|
| DAC11001 product data sheet | SLASEL0           |  |

System Setup

#### 2 System Setup

#### 2.1 Software Setup

This section provides the procedure for EVM software installation.

#### 2.1.1 Software Installation

The EVM software is compatible with the Windows<sup>™</sup> 7, 8, and 10 operating systems. The software is available on the product folder, and can also be found in the GUI Composer Gallery. Search for *BP*-*DAC11001EVM* in the GUI Composer Gallery. Use the down arrow symbol to download the software. There are two downloads: *BP-DAC11001EVM GUI* and *GUI Composer Runtime*. Either download both, or just download the EVM GUI; the runtime file can be downloaded through the EVM GUI during installation. The software can also be run online; however, only after the firmware and driver are upgraded. After the software is downloaded onto the PC, navigate to the download folder, and run the BP-DAC11001EVM software executable, as shown in Figure 1.



#### Figure 1. BP-DAC11001EVM Software Setup

When the BP-DAC11001EVM software is launched, an installation dialog window opens and prompts the user to select an installation directory. If left unchanged, the software location defaults to *C:\Program Files* (*x86*)\*Texas Instruments\BP-DAC11001 EVM*, as shown in Figure 2. If there is no previous installation of the *GUI Composer Runtime* application, the installer also requests for an automatic download from the web. Select either *Install from Web* to download and install from the web, or *Install from PC* and provide the path to the local file that is already downloaded. The runtime executable also installs the USB drivers, unless the drivers are already installed.

The software installation automatically copies the required files and drivers to the local machine.

| Setup Select Installation Folders                       |                 |
|---------------------------------------------------------|-----------------|
| Application Directory                                   |                 |
| C:\Program Files (x86)\Texas Instruments                |                 |
| Runtime Directory C:\Users\a0230011\guicomposer\runtime | <b>1</b> 2      |
|                                                         |                 |
|                                                         |                 |
|                                                         |                 |
|                                                         |                 |
| InstallBuilder                                          |                 |
| < Back                                                  | : Next > Cancel |

Figure 2. Software Installation Path



www.ti.com

4

#### 2.1.2 Launchpad Firmware Upgrade

Before using the software for the first time, upgrade the firmware for the launchpad. The firmware is programmed to the launchpad using the online tool, UniFlash. This link is also provided on the Setup page of the GUI. After unzipping the *install\_image\_BP-DAC11001EVM.zip* file, the firmware bin file is found at <Download Directory>\BP-DAC11001EVM\_1.0.1\_installer\_win\install\_image\_BP-DAC11001EVM\BP-DAC11001EVM\BP-DAC11001EVM.

Follow the step-by-step procedure below to upgrade the firmware and install the device drivers successfully:

1. Remove jumper JP6 on the launchpad, as shown in step 1 of Figure 3.



## Figure 3. Launchpad Setup

- 2. Mount the jumper on 5V-OTG. Retain the jumper on 5V-XDS, as shown in step 1 of Figure 3.
- 3. Connect the USB cable to the port on the XDS110 side of the board, as shown in step 2 of Figure 3.
- 4. Connect the USB cable to PC and open UniFlash. Click on Start Now in the Detect Device section.
- 5. If the GUI Composer framework is being installed for the first time on the PC, the browser extension and the *TI Cloud Agent* must also be installed. Follow the 2-step installation flow prompted on the web page, as shown in Figure 4

## **TI Cloud Agent Installation**

Hardware interaction requires additional one time set up. Please perform the actions listed below and try your operation again.(What's this?)

| • | Step 1:   | INSTALL br      | owser extension                            |
|---|-----------|-----------------|--------------------------------------------|
| • | Step 2:   | DOWNLOAD        | and install the TI Cloud Agent Application |
| • | Help. I a | Iready did this |                                            |

FINISH

#### Figure 4. TI Cloud Agent Installation

- 6. Press the *Refresh* or *Finish* button after the installation is complete. This action should detect the launchpad.
- Press Start and browse for <Download Directory>\BP-DAC11001EVM\_1.0.1\_installer\_win\install\_image\_BP-DAC11001EVM.\BP-DAC11001EVM\firmware\acctrl.bin. Press Load Image followed by Verify Image.

5

#### 2.2 Hardware Setup

This section provides the overall system setup for the EVM. The hardware setup contains the MSP-EXP432E401Y launchpad and the BP-DAC11001EVM. A PC runs the software that provides an interface to the BP-DAC11001EVM through the launchpad.

The BP-DAC11001EVM requires external power supplies, as described later in this document. The 3.3-V and 5-V power supplies from the launchpad can be used for IOVDD and DVDD for the DAC, respectively, using jumper options. The launchpad generates the digital signals used to communicate with the EVM board.

Figure 5 displays the hardware setup.



Figure 5. Hardware Setup



#### 2.2.1 Power Configurations and Jumper Settings

The BP-DAC11001EVM provides electrical connections to the device supply pins. The connectors and optional configurations are shown in Table 4, and Table 5 shows the EVM jumper settings.

| BP-DAC11001EVM Connector | Supply Name | Voltage Range                                 | Test Point |
|--------------------------|-------------|-----------------------------------------------|------------|
| J12                      | VCC         | 5 V to 15 V                                   | TP21       |
| J13                      | VSS         | –5 V to –15 V                                 | TP24       |
| J14                      | VDD         | 4.5 V to 5.5 V                                | TP25       |
| J15                      | VIO         | 2.7 V to 5.5 V (Option: 3V3 on the launchpad) | TP26       |
| J17                      | GND         | 0 V                                           | TP27       |
| J18                      | REF_PWR     | 5.3 V to 5.5 V                                | TP33       |
| J19                      | REFGND      | 0 V                                           | TP34       |

#### Table 4. BP-DAC11001EVM Power Supply Inputs

|        |                                         | -                                                    | -                                                                       |
|--------|-----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Jumper | Description                             | Default Position                                     | Alternative Position                                                    |
| J1     | 2x gain configuration                   | None                                                 | 1-2 or 2-3                                                              |
| J2     | Output amplifier feedback configuration | 1-2, 3-4: external resistor and capacitor connection | 5-6, 7-8: embedded resistor connection                                  |
| J4     | LDAC pull-down                          | None                                                 | 1-2: LDAC tied low                                                      |
| J5     | CLR pull-down                           | None                                                 | 1-2: CLR tied low                                                       |
| J7     | DAC output to load circuit connection   | None                                                 | 1-2: DAC output to auxiliary circuit; 2-3: DAC output to filter input   |
| J8     | AGND-OUT to FILTGND connection          | None                                                 | 1-2: AGND-OUT and FILTGND shorted                                       |
| J11    | DVDD connection                         | 2-3: DVDD from AEVM_5V0                              | 1-2: DVDD from VDD                                                      |
| J16    | IOVDD connection                        | 2-3: IOVDD from AEVM_3V3                             | 1-2: IOVDD from VIO                                                     |
| J20    | REF_PWR connection                      | 2-3: REF_PWR from J18                                | 1-2: REF_PWR from VCC. Make sure VCC is < 6 V before using this option. |
| J25    | Reference filter bypass                 | None                                                 | 1-2: Bypass reference filter                                            |
| J26    | Reference source selection              | 2-3: Onboard reference                               | 1-2: External reference (3 V to 10 V)                                   |
| J30    | REFGND connection                       | 2-3: Through ground buffer                           | 1-2: Do not use on the Rev A PCB                                        |
| J31    | Negative reference selection            | 2-3: Inverted reference source                       | 1-2: Tied to ground (unipolar output mode)                              |
|        |                                         |                                                      |                                                                         |

#### Table 5. BP-DAC11001EVM Jumper Settings

#### 2.2.2 Connecting the Hardware

After the launchpad firmware is upgraded as described in Section 2.1.2, and power and jumper configurations done as per Section 2.2.1, the BP-DAC11001EVM and the launchpad can be connected as shown in Figure 5. Connect the USB cable from the lauchpad OTG USB port (U7) to the PC.

#### 2.2.3 Electrostatic Discharge Caution

Many of the components on the BP-DAC11001EVM and the launchpad are susceptible to damage by electrostatic discharge (ESD). Observe proper ESD handling precautions when unpacking and handling the EVM, including the use of a grounded wrist strap at an approved ESD workstation.

7

System Setup

#### 3 Detailed Description

#### 3.1 Hardware Description

The following subsections provide detailed information on the EVM hardware and jumper configuration settings.

#### 3.1.1 Theory of Operation

The block diagram of the BP-DAC11001EVM board is displayed in Figure 6. The dotted lines indicate different power and ground domains. All grounds are shorted together using single-point shorts. The EVM board connects to the launchpad with the BoosterPack connectors. There is an onboard reference, using the REF6250, that generates a 5-V voltage reference, that in turn is converted to 5-V and –5-V reference inputs for the DAC. There is an option for an external reference using connectors J27 and J28. Both J27 and J28 form a force-sense pair that eliminate cable losses while connected to external reference sources. The DAC output is provided on J3. Jumper J2 provides various feedback options for the output amplifier. The DAC output can be taken through two-stage, second-order filters using connectors J7 and J8. There is an option to interface an external circuit using auxiliary connectors J23 and J24.



Figure 6. BP-DAC11001EVM Hardware Block Diagram



#### 3.1.2 Signal Definition for the Launchpad Interface

The BP-DAC11001EVM interfaces with the launchpad through connectors J9 and J10. The pin definitions are shown in Figure 7.



Figure 7. Launchpad Interface Pinout

#### **Detailed Description**

#### 3.2 Software Description

This section describes the features of the BP-DAC11001EVM software, and discusses how to use these features. The software provides basic control of all the registers and functions of the DAC11001 device.

#### 3.2.1 Starting the Software

To launch the software, locate the Texas Instruments folder in the *All Programs* menu, and select the *BP*-DAC11001EVM icon, as shown in Figure 8.



Figure 8. BP-DAC11001EVM GUI Location

Figure 9 shows that if the launchpad connector is connected correctly, the status bar at the bottom of the screen displays *Hardware Connected*. If the launchpad is not properly connected or not connected at all, the status bar displays *Hardware not connected*. In case the *Hardware not connected* status persists even after the hardware is connected, go to *Options*  $\rightarrow$  *Serial Port*, and change the port to the other available port with the (*Texas Instruments*) or *ACCtrl* tag. One of the two ports with these tags will connect to the hardware.

ے COM12:9600 Hardware Connected.

🜵 Texas Instruments

Figure 9. GUI Connection Detection

## 3.2.2 Software Features

The BP-DAC11001EVM incorporates interactive functions that help configure the DAC11001 device. These functions are built into several GUI pages, as shown in the following sections. The *Menu* button allows the user to switch between the pages, with each page representing a feature of the software.

#### 3.2.2.1 Home Page

The *Home* page, shown in Figure 10, provides the basic information and navigation to other pages. Click on *Learn More...* to get more information on the device.

| BP         | DAC11001EVM File Options                                         | s Tools Help                                                             |                                                           | ×                                                                   |  |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ≡          | Menu                                                             |                                                                          |                                                           |                                                                     |  |  |  |  |  |  |  |  |
| •          | DAC Evaluation<br>Graphical User Interface for DAC Evaluation Mo | Platform<br>Ddules supported with MSP432 Launchpad                       |                                                           |                                                                     |  |  |  |  |  |  |  |  |
| 7          | 1010 DACONVERTERS                                                |                                                                          |                                                           |                                                                     |  |  |  |  |  |  |  |  |
| ē          |                                                                  | Learn i                                                                  | more                                                      |                                                                     |  |  |  |  |  |  |  |  |
|            | <b></b>                                                          | Ŧ                                                                        |                                                           | e                                                                   |  |  |  |  |  |  |  |  |
|            | Setup<br>Easy steps to configure the System                      | DAC Quick Start<br>Configure and write data to DAC in different<br>modes | Registers<br>Low level register read and write operations | Collateral<br>User Guide, Datasheets, Radiation Reports and<br>more |  |  |  |  |  |  |  |  |
| <i>∎</i> ( | .⊃ <b>▲</b>                                                      |                                                                          |                                                           | 💠 Texas Instruments                                                 |  |  |  |  |  |  |  |  |

Figure 10. Software Home Page

Detailed Description



Detailed Description

#### 3.2.2.2 Setup Page

The *Setup* page, shown in Figure 11, guides the user to perform a one-time firmware upgrade for the launchpad.

| BP- | -DAC11001EVM File Options Tools Help _ D                                                                              | ×                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| ≡   | Menu                                                                                                                  |                                         |
| ń   | I Setup                                                                                                               |                                         |
|     | EVM Setup Guide                                                                                                       |                                         |
| Ŧ   | First time firmware update (Click on the image below to open UniFlash and flash the file "firmware/acctrl.x.x.x.bin") |                                         |
| /   |                                                                                                                       |                                         |
| ē   | Jumper<br>UniFlash<br>Program<br>Load<br>UniFlash                                                                     | 0.0 · · · · · · · · · · · · · · · · · · |
|     | 4                                                                                                                     | •                                       |
|     |                                                                                                                       |                                         |
|     | NDAT Province By GUI Cer                                                                                              | tposér <sup>an</sup>                    |
|     | texas Instru                                                                                                          | MENTS                                   |

Figure 11. Setup Page



## 3.2.2.3 DAC Quick-Start Page

The *DAC Quick-Start* page provides the functions to quickly get started with the EVM. The basic initialization settings are meant for basic dc operation; whereas, the advanced settings are meant for ac functionality, such as settling time and total harmonic distortion (THD). Write a decimal code to the DAC output input box to get the corresponding analog output.

| BP-        | DAC11001EVM File Optio                          | ns Tools Help                         |                           | ×                        |
|------------|-------------------------------------------------|---------------------------------------|---------------------------|--------------------------|
| =          | Menu                                            |                                       |                           |                          |
| ŧ          | F DAC Quick Start                               |                                       |                           |                          |
|            | <b>Basic Initialization</b>                     |                                       |                           |                          |
| <b>3</b>   | Reference Value:                                | LDAC Mode:<br>SYNC D LDAC             | Power-up/down:<br>UP DOWN | _                        |
| ē          | Advanced Settings<br>Settling Mode:<br>FAST THD | Disable/Enable TNH:<br>ENABLE DISABLE | Update Rate Selection:    | -                        |
|            | DAC Output                                      |                                       |                           |                          |
| <i>∎</i> c | ⊃ <b>▲</b>                                      |                                       |                           | Pointed By GVI Concerned |

Figure 12. DAC Quick-Start Page: Basic DAC Tab



#### 3.2.2.4 Register Map Page

The *Register Map* page, shown in Figure 13, allows the user to access low-level communication directly with the DAC11001 registers. Selecting a register on the *Register Map* list shows a description of the values in that register, as well as information on the register address, default value, size, and current value. Values are read from and written to the registers by writing to the *Value* or bit field of the GUI.

| BP | DAC11001EV         | 'M   File     | Options     |    | То | ols    |    | He  | elp |    |    |    |    |    |          |           |     |    |       |       |      |     |   |     |      |                     |              |                        | - 1        | o x                              |
|----|--------------------|---------------|-------------|----|----|--------|----|-----|-----|----|----|----|----|----|----------|-----------|-----|----|-------|-------|------|-----|---|-----|------|---------------------|--------------|------------------------|------------|----------------------------------|
| ≡  | E Menu             |               |             |    |    |        |    |     |     |    |    |    |    |    |          |           |     |    |       |       |      |     |   |     |      |                     |              |                        |            |                                  |
| ŧ  | 🖍 Registe          |               |             |    | Au | to Rei | ad | Off |     |    |    |    | •  | RE | ad re    | EGIST     | TER | RE | AD AL | ll Re | GIST | ERS |   |     |      | WRITE ALL REGISTERS | nediate Writ | le T                   |            |                                  |
|    | Q Search Registers | by name or ad | idress (0x) |    |    |        |    |     |     |    |    |    |    |    |          |           |     |    |       |       |      |     |   | Sea | irch | Bitfie              | elds         | Every a Marrie         |            |                                  |
| ١  | Register Name      | Address       | Value       | 23 | 22 | 21     | 20 | 19  | 18  | 17 | 16 | 15 | 14 | 13 | Bi<br>12 | its<br>11 | 10  | 9  | 8     | 7     | 6    | 5   | 4 | 3   | 2    | 1                   | 0            | NOP                    |            | _                                |
| Ķ  | v DACx1001 REGI    | STERS         |             |    |    |        |    |     |     |    |    |    |    |    |          |           |     |    |       |       |      |     |   |     |      |                     |              | DACx1001 REGISTERS / N | OP / NOP   | 23:0] <sub>0×00</sub>            |
|    | NOP                | 00x00         | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            | NOP                    |            |                                  |
|    | DAC-DATA           | 0x01          | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            | Nor                    |            |                                  |
| -  | CONFIG1            | 0x02          | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            |                        |            | _                                |
| B  | DAC-CLEAR-<br>DATA | 0x03          | 0x000080    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 1     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            |                        |            |                                  |
|    | TRIGGER            | 0x04          | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            |                        |            |                                  |
|    | STATUS             | 0x05          | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            |                        |            |                                  |
|    | CONFIG2            | 0x06          | 0x000000    | 0  | 0  | 0      | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0        | 0         | 0   | 0  | 0     | 0     | 0    | 0   | 0 | 0   | 0    | 0                   | 0            |                        |            |                                  |
|    | 1                  |               |             |    |    |        |    |     |     |    |    |    |    |    |          |           |     |    |       |       |      |     |   |     |      |                     |              |                        |            | Campo <sub>s</sub> <sup>24</sup> |
|    | .) •               |               |             |    |    |        |    |     |     |    |    |    |    |    |          |           |     |    |       |       |      |     |   |     |      |                     |              | -46-                   | Texas Inst | RUMENTS                          |

Figure 13. Register Map Page

There are some configuration lists and action buttons provided on the *Register Map* page. To store the values of the register map locally, press the *Save Registers* button under the *File* menu option. Additionally, recall and load the stored configuration files through the *Load Registers* button. Other options selectable by the user are the *Auto Read Interval, Read Register, Read All Registers, Write Register, Write All Registers*, and *Update Mode* buttons. These buttons are displayed in Figure 14. The *Write Register* and *Write All Registers* buttons are enabled only with *Deferred* update mode. *Deferred* mode initiates a write operation only when the *Write Register* or the *Write All Registers* button is pressed. By default, the *Immediate* update mode is selected for the *Register Map* page write operations.

| Register Map | Auto Read | Off | ۳ | READ REGISTER                         | READ ALL REGISTERS | WRITE REGISTER | WRITE ALL REGISTERS | Deferred | ٠ |
|--------------|-----------|-----|---|---------------------------------------|--------------------|----------------|---------------------|----------|---|
|              |           |     |   | · · · · · · · · · · · · · · · · · · · |                    |                |                     |          |   |
|              |           |     |   |                                       |                    |                |                     |          |   |





### 3.2.2.5 Collateral Page

This page shown in Figure 15 provides links for all the collateral on the DAC11001 device.

| BP | -DAC1100 | 1EVM     | File      | Options           | Tools            | Help | -                      | □ ×           |
|----|----------|----------|-----------|-------------------|------------------|------|------------------------|---------------|
| =  | Menu     |          |           |                   |                  |      |                        |               |
| A  | 🖪 Co     | llateral | Check DAC | C11001 product pa | ge for more info |      |                        | _             |
|    |          |          |           | F                 | /                |      | PDF                    | Î.            |
| Ŧ  |          |          | BD        | User G            | uide             |      | Data Sheet             |               |
|    |          |          | 01-       | UNCTION 2VM       |                  |      | DACTION                |               |
| ▣  |          |          |           |                   |                  |      |                        | 1             |
|    |          |          |           | ۱C                | ]                |      |                        |               |
|    |          |          |           | Application       | n Notes          |      | Reports<br>Coming Soon |               |
|    |          |          |           |                   |                  |      |                        |               |
|    | -        |          |           |                   |                  |      |                        | - L           |
|    |          |          |           |                   |                  |      | <b>₩</b>               |               |
|    |          |          |           |                   |                  |      | MSP432 Firmware        | GUI Composer™ |
|    | - C      |          |           |                   |                  |      | texas In               | ISTRUMENTS    |

Figure 15. Collateral Page



## 4 Schematic, PCB Layout, and Bill of Materials

This section contains the complete bill of materials and schematic diagram for the BP-DAC11001EVM.

## 4.1 BP-DAC11001EVM Schematic



Figure 16. Schematic Page 1





Schematic, PCB Layout, and Bill of Materials



Figure 17. Schematic Page 2



Schematic, PCB Layout, and Bill of Materials

www.ti.com



Figure 18. Schematic Page 3



Schematic, PCB Layout, and Bill of Materials



Figure 19. Schematic Page 4



## 4.2 PCB Layout

Figure 20 through Figure 25 show the layout details of the BP-DAC11001EVM board.



Figure 20. PCB Components: Top Overlay



Figure 21. PCB Components: Bottom Overlay





Figure 22. PCB Layout: Top Layer



Figure 23. PCB Layout: Ground Plane



Schematic, PCB Layout, and Bill of Materials



Figure 24. PCB Layout: Power Plane



Figure 25. PCB Layout: Bottom Layer



## 4.3 BP-DAC11001EVM Bill of Materials

Table 6 lists the EVM bill of materials (BOM).

## Table 6. BP-DAC11001EVM Bill of Materials

| Designator                                                                                                                    | Quantity | Value  | Description                                                        | Package Reference                | Part Number          | Manufacturer                   | Alternate Part<br>Number | Alternate<br>Manufacturer |
|-------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------------------------------------------------------------------|----------------------------------|----------------------|--------------------------------|--------------------------|---------------------------|
| !PCB1                                                                                                                         | 1        |        | Printed Circuit Board                                              |                                  | DC026                | Any                            |                          |                           |
| C1, C47, C55                                                                                                                  | 3        | 100pF  | CAP, CERM, 100 pF, 50 V,<br>+/- 5%, C0G/NP0, 0603                  | 0603                             | 885012006057         | Wurth Elektronik               |                          |                           |
| C2, C4, C7, C8, C9, C10,<br>C13, C16, C18, C28, C35,<br>C36, C39, C40, C44, C46,<br>C50, C51, C53, C54, C56,<br>C57, C58, C59 | 24       | 0.1uF  | CAP, CERM, 0.1 uF, 50 V,<br>+/- 10%, X7R, 0603                     | 0603                             | GRM188R71H104KA93D   | MuRata                         |                          |                           |
| C5, C6                                                                                                                        | 2        | 10uF   | CAP, CERM, 10 uF, 10 V,<br>+/- 20%, X5R, 0603                      | 0603                             | C1608X5R1A106M080AC  | ТDК                            |                          |                           |
| C11, C12, C14, C15, C17,<br>C19, C20, C21, C22, C23,<br>C29, C30                                                              | 12       | 1uF    | CAP, CERM, 1 uF, 50 V, +/-<br>10%, X7R, AEC-Q200<br>Grade 1, 0805  | 0805                             | CGA4J3X7R1H105K125AB | TDK                            |                          |                           |
| C24, C25, C26, C27, C31,<br>C42, C60, C61                                                                                     | 8        | 10uF   | CAP, CERM, 10 uF, 50 V,<br>+/- 10%, X7S, AEC-Q200<br>Grade 1, 1210 | 1210                             | CGA6P3X7S1H106K250AB | TDK                            |                          |                           |
| C32, C34                                                                                                                      | 2        | 0.01uF | CAP, CERM, 0.01 uF, 50 V,<br>+/- 5%, C0G/NP0, 0603                 | 0603                             | GRM1885C1H103JA01D   | MuRata                         |                          |                           |
| C33, C37, C38                                                                                                                 | 3        | 2700pF | CAP, CERM, 2700 pF, 25 V,<br>+/- 5%, C0G/NP0, 0805                 | 0805                             | 08053A272JAT2A       | AVX                            |                          |                           |
| C41, C43, C45                                                                                                                 | 3        | 1uF    | CAP, Film, 1 uF, 16 V, +/-<br>20%, 1210 SMD                        | 1210                             | ECPU1C105MA5         | Panasonic                      |                          |                           |
| D1, D2, D3, D4, D5, D6, D7, D8, D9                                                                                            | 9        | 100V   | Diode, Schottky, 100 V, 1 A,<br>AEC-Q101, SOD-123W                 | SOD-123W                         | PMEG10010ELRX        | Nexperia                       |                          |                           |
| H1, H2, H3, H4                                                                                                                | 4        |        | MACHINE SCREW PAN<br>PHILLIPS 4-40                                 | Machine Screw, 4-40, 1/4 inch    | MSSS 440 0025 PH     | B and F Fastener<br>Supply     |                          |                           |
| J1, J7, J11, J16, J20, J26,<br>J30, J31                                                                                       | 8        |        | Header, 100mil, 3x1, Gold,<br>SMT                                  | Samtec_TSM-103-01-X-SV           | TSM-103-01-L-SV      | Samtec                         |                          |                           |
| J2                                                                                                                            | 1        |        | Header, 2.54mm, 4x2, Gold, SMT                                     | Header, 2.54mm, 4x2, SMT         | TSM-104-01-L-DV      | Samtec                         |                          |                           |
| J3, J6, J21, J22, J27, J28,<br>J29                                                                                            | 7        |        | Connector, SMA, TH                                                 | SMA                              | 142-0701-231         | Cinch Connectivity             |                          |                           |
| J4, J5, J8, J25                                                                                                               | 4        |        | Header, 100mil, 2x1, Gold<br>with Tin Tail, SMT                    | 2x1 Header                       | TSM-102-01-L-SV      | Samtec                         |                          |                           |
| J9, J10                                                                                                                       | 2        |        | Receptacle, 2.54mm, 10x2,<br>Tin, TH                               | Receptacle, 2.54mm, 10x2, TH     | ESQ-110-14-T-D       | Samtec                         |                          |                           |
| J12, J13, J14, J15, J17,<br>J18, J19                                                                                          | 7        |        | Standard Banana Jack,<br>Uninsulated, 5.5mm                        | Keystone_575-4                   | 575-4                | Keystone                       |                          |                           |
| J23, J24                                                                                                                      | 2        |        | Receptacle, 100mil, 10x1,<br>Tin, TH                               | Receptacle, 10x1, 100mil,<br>Tin | PPTC101LFBN-RC       | Sullins Connector<br>Solutions |                          |                           |



 Table 6. BP-DAC11001EVM Bill of Materials (continued)

| Designator                                                                                                                                 | Quantity | Value   | Description                                                                    | Package Reference            | Part Number       | Manufacturer                 | Alternate Part<br>Number | Alternate<br>Manufacturer |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------------------------------------------------------------------------------|------------------------------|-------------------|------------------------------|--------------------------|---------------------------|
| L1, L2, L3, L4, L5, L6, L7,<br>L8, L9                                                                                                      | 9        | 600 ohm | Ferrite Bead, 600 ohm at 100 MHz, 2.1 A, 0805                                  | 0805                         | 74279220601       | Wurth Elektronik             |                          |                           |
| LBL1                                                                                                                                       | 1        |         | Thermal Transfer Printable<br>Labels, 0.650" W x 0.200" H<br>- 10,000 per roll | PCB Label 0.650 x 0.200 inch | THT-14-423-10     | Brady                        |                          |                           |
| R4, R5, R11, R12, R13,<br>R15, R16, R46, R52, R54                                                                                          | 10       | 0       | RES, 0, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                  | 0603                         | RMCF0603ZT0R00    | Stackpole Electronics<br>Inc |                          |                           |
| R6                                                                                                                                         | 1        | 2.4k    | RES, 2.4 k, 0.05%, 0.1 W,<br>AEC-Q200 Grade 0, 0603                            | 0603                         | RG1608N-242-W-T1  | Susumu Co Ltd                |                          |                           |
| R7, R8, R9, R10                                                                                                                            | 4        | 10.0k   | RES, 10.0 k, 1%, 0.1 W, 0603                                                   | 0603                         | RC0603FR-0710KL   | Yageo                        |                          |                           |
| R14, R17, R18, R19, R20,<br>R21, R22, R23                                                                                                  | 8        | 33      | RES, 33, 5%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                 | 0603                         | CRCW060333R0JNEA  | Vishay-Dale                  |                          |                           |
| R24, R25, R26, R27, R28,<br>R29, R30, R31, R32, R33,<br>R34, R35, R40                                                                      | 13       | 10      | RES, 10, 5%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                 | 0603                         | CRCW060310R0JNEA  | Vishay-Dale                  |                          |                           |
| R36                                                                                                                                        | 1        | 2.49k   | RES, 2.49 k, 1%, 0.1 W,<br>AEC-Q200 Grade 0, 0603                              | 0603                         | CRCW06032K49FKEA  | Vishay-Dale                  |                          |                           |
| R37                                                                                                                                        | 1        | 3.40k   | RES, 3.40 k, 1%, 0.1 W,<br>AEC-Q200 Grade 0, 0603                              | 0603                         | CRCW06033K40FKEA  | Vishay-Dale                  |                          |                           |
| R38                                                                                                                                        | 1        | 866     | RES, 866, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                | 0603                         | CRCW0603866RFKEA  | Vishay-Dale                  |                          |                           |
| R39                                                                                                                                        | 1        | 1.58k   | RES, 1.58 k, 1%, 0.1 W,<br>AEC-Q200 Grade 0, 0603                              | 0603                         | CRCW06031K58FKEA  | Vishay-Dale                  |                          |                           |
| R41                                                                                                                                        | 1        | 0.51    | RES, 0.51, 1%, 0.1 W, AEC-<br>Q200 Grade 1, 0603                               | 0603                         | ERJ-3RQFR51V      | Panasonic                    |                          |                           |
| R42                                                                                                                                        | 1        | 1.00    | RES, 1.00, 1%, 0.1 W, 0603                                                     | 0603                         | RC0603FR-071RL    | Yageo                        |                          |                           |
| R43, R51                                                                                                                                   | 2        | 22      | RES, 22.0, 0.1%, 0.063 W, 0603                                                 | 0603                         | CPF0603B22RE1     | TE Connectivity              |                          |                           |
| R44                                                                                                                                        | 1        | 51k     | RES, 51 k, 5%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                               | 0603                         | CRCW060351K0JNEA  | Vishay-Dale                  |                          |                           |
| R47, R48                                                                                                                                   | 2        | 4.99k   | RES, 4.99 k, 0.1%, 0.125<br>W, 0805                                            | 0805                         | RT0805BRD074K99L  | Yageo America                |                          |                           |
| R55, R56                                                                                                                                   | 2        | 1.00k   | RES, 1.00 k, 0.01%, 0.15<br>W, 0603                                            | 0603                         | PLTU0603U1001LST5 | Vishay-Dale                  |                          |                           |
| SH-JP1, SH-JP2, SH-JP3,<br>SH-JP4, SH-JP5, SH-JP6,<br>SH-JP7, SH-JP8, SH-JP9,<br>SH-JP10                                                   | 10       | 1x2     | Shunt, 100mil, Gold plated,<br>Black                                           | Shunt                        | SNT-100-BK-G      | Samtec                       | 969102-0000-DA           | 3M                        |
| TP6, TP21, TP24, TP25,<br>TP26, TP27, TP28, TP29,<br>TP30, TP31, TP32, TP33,<br>TP34, TP35, TP36, TP37,<br>TP38, TP39, TP40, TP41,<br>TP42 | 21       |         | Test Point, Compact, Red,<br>TH                                                | Red Compact Testpoint        | 5005              | Keystone                     |                          |                           |



## Table 6. BP-DAC11001EVM Bill of Materials (continued)

| Designator                | Quantity | Value | Description                                                                                                                                                              | Package Reference | Part Number    | Manufacturer                 | Alternate Part<br>Number | Alternate<br>Manufacturer |
|---------------------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------------|--------------------------|---------------------------|
| U1                        | 1        |       | 20-/18-/16-Bit, Low Noise,<br>Ultra Low Harmonic<br>Distortion, Fast Settling,<br>High-Voltage Output Digital-<br>to-Analog Converters<br>(DACs), PFB0048A (TQFP-<br>48) | PFB0048A          | DAC11001APFB   | Texas Instruments            |                          |                           |
| U2, U6, U7, U8, U9, U10   | 6        |       | 36-Volt, High-speed (45<br>MHz GBW and 150V/μs<br>SR), Iow-noise (4nV/√Hz)<br>RRO JFET operational<br>amplifier, D0008A (SOIC-8)                                         | D0008A            | OPA828IDR      | Texas Instruments            |                          |                           |
| U3, U4                    | 0        |       | 1.1 nV/rtHz Noise, Low<br>Power, Precision<br>Operational Amplifier, 4.5 to<br>36 V, -40 to 85 degC, 8-pin<br>SOIC (D8), Green (RoHS &<br>no Sb/Br)                      | D0008A            | OPA1611AID     | Texas Instruments            |                          |                           |
| U5                        | 1        |       | High-Precision Voltage<br>Reference with Integrated<br>High-Bandwidth Buffer,<br>DGK0008A (VSSOP-8)                                                                      | DGK0008A          | REF6250IDGKR   | Texas Instruments            | REF6250IDGKT             | Texas Instruments         |
| C3, C52                   | 0        | 100pF | CAP, CERM, 100 pF, 50 V,<br>+/- 5%, C0G/NP0, 0603                                                                                                                        | 0603              | 885012006057   | Wurth Elektronik             |                          |                           |
| C48, C49                  | 0        | 10uF  | CAP, Film, 10 uF, 63 V, +/-<br>10%, TH                                                                                                                                   | 18x17.5x9mm       | B32522C106K    | TDK                          |                          |                           |
| FID1, FID2, FID3          | 0        |       | Fiducial mark. There is nothing to buy or mount.                                                                                                                         | N/A               | N/A            | N/A                          |                          |                           |
| R1, R2, R3, R45, R49, R53 | 0        | 0     | RES, 0, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603                                                                                                                            | 0603              | RMCF0603ZT0R00 | Stackpole Electronics<br>Inc |                          |                           |

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated