# MSPM0 Sensorless FOC Tuning Guide



Venkata Pavan Mahankali Aaron Barrera

#### **ABSTRACT**

This tuning guide provides step-by-step guidence to set up an MSPM0 MCU and supported DRV hardware board and to tune a 3-phase brushless DC motor.

### **Table of Contents**

| 1 Introduction                                                           | 3               |
|--------------------------------------------------------------------------|-----------------|
| 2 Hardware Setup                                                         | 3               |
| 2.1 EVM Hardware Setup                                                   | 4               |
| 2.2 Pin Configurations for IPD Usage                                     | 5               |
| 2.3 Pin Configurations for PWM Outputs                                   | 5               |
| 2.4 Pin Configurations for ADC Currents                                  | 5               |
| 2.5 Pin Configurations for ADC Voltages                                  | 6               |
| 2.6 Pin Configurations for Faults                                        |                 |
| 2.7 Pin Configurations for GPIO Output Functions                         | 7               |
| 2.8 Pin Configurations for SPI Communication                             | 7               |
| 2.9 Pin Configurations for UART Communication                            |                 |
| 2.10 External Connections for Evaluation Boards                          | 8               |
| 3 Software Setup                                                         |                 |
| 3.1 Software Support                                                     | 11              |
| 4 GUI Setup                                                              | 11              |
| 5 Register Map                                                           |                 |
| 5.1 User Control Registers (Base Address = 0x202000C8h)                  | 12              |
| 5.2 User Input Registers (Base Address = 0x20200000h)                    | 14              |
| 6 Basic Tuning                                                           | 40              |
| 6.1 System Configuration Parameters                                      |                 |
| 6.2 Control Configurations for Basic Motor Spinning                      |                 |
| 6.3 Fault Handling                                                       |                 |
| 7 Advanced Tuning                                                        |                 |
| 7.1 Control Configurations Tuning                                        | <mark>50</mark> |
| 7.2 Hardware Configurations                                              |                 |
| 8 Revision History                                                       | <u>56</u>       |
|                                                                          |                 |
| List of Figures                                                          |                 |
| Figure 1-1. Simplified Schematic of MSPM0Gxxx + BLDC Motor Driver        | 3               |
| Figure 2-1. MSPM0Gxxx + BLDC Motor Driver - Sensorless FOC Block Diagram |                 |
| Figure 2-2. CSA Output Filter                                            |                 |
| Figure 2-3. ADC Voltage Divider                                          | 6               |
| Figure 2-4. MSPM0 LaunchPad Kit and DRV83xx EVM External Configuration   |                 |
| Figure 2-5. LP-MSPM0G3507 Backchannel Connection to UART3                |                 |
| Figure 6-1. GUI System Parameter Configuration                           |                 |
| Figure 6-2. Resistance Measurement                                       |                 |
| Figure 6-3. Inductance Measurement                                       |                 |
| Figure 6-4. Register Map GUI Page                                        |                 |
| Figure 6-5. Disabling ISD in GUI                                         |                 |
| Figure 6-6. Motor Startup in GUI                                         |                 |
| Figure 6-7. Setting ClosedLoop Disable in GUI                            | 45              |
|                                                                          |                 |

Trademarks INSTRUMENTS

www.ti.com

| Figure 6-8. Disabling Current loop in GUI                                               | 45 |
|-----------------------------------------------------------------------------------------|----|
| Figure 6-9. PI Loop Tuning in GUI Motor Tuning page                                     | 46 |
| Figure 6-10. Setting Speed Input From GUI                                               | 47 |
| Figure 6-11. Reading Fault Status From GUI                                              | 48 |
| Figure 7-1. Reverse Drive Function                                                      | 51 |
| Figure 7-2. Power Supply Voltage and Phase Current Waveform When AVS is Disabled        |    |
| Figure 7-3. Power Supply Voltage and Phase Current Waveform When AVS is Enabled         | 54 |
|                                                                                         |    |
| List of Tables                                                                          |    |
| Table 2-1. Supported Hardware for Sensorless FOC Using MSPM0                            | 4  |
| Table 2-2. Pin Configurations for IPD                                                   | 5  |
| Table 2-3. Pin Configurations for PWM Outputs                                           |    |
| Table 2-4. Pin Configurations for ADC Currents With Simultaneous Sampling in DRV8316    |    |
| Table 2-5. Pin Configurations for ADC Currents Without Simultaneous Sampling in DRV8323 |    |
| Table 2-6. Pin Configurations for ADC Phase Voltages                                    |    |
| Table 2-7. Pin Configurations for ADC DC Bus Voltage Sensing for DRV8316                |    |
| Table 2-8. Pin Configurations for ADC DC Bus Voltage Sensing for DRV8323                |    |
| Table 2-9. Pin Configurations for Faults                                                |    |
| Table 2-10. Pin Configurations for SPI Connections                                      |    |
| Table 2-11. Pin Configurations for UART Connections.                                    |    |
| Table 3-1. Software Support for FOC Control.                                            |    |
| Table 4-1. GUI Connection Types                                                         |    |
| Table 5-1. User Control registers                                                       |    |
| Table 5-2. Register Configuration Access Type Codes                                     |    |
| Table 5-3. SPEED_CTRL Register Field Descriptions                                       |    |
| Table 5-4. Algorithm Debug Control 1 Register Field Descriptions                        |    |
| Table 5-5. Algorithm Debug Control 2 Register Field Descriptions                        |    |
| Table 5-6. User Input Registers                                                         |    |
| Table 5-7. Register Configuration Access Type Codes                                     |    |
| Table 5-8. Motor Resistance Configuration Registers (Offset = 4h)                       | 14 |
| Table 5-9. Motor BEMF Constant Configuration (Offset = 8h)                              |    |
| Table 5-10. Motor Benif Constant Configuration (Offset = 6h)                            |    |
| Table 5-12. Base Current Configuration (Offset = 10h)                                   |    |
| Table 5-13. Motor Max Speed Configuration (Offset = 14h)                                |    |
| Table 5-14. Speed Loop Proportional Gain (Offset = 18h)                                 |    |
| Table 5-15. Speed Loop Integral Gain (Offset = 1Ch)                                     |    |
| Table 5-16. Torque Loop Proportional Gain (Offset = 20h)                                |    |
| Table 5-17. Torque Loop Integral Gain (Offset = 24h)                                    |    |
| Table 5-18. ISD CONFIG Register                                                         |    |
| Table 5-19. RVS DRV CONFIG Register                                                     |    |
| Table 5-20. MOTOR_STARTUP1 Register Field Descriptions                                  |    |
| Table 5-21. MOTOR_STARTUP2 Register Field Descriptions                                  |    |
| Table 5-22. CLOSED_LOOP1 Register Field Descriptions                                    |    |
| Table 5-23. CLOSED LOOP2 Register Field Descriptions                                    |    |
| Table 5-24. FAULT_CONFIG1 Register Field Descriptions                                   |    |
| Table 5-25. FAULT CONFIG2 Register Field Descriptions                                   |    |
| Table 5-26. MISC_ALGO Register Field Descriptions                                       |    |
| Table 5-27. PIN_CONFIG Register Field Descriptions                                      |    |
| Table 5-28. PERI_CONFIG1 Register Field Descriptions                                    | 38 |
| Table 7.1 Address Table for DAC Monitoring                                              | 55 |

#### **Trademarks**

LaunchPad™ is a trademark of Texas Instruments.

Arm® and Cortex® are registered trademarks of Arm Limited.

All trademarks are the property of their respective owners.

www.ti.com Introduction

#### 1 Introduction

The MSPM0Gxxx family of 80MHz Arm®-Cortex® M0+ MCUs can commutate a 3-phase brushless DC (BLDC) motor with sensorless FOC control. The BLDC motor is driven by a three-phase brushless DC (BLDC) MOSFET gate driver or integrated MOSFET motor driver at 12V or 24V nominal DC rails or battery-powered applications. The driver typically integrates three current-sense amplifiers (CSAs) for sensing the three-phase currents of BLDC motors to achieve optimum FOC control.

Figure 1-1 shows a simplified schematic of an MSPM0Gxxx MCU and BLDC motor driver.

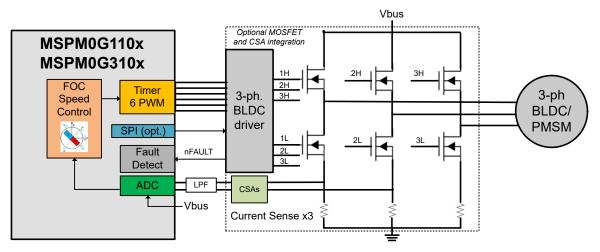



Figure 1-1. Simplified Schematic of MSPM0Gxxx + BLDC Motor Driver

This tuning guide provides the steps to tune a 3-phase BLDC motor using an MSPM0Gxxxx MCU. The tuning process is classified into four sections: **Hardware Setup**, **Software Setup**, **Basic Tuning** and **Advanced Tuning**.

- Hardware setup: Steps to set up TI-provided hardware or use a custom PCB for the tuning process.
- Software setup: Steps to set up TI-provided software for spinning and tuning a BLDC motor.
- GUI setup (optional): Steps to use a graphical user interface (GUI) for spinning & tuning a BLDC motor.
- Basic tuning: Tuning steps to successfully spin the motor in closed loop.
- Advanced tuning: Tuning steps to conform to use-case and explore features in the device.

#### 2 Hardware Setup

The following items are required to use this tuning guide:

- LP-MSPM0G3507 board
- Supported DRV83xx motor driver evaluation module (EVM)
  - BOOSTXL-DRV8323RS
  - DRV8316REVM
- · Jumper wires for pin table connections
- A computer with the MSPM0 FOC software installed
- A BLDC motor to be tuned using this process. The motor data sheet is helpful but not mandatory.
- A DC power supply rated for the motor
- Basic lab equipment such as a digital multimeter (DMM), oscilloscope, current probe, and voltage probe

Figure 2-1 shows the block diagram connections for a sensorless FOC motor system. The system can be built using:

- TI-provided hardware (LP-MSPM0G3507 and DRV83xx EVM)
- Custom PCB hardware with an onboard MSPM0Gxxx MCU and a BLDC motor driver

The following sections describe how to configure the pins for each portion of the sensorless FOC block diagram.

Hardware Setup Www.ti.com

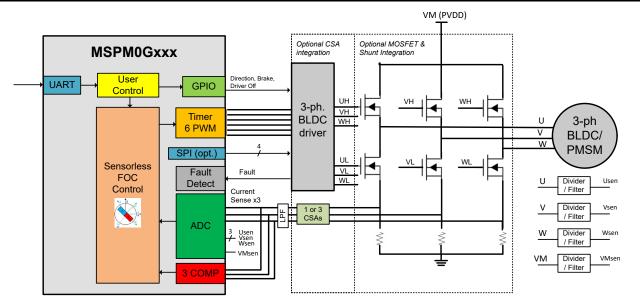



Figure 2-1. MSPM0Gxxx + BLDC Motor Driver - Sensorless FOC Block Diagram

The System Configuration tool (SysConfig) helps to configure the pins in a motor control system. The default pin configurations are provided for the EVM hardware setup to spin a motor, but pins can be remapped to other pins visually inside SysConfig. This is useful for reconfiguring different pins (such as PWM, ADC, or other control signals) on a custom PCB or for scaling to different packages across MSPM0 devices.

#### 2.1 EVM Hardware Setup

TI provides LaunchPad<sup>™</sup> development kits to evaluate MSPM0 Arm Cortex-M0+ micrcontrollers and evaluation modules (EVMs) to evaluate the DRV83xx family of brushless-DC motor drivers. These evaluation boards are available on ti.com and can be used as a system evaluation platform for sensorless FOC motor control.

For supported evaluation boards, refer to Section 2.1.1.

#### Note

The provided defaults have pre-configured pins that are intended to support hardware evaluation boards. If a custom PCB is used, refer to the following *Pin Configurations* sections to assign the supported pins for the 3-phase motor driver.

#### 2.1.1 EVM Hardware Support

Table 2-1 shows the supported MSPM0 LaunchPad kits and EVMs and the connection guides for 3-phase sensorless FOC motor control.

| MSPM0Gxxx<br>LaunchPad Kit | Motor Driver<br>Hardware | Hardware User's<br>Guide                        | Current Sense<br>Amplifiers | SPI Driver<br>Support | Recommended<br>Motor Voltage<br>Range | Recommended<br>Motor Power |
|----------------------------|--------------------------|-------------------------------------------------|-----------------------------|-----------------------|---------------------------------------|----------------------------|
| LP-MSPM0G3507              | BOOSTXL-<br>DRV8323RS    | BOOSTXL-<br>DRV8323RS<br>Hardware User<br>Guide | 3                           | Yes                   | 6V to 60V                             | < 1000W                    |
|                            | DRV8316REVM              | DRV8316REVM<br>Hardware User<br>Guide           | 3                           | Yes                   | 4.5V to 35V                           | < 80W                      |

#### Note

Make sure that the jumper configurations for the LaunchPad kit and EVM are correct. For more information, see the user's guides for the LaunchPad kit and EVM.

www.ti.com Hardware Setup

#### 2.2 Pin Configurations for IPD Usage

The default pin configurations for Initial Position Detection (IPD) are shown in Table 2-2. The required connections are the 3 current sense amplifier outputs to the positive inputs of the 3 integrated comparators of the MSPM0. The comparators monitor the phase current against a pre-set IPD threshold voltage (set by 8-bit DAC into the comparator's negative input).

| <b>Table 2-2.</b> | Pin Confi | gurations 1 | for IPD |
|-------------------|-----------|-------------|---------|
|-------------------|-----------|-------------|---------|

| MSPM0 pin  | MSPM0 Function              | DRV connection | DRV Function                 |
|------------|-----------------------------|----------------|------------------------------|
| COMP0_INx+ | Comparator 0 positive input | SOA            | Phase A current sense output |
| COMP1_INx+ | Comparator 1 positive input | SOB            | Phase B current sense output |
| COMP2_INx+ | Comparator 2 positive input | soc            | Phase C current sense output |

#### 2.3 Pin Configurations for PWM Outputs

The default pin configurations for PWM outputs are shown in Table 2-3. The required connections are six PWM output signals that send the commutation patterns for sensorless FOC motor control. TIMA includes features for motor control, such as complimentary PWM outputs with deadband, fault handling with <40ns response time, and repeat counters for configuring FOC loop rates.

TIMA0 is the preferred timer for motor control because it provides three complimentary pairs of PWM outputs from the same timer counter (such as TIMA0\_C1 and TIMA0\_C1N), but any TIMA0 or TIMA1 output pair can be used and cross-triggered to provide the six PWM output signals.

**Table 2-3. Pin Configurations for PWM Outputs** 

| MSPM0 Pin | Function                                 | DRV Connection | DRV Function                |
|-----------|------------------------------------------|----------------|-----------------------------|
| TIMA0_C0  | TIMA0 channel 0 output pin               | INHA           | Phase A high side PWM input |
| TIMA0_C0N | TIMA0 channel 0 complimentary output pin | INLA           | Phase A low side PWM input  |
| TIMA0_C1  | TIMA0 channel 1 output pin               | INHB           | Phase B high side PWM input |
| TIMA0_C1N | TIMA0 channel 1 complimentary output pin | INLB           | Phase B low side PWM input  |
| TIMA0_C2  | TIMA0 channel 2 output pin               | INHC           | Phase C high side PWM input |
| TIMA0_C2N | TIMA0 channel 2 complimentary output pin | INLC           | Phase C low side PWM input  |

#### 2.4 Pin Configurations for ADC Currents

The default pin configurations for ADC currents are shown in Table 2-4 and Table 2-5, depending on the DRV device used. The required connections are 3 ADC inputs connected to the 3 CSA outputs from the motor driver or external CSAs.

ADC0 and ADC1 are two simulaneous-sampling 4MSPS analog-to-digital converters that are used to measure phase currents and voltages. ADC0 and ADC1 measure phase currents simultaneously and bus voltage sequentially depending on the rotor angle under normal motor run conditions. ADC0 and ADC1 are sampled to measures phase voltages during Initial Speed Detection.

An optional low-pass RC filter can be placed in series from the CSA outputs to the ADC inputs to filter out any high frequency noise from the switching output signals for proper ADC sampling as shown in Figure 2-2.

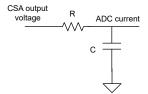



Figure 2-2. CSA Output Filter

Choose a filtering frequency  $f_c$  that it at least 10 times the PWM switching frequency ( $f_{PWM}$ ). Use Equation 1 to calculate  $f_c$  based on the RC filter design.



$$f_{c} = \frac{1}{2\pi RC} \tag{1}$$

Table 2-4. Pin Configurations for ADC Currents With Simultaneous Sampling in DRV8316

| MSPM0 Pin | Function              | DRV Connection | DRV Function                 |
|-----------|-----------------------|----------------|------------------------------|
| A0_3      | ADC0, channel 3 input | SOA            | Phase A current sense output |
| A0_2      | ADC0, channel 2 input | SOB            | Phase B current sense output |
| A1_2      | ADC1, channel 2 input | SOB            | Phase B current sense output |
| A1_1      | ADC1, channel 1 input | soc            | Phase C high side PWM input  |

Table 2-5. Pin Configurations for ADC Currents Without Simultaneous Sampling in DRV8323

| MSPM0 Pin | Function              | DRV Connection | DRV Function                 |
|-----------|-----------------------|----------------|------------------------------|
| A1_2      | ADC1, channel 2 input | SOA            | Phase A current sense output |
| A0_3      | ADC0, channel 2 input | SOB            | Phase B current sense output |
| A1_3      | ADC1, channel 3 input | soc            | Phase C high side PWM input  |

### 2.5 Pin Configurations for ADC Voltages

The default pin configurations for ADC voltages are shown in the following tables. The required connections are four ADC inputs:

- Three ADC inputs connected to the three sensed phase voltages from the motor (VSENA, VSENB, VSENC)
- One ADC input connected to the sensed VM motor voltage (VSENVM)

The sensed voltages are realized using a resistor divider with an optional bypass filtering cap as shown in Figure 2-3. Size the resistors so any motor voltage transients do not exceed the maximum voltage of the ADC inputs. For more information on the resistor divider ratio, see Section 6.1.5.

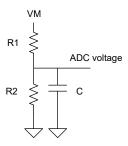



Figure 2-3. ADC Voltage Divider

#### Note

An optional center tap voltage (CTAP) can be used to sense the motor BEMF.

Table 2-6. Pin Configurations for ADC Phase Voltages

| MSPM0 Pin | Function              | DRV Connection | DRV Function                  |
|-----------|-----------------------|----------------|-------------------------------|
| A1_6      | ADC1, channel 6 input | VSENA          | Phase A sensed voltage output |
| A0_7      | ADC0, channel 7 input | VSENB          | Phase B sensed voltage output |
| A1_5      | ADC1, channel 5 input | VSENC          | Phase C sensed voltage output |

Table 2-7. Pin Configurations for ADC DC Bus Voltage Sensing for DRV8316

| MSPM0 Pin | Function              | DRV Connection | DRV Function          |
|-----------|-----------------------|----------------|-----------------------|
| A1_3      | ADC1, channel 3 input | VSEN -Vm       | DC bus voltage output |

Table 2-8. Pin Configurations for ADC DC Bus Voltage Sensing for DRV8323

| MSPM0 Pin | Function              | DRV Connection | DRV Function          |
|-----------|-----------------------|----------------|-----------------------|
| A0_2      | ADC0, channel 2 input | VSEN -Vm       | DC bus voltage output |

www.ti.com Hardware Setup

#### 2.6 Pin Configurations for Faults

The default pin configurations for faults are shown in Table 2-9. Faults can be detected in hardware by the motor driver or MCU.

Typically, a motor driver drives an active-low open-drain fault pin (nFAULT) when there is a detected fault in the system. Examples are MOSFET overcurrent, gate drive, or power supply-related faults connections in the driver.

MSPM0 MCUs can detect fault inputs with dedicated hardware paths to provide low latency and response times as fast as 40ns. This is faster than using a conventional GPIO interrupt with software latency. The fault input paths can be configured for fault handling using TIMA fault handler, such as shutting off the PWMs during an overcurrent condition. Examples of TIMA inputs include an external fault pin (such as TIMA\_FLT0) and low-side overcurrent using comparators (such as COMP0\_IN0+).

Table 2-9. Pin Configurations for Faults

| MSPM0 Pin | Function                  | DRV Connection | DRV Function                     |
|-----------|---------------------------|----------------|----------------------------------|
| TIMA0_C2  | TIMA0 channel 2 input pin | nFAULT         | Open-drain, active-low fault pin |

### 2.7 Pin Configurations for GPIO Output Functions

Many GPIO output functions from the MSPM0 can be used for motor driver specific functions controlled by logic-level pins. Examples of motor driver functions are:

- Enable pin (ENABLE) / active-low sleep mode control (nSLEEP)
- Active high gate driver shutoff (DRVOFF)
- Active-high CSA Calibration (CAL)
- Active-high brake (BRAKE) / active-low brake (nBRAKE)
- Direction pin (DIR)

#### Note

See the motor driver data sheet and the user guide for GPIO configurable pins.

#### 2.8 Pin Configurations for SPI Communication

The default pin configurations for SPI connections are shown in Section 2.8. Some motor drivers include an optional SPI that is used for configuring control registers and reading status registers for fault diagnosis. Some examples of SPI registers are:

- · Configuring gate drive source/sink current strength
- · Configuring CSA output behavior
- Running diagnostics
- · Reading fault bits when the fault pin has been detected as active low
- Clearing fault status bits once the fault condition is removed
- · Clearing watchdog timers

#### Note

See the motor driver data sheet if a SPI or hardware interface is used to configure system settings.

Table 2-10. Pin Configurations for SPI Connections

| MSPM0 Pin | Function                         | DRV Connection | DRV Function    |
|-----------|----------------------------------|----------------|-----------------|
| SPIx_CSy  | SPI chip select (y = 0,1,2,3)    | nSCS           | SPI chip select |
| SPIx_SCK  | SPI clock                        | SCLK           | SPI clock       |
| SPIx_POCI | SPI peripheral out controller in | SDO            | SPI data out    |
| SPIx_PICO | SPI peripheral in controller out | SDI            | SPI data in     |

#### Note

See the motor driver data sheet to determine if the SDO pin is open-drain and requires a pullup resistor.

#### 2.9 Pin Configurations for UART Communication

The default pin configurations for UART connections are shown in Section 2.9. UART can be used to receive commands to configure, spin, and control the motor. The commands are sent from a host MCU or GUI and can optionally be used for advanced protocols such as LIN communication.

#### Note

Use UART instance 0 (UART0\_RX, UART0\_TX) to configure the UART interface when used along with DMA and LIN interface.

#### Note

Use UART instance 3 (UART3\_RX, UART3\_TX) to configure the UART interface for GUI communication when used along with DMA.

Table 2-11. Pin Configurations for UART Connections

| MSPM0 Pin | Function      |
|-----------|---------------|
| UARTx_RX  | UART receive  |
| UARTx_TX  | UART transmit |

#### 2.10 External Connections for Evaluation Boards

Follow the steps below when connecting an MSPM0 LaunchPad to a DRV83xx EVM:

- 1. Connect the motor the motor phase connection terminal black (phases A, B, and C). If the motor has a center tap connection or wires for Hall-effect sensors, leave these wires unconnected.
- 2. Make the inter-device connections from the MSPM0 LaunchPad to the DRV83xx EVM by mating the EVM to the LaunchPad or using jumper wires as shown in Figure 2-4. See Section 2.1.1 for hardware user guide connection details.
  - a. If using a host MCU to communicate using UART to the MSPM0 device, connect the UART connections from the host MCU board to the MSPM0 LaunchPad kit.
  - b. If using the GUI to communicate to the MSPM0 device using USB to backchannel UART, connect the backchannel UART connections to UART3\_TX and UART3\_RX as shown in Figure 2-5.
- 3. Connect a micro-USB cable from the MSPM0 LaunchPad kit to the PC.
  - a. Remove GND and 3V3 isolation jumpers on the bridge if desired to isolate the PC from the motor system. If this step is done, 3V3 must be provided externally or from the DRV83xx EVM board, if available.
- 4. Supply a voltage compliant with the Power Supply Voltage (VM) range. See the board-specific user's guide or DRV-specific data sheet for recommended voltage range.

www.ti.com Hardware Setup

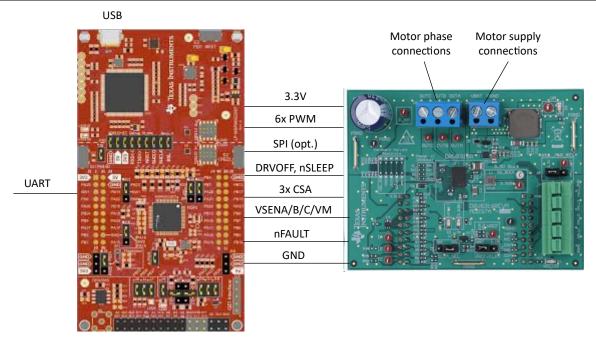



Figure 2-4. MSPM0 LaunchPad Kit and DRV83xx EVM External Configuration

Hardware Setup Www.ti.com

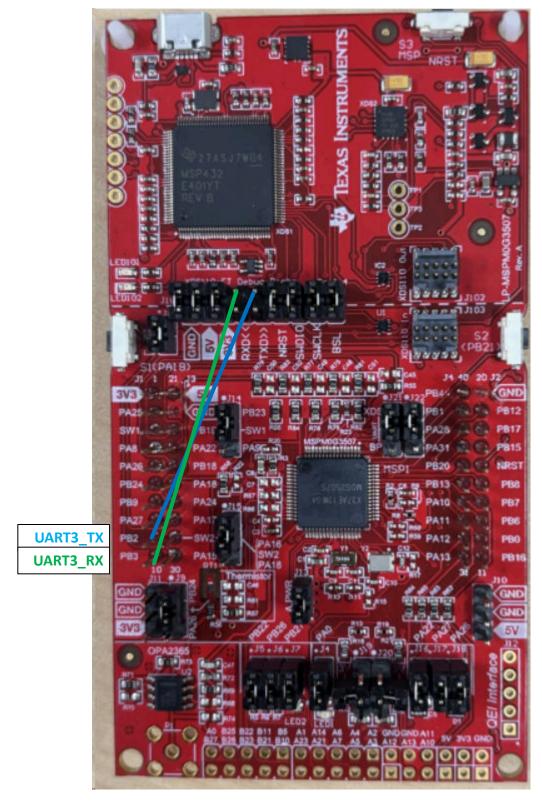



Figure 2-5. LP-MSPM0G3507 Backchannel Connection to UART3

www.ti.com Software Setup

#### 3 Software Setup

Sensorless FOC software for MSPM0 MCUs are provided inside MSPM0-SDK and are available for evaluation with Code Composer Studio IDE.

For supported evaluation boards, see Section 3.1.

#### 3.1 Software Support

Table 3-1 shows the software and documentation supported for Sensorless FOC control in TI Resource Explorer.

**Table 3-1. Software Support for FOC Control** 

| Sensorless FOC User's Guide <sup>(1)</sup> | Code Examples        | GUI                       | Tuning User Guide                    |
|--------------------------------------------|----------------------|---------------------------|--------------------------------------|
| Sensorless FOC User's Guide                | DRV8323RS<br>DRV8316 | MSPM0G Sensorless FOC GUI | MSPM0 Sensorless FOC Tuning<br>Guide |

(1) includes library overview, software setup, hardware setup, and more.

#### 4 GUI Setup

The user can optionally use the MSPM0 Sensorless FOC GUI as a host to send commands to the MSPM0 MCU at the target to control the motor using either SWD or UART interface.

When SWD is used, the onboard XDS110 debugger on the MSPM0 LaunchPad kit sends the values from the modified GUI variables. These values are linked to variables and expressions in the motor control software and directly updates those values during run time. When UART is used, the GUI includes a USB-to-UART codec that can send UART commands as a host to the MSPM0 LaunchPad kit. The application software includes a configurable UART register map and data format that translates the UART data into simplified motor control commands.

**Table 4-1. GUI Connection Types** 

| Connection              | Interface               | Hardware Connections |
|-------------------------|-------------------------|----------------------|
| GUI to target MSPM0 MCU | SWD (serial wire debug) | SWDIO, SWCLK         |
| GUI to target MSPM0 MCU | UART                    | UART3_TX, UART3_RX   |

#### To set up the GUI:

- Make sure that the hardware is connected as described in Section 2 for evaluation boards or a custom user PCB.
- 2. Run the MSPM0 Sensorless FOC GUI.
- 3. Configure and tune the motor as described in Section 6 and Section 7.

#### 5 Register Map

### 5.1 User Control Registers (Base Address = 0x202000C8h)

User Control Registers are set of user configurable parameters to control the Motor in real time. These set of registers can be modified in the application code using pointer variable pUserCtrlRegs.

**Table 5-1. User Control registers** 

| Offset | Acronym          | Register Name                      | Section       |
|--------|------------------|------------------------------------|---------------|
| 0h     | SPEED_CTRL       | Speed Control Register             | Section 5.1.1 |
| 4h     | ALGO_DEBUG_CTRL1 | Algorithm Debug Control 1 register | Section 5.1.2 |
| 8h     | ALGO_DEBUG_CTRL2 | Algorithm Debug Control 2 register | Section 5.1.3 |

Complex bit access types are encoded to fit into small table cells as below.

Table 5-2. Register Configuration Access Type Codes

| Access Type            | Code      | Description                            |  |  |  |  |  |
|------------------------|-----------|----------------------------------------|--|--|--|--|--|
| Read Type              | Read Type |                                        |  |  |  |  |  |
| R                      | R         | Read                                   |  |  |  |  |  |
| Write Type             |           |                                        |  |  |  |  |  |
| W                      | W         | Write                                  |  |  |  |  |  |
| Reset or Default Value |           |                                        |  |  |  |  |  |
| -n                     |           | Value after reset or the default value |  |  |  |  |  |

#### 5.1.1 Speed Control Register (Offset = 0h) [Reset = 00000000h]

Register to control Motor Speed

Table 5-3. SPEED\_CTRL Register Field Descriptions

| Bit     | Field      | Туре | Reset | Description                                                            |
|---------|------------|------|-------|------------------------------------------------------------------------|
| 31 - 15 | RESERVED   | R    | 0h    | Reserved                                                               |
| 14-0    | SPEED_CTRL | W    | 0h    | Target Motor Speed/Torque value % of speed or Torque command × 32768 . |

#### 5.1.2 Algo Debug Control 1 Register (Offset = 4h) [Reset = 00000000h]

Register to control Algorithm debug functions

Table 5-4. Algorithm Debug Control 1 Register Field Descriptions

| Bit   | Field              | Туре | Reset | Description                                                                                                                 |
|-------|--------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------|
| 31    | CLEAR_FAULT        | W    | 0h    | Bit to clear set controller and Gate Driver Faults.Bit is automatically reset.  1h = Clear Fault Command.                   |
| 30-22 | FORCED_ALIGN_ANGLE | W    | 0h    | 9-bit value (in °) used during forced align state<br>( FORCE_ALIGN_EN = 1) Angle applied (°) =<br>FORCED_ALIGN_ANGLE % 360° |
| 21-16 | RESERVED           | R    | 0h    |                                                                                                                             |
| 15    | CLOSED_LOOP_DIS    | W    | 0h    | Use to disable closed loop  0h = Enable closed loop  1h = Disable closed loop, motor commutation in open loop               |

Table 5-4. Algorithm Debug Control 1 Register Field Descriptions (continued)

|     | Table 5-4. Algorithm Debug Control 1 Register Field Descriptions (continued) |      |       |                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----|------------------------------------------------------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit | Field                                                                        | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 14  | FORCE_ALIGN_EN                                                               | W    | Oh    | Force align state enable  0h = Disable force align state, device comes out of align state if  MTR_STARTUP is selected as ALIGN or DOUBLE ALIGN  1h = Enable force align state, device stays in align state if  MTR_STARTUP is selected as ALIGN or DOUBLE ALIGN                                                                        |  |  |  |
| 13  | FORCE_SLOW_FIRST_C<br>YCLE_EN                                                | W    | Oh    | Force slow first cycle enable  0h = Disable force slow first cycle state, device comes out of slow first cycle state if MTR_STARTUP is selected as SLOW FIRST CYCLE  1h = Enable force slow first cycle state, device stays in slow first cycle state if MTR_STARTUP is selected as SLOW FIRST CYCLE                                   |  |  |  |
| 12  | FORCE_IPD_EN                                                                 | W    | Oh    | Force IPD enable 0h = Disable Force IPD state, device comes out of IPD state if MTR_STARTUP is selected as IPD 1h = Enable Force IPD state, device stays in IPD state if MTR_STARTUP is selected as IPD                                                                                                                                |  |  |  |
| 11  | FORCE_ISD_EN                                                                 | W    | Oh    | Force ISD enable 0h = Disable Force ISD state, device comes out of ISD state if ISD_EN is set 1h = Enable Force ISD state, device stays in ISD state if ISD_EN is set                                                                                                                                                                  |  |  |  |
| 10  | FORCE_ALIGN_ANGLE_SRC_SEL                                                    | W    | 0h    | Force align angle state source select  0h = Force Align Angle defined by ALIGN_ANGLE  1h = Force Align Angle defined by FORCED_ALIGN_ANGLE                                                                                                                                                                                             |  |  |  |
| 9-0 | FORCE_IQ_REF_SPEED_LOOP_DIS                                                  | W    | 0h    | Sets Iq_ref when speed loop is disabled If SPEED_LOOP_DIS = 1b, then Iq_ref is set using IQ_REF_SPEED_LOOP_DIS Iq_ref = (FORCE_IQ_REF_SPEED_LOOP_DIS / 500) × 10, if FORCE_IQ_REF_SPEED_LOOP_DIS < 500 - (FORCE_IQ_REF_SPEED_LOOP_DIS - 512) / 500 × 10 if FORCE_IQ_REF_SPEED_LOOP_DIS > 512 Valid values are 0 to 500 and 512 to 1000 |  |  |  |

# 5.1.3 Algo Debug Control 2 Register (Offset = 8h) [Reset = 00000000h]

Register to control Algorithm Debug functions

Table 5-5. Algorithm Debug Control 2 Register Field Descriptions

| Bit     | Field                         | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 - 28 | RESERVED                      | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                    |
| 27      | STATUS_UPDATE_ENAB<br>LE      | W    | 0h    | This bit enables the continous update of user Status variables in real time.                                                                                                                                                                                                                                                                |
| 26      | CURRENT_LOOP_DIS              | W    | 0h    | Use to control the FORCE_VD_CURRENT_LOOP_DIS and FORCE_VQ_CURRENT_LOOP_DIS. If CURRENT_LOOP_DIS = 1b, current loop and speed loop are disabled 0h = Enable Current Loop 1h = Disable Current Loop                                                                                                                                           |
| 25-16   | FORCE_VD_CURRENT_<br>LOOP_DIS | W    | Oh    | Sets Vd_ref when current loop and speed loop are disabled If CURRENT_LOOP_DIS = 1b, then Vd is controlled using FORCE_VD_CURRENT_LOOP_DIS Vd_ref = (FORCE_VD_CURRENT_LOOP_DIS / 500) if FORCE_VD_CURRENT_LOOP_DIS < 500 - (FORCE_VD_CURRENT_LOOP_DIS - 512) / 500 if FORCE_VD_CURRENT_LOOP_DIS > 512 Valid values: 0 to 500 and 512 to 1000 |

Table 5-5. Algorithm Debug Control 2 Register Field Descriptions (continued)

| Bit  | Field                         | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                             |
|------|-------------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-6 | FORCE_VQ_CURRENT_<br>LOOP_DIS | W    | Oh    | Sets Vq_ref when current loop speed loop are disabled If CURRENT_LOOP_DIS = 1b, then Vq is controlled using FORCE_VQ_CURRENT_LOOP_DIS Vq_ref = (FORCE_VQ_CURRENT_LOOP_DIS / 500) if FORCE_VQ_CURRENT_LOOP_DIS < 500 - (FORCE_VQ_CURRENT_LOOP_DIS - 512) / 500 if FORCE_VQ_CURRENT_LOOP_DIS > 512 Valid values: 0 to 500 and 512 to 1000 |
| 5-0  | RESERVED                      | R    | 0h    | Reserved                                                                                                                                                                                                                                                                                                                                |

# 5.2 User Input Registers (Base Address = 0x20200000h)

User input registers are set of configurable registers to tune the motor performance in real time for various motor control features and save them in flash

Table 5-6. User Input Registers

| Offset | Acronym           | Register Name                         | Section        |
|--------|-------------------|---------------------------------------|----------------|
| 0h     | SYSTEM_PARAMETERS | System Parameters                     | Section 5.2.1  |
| 28h    | ISD_CFG           | Initial Speed Detection Configuration | Section 5.2.2  |
| 2Ch    | RVS_DRV_CONFIG    | Reverse Drive Configuration           | Section 5.2.3  |
| 30h    | MOTOR_STARTUP1    | Motor Startup 1 Configuration         | Section 5.2.4  |
| 34h    | MOTOR_STARTUP2    | Motor Startup 2 Configuration         | Section 5.2.5  |
| 38h    | CLOSELOOP1        | Close Loop1 Configuration             | Section 5.2.6  |
| 3Ch    | CLOSELOOP2        | Close Loop2 Configuration             | Section 5.2.7  |
| 40h    | FAULT_CONFIG1     | Fault Configuration 1                 | Section 5.2.8  |
| 44h    | FAULT_CONFIG2     | Fault Configuration 2                 | Section 5.2.9  |
| 48h    | MISC_ALGO_CONFIG  | Miscellaneous Algorithm Configuration | Section 5.2.10 |
| 4Ch    | PIN_CONFIGURATION | Pin Configuration                     | Section 5.2.11 |
| 50h    | PERI_CONFIG       | Peripheral Configuration              | Section 5.2.12 |

Complex bit access types are encoded to fit into small table cells as below.

Table 5-7. Register Configuration Access Type Codes

| Access Type            | Code       | Description                            |  |  |  |
|------------------------|------------|----------------------------------------|--|--|--|
| Read Type              |            |                                        |  |  |  |
| R                      | R          | Read                                   |  |  |  |
| Write Type             | Write Type |                                        |  |  |  |
| W                      | W          | Write                                  |  |  |  |
| Reset or Default Value |            |                                        |  |  |  |
| -n                     |            | Value after reset or the default value |  |  |  |

#### 5.2.1 SYSTEM\_PARAMETERS (Offset = 0h)

Set of basic system configuration parameters essential for motor control system functionality

Table 5-8. Motor Resistance Configuration Registers (Offset = 4h)

| Bit  | Field          | Туре | Reset | Description                    |
|------|----------------|------|-------|--------------------------------|
| 31-0 | MTR_RESISTANCE | R/W  | 0h    | Motor Resistance in milli ohms |

Table 5-9. Motor Inductance Configuration (Offset = 8h)

| Bit  | Field          | Туре | Reset | Description                     |
|------|----------------|------|-------|---------------------------------|
| 31-0 | MTR_INDUCTANCE | R/W  | 0h    | Motor Inductance in micro henry |

#### **Table 5-10. Motor BEMF Constant Configuration (Offset = 8h)**

| Bit  | Field             | Туре | Reset | Description                        |
|------|-------------------|------|-------|------------------------------------|
| 31-0 | MTR_BEMF_CONSTANT | R/W  | 0h    | Motor BEMF constant in mV/Hz × 10. |

#### Table 5-11. Base Voltage Configuration (Offset = Ch)

| Bit  | Field        | Туре | Reset | Description                                                                                                                                                          |
|------|--------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0 | VOLTAGE_BASE | R/W  |       | Base voltage of the board calculated based on the voltage divider as $(3.3V \times \text{voltage divider ratio})$ in volts. 3.3V is the full-scale value of the ADC. |

#### Table 5-12. Base Current Configuration (Offset = 10h)

| Bit  | Field        | Туре | Reset | Description                                                                                                                                                                                                                                                                                                       |
|------|--------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0 | CURRENT_BASE | R/W  | 0.0   | Base current of the board calculated based on the CSA gain in as (1.65V / CSA Gain in volts/amp) in amps.  1.65V is the reference mid point voltage of the ADC for bidirectional current sensing.  If the CSA gain is in V/V, multiply with current sense resistor value in ohms to compute CSA gain in volts/amp |

#### Table 5-13. Motor Max Speed Configuration (Offset = 14h)

| Bit  | Field           | Туре | Reset | Description                                 |
|------|-----------------|------|-------|---------------------------------------------|
| 31-0 | MOTOR_MAX_SPEED | R/W  | 0h    | Rated motor speed in Hz from the data sheet |

#### Table 5-14. Speed Loop Proportional Gain (Offset = 18h)

| Bit  | Field         | Туре | Reset | Description                                                  |
|------|---------------|------|-------|--------------------------------------------------------------|
| 31-0 | SPEED_LOOP_KP | R/W  | 0.0   | Proportional gain for the closed loop speed control in float |

#### Table 5-15. Speed Loop Integral Gain (Offset = 1Ch)

| Bit  | Field         | Туре | Reset | Description                                              |
|------|---------------|------|-------|----------------------------------------------------------|
| 31-0 | SPEED_LOOP_KI | R/W  | 0.0   | Integral gain for the closed loop speed control in float |

#### Table 5-16. Torque Loop Proportional Gain (Offset = 20h)

| Bit  | Field        | Туре | Reset | Description                                                   |
|------|--------------|------|-------|---------------------------------------------------------------|
| 31-0 | CURR_LOOP_KP | R/W  | 0.0   | Proportional gain for the closed loop torque control in float |

#### **Table 5-17. Torque Loop Integral Gain (Offset = 24h)**

| Bit  | Field        | Туре | Reset | Description                                               |
|------|--------------|------|-------|-----------------------------------------------------------|
| 31-0 | CURR_LOOP_KI | R/W  | 0.0   | Integral gain for the closed loop torque control in float |

### 5.2.2 ISD\_CONFIG Register (Offset = 28h) [Reset = 00000000h]

Register to configure Initial Speed Detection

#### Table 5-18. ISD\_CONFIG Register

| Bit   | Field                     | Туре | Reset | Description                                                                                                                   |
|-------|---------------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 31-30 | BEMF_RESYNC_THRES<br>HOLD | R/W  | 0h    | Minimum ratio of estimated BEMF with respect to actual BEMF for ISD resynchronization 0h = 0.75 1h = 0.80 2h = 0.85 3h = 0.90 |



### Table 5-18. ISD\_CONFIG Register (continued)

|       |                  |      |       | IG Register (continued)                                                                                                                                                                                                                 |
|-------|------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit   | Field            | Туре | Reset | Description                                                                                                                                                                                                                             |
| 29    | ISD_EN           | R/W  | Oh    | ISD Enable 0h = Disable 1h = Enable                                                                                                                                                                                                     |
| 28    | BRAKE_EN         | R/W  | 0h    | Brake enable 0h = Disable 1h = Enable                                                                                                                                                                                                   |
| 27    | HIZ_EN           | R/W  |       | Hi-Z enable 0h = Disable 1h = Enable                                                                                                                                                                                                    |
| 26    | RVS_DR_EN        | R/W  | 0h    | Reverse drive enable 0h = Disable 1h = Enable                                                                                                                                                                                           |
| 25    | RESYNC_EN        | R/W  | 0h    | Resynchronization Enable 0h = Disable 1h = Enable                                                                                                                                                                                       |
| 24-21 | FW_DRV_RESYN_THR | R/W  | Oh    | Minimum Speed threshold to resynchronize to close loop (% of MAX_SPEED)  0h = 5%  1h = 10%  2h = 15%  3h = 20%  4h = 25%  5h = 30%  6h = 35%  7h = 40%  8h = 45%  9h = 50%  Ah = 55%  Bh = 60%  Ch = 70%  Dh = 80%  Eh = 90%  Fh = 100% |
| 20    | BRK_CONFIG       | R/W  | 0h    | Brake configuration  0h = Brake time is used to come out of brake state  1h = Brake current threshold is used to come out of brake state                                                                                                |
| 16-19 | BRK_TIME         | R/W  | Oh    | Brake time 0h = 10ms 1h = 50ms 2h = 100ms 3h = 200ms 4h = 300ms 5h = 400ms 6h = 500ms 7h = 750ms 8h = 1s 9h = 2s Ah = 3s Bh = 4s Ch = 5s Dh = 7.5s Eh = 10s Fh = 15s                                                                    |

Table 5-18. ISD\_CONFIG Register (continued)

|       | Table 5-18. ISD_CONFIG Register (continued) |      |       |                                                                                                                                                                                                                                                   |  |  |
|-------|---------------------------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit   | Field                                       | Туре | Reset | Description                                                                                                                                                                                                                                       |  |  |
| 15-12 | HIZ_TIME                                    | R/W  | Oh    | Hi-Z time  0h = 10ms  1h = 50ms  2h = 100ms  3h = 200ms  4h = 300ms  5h = 400ms  6h = 500ms  7h = 750ms  8h = 1s  9h = 2s  Ah = 3s  Bh = 4s  Ch = 5s  Dh = 7.5s  Eh = 10s  Fh = 15s                                                               |  |  |
| 11-9  | STAT_DETECT_THR                             | R/W  | Oh    | BEMF threshold to detect if motor is stationary  0h = 50mV  1h = 75mV  2h = 100mV  3h = 250mV  4h = 500mV  5h = 750mV  6h = 1000mV  7h = 1500mV                                                                                                   |  |  |
| 8-5   | REV_DRV_HANDOFF_T<br>HR                     | R/W  | Oh    | Speed threshold used to transition to open loop during reverse deceleration (% of MAX_SPEED)  0h = 2.5% 1h = 5% 2h = 7.5% 3h = 10% 4h = 12.5% 5h = 15% 6h = 20% 7h = 25% 8h = 30% 9h = 40% Ah = 50% Bh = 60% Ch = 70% Dh = 80% Eh = 90% Fh = 100% |  |  |

#### Table 5-18. ISD CONFIG Register (continued)

|     | Table 5-18. ISD_CONFIG Register (continued) |      |       |                                                                    |  |  |  |
|-----|---------------------------------------------|------|-------|--------------------------------------------------------------------|--|--|--|
| Bit | Field                                       | Туре | Reset | Description                                                        |  |  |  |
| 4-0 | REV_DRV_OPEN_LOOP<br>_CURRENT               | R/W  | 0h    | Open loop current limit during speed reversal in % of CURRENT_BASE |  |  |  |
|     | _OOTTICETY1                                 |      |       | 0h = 7.5%                                                          |  |  |  |
|     |                                             |      |       | 1h = 8.0%                                                          |  |  |  |
|     |                                             |      |       | 2h = 8.5%                                                          |  |  |  |
|     |                                             |      |       | 3h = 9.0%                                                          |  |  |  |
|     |                                             |      |       | 4h = 9.5%                                                          |  |  |  |
|     |                                             |      |       | 5h = 10%                                                           |  |  |  |
|     |                                             |      |       | 6h = 11%                                                           |  |  |  |
|     |                                             |      |       | 7h = 12%                                                           |  |  |  |
|     |                                             |      |       | 8h = 13%                                                           |  |  |  |
|     |                                             |      |       | 9h = 14%                                                           |  |  |  |
|     |                                             |      |       | Ah = 15%                                                           |  |  |  |
|     |                                             |      |       | Bh = 16%                                                           |  |  |  |
|     |                                             |      |       | Ch = 17%                                                           |  |  |  |
|     |                                             |      |       | Dh = 18%                                                           |  |  |  |
|     |                                             |      |       | Eh = 20%                                                           |  |  |  |
|     |                                             |      |       | Fh = 22.5%                                                         |  |  |  |
|     |                                             |      |       | 10h = 25%                                                          |  |  |  |
|     |                                             |      |       | 11h = 27.5%                                                        |  |  |  |
|     |                                             |      |       | 12h = 30%                                                          |  |  |  |
|     |                                             |      |       | 13h = 35%                                                          |  |  |  |
|     |                                             |      |       | 14h = 40%                                                          |  |  |  |
|     |                                             |      |       | 15h = 45%                                                          |  |  |  |
|     |                                             |      |       | 16h = 50%                                                          |  |  |  |
|     |                                             |      |       | 17h = 55%                                                          |  |  |  |
|     |                                             |      |       | 18h = 60%                                                          |  |  |  |
|     |                                             |      |       | 19h = 70%                                                          |  |  |  |
|     |                                             |      |       | 1Ah = 75%                                                          |  |  |  |
|     |                                             |      |       | 1Bh = 80%                                                          |  |  |  |
|     |                                             |      |       | 1Ch = 85%                                                          |  |  |  |
|     |                                             |      |       | 1Dh = 90%                                                          |  |  |  |
|     |                                             |      |       | 1Eh = 95%                                                          |  |  |  |
|     |                                             |      |       | 1Fh = 100%                                                         |  |  |  |
|     | I                                           |      |       | I                                                                  |  |  |  |

# 5.2.3 RVS\_DRV\_CONFIG Register (Offset = 2Ch) [Reset = 00000000h]

Register to configure Reverse Drive

# Table 5-19. RVS\_DRV\_CONFIG Register

| Bit   | Field          | Туре | Reset | Description                                                                                                                                                                     |
|-------|----------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-29 | RESERVED       | R    | 0h    | Reserved                                                                                                                                                                        |
| 28    | REV_DRV_CONFIG | R/W  |       | Chooses between forward and reverse drive setting for reverse drive 0h = Open loop current, A1, A2 based on forward drive 1h = Open loop current, A1, A2 based on reverse drive |

Table 5-19. RVS\_DRV\_CONFIG Register (continued)

|       | Table 5-19. RVS_DRV_CONFIG Register (continued) |      |       |                                                                    |  |  |  |
|-------|-------------------------------------------------|------|-------|--------------------------------------------------------------------|--|--|--|
| Bit   | Field                                           | Туре | Reset | Description                                                        |  |  |  |
| 27-24 | REV_DRV_OPEN_LOOP                               | R/W  | 0h    | Reverse Drive Open loop acceleration coefficient A1 during reverse |  |  |  |
|       | _ACCEL_A1                                       |      |       | drive                                                              |  |  |  |
|       |                                                 |      |       | 0h = 0.01Hz/s                                                      |  |  |  |
|       |                                                 |      |       | 1h = 0.05Hz/s                                                      |  |  |  |
|       |                                                 |      |       | 2h = 1Hz/s                                                         |  |  |  |
|       |                                                 |      |       | 3h = 2.5Hz/s                                                       |  |  |  |
|       |                                                 |      |       | 4h = 5Hz/s                                                         |  |  |  |
|       |                                                 |      |       | 5h = 10Hz/s                                                        |  |  |  |
|       |                                                 |      |       | 6h = 25Hz/s                                                        |  |  |  |
|       |                                                 |      |       | 7h = 50Hz/s                                                        |  |  |  |
|       |                                                 |      |       | 8h = 75Hz/s                                                        |  |  |  |
|       |                                                 |      |       | 9h = 100Hz/s                                                       |  |  |  |
|       |                                                 |      |       | Ah = 250Hz/s                                                       |  |  |  |
|       |                                                 |      |       | Bh = 500Hz/s                                                       |  |  |  |
|       |                                                 |      |       | Ch = 750Hz/s                                                       |  |  |  |
|       |                                                 |      |       | Dh = 1000Hz/s                                                      |  |  |  |
|       |                                                 |      |       | Eh = 5000Hz/s                                                      |  |  |  |
|       |                                                 |      |       | Fh = 10000Hz/s                                                     |  |  |  |
| 23-20 | REV_DRV_OPEN_LOOP                               | R/W  |       | Reverse Drive Open loop acceleration coefficient A2 during reverse |  |  |  |
|       | _ACCEL_A2                                       |      |       | drive                                                              |  |  |  |
|       |                                                 |      |       | 0h = 0.0Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | 1h = 0.05Hz/s2                                                     |  |  |  |
|       |                                                 |      |       | 2h = 1Hz/s2                                                        |  |  |  |
|       |                                                 |      |       | 3h = 2.5Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | 4h = 5Hz/s2                                                        |  |  |  |
|       |                                                 |      |       | 5h = 10Hz/s2                                                       |  |  |  |
|       |                                                 |      |       | 6h = 25Hz/s2                                                       |  |  |  |
|       |                                                 |      |       | 7h = 50Hz/s2                                                       |  |  |  |
|       |                                                 |      |       | 8h = 75Hz/s2                                                       |  |  |  |
|       |                                                 |      |       | 9h = 100Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | Ah = 250Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | Bh = 500Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | Ch = 750Hz/s2                                                      |  |  |  |
|       |                                                 |      |       | Dh = 1000Hz/s2                                                     |  |  |  |
|       |                                                 |      |       | Eh = 5000Hz/s2                                                     |  |  |  |
|       |                                                 |      |       | Fh = 10000Hz/s2                                                    |  |  |  |
| 19-0  | RESREVED                                        | R    | 0h    | Reserved                                                           |  |  |  |



# 5.2.4 MOTOR\_STARTUP1 Register (Offset = 30h) [Reset = 00000000h]

Register to configure motor startup settings1

### Table 5-20. MOTOR\_STARTUP1 Register Field Descriptions

| D:4   |                          |      |       | Pagarintian                                                                                                                                                                                                                                |
|-------|--------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit   | Field                    | Туре | Reset | Description                                                                                                                                                                                                                                |
| 31-30 | MTR_STARTUP_OPTION       | R/W  | 0h    | Motor start-up method  0h = Align  1h = Double align  2h = IPD  3h = Slow first cycle                                                                                                                                                      |
| 29-26 | ALIGN_SLOW_RAMP_RA<br>TE | R/W  | Oh    | Align, slow first cycle and open loop current ramp rate 0h = 0.1A/s 1h = 1A/s 2h = 5A/s 3h = 10A/s 4h = 15A/s 5h = 25A/s 6h = 50A/s 7h = 100A/s 8h = 150A/s 9h = 200A/s Ah = 250A/s Bh = 500A/s Ch = 1000A/s Dh = 2000A/s Fh = No LimitA/s |
| 25-22 | ALIGN_TIME               | R/W  | Oh    | Align time  0h = 10ms  1h = 50ms  2h = 100ms  3h = 200ms  4h = 300ms  5h = 400ms  6h = 500ms  7h = 750ms  8h = 1s  9h = 1.5s  Ah = 2s  Bh = 3s  Ch = 4s  Dh = 5s  Eh = 7.5s  Fh = 10s                                                      |

| Bit   | Field             | Type | Reset | Description (continued)                                          |
|-------|-------------------|------|-------|------------------------------------------------------------------|
| 21-17 | ALIGN_OR_SLOW_CUR | R/W  | 0h    | Current limit during Align/Slow First Cycle in % of CURRENT_BASE |
| 21-17 | RENT_ILIMIT       |      | 011   | Oh = 7.5%                                                        |
|       |                   |      |       | 1h = 8.0%                                                        |
|       |                   |      |       | 2h = 8.5%                                                        |
|       |                   |      |       | 3h = 9.0%                                                        |
|       |                   |      |       | 4h = 9.5%                                                        |
|       |                   |      |       | 5h = 10%                                                         |
|       |                   |      |       | 6h = 11%                                                         |
|       |                   |      |       | 7h = 12%                                                         |
|       |                   |      |       | 8h = 13%                                                         |
|       |                   |      |       | 9h = 14%                                                         |
|       |                   |      |       | Ah = 15%                                                         |
|       |                   |      |       | Bh = 16%                                                         |
|       |                   |      |       | Ch = 17%                                                         |
|       |                   |      |       | Dh = 18%                                                         |
|       |                   |      |       | Eh = 20%                                                         |
|       |                   |      |       | Fh = 22.5%                                                       |
|       |                   |      |       | 10h = 25%                                                        |
|       |                   |      |       | 11h = 27.5%                                                      |
|       |                   |      |       | 12h = 30%                                                        |
|       |                   |      |       | 13h = 35%                                                        |
|       |                   |      |       | 14h = 40%                                                        |
|       |                   |      |       | 15h = 45%                                                        |
|       |                   |      |       | 16h = 50%                                                        |
|       |                   |      |       | 17h = 55%                                                        |
|       |                   |      |       | 18h = 60%                                                        |
|       |                   |      |       | 19h = 70%                                                        |
|       |                   |      |       | 1Ah = 75%                                                        |
|       |                   |      |       | 1Bh = 80%                                                        |
|       |                   |      |       | 1Ch = 85%                                                        |
|       |                   |      |       | 1Dh = 90%                                                        |
|       |                   |      |       | 1Eh = 95%                                                        |
|       |                   |      |       | 1Fh = 100%                                                       |
| 16-14 | IPD_CLK_FREQ      | R/W  | 0h    | IPD clock frequency                                              |
|       |                   |      |       | 0h = 50Hz                                                        |
|       |                   |      |       | 1h = 100Hz                                                       |
|       |                   |      |       | 2h = 250Hz                                                       |
|       |                   |      |       | 3h = 500Hz                                                       |
|       |                   |      |       | 4h = 1000Hz                                                      |
|       |                   |      |       | 5h = 2000Hz                                                      |
|       |                   |      |       | 6h = 5000Hz                                                      |
|       |                   |      |       | 7h = 10000Hz                                                     |
| 13-7  | IPD_CURR_THR      | R/W  | 0h    | 7 bit value for IPD Current limt × CURRENT_BASE / 2 <sup>7</sup> |
| 6     | IPD_RLS_MODE      | R/W  | 0h    | IPD release mode                                                 |
|       |                   |      |       | 0h = Brake                                                       |
|       |                   |      |       | 1h = Tristate                                                    |
| 5-4   | IPD_ADV_ANGLE     | R/W  | 0h    | IPD advance angle                                                |
|       | 5_, .5 1_, 10000  |      |       | 0h = 0°                                                          |
|       |                   |      |       | 1h = 30°                                                         |
|       |                   |      |       | 2h = 60°                                                         |
|       |                   |      |       | 3h = 90°                                                         |
|       |                   |      | l     |                                                                  |



Register Map \_\_\_\_\_\_ INSTRUMENTS
www.ti.com

Table 5-20. MOTOR\_STARTUP1 Register Field Descriptions (continued)

| Bit | Field            | Туре | Reset | Description (Continuou)                                                                                                                  |
|-----|------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 3-2 | IPD_REPEAT       | R/W  | Oh    | Number of times IPD is executed 0h = 1 time 1h = average of 2 times 2h = average of 3 times                                              |
|     |                  |      |       | 3h = average of 4 times                                                                                                                  |
| 1   | OL_ILIMIT_CONFIG | R/W  | 0h    | Open loop current limit configuration  0h = Open loop current limit defined by OL_ILIMIT  1h = Open loop current limit defined by ILIMIT |
| 0   | IQ_RAMP_EN       | R/W  | 0h    | Iq ramp down before transition to close loop  0h = Disable Iq ramp down  1h = Enable Iq ramp down                                        |

# 5.2.5 MOTOR\_STARTUP2 Register (Offset = 34h) [Reset = 00000000h]

Register to configure motor startup settings2

Table 5-21. MOTOR\_STARTUP2 Register Field Descriptions

| Bit   | Field     | Туре | Reset | Description                                  |
|-------|-----------|------|-------|----------------------------------------------|
| 31-27 | OL_ILIMIT | R/W  | 0h    | Open loop current limit in % of CURRENT_BASE |
|       |           |      |       | 0h = 7.5%                                    |
|       |           |      |       | 1h = 8.0%                                    |
|       |           |      |       | 2h = 8.5%                                    |
|       |           |      |       | 3h = 9.0%                                    |
|       |           |      |       | 4h = 9.5%                                    |
|       |           |      |       | 5h = 10%                                     |
|       |           |      |       | 6h = 11%                                     |
|       |           |      |       | 7h = 12%                                     |
|       |           |      |       | 8h = 13%                                     |
|       |           |      |       | 9h = 14%                                     |
|       |           |      |       | Ah = 15%                                     |
|       |           |      |       | Bh = 16%                                     |
|       |           |      |       | Ch = 17%                                     |
|       |           |      |       | Dh = 18%                                     |
|       |           |      |       | Eh = 20%                                     |
|       |           |      |       | Fh = 22.5%                                   |
|       |           |      |       | 10h = 25%                                    |
|       |           |      |       | 11h = 27.5%                                  |
|       |           |      |       | 12h = 30%                                    |
|       |           |      |       | 13h = 35%                                    |
|       |           |      |       | 14h = 40%                                    |
|       |           |      |       | 15h = 45%                                    |
|       |           |      |       | 16h = 50%                                    |
|       |           |      |       | 17h = 55%                                    |
|       |           |      |       | 18h = 60%                                    |
|       |           |      |       | 19h = 70%                                    |
|       |           |      |       | 1Ah = 75%                                    |
|       |           |      |       | 1Bh = 80%                                    |
|       |           |      |       | 1Ch = 85%                                    |
|       |           |      |       | 1Dh = 90%                                    |
|       |           |      |       | 1Eh = 95%                                    |
|       |           |      |       | 1Fh = 100%                                   |
|       |           |      |       |                                              |

| Bit   | Field            | Type  | Reset | Description (continued)                                                         |
|-------|------------------|-------|-------|---------------------------------------------------------------------------------|
| 26-23 | OL_ACC_A1        | R/W   | 0h    | Open loop acceleration coefficient A1                                           |
| 20-23 | OL_ACC_AT        | IX/VV | OII   | 0h = 0.01Hz/s                                                                   |
|       |                  |       |       | 1h = 0.05Hz/s                                                                   |
|       |                  |       |       | 2h = 1Hz/s                                                                      |
|       |                  |       |       | 3h = 2.5Hz/s                                                                    |
|       |                  |       |       | 4h = 5Hz/s                                                                      |
|       |                  |       |       | 5h = 10Hz/s                                                                     |
|       |                  |       |       | 6h = 25Hz/s                                                                     |
|       |                  |       |       | 7h = 50Hz/s                                                                     |
|       |                  |       |       | 8h = 75Hz/s                                                                     |
|       |                  |       |       | 9h = 100Hz/s                                                                    |
|       |                  |       |       | Ah = 250Hz/s                                                                    |
|       |                  |       |       | Bh = 500Hz/s                                                                    |
|       |                  |       |       | Ch = 750Hz/s                                                                    |
|       |                  |       |       | Dh = 1000Hz/s                                                                   |
|       |                  |       |       | Eh = 5000Hz/s                                                                   |
|       |                  |       |       | Fh = 10000Hz/s                                                                  |
| 22-19 | OL_ACC_A2        | R/W   | 0h    | Open loop acceleration coefficient A2                                           |
|       |                  |       |       | 0h = 0.0Hz/s2                                                                   |
|       |                  |       |       | 1h = 0.05Hz/s2                                                                  |
|       |                  |       |       | 2h = 1Hz/s2                                                                     |
|       |                  |       |       | 3h = 2.5Hz/s2                                                                   |
|       |                  |       |       | 4h = 5Hz/s2                                                                     |
|       |                  |       |       | 5h = 10Hz/s2                                                                    |
|       |                  |       |       | 6h = 25Hz/s2                                                                    |
|       |                  |       |       | 7h = 50Hz/s2                                                                    |
|       |                  |       |       | 8h = 75Hz/s2                                                                    |
|       |                  |       |       | 9h = 100Hz/s2                                                                   |
|       |                  |       |       | Ah = 250Hz/s2<br>Bh = 500Hz/s2                                                  |
|       |                  |       |       | Ch = 750Hz/s2                                                                   |
|       |                  |       |       | Dh = 1000Hz/s2                                                                  |
|       |                  |       |       | Eh = 5000Hz/s2                                                                  |
|       |                  |       |       | Fh = 10000Hz/s2                                                                 |
| 40    | ALITO HANDOEE EN | DAM   | Oh    |                                                                                 |
| 18    | AUTO_HANDOFF_EN  | R/W   | 0h    | Auto handoff enable<br>  0h = Disable Auto Handoff (and use OPN_CL_HANDOFF_THR) |
|       |                  |       |       | 1h = Enable Auto Handoff                                                        |
|       |                  |       |       | III - LIIADIE AUTO I IAITUOII                                                   |



|       |                   |      |       | Jister Field Descriptions (continued)                 |
|-------|-------------------|------|-------|-------------------------------------------------------|
| Bit   | Field             | Туре | Reset | Description                                           |
| 17-13 | OPN_CL_HANDOFF_TH | R/W  | 0h    | Open to close loop handoff threshold (% of MAX_SPEED) |
|       | R                 |      |       | 0h = 1%                                               |
|       |                   |      |       | 1h = 2%                                               |
|       |                   |      |       | 2h = 3%                                               |
|       |                   |      |       | 3h = 4%                                               |
|       |                   |      |       | 4h = 5%                                               |
|       |                   |      |       | 5h = 6%                                               |
|       |                   |      |       | 6h = 7%                                               |
|       |                   |      |       | 7h = 8%                                               |
|       |                   |      |       | 8h = 9%                                               |
|       |                   |      |       | 9h = 10%                                              |
|       |                   |      |       | Ah = 11%                                              |
|       |                   |      |       | Bh = 12%                                              |
|       |                   |      |       | Ch = 13%                                              |
|       |                   |      |       | Dh = 14%                                              |
|       |                   |      |       | Eh = 15%                                              |
|       |                   |      |       | Fh = 16%                                              |
|       |                   |      |       | 10h = 17%                                             |
|       |                   |      |       | 11h = 18%                                             |
|       |                   |      |       | 12h = 19%                                             |
|       |                   |      |       | 13h = 20%                                             |
|       |                   |      |       | 14h = 22.5%                                           |
|       |                   |      |       | 15h = 25%                                             |
|       |                   |      |       | 16h = 27.5%                                           |
|       |                   |      |       | 17h = 30%                                             |
|       |                   |      |       | 18h = 32.5%                                           |
|       |                   |      |       | 19h = 35%                                             |
|       |                   |      |       | 1Ah = 37.5%                                           |
|       |                   |      |       | 1Bh = 40%                                             |
|       |                   |      |       | 1Ch = 42.5%                                           |
|       |                   |      |       | 1Dh = 45%                                             |
|       |                   |      |       | 1Eh = 47.5%                                           |
|       |                   |      |       | 1Fh = 50%                                             |
|       |                   |      |       |                                                       |

| Bit  | Field                |      | Reset | Description  Description                                                 |
|------|----------------------|------|-------|--------------------------------------------------------------------------|
|      |                      | Туре |       |                                                                          |
| 12-8 | ALIGN_ANGLE          | R/W  | 0h    | Align angle 0h = 0°                                                      |
|      |                      |      |       |                                                                          |
|      |                      |      |       | 1h = 10°                                                                 |
|      |                      |      |       | 2h = 20°                                                                 |
|      |                      |      |       | 3h = 30°                                                                 |
|      |                      |      |       | 4h = 45°                                                                 |
|      |                      |      |       | $5h = 60^{\circ}$                                                        |
|      |                      |      |       | 6h = 70°                                                                 |
|      |                      |      |       | 7h = 80°                                                                 |
|      |                      |      |       | 8h = 90°                                                                 |
|      |                      |      |       | 9h = 110°                                                                |
|      |                      |      |       | Ah = 120°                                                                |
|      |                      |      |       | Bh = 135°                                                                |
|      |                      |      |       | Ch = 150°                                                                |
|      |                      |      |       | Dh = 160°                                                                |
|      |                      |      |       | Eh = 170°                                                                |
|      |                      |      |       | Fh = 180°                                                                |
|      |                      |      |       | 10h = 190°                                                               |
|      |                      |      |       | 11h = 210°                                                               |
|      |                      |      |       | 12h = 225°                                                               |
|      |                      |      |       | 13h = 240°                                                               |
|      |                      |      |       | 14h = 250°                                                               |
|      |                      |      |       | 15h = 260°                                                               |
|      |                      |      |       | 16h = 270°                                                               |
|      |                      |      |       | 17h = 280°                                                               |
|      |                      |      |       | 18h = 290°                                                               |
|      |                      |      |       | 19h = 315°                                                               |
|      |                      |      |       | 1Ah = 330°                                                               |
|      |                      |      |       | 1Bh = 340°                                                               |
|      |                      |      |       | 1Ch = 350°                                                               |
|      |                      |      |       | 1Dh = N/A                                                                |
|      |                      |      |       | 1Eh = N/A                                                                |
|      |                      |      |       | 1Fh = N/A                                                                |
| 7-4  | SLOW_FIRST_CYC_FRE Q | R/W  | 0h    | Frequency of first cycle in close loop startup (% of MAX_SPEED)  0h = 1% |
|      |                      |      |       | 1h = 2%                                                                  |
|      |                      |      |       | 2h = 3%                                                                  |
|      |                      |      |       | 3h = 5%                                                                  |
|      |                      |      |       | 4h = 7.5%                                                                |
|      |                      |      |       | 5h = 10%                                                                 |
|      |                      |      |       | 6h = 12.5%                                                               |
|      |                      |      |       | 7h = 15%                                                                 |
|      |                      |      |       | 8h = 17.5%                                                               |
|      |                      |      |       | 9h = 20%                                                                 |
|      |                      |      |       | 911 – 20%<br>Ah = 25%                                                    |
|      |                      |      |       | Bh = 30%                                                                 |
|      |                      |      |       | Ch = 35%                                                                 |
|      |                      |      |       | Dh = 40%                                                                 |
|      |                      |      |       |                                                                          |
|      |                      |      |       | Eh = 45%                                                                 |
|      |                      |      |       | Fh = 50%                                                                 |
| 3    | FIRST_CYCLE_FREQ_S   | R/W  | 0h    | First cycle frequency in open loop for align, double align and IPD       |
|      | EL                   |      |       | startup options                                                          |
|      |                      |      |       | 0h = Defined by SLOW_FIRST_CYC_FREQ 1h = 0Hz                             |
|      |                      |      |       | III                                                                      |



| Bit | Field                     | Туре | Reset | Description                                                                                     |
|-----|---------------------------|------|-------|-------------------------------------------------------------------------------------------------|
| 2-0 | THETA_ERROR_RAMP_<br>RATE | R/W  | 0h    | Ramp rate for reducing difference between estimated theta and open loop theta  0h = 0.01 deg/ms |
|     |                           |      |       | 1h = 0.05 deg/ms<br>2h = 0.1 deg/ms<br>3h = 0.15 deg/ms                                         |
|     |                           |      |       | 4h = 0.2 deg/ms<br>5h = 0.5 deg/ms<br>6h = 1 deg/ms<br>7h = 2 deg/ms                            |

# 5.2.6 CLOSED\_LOOP1 Register (Offset = 38h) [Reset = 00000000h]

Register to configure close loop settings1

#### Table 5-22. CLOSED\_LOOP1 Register Field Descriptions

| Bit         | Field                     | Туре       | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------------------|------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                           | R/W        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 31-27 26-22 | ILIMIT                    | R/W<br>R/W | Oh Oh | Reserved  Current limit in Closed loop Torque Mode and Closed loop Speed control in % of CURRENT_BASE  0h = 7.5%  1h = 8.0%  2h = 8.5%  3h = 9.0%  4h = 9.5%  5h = 10%  6h = 11%  7h = 12%  8h = 13%  9h = 14%  Ah = 15%  Bh = 16%  Ch = 17%  Dh = 18%  Eh = 20%  Fh = 22.5%  10h = 25.5%  11h = 27.5%  12h = 30%  13h = 35%  14h = 40%  15h = 45%  16h = 50%  17h = 55%  18h = 60%  19h = 70%  1Ah = 75%  1Bh = 80%  1Ch = 85%  1Dh = 90%  1Eh = 95%  1Fh = 100% |
| 21-20       | MTR_STOP                  | R/W        | Oh    | Motor stop method  0h = Hi-z  1h = Active spin down  2h = Braking  3h = Reserved                                                                                                                                                                                                                                                                                                                                                                                  |
| 19          | OVERMODULATION_EN<br>ABLE | R/W        | Oh    | Overmodulation enable 0h = Disable Over Modulation 1h = Enable Over Modulation                                                                                                                                                                                                                                                                                                                                                                                    |



### Table 5-22. CLOSED\_LOOP1 Register Field Descriptions (continued)

| Bit   | Field         | Туре | Reset | Description                                     |
|-------|---------------|------|-------|-------------------------------------------------|
| 18-14 | CL_ACC        | R/W  | 0h    | Closed loop acceleration                        |
|       |               |      |       | 0h = 0.5Hz/s                                    |
|       |               |      |       | 1h = 1Hz/s                                      |
|       |               |      |       | 2h = 2.5Hz/s                                    |
|       |               |      |       | 3h = 5Hz/s                                      |
|       |               |      |       | 4h = 7.5Hz/s                                    |
|       |               |      |       | 5h = 10Hz/s                                     |
|       |               |      |       | 6h = 20Hz/s                                     |
|       |               |      |       | 7h = 40Hz/s                                     |
|       |               |      |       | 8h = 60Hz/s                                     |
|       |               |      |       | 9h = 80Hz/s                                     |
|       |               |      |       | Ah = 100Hz/s                                    |
|       |               |      |       | Bh = 200Hz/s                                    |
|       |               |      |       | Ch = 300Hz/s                                    |
|       |               |      |       | Dh = 400Hz/s                                    |
|       |               |      |       | Eh = 500Hz/s                                    |
|       |               |      |       | Fh = 600Hz/s                                    |
|       |               |      |       | 10h = 700Hz/s                                   |
|       |               |      |       | 11h = 800Hz/s                                   |
|       |               |      |       | 12h = 900Hz/s                                   |
|       |               |      |       | 13h = 1000Hz/s                                  |
|       |               |      |       | 14h = 2000Hz/s                                  |
|       |               |      |       | 15h = 4000Hz/s                                  |
|       |               |      |       | 16h = 6000Hz/s                                  |
|       |               |      |       | 17h = 8000Hz/s                                  |
|       |               |      |       | 18h = 10000Hz/s                                 |
|       |               |      |       | 19h = 20000Hz/s                                 |
|       |               |      |       | 1Ah = 30000Hz/s                                 |
|       |               |      |       | 1Bh = 40000Hz/s                                 |
|       |               |      |       | 1Ch = 50000Hz/s                                 |
|       |               |      |       | 1Dh = 60000Hz/s                                 |
|       |               |      |       | 1Eh = 70000Hz/s                                 |
|       |               |      |       | 1Fh = No limit                                  |
| 13    | CL_DEC_CONFIG | R/W  | 0h    | Closed loop deceleration configuration          |
|       | _             |      |       | 0h = Closed loop deceleration defined by CL_DEC |
|       |               |      |       | 1h = Closed loop deceleration defined by CL_ACC |

# Table 5-22. CLOSED\_LOOP1 Register Field Descriptions (continued)

| Bit  | Field        |      | Reset | Description (Continued)                                                 |
|------|--------------|------|-------|-------------------------------------------------------------------------|
|      |              | Туре |       |                                                                         |
| 12-8 | CL_DEC       | R/W  | 0h    | Closed loop deceleration. This register is used only if AVS is disabled |
|      |              |      |       | and CL_DEC_CONFIG is set to '0' 0h = 0.5Hz/s                            |
|      |              |      |       |                                                                         |
|      |              |      |       | 1h = 1Hz/s                                                              |
|      |              |      |       | 2h = 2.5Hz/s                                                            |
|      |              |      |       | 3h = 5Hz/s                                                              |
|      |              |      |       | 4h = 7.5Hz/s                                                            |
|      |              |      |       | 5h = 10Hz/s                                                             |
|      |              |      |       | 6h = 20Hz/s                                                             |
|      |              |      |       | 7h = 40Hz/s                                                             |
|      |              |      |       | 8h = 60Hz/s                                                             |
|      |              |      |       | 9h = 80Hz/s                                                             |
|      |              |      |       | Ah = 100Hz/s                                                            |
|      |              |      |       | Bh = 200Hz/s                                                            |
|      |              |      |       | Ch = 300Hz/s                                                            |
|      |              |      |       | Dh = 400Hz/s                                                            |
|      |              |      |       | Eh = 500Hz/s                                                            |
|      |              |      |       | Fh = 600Hz/s                                                            |
|      |              |      |       | 10h = 700Hz/s                                                           |
|      |              |      |       | 11h = 800Hz/s                                                           |
|      |              |      |       | 12h = 900Hz/s                                                           |
|      |              |      |       | 13h = 1000Hz/s                                                          |
|      |              |      |       |                                                                         |
|      |              |      |       | 14h = 2000Hz/s                                                          |
|      |              |      |       | 15h = 4000Hz/s                                                          |
|      |              |      |       | 16h = 6000Hz/s                                                          |
|      |              |      |       | 17h = 8000Hz/s                                                          |
|      |              |      |       | 18h = 10000Hz/s                                                         |
|      |              |      |       | 19h = 20000Hz/s                                                         |
|      |              |      |       | 1Ah = 30000Hz/s                                                         |
|      |              |      |       | 1Bh = 40000Hz/s                                                         |
|      |              |      |       | 1Ch = 50000Hz/s                                                         |
|      |              |      |       | 1Dh = 60000Hz/s                                                         |
|      |              |      |       | 1Eh = 70000Hz/s                                                         |
|      |              |      |       | 1Fh = No limit                                                          |
| 7-8  | PWM_FREQ_OUT | R/W  | 0h    | Output PWM switching frequency                                          |
|      |              |      |       | 0h = 10kHz                                                              |
|      |              |      |       | 1h = 15kHz                                                              |
|      |              |      |       | 2h = 20kHz                                                              |
|      |              |      |       | 3h = 25kHz                                                              |
|      |              |      |       | 4h = 30kHz                                                              |
|      |              |      |       | 5h = 35kHz                                                              |
|      |              |      |       | 6h = 40kHz                                                              |
|      |              |      |       | 7h = 45kHz                                                              |
|      |              |      |       |                                                                         |
|      |              |      |       | 8h = 50kHz                                                              |
|      |              |      |       | 9h = 55kHz                                                              |
|      |              |      |       | Ah = 60kHz                                                              |
|      |              |      |       | Bh = 65kHz                                                              |
|      |              |      |       | Ch = 70kHz                                                              |
|      |              |      |       | Dh = 75kHz                                                              |
|      |              |      |       | Eh = N/A                                                                |
|      |              |      |       | Fh = N/A                                                                |
| 14   | PWM_MODE     | R/W  | 0h    | PWM modulation                                                          |
|      | _            |      |       | 0h = Continuous Space Vector Modulation                                 |
|      |              |      |       | 1h = Discontinuous Space Vector Modulation                              |
|      |              |      |       | '                                                                       |



# Table 5-22. CLOSED\_LOOP1 Register Field Descriptions (continued)

| Bit | Field            | Туре | Reset | Description                  |
|-----|------------------|------|-------|------------------------------|
| 3   | AVS_EN           | R/W  | 0h    | AVS enable                   |
|     |                  |      |       | 0h = Disable                 |
|     |                  |      |       | 1h = Enable                  |
| 2   | DEADTIME_COMP_EN | R/W  | 0h    | Deadtime compensation enable |
|     |                  |      |       | 0h = Disable                 |
|     |                  |      |       | 1h = Enable                  |
| 1   | SPEED_LOOP_DIS   | R/W  | 0h    | Speed loop disable           |
|     |                  |      |       | 0h = Enable                  |
|     |                  |      |       | 1h = Disable                 |

# 5.2.7 CLOSED\_LOOP2 Register (Offset = 3Ch) [Reset = 00000000h]

Register to configure close loop settings2

### Table 5-23. CLOSED\_LOOP2 Register Field Descriptions

| Bit    | Field                  |     | Reset       | Description                                                                                                                                                                                                                                                                                                                                                               |
|--------|------------------------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-28  | ACT_SPIN_THR           | R/W | Reset<br>Oh | Description           Speed threshold for active spin down (% of MAX_SPEED)           0h = 100%           1h = 90%           2h = 80%           3h = 70%           4h = 60%           5h = 50%           6h = 45%           7h = 40%           8h = 35%           9h = 30%           Ah = 25%           Bh = 20%           Ch = 15%           Fh = 5%           Fh = 2.5% |
| 27-24. | BRAKE_SPEED_THRES HOLD | R/W | Oh          | Speed threshold for BRAKE pin and motor stop options (Low Side Braking or align braking) (% of MAX_SPEED)  0h = 100%  1h = 90%  2h = 80%  3h = 70%  4h = 60%  5h = 50%  6h = 45%  7h = 40%  8h = 35%  9h = 30%  Ah = 25%  Bh = 20%  Ch = 15%  Dh = 10%  Eh = 5%  Fh = 2.5%                                                                                                |



### Table 5-23. CLOSED\_LOOP2 Register Field Descriptions (continued)

| Bit   | Field        | Туре | Reset | Description (Continued)                  |
|-------|--------------|------|-------|------------------------------------------|
| 23-19 | BRK_CURR_THR | R/W  | 0h    | Brake current limit in % of CURRENT_BASE |
|       |              |      |       | 0h = 7.5%                                |
|       |              |      |       | 1h = 8.0%                                |
|       |              |      |       | 2h = 8.5%                                |
|       |              |      |       | 3h = 9.0%                                |
|       |              |      |       | 4h = 9.5%                                |
|       |              |      |       | 5h = 10%                                 |
|       |              |      |       | 6h = 11%                                 |
|       |              |      |       | 7h = 12%                                 |
|       |              |      |       | 8h = 13%                                 |
|       |              |      |       | 9h = 14%                                 |
|       |              |      |       | Ah = 15%                                 |
|       |              |      |       | Bh = 16%                                 |
|       |              |      |       | Ch = 17%                                 |
|       |              |      |       | Dh = 18%                                 |
|       |              |      |       | Eh = 20%                                 |
|       |              |      |       | Fh = 22.5%                               |
|       |              |      |       | 10h = 25%                                |
|       |              |      |       | 11h = 27.5%                              |
|       |              |      |       | 12h = 30%                                |
|       |              |      |       | 13h = 35%                                |
|       |              |      |       | 14h = 40%                                |
|       |              |      |       | 15h = 45%                                |
|       |              |      |       | 16h = 50%                                |
|       |              |      |       | 17h = 55%                                |
|       |              |      |       | 18h = 60%                                |
|       |              |      |       | 19h = 70%                                |
|       |              |      |       | 1Ah = 75%                                |
|       |              |      |       | 1Bh = 80%                                |
|       |              |      |       | 1Ch = 85%                                |
|       |              |      |       | 1Dh = 90%                                |
|       |              |      |       | 1Eh = 95%                                |
|       |              |      |       | 1Fh = 100%                               |

# 5.2.8 FAULT\_CONFIG1 Register (Offset = 40h) [Reset = 00000000h]

Register to configure fault settings1

#### Table 5-24. FAULT\_CONFIG1 Register Field Descriptions

| Bit  | Field        | Туре | Reset | Description                                                    |
|------|--------------|------|-------|----------------------------------------------------------------|
| 31-6 | RESERVED     | R/W  | 0h    | Reserved                                                       |
| 5-2  | LCK_RETRY    | R/W  | 0h    | Lock detection retry time                                      |
|      |              |      |       | 0h = 100ms                                                     |
|      |              |      |       | 1h = 500ms                                                     |
|      |              |      |       | 2h = 1s                                                        |
|      |              |      |       | 3h = 2s                                                        |
|      |              |      |       | 4h = 3s                                                        |
|      |              |      |       | 5h = 4s                                                        |
|      |              |      |       | 6h = 5s                                                        |
|      |              |      |       | 7h = 6s                                                        |
|      |              |      |       | 8h = 7s                                                        |
|      |              |      |       | 9h = 8s                                                        |
|      |              |      |       | Ah = 9s                                                        |
|      |              |      |       | Bh = 10s                                                       |
|      |              |      |       | Ch = 11s                                                       |
|      |              |      |       | Dh = 12s                                                       |
|      |              |      |       | Eh = 13s                                                       |
|      |              |      |       | Fh = 14s                                                       |
| 1-0  | MTR_LCK_MODE | R/W  | 0h    | Motor Lock Mode                                                |
|      |              |      |       | 0h = Motor lock detection causes latched fault; nFAULT active; |
|      |              |      |       | 1h = Fault automatically cleared after LCK_RETRY time.         |
|      |              |      |       | 2h = Motor lock in report only mode.                           |
|      |              |      |       | 3h = Motor lock detection is disabled                          |



# 5.2.9 FAULT\_CONFIG2 Register (Offset = 44h) [Reset = 00000000h]

Register to configure fault settings2

#### Table 5-25. FAULT\_CONFIG2 Register Field Descriptions

| Bit   | Field             | Туре | Reset | Description                                                                                                                    |
|-------|-------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| 31-27 | RESERVED          | R/W  | 0h    | Reserved                                                                                                                       |
| 26    | LOCK1_EN          | R/W  | Oh    | Lock 1 : Abnormal speed enable 0h = Disable 1h = Enable                                                                        |
| 25    | LOCK2_EN          | R/W  | 0h    | Lock 2 : Abnormal BEMF enable 0h = Disable 1h = Enable                                                                         |
| 24    | LOCK3_EN          | R/W  | 0h    | Lock 3 : No motor enable 0h = Disable 1h = Enable                                                                              |
| 23-21 | LOCK_ABN_SPEED    | R/W  | 0h    | Abnormal speed lock threshold (% of MAX_SPEED) 0h = 130% 1h = 140% 2h = 150% 3h = 160% 4h = 170% 5h = 180% 6h = 190% 7h = 200% |
| 20-18 | ABNORMAL_BEMF_THR | R/W  | Oh    | Abnormal BEMF lock threshold (% of expected BEMF) 0h = 10% 1h = 20% 2h = 30% 3h = 40% 4h = 50% 5h = 60% 6h = 70% 7h = 80%      |

#### Table 5-25. FAULT\_CONFIG2 Register Field Descriptions (continued)

| Di4   |              |       |       | ster Field Descriptions (continued)                    |
|-------|--------------|-------|-------|--------------------------------------------------------|
| Bit   | Field        | Туре  | Reset | Description                                            |
| 17-13 | NO_MTR_THR   | R/W   | 0h    | No Motor current limit in % of CURRENT_BASE            |
|       |              |       |       | 0h = 7.5%                                              |
|       |              |       |       | 1h = 8.0%                                              |
|       |              |       |       | 2h = 8.5%                                              |
|       |              |       |       | 3h = 9.0%                                              |
|       |              |       |       | 4h = 9.5%                                              |
|       |              |       |       | 5h = 10%                                               |
|       |              |       |       | 6h = 11%                                               |
|       |              |       |       | 7h = 12%                                               |
|       |              |       |       | 8h = 13%                                               |
|       |              |       |       | 9h = 14%                                               |
|       |              |       |       | Ah = 15%                                               |
|       |              |       |       | Bh = 16%                                               |
|       |              |       |       | Ch = 17%                                               |
|       |              |       |       | Dh = 18%                                               |
|       |              |       |       | Eh = 20%                                               |
|       |              |       |       | Fh = 22.5%                                             |
|       |              |       |       | 10h = 25%                                              |
|       |              |       |       | 11h = 27.5%                                            |
|       |              |       |       | 12h = 30%                                              |
|       |              |       |       | 13h = 35%                                              |
|       |              |       |       | 14h = 40%                                              |
|       |              |       |       | 15h = 45%                                              |
|       |              |       |       | 16h = 50%                                              |
|       |              |       |       | 17h = 55%                                              |
|       |              |       |       | 18h = 60%                                              |
|       |              |       |       | 19h = 70%                                              |
|       |              |       |       | 1Ah = 75%                                              |
|       |              |       |       | 1Bh = 80%                                              |
|       |              |       |       | 1Ch = 85%                                              |
|       |              |       |       | 1Dh = 90%                                              |
|       |              |       |       | 1Eh = 95%                                              |
|       |              |       |       | 1Fh = 100%                                             |
| 12-8  | RESERVED     | R/W   | 0h    | Reserved.                                              |
| 7-5   |              | R/W   | 0h    | Minimum voltage for running motor in % of BASE_VOLTAGE |
| 7-5   | MIN_VM_MOTOR | IK/VV |       | 0h = No Limit                                          |
|       |              |       |       | 1h = 5%                                                |
|       |              |       |       | 2h = 10%                                               |
|       |              |       |       | 2f1 - 10%<br>3h = 12%                                  |
|       |              |       |       | 4h = 15%                                               |
|       |              |       |       | 5h = 18%                                               |
|       |              |       |       | 5n = 18%<br>6h = 20%                                   |
|       |              |       |       |                                                        |
|       |              |       |       | 7h = 25%                                               |
| 4     | MIN_VM_MODE  | R/W   | 0h    | Undervoltage fault mode                                |
|       |              |       |       | 0h = Latch on Undervoltage                             |
|       |              |       |       | 1h = Automatic clear if voltage in bounds              |



# Table 5-25. FAULT\_CONFIG2 Register Field Descriptions (continued)

| Bit | Field        | Туре | Reset | Description                                            |
|-----|--------------|------|-------|--------------------------------------------------------|
| 3-1 | MAX_VM_MOTOR | R/W  | 0h    | Maximum voltage for running motor in % of BASE_VOLTAGE |
|     |              |      |       | 0h = 60%                                               |
|     |              |      |       | 1h = 65%                                               |
|     |              |      |       | 2h = 70%                                               |
|     |              |      |       | 3h = 75%                                               |
|     |              |      |       | 4h = 80%                                               |
|     |              |      |       | 5h = 85%                                               |
|     |              |      |       | 6h = 90%                                               |
|     |              |      |       | 7h = Max Voltage                                       |
| 0   | MAX_VM_MODE  | R/W  | 0h    | Overvoltage fault mode                                 |
|     |              |      |       | 0h = Latch on Overvoltage                              |
|     |              |      |       | 1h = Automatic clear if voltage in bounds              |

www.ti.com Register Map

# 5.2.10 MISC\_ALGO Register (Offset = 48h) [Reset = 00000000h]

Register to multiple miscellaneous Algorithm Configuration,

# Table 5-26. MISC\_ALGO Register Field Descriptions

| Bit   | Field               | Туре | Reset | Description                                                                  |
|-------|---------------------|------|-------|------------------------------------------------------------------------------|
| 31-20 | RESERVED            | R/W  | 0h    | Reserved                                                                     |
| 19-16 | CL_SLOW_ACC         | R/W  | 0h    | Close loop acceleration when estimator is not yet fully aligned 0h = 0.1Hz/s |
|       |                     |      |       | 1h = 1Hz/s                                                                   |
|       |                     |      |       | 2h = 2Hz/s                                                                   |
|       |                     |      |       | 3h = 3Hz/s                                                                   |
|       |                     |      |       | 4h = 5Hz/s                                                                   |
|       |                     |      |       | 5h = 10Hz/s                                                                  |
|       |                     |      |       | 6h = 20Hz/s                                                                  |
|       |                     |      |       | 7h = 30Hz/s                                                                  |
|       |                     |      |       | 8h = 40Hz/s                                                                  |
|       |                     |      |       | 9h = 50Hz/s                                                                  |
|       |                     |      |       | Ah = 100Hz/s                                                                 |
|       |                     |      |       | Bh = 200Hz/s                                                                 |
|       |                     |      |       | Ch = 500Hz/s                                                                 |
|       |                     |      |       | Dh = 750Hz/s                                                                 |
|       |                     |      |       | Eh = 1000Hz/s                                                                |
|       |                     |      |       | Fh = 2000Hz/s                                                                |
| 15    | IPD_HIGH_RESOLUTION | R/W  | 0h    | IPD high resolution enable                                                   |
|       | _EN                 |      |       | 0h = Disable                                                                 |
|       |                     |      |       | 1h = Enable                                                                  |
| 14    | FAST_ISD_EN         | R/W  | 0h    | Fast initial speed detection enable                                          |
|       |                     |      |       | 0h = Disable Fast ISD                                                        |
|       |                     |      |       | 1h = Enable Fast ISD                                                         |
| 13-12 | ISD_STOP_TIME       | R/W  | 0h    | Persistence time for declaring motor has stopped                             |
|       |                     |      |       | 0h = 1ms                                                                     |
|       |                     |      |       | 1h = 5ms                                                                     |
|       |                     |      |       | 2h = 50ms                                                                    |
|       |                     |      |       | 3h = 100ms                                                                   |
| 11-10 | ISD_RUN_TIME        | R/W  | 0h    | Persistence time for declaring motor is running                              |
|       |                     |      |       | 0h = 1ms                                                                     |
|       |                     |      |       | 1h = 5ms                                                                     |
|       |                     |      |       | 2h = 50ms                                                                    |
|       |                     |      |       | 3h = 100ms                                                                   |
| 9-8   | ISD_TIMEOUT         | R/W  | 0h    | Timeout in case ISD is unable to reliably detect speed or direction          |
|       |                     |      |       | 0h = 500ms                                                                   |
|       |                     |      |       | 1h = 750ms                                                                   |
|       |                     |      |       | 2h = 1000ms                                                                  |
|       |                     |      |       | 3h = 2000ms                                                                  |
| 7-5   | AUTO_HANDOFF_MIN_B  | R/W  | 0h    | Minimum BEMF for handoff                                                     |
|       | EMF                 |      |       | 0h = 0mV                                                                     |
|       |                     |      |       | 1h = 50mV                                                                    |
|       |                     |      |       | 2h = 100mV                                                                   |
|       |                     |      |       | 3h = 250mV                                                                   |
|       |                     |      |       | 4h = 500mV                                                                   |
|       |                     |      |       | 5h = 1000mV                                                                  |
|       |                     |      |       | 6h = 1250mV                                                                  |
|       |                     |      |       | 7h = 1500mV                                                                  |

Register Map www.ti.com

Table 5-26. MISC\_ALGO Register Field Descriptions (continued)

|     | rabio o zo. mios_, reso register i iora boscriptione (continuou) |      |       |                                                                                                                                                                             |  |  |
|-----|------------------------------------------------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit | Field                                                            | Туре | Reset | Description                                                                                                                                                                 |  |  |
| 4-3 | BRAKE_CURRENT_PER                                                | R/W  | 0h    | Persistence time for current below threshold during brake                                                                                                                   |  |  |
|     | SIST                                                             |      |       | 0h = 50ms                                                                                                                                                                   |  |  |
|     |                                                                  |      |       | 1h = 100ms                                                                                                                                                                  |  |  |
|     |                                                                  |      |       | 2h = 250ms                                                                                                                                                                  |  |  |
|     |                                                                  |      |       | 3h = 500ms                                                                                                                                                                  |  |  |
| 2-0 | REV_DRV_OPEN_LOOP<br>_DEC                                        | R/W  | 0h    | % of open loop acceleration to be applied during open loop deceleration in reverse drive  0h = 50%  1h = 60%  2h = 70%  3h = 80%  4h = 90%  5h = 100%  6h = 125%  7h = 150% |  |  |

# 5.2.11 PIN\_CONFIG Register (Offset = 4Ch) [Reset = 00000000h]

Register to configure hardware pins

Table 5-27. PIN\_CONFIG Register Field Descriptions

|       | Table 5-27.1 III_550NI To Register Field Descriptions |      |       |                                                                 |  |  |
|-------|-------------------------------------------------------|------|-------|-----------------------------------------------------------------|--|--|
| Bit   | Field                                                 | Туре | Reset | Description                                                     |  |  |
| 31-20 | RESERVED                                              | R/W  | 0h    | Reserved                                                        |  |  |
| 19    | VDC_FILT_DIS                                          | R/W  | 0h    | Vdc Filter Disable 0h = Enabled                                 |  |  |
|       |                                                       |      |       |                                                                 |  |  |
|       |                                                       |      |       | 1h = Disabled                                                   |  |  |
| 18-3  | RESERVED                                              | R/W  | 0h    | Reserved                                                        |  |  |
| 2     | BRAKE_PIN_MODE                                        | R/W  | 0h    | Brake pin mode                                                  |  |  |
|       |                                                       |      |       | 0h = Low side Brake                                             |  |  |
|       |                                                       |      |       | 1h = Align Brake                                                |  |  |
| 1-0   | BRAKE_INPUT                                           | R/W  | 0h    | Brake pin override                                              |  |  |
|       |                                                       |      |       | 0h = Hardware Pin BRAKE                                         |  |  |
|       |                                                       |      |       | 1h = Override pin and brake / align according to BRAKE_PIN_MODE |  |  |
|       |                                                       |      |       | 2h = Override pin and do not brake / align                      |  |  |
|       |                                                       |      |       | 3h = Hardware Pin BRAKE                                         |  |  |

# 5.2.12 PERI\_CONFIG Register (Offset = 50h) [Reset = 00000000h]

Register to peripheral

Table 5-28. PERI\_CONFIG1 Register Field Descriptions

| Bit   | Field         | Туре | Reset | Description                                                                          |
|-------|---------------|------|-------|--------------------------------------------------------------------------------------|
| 31-13 | RESERVED      | R    | 0h    | Reserved                                                                             |
| 12-9  | MCU_DEAD_TIME | R/W  | 0h    | Dead time applied between the High Side and Low side switches = 50ns × MCU_DEAD_TIME |

www.ti.com Register Map

# Table 5-28. PERI\_CONFIG1 Register Field Descriptions (continued)

| Bit | Field               | Type    | Reset | Description                                                        |
|-----|---------------------|---------|-------|--------------------------------------------------------------------|
| 8-4 |                     | R/W     | 0h    | Bus Current Limit in % of CURRENT_BASE                             |
| 0-4 | BUS_CURRENT_LIMIT   | FC/ V V | OII   | 0h = 7.5%                                                          |
|     |                     |         |       | 1h = 8.0%                                                          |
|     |                     |         |       | 2h = 8.5%                                                          |
|     |                     |         |       | 3h = 9.0%                                                          |
|     |                     |         |       | 4h = 9.5%                                                          |
|     |                     |         |       | 5h = 10%                                                           |
|     |                     |         |       | 6h = 11%                                                           |
|     |                     |         |       | 7h = 12%                                                           |
|     |                     |         |       | 8h = 13%                                                           |
|     |                     |         |       | 9h = 14%                                                           |
|     |                     |         |       | Ah = 15%                                                           |
|     |                     |         |       | Bh = 16%                                                           |
|     |                     |         |       | Ch = 17%                                                           |
|     |                     |         |       | Dh = 18%                                                           |
|     |                     |         |       |                                                                    |
|     |                     |         |       | Eh = 20%                                                           |
|     |                     |         |       | Fh = 22.5%                                                         |
|     |                     |         |       | 10h = 25%                                                          |
|     |                     |         |       | 11h = 27.5%                                                        |
|     |                     |         |       | 12h = 30%                                                          |
|     |                     |         |       | 13h = 35%                                                          |
|     |                     |         |       | 14h = 40%                                                          |
|     |                     |         |       | 15h = 45%                                                          |
|     |                     |         |       | 16h = 50%                                                          |
|     |                     |         |       | 17h = 55%                                                          |
|     |                     |         |       | 18h = 60%                                                          |
|     |                     |         |       | 19h = 70%                                                          |
|     |                     |         |       | 1Ah = 75%                                                          |
|     |                     |         |       | 1Bh = 80%                                                          |
|     |                     |         |       | 1Ch = 85%                                                          |
|     |                     |         |       | 1Dh = 90%                                                          |
|     |                     |         |       | 1Eh = 95%                                                          |
|     |                     |         |       | 1Fh = 100%                                                         |
| 3   | BUS_CURRENT_LIMIT_E | R/W     | 0h    | Bus current limit enable                                           |
|     | NABLE               |         |       | 0h = Disable                                                       |
|     |                     |         |       | 1h = Enable                                                        |
| 2-1 | DIR_INPUT           | R/W     | 0h    | DIR pin override                                                   |
|     |                     |         |       | 0h = Hardware Pin DIR                                              |
|     |                     |         |       | 1h = Override DIR pin with clockwise rotation OUTA-OUTB-OUTC       |
|     |                     |         |       | 2h = Override DIR pin with counter clockwise rotation OUTA-OUTC-   |
|     |                     |         |       | OUTB                                                               |
|     |                     |         |       | 3h = Hardware Pin DIR                                              |
| 0   | DIR_CHANGE_MODE     | R/W     | 0h    | Response to change of DIR pin status                               |
|     |                     |         |       | 0h = Follow motor stop options and ISD routine on detecting DIR    |
|     |                     |         |       | change                                                             |
|     |                     |         |       | 1h = Change the direction through Reverse Drive while continuously |
|     |                     |         |       | driving the motor                                                  |
|     |                     |         | l     | <u> </u>                                                           |

Basic Tuning www.ti.com

# 6 Basic Tuning

The goal of this section is to help spin user motors successfully in closed loop with minimal configurations. This section provides standardized mandatory steps to tune parameters for successful Motor spin-up in closed loop. **"Closed loop"** is defined as sensorless closed loop Field-oriented control where the motor spins at the commanded Speed/Torque reference.

# **6.1 System Configuration Parameters**

The system configuration defines the primary parameters associated with the motor control system to start the motor spinning in closed loop torque/speed control modes.

## 6.1.1 Configuring System Parameters from GUI

Configure the system parameters using the **System Configuration** page in the GUI as shown below. If the parameters are already programmed in the firmware for a given system, the GUI page displays the default programmed values upon pressing READ ALL REGS. These parameters to be updated accordingly from the below steps.



Figure 6-1. GUI System Parameter Configuration

# 6.1.2 Motor Resistance in Milliohms ( $m\Omega$ )

Using the motor data sheet, the user can input the motor phase resistance in milliohms ( $m\Omega$ ) using the *mtrResist* parameter in the **System Configuration** page. If the motor does not have a data sheet, then measure the phase-to-phase resistance across any two phases using a digital multimeter and calculate the phase resistance by dividing the phase-to-phase resistance by 2 as shown in Equation 2.

Phase resistance = Measured Phase to Phase Resistance 
$$\times$$
 (0.5) (2)

The motor phase resistance refers to the equivalent phase to center tap resistance, R<sub>PH</sub>, as shown in Figure 6-2. This measurement is valid for both star wound and delta wound motors.

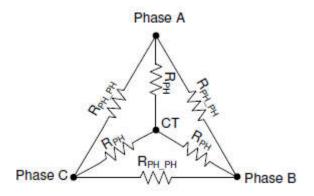



Figure 6-2. Resistance Measurement

## 6.1.3 Motor Inductance in Microhenries (µH)

From the motor data sheet, input the motor phase inductance in microhenry (µH) using the *mtrInductance* parameter in the **System Configuration** page. To know the motor inductance, measure the phase-to-phase inductance at 1kHz across any two phases using an LCR meter. Calculate the phase inductance by dividing the phase to phase inductance by 2 as shown in Figure 6-3.

Phase Inductance = Measured Phase to Phase Inductance 
$$\times$$
 (0.5) (3)

Motor phase inductance refers to the inductance from the phase output to the center tap,  $L_{PH}$ , as shown in Figure 6-3. For motors with different phase to phase inductances, measure all three phase to phase inductances and calculate the average and use this value as the phase to phase inductance. This measurement is valid for both star wound and delta wound motors.

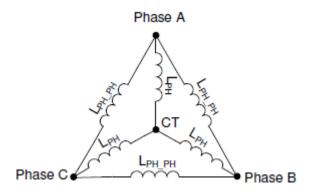



Figure 6-3. Inductance Measurement

#### 6.1.4 Motor BEMF Constant

Using the motor's data sheet, the user can input the motor's BEMF constant Ke in mV/Hz and program mtrBEMFConst in the **System Configuration** Page as Ke  $\times$  10.

Equation 4 and Equation 5 below can be used to convert Ke in mV/rpm, mV\*sec/rad and torque constant Kt to Ke in mV/Hz.

$$BEMF Constant \left[ \frac{mV}{Hz} \right] = \frac{Ke \left[ \frac{mV}{RPM} \right] * 60}{\# \ pole \ pairs}$$
(4)

$$BEMF Constant \left[ \frac{mV}{Hz} \right] = \frac{Kt \left[ \frac{mN \cdot m}{A} \right]^* 2\pi}{\# \ pole \ pairs}$$
 (5)

If the motor does not have a data sheet, measure the voltage across any two phases of the motor using an oscilloscope by manually spinning the motor. A sinusoidal or trapezoidal voltage appears on the oscilloscope. Measure the peak voltage Ep in milli-volts and time period Tp in seconds. Calculate BEMF constant Ke as shown in Equation 6.

Bemf Constant Ke = Ep \* Tp / 
$$\sqrt{3}$$
 (6)

#### 6.1.5 Base Voltage (V)

Base voltage represents the maximum measurable bus voltage and phase voltages in the motor control system. Input the system base voltage (in volts) in the *voltageBase* parameter of the **System Configuration** page in GUI. The user can compute the system base voltage based on the Voltage scaling resistor divider bridge values R1 and R2 and the Full Scale ADC voltage (FSV) of 3.3V as shown in Equation 7. See Figure 2-3 for hardware configuration of the voltage divider scaling ratio.

$$Base_{Voltage} = \frac{ADC Full Scale Value}{Voltage Divider Scaling Ratio} = \frac{3.3V}{R1}$$

$$\frac{R1}{R1 + R2}$$
(7)

Basic Tuning www.ti.com

For example, in a system with resistor divider scaling ratio of 1/20 from DC supply voltage to ADC input, the base voltage or maximum measurable system voltage by the ADC is  $3.3V \times (1/20) = 66V$ .

## 6.1.6 Base Current (A)

Base current represents the maximum measurable motor phase current in the motor control system. The user inputs the system base current (in Amps) in the *currentBase* parameter of the **System Configuration** page in GUI. The user can compute the system base current based on the current sense amplifier gain (CSAGAIN) in volts/amp and the full-scale ADC voltage (FSV) of 3.3V as shown in Equation 8. There is a factor of 2 considered to support bidirectional current sensing with 1.65V as the zero-current offset.

$$Base_{Current} = \frac{ADC Full Scale Value}{2*CSAGAIN \left[\frac{V}{A}\right]} = \frac{3.3V}{2*CSAGAIN \left[\frac{V}{A}\right]}$$
(8)

For example, in a system with CSAGAIN = 0.15V/A, the base current or maximum measurable system current by the ADC is  $3.3V / (2 \times 0.15V/A) = 11A$ .

### Note

In some driver devices, CSAGAIN can be set as a register over I2C or SPI or by hardware using a resistor value. See the driver data sheet for how to configure the driver CSAGAIN setting.

If the system uses a current sense resistor (R<sub>SENSE</sub>) with CSAGAIN units mentioned in volts/volt (V/V), the CSA gain in volts/amp can be computed using Equation 9.

$$CSAGAIN\left[\frac{V}{A}\right] = R_{SENSE} \times CSAGAIN\left[\frac{V}{V}\right] \tag{9}$$

# 6.1.7 Maximum Motor Electrical Speed (Hz)

Using the motor's data sheet, the user can input the maximum motor electrical speed in Hz using the *maxMotorSpeed* parameter in the **System Configuration** Page. If this data is not available, the user can input the number of pole pairs and motor mechanical speed in RPM. The user can convert the motor mechanical speed in RPM to motor electrical speed in Hz using Equation 10.

$$f_{Electrical} = \frac{n_{PolePairs} \cdot \omega_{Mechanical}}{60} \tag{10}$$

Where:

- ω<sub>Mechanical</sub> is the mechanical speed in units revolutions per minute (RPM)
- f<sub>Electrical</sub> is the electrical speed in units of hertz (Hz)
- n<sub>PolePairs</sub> is the number of motor pole pairs

#### Note

To determinine the number of motor poles without a motor data sheet:

- 1. Use a lab power supply and make sure the current limit is set to less than the motor rated current. Do not turn on the supply.
- 2. Connect V+ of the supply to phase A and V- of the supply to phase B of the motor. Any 2 of the 3 phases can be chosen at random if the phases not labeled.
- 3. Turn on supply, The rotor settles at one position by injecting current.
- 4. Manually rotate the rotor until rotor snaps to another settle position. Rotor settle down at various positions around one mechanical cycle.
- 5. Count the number of settle-down positions for one fully mechanical cycle, which is the number of pole pairs. Multiplying by two calculates the number of poles.

Be careful of gearing systems within a motor. The gearing ratio determines how many rotor revolutions correlate to the shaft's mechanical revolution.

# 6.2 Control Configurations for Basic Motor Spinning

After configuring the system parameters in the GUI, the user can go to the **Register Map** page and configure the Register Map Tuning parameters as shown in Figure 6-4. By default, the firmware has the recommended settings, which can be read into the GUI by pressing the "READ ALL REG" button.

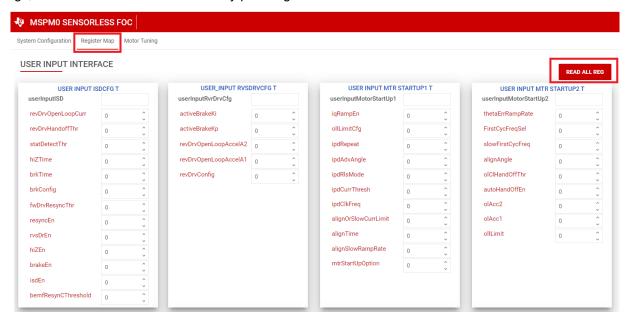



Figure 6-4. Register Map GUI Page

# 6.2.1 Basic Motor Startup

Sensorless FOC relies on the position detection estimated from BEMF to accurately drive the motor. At startup, since the motor can be at standstill or the motor can be spinning with unknown speeds, the rotor position is unknown.

The FOC algorithm has various startup algorithms to reliably start the motor and ramp the motor with sufficient speeds or estimate the position of an already spinning motor before switching to the estimator for continuous rotor position tracking. The following sections describe the basic configuration needed to start and ramp the motor from standstill until open-loop spin up. If any motor faults are observed during basic open-loop spin up, see Section 6.3.

# 6.2.1.1 Disable ISD

Initial Speed Detection (ISD) is a feature to enter the motor automatically when the motor is already spinning. This is also called Headwind/Tailwind startup, or Catch-on-the-fly startup. For basic spinning for motor, the ISD feature is disabled by default by setting *isdEn* = 0 on the **Register Map** page. For basic motor tuning, the motor is expected to be at standstill before giving the speed command. To tune the motor for ISD, refer to Section 7.

Basic Tuning Www.ti.com

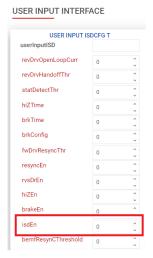



Figure 6-5. Disabling ISD in GUI

# 6.2.1.2 Motor Start Option - Align

When the motor is ramping up from standstill, the Motor Align startup algorithm forces the rotor to align to a fixed ALIGN\_ANGLE with a defined current limit acting as a torque reference for a predefined ALIGN\_TIME. By default, the motor startup option is set as Align (*mtrStartUpOption* = 0b) in the MTR\_STARTUP of MOTOR\_STARTUP1 configuration. For basic spinning, use the default parameters which works for most of the motors.

If the motor fails to align for the given load setup, increase the *alignOrSlowCurrentLimit* parameter on the **Register Map** page. For fine tuning the Motor Align configuration, refer to Section 7.




Figure 6-6. Motor Startup in GUI

#### 6.2.1.3 Motor Open Loop Ramp

To estimate the rotor position accurately, the motor needs to build sufficient BEMF before switching to closed loop. During startup, the FOC algorithm accelerates the motor with a second order open loop ramp profile to increase the speed until sufficient BEMF is built. By default, for basic spin up of motor, the open loop ramp up parameters are configured with a linear first order configuration with sluggish acceleration, which works for most of the motors. Disable switching to closed loop control to verify the appropriate functionality of open loop , using closedloopDis = 1b in ALGO\_DEBUG\_CTRL on the **Motor Tuning** page. To further optimize the startup time, refer to Section 7 to fine tune the startup performance.

Depending on the load of the motor, tune the OL\_ILIMIT to the lowest possible value for smooth handoff once the closed loop is enabled (*closedloopDis* = 0b).

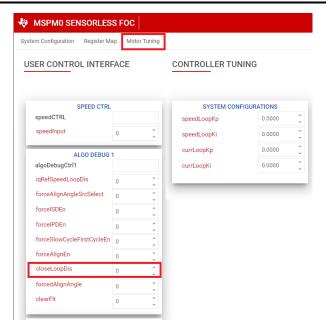



Figure 6-7. Setting ClosedLoop Disable in GUI

## 6.2.1.4 Motor Open Loop Debug

If motor fails to spin in open loop continuously or if motor current oscillates without spinning the motor, the user can fine tune the open loop configurations in the RAM ALGO DEBUG 2 parameters.

To verify the signal path or check the motor parameters accuracy, the user can disable the current loop by setting the *currLoopDis* bit and setting the *forceVQCurrLoopDis* and *forceVDCurrLoopDis* on the **Register Map** page.

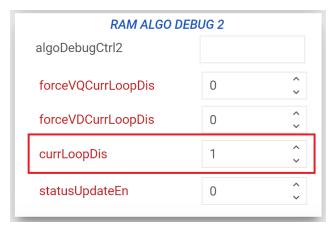



Figure 6-8. Disabling Current loop in GUI

Adjust Vd and Vq values to spin the motor. Once the motor is spinning at a constant speed, observe the Id and Iq outputs in the User Outputs section of the **Motor Tuning** page to check the stability of the current loop.

# 6.2.2 Controller Configuration for spinning the Motor in Closed Loop

After tuning the open loop with the motor spinning continuously in the open loop state, the user can switch to closed loop by clearing *closedloopDis* = 0b in ALGO\_DEBUG\_CTRL on the **Motor Tuning** page. Follow the below steps to achieve closed loop speed control.

Basic Tuning Www.ti.com

## 6.2.2.1 PI Controller Tuning for Closed Loop Speed Control

## **Current Controller Tuning**

The FOC Algorithm uses two current PI controllers: one each for Id and Iq to control flux and torque separately. Kp and Ki coefficients are the same for both PI controllers and are configured through *currLoopKp* and *currLoopKi* in the **Motor Tuning** page.

For the basic tuning, configure *currLoopKp* and *currLoopKi* parameters as "0" so that these values are autocomputed based on the motor parameters and reflected in the User Outputs section of the **Motor Tuning** page in the GUI. These values can be further updated for fine tuning the performance and controlling the dynamics of the system.

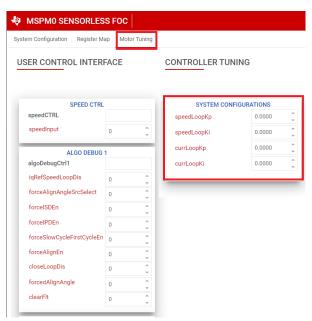



Figure 6-9. PI Loop Tuning in GUI Motor Tuning page

#### **Speed Controller Tuning**

The FOC Algorithm uses an integrated speed control loop that helps maintain a constant speed over varying operating conditions. The Kp and Ki coefficients are configured through <code>speedLoopKp</code> and <code>speedLoopKi</code> in the "System Configurations" section on the <code>Motor Tuning</code> page. The output of the speed loop is used to generate the current reference for torque control. The output of the speed loop is limited by configuring <code>iLIMIT</code> in the closedLoop1 configuration in the Register Map page of GUI. When output of the speed loop saturates, the integrator is disabled to prevent integral wind-up.

To tune the Kp and Ki values for speed loop:

- 1. Configure the motor to spin continously in open loop by setting *closedloopDis* to 1b. Disable the automatic handoff by setting *autoHandOffEn* to *0b*.
- 2. Set the closed loop hand off threshold to around 50% of maximum speed using olClHandOffThr.
- 3. Set the *iqRampEn* bit to *1b* in the userInputMotorStartUp1 register.
- 4. The current reference gradually decreases and settles down to the lowest possible Iqref to run at the given threshold speed.
- 5. Speed loop Kp [SPD\_LOOP\_KP] is calculated using this equation: SpeedLoop  $K_p$  = Current Reference at olClHandOffThr in Amps / olClHandOffThr in Hz
- 6. Speed loop Ki [SPD\_LOOP\_KI] is calculated using this equation: Speed Loop  $K_i$  = Speed Loop  $K_o \times 0.1$
- 7. Enable closed loop by clearing the closedloopDis to (0b) in the configuration in the **Register Map** page of the GUI.

#### Note

The tuning of speed loop Kp and Ki is experimental. If the above recommendation does not work, manually tune speed loop Kp and Ki until the desired results are achieved.

The following table shows general guidelines to change controller gains.

| Parameter | Rise Time | Overshoot | Settling Time | Stead State Error | Stability |
|-----------|-----------|-----------|---------------|-------------------|-----------|
| Кр        | Decreases | Increases | Small Change  | Decreases         | Degrades  |
| Ki        | Decreases | Increases | Increases     | Eliminates        | Degrades  |

# 6.2.2.2 Testing for Successful Startup into Closed Loop

# 1. Apply a nonzero speed command

Change the "Speed Input Command" to a nonzero value. When the speed command is issued, the device starts to commutate and the motor spins at a speed that is proportional to Speed Command × MAXIMUM MOTOR SPEED / 32767.

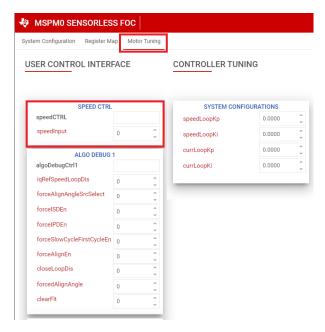



Figure 6-10. Setting Speed Input From GUI

# 2. Check if motor spins in closed loop at commanded speed.

Enable the "Continuous Read status" toggle button towards the bottom right corner of the GUI and monitor the Fault Status register. If no faults is triggered, move to the Section 7 section.



Basic Tuning Www.ti.com

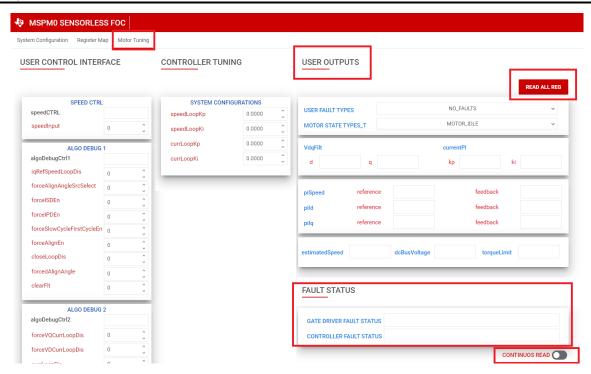



Figure 6-11. Reading Fault Status From GUI

- 3. If any fault is triggered, tune the configuration for fault handling using these steps:
  - a. Set zero speed command by setting the Speed Input command to 0.
  - b. Clear the fault status registers by setting the clear fault bit (*ClearFlt*) bit in the ALGO DEBUG CTRL1 register.
  - c. Check Section 6.3 for steps to debug faults.

# 6.3 Fault Handling

The following sections describe faults that can be triggered based on the default register configuration.

#### 6.3.1 Abnormal BEMF Fault [ABN\_BEMF]

This fault is triggered when the estimated BEMF voltage drops below the programmed Abnormal BEMF threshold percentage [ABNNORMAL\_BEMF\_THR]. For example, if the estimated or measured Ke is 5mV/Hz and the programmed Abnormal BEMF threshold is 40%, this fault is triggered when the estimated Ke drops below 2mV/Hz. This fault can also be triggered when the programmed Ke is inaccurate.

There are two cases for Abnormal BEMF threshold:

**Case 1**: Estimated BEMF voltage drops when the motor speed drops. Motor speed can drop due to load dynamics (sudden change in load). For applications with load dynamics, the speed is expected to drop and recover back. Because the speed drops, the BEMF voltage also drop and can trigger this fault. For such applications, the recommended value of 10% is to be set for the Abnormal BEMF threshold to avoid triggering this fault.

**Case 2**: This fault can be triggered if the programmed Ke is inaccurate. Follow steps recommended in section MOTOR\_BEMF\_CONSTANT to obtain accurate Ke.

### 6.3.2 Monitoring Power Supply Voltage Fluctuations for Voltage Out of Bound Faults

In applications where the power supply fluctuates, user needs to specify the minimum and maximum power supply voltage range. During an undervoltage condition, the motor operates in overmodulation region to achieve the target speed leading to current distortion, inefficiency or noise. During an overvoltage condition, the MOSFETs and motor are stressed with continued operation in high voltage.

**Tuning Under Voltage Limit 1**: Keep decreasing the supply voltage until there is a drop in the speed. Measure the bus voltage at which the speed drops and set MIN\_VM\_MOTOR to that value. Range of minimum bus voltage that can be configured is between 0 to 25% of Maximum BASE\_VOLTAGE.

**Tuning Over Voltage Limit**: Keep increasing the bus voltage to a point where the motor phase voltage reaches the maximum rated voltage of the motor. MAX\_VM\_MOTOR is the bus voltage at which motor phase voltage reaches the maximum rated voltage of the motor. Range of maximum bus voltage that can be configured is between 60% to Maximum BASE\_VOLTAGE.

#### **Note**

The FOC Algorithm provides an undervoltage recovery mode [MIN\_VM\_MODE] and an overvoltage recovery mode [MAX\_VM\_MODE]. Undervoltage recovery mode can be configured to either automatically clear Undervoltage fault [MTR\_UNDER\_VOLTAGE] or latch on Undervoltage fault. Overvoltage recovery mode can be configured to either automatically clear Overvoltage fault [MTR\_OVER\_VOLTAGE] or latch on Overvoltage fault.

#### 6.3.3 No Motor Fault [NO\_MTR]

This fault is triggered when the phase current is below the No motor lock threshold % of base current.

- Step 1: Make sure the motor phases are connected to the terminals as shown in the Hardware User Guide.
- Step 2: If the fault persists, decrease the No-Motor lock current threshold [NO MTR THR].

TRUMENTS Advanced Tuning www.ti.com

# 7 Advanced Tuning

This section helps you spin motors successfully in closed loop with minimal configurations. This section provides standardized mandatory steps to tune parameters for successful motor spin-up in closed loop. Closed loop is defined as the sensorless closed loop where motor spins at the commanded speed and torque reference.

# 7.1 Control Configurations Tuning

# 7.1.1 Initial Speed Detection of the Motor for Reliable Motor Resynchronization

The Initial Speed Detection (ISD) function is used to identify the initial condition of the motor. It is important to know the initial condition of the motor for reliable resynchronization. Motor resynchronization failures can occur when the device attempts to start the motor while the motor is coasting or spinning in the direction opposite to the intended direction of spin. Motors can coast in applications that require frequent motor starts and stops, if the motor is being forced externally, or if there is a power interruption. Motors can spin in the direction opposite to the intended direction of spin if motor phase wires are connected to OUTA, OUTB, and OUTC in wrong sequence or when the wrong direction command is issued. Motors with higher inertia coast for a longer period of time. Enable ISD in applications that require frequent motor starts and stops, and use higher inertia motors.

For example, ceiling fan motors have higher inertia due to the fan blades and can coast for a long time before stopping.

Step 1: Enable ISD [ISD EN]

Step 2: Enable Motor ISD Resynchronize [RESYNC EN]

Note

If the motor fails to start:

- Increase the Motor Stationary BEMF Threshold [STAT DETECT THR].
- 2. Increase the Motor Stationary Persistence Time [ISD\_STOP\_TIME].
- 3. Increase the Motor Run Persistence Time [ISD RUN TIME].
- 4. Increase the minimum speed threshold to resynchronize to closed loop.

#### 7.1.2 Unidirectional Motor Drive Detecting Backward Spin

For applications that require spinning the motor in a specific direction, it is important to know if the motor is coasting or spinning in the direction opposite to the intended direction of spin. The MSPM0 FOC Algorithm reverse drive function acts to reverse decelerate the motor through zero speed and to accelerate after changing direction until it transitions into closed loop as shown in Figure 7-1.

ww.ti.com Advanced Tuning

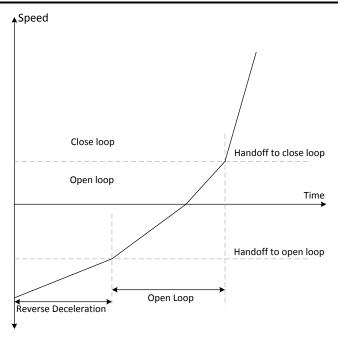



Figure 7-1. Reverse Drive Function

The MSPM0 FOC algorithm provides an option to apply brakes and stop the motor while the motor is coasting or spinning in reverse direction and then accelerate into closed loop after changing the direction.

In applications such as ceiling fans and pumps, it is required to spin the motor in a specific direction for desired results. For such applications, follow these recommendations:

Step 1: Enable ISD [ISD EN]

Step 2: Enable Motor ISD Reverse drive [RVS\_DR\_EN]

Step 3: Enable reverse resynchronization [RESYNC EN]

#### **Note**

Follow these recommendations if the motor fails to resynchronize in reverse direction:

- 1. Increase the reverse deceleration speed threshold to transition to open loop
- 2. Enable Open loop reverse drive configuration [REV\_DRV\_CONFIG]
- 3. Increase the Reverse Drive Open Loop Current Reference [REV DRV OPEN LOOP CURRENT]
- 4. Decrease open loop acceleration coefficient A1 and A2 during reverse drive

# 7.1.3 Preventing Back Spin of Rotor During Startup

For applications where a reverse spin is not acceptable, the Initial Position Detection algorithm (IPD) function is an alternative way to start up the motor. With the proper IPD setting, the motor startup can be faster than using align. While this function is suitable for motors with high inertia, such as heavy blades (for example: a ceiling or appliance fan), it is not suitable for motors with low inertia, such as small blades (for example: a computer fan), because the current injection will cause the motor to shake, resulting in the IPD not being accurate.

In applications where the acoustic noise ("chirp") generated by IPD is not acceptable during startup, select "Slow first cycle" as the startup method.

# **Option 1: IPD**

Step 1: If IPD is chosen as startup method, select IPD in the Motor startup option [MTR\_STARTUP] in "USER INPUT MTR\_STARTUP1\_T configuration of REGISTER MAP" tab in the GUI.

Advanced Tuning www.ti.com

Step 2: Select the IPD Current threshold [IPD\_CURR\_THR]. IPD current threshold is selected based on the inductance saturation point of the motor. A higher current has better chance to accurately detect the initial position. However, higher current might result in rotor movement, vibration, and noise. Start with 50% of the rated current of the motor. If the motor startup is unsuccessful, increase the threshold until the motor starts successfully. Note that the IPD current threshold should not be higher than the rated current of the motor.

Step 3: Select IPD clock value [IPD\_CLK\_FREQ]. IPD clock defines how fast the IPD pulses are applied. Higher inductance motors and higher current thresholds need a longer time to settle the current down, so we need set the clock at a slower time. However, a slower clock makes the IPD noise louder and it lasts longer, so we suggest setting the clock as fast as possible as long as IPD current is able to settle down completely.

#### Note

The device triggers the IPD timeout fault IPD\_FAULT\_CLOCK\_TIMEOUT for motors with very high inductance, or if the motor is not connected. If this fault is triggered, make sure that the motor is connected to the device. If the fault still persists, set the IPD release mode [IPD\_RLS\_MODE] to Tri-state if any overshoot in DC bus voltage is acceptable.

The device triggers the IPD Frequency fault IPD\_FAULT\_DECAY\_TIME if the IPD clock frequency is set too high. If this fault is triggered, decrease the IPD Clock value [IPD\_CLK\_FREQ].

Step 4: Select IPD Advance Angle [IPD\_ADV\_ANGLE]. Start with 90° for maximum startup torque. If there is sudden jerk observed during startup, reduce the angle to 60° or 30° for a smoother startup.

# **Option 2: Slow first cycle**

Follow these steps if Slow first cycle is chosen as the startup method:

- Step 1: Select Slow first cycle in the Motor startup option [MTR\_STARTUP] in "Control Configuration Motor Startup Stationary" tab in the GUI.
- Step 2: Select align or slow first cycle current reference [ALIGN\_OR\_SLOW\_CURRENT\_ILIMIT]. Lower current reference may lose synchronization of motor. Higher current may lead to sustained oscillations for high inertia motors, or sudden jerky motion for low inertia motors. It is recommended to start with 50% of the rated current of the motor. In applications where the startup torque is high, the motor might lose synchronization. In such applications, increase the current reference. In applications where sustained oscillations or sudden jerks are observed, decrease the current reference.
- Step 3: Select align or slow first cycle current ramp rate [ALIGN\_SLOW\_RAMP\_RATE]. Current reference is ramped to avoid reverse rotation of the motor. Lower current ramp rate may lose synchronization of motor. A higher current ramp rate may lead to sustained oscillations for high inertia motors, or sudden jerking motion for low inertia motors. Start with setting the ramp time to 0.5 seconds to ramp to rated current of the motor. In applications where the startup torque is high, the motor can lose synchronization. In such applications, increase the current ramp rate. In applications where sustained oscillations or sudden jerks are observed, decrease the current ramp rate.
- Step 4: Select the frequency of the first cycle [SLOW\_FIRST\_CYC\_FREQ]. Lower frequency can give a jerky motion at startup. Higher frequency might not be able to synchronize the motor. Start with 20% of the maximum speed of the motor. In applications where the startup torque is high, the motor might lose synchronization. In such applications, decrease the frequency. In applications where jerky motions are observed, increase the frequency.

# 7.1.4 Gradual and Smooth Start up Motion

For applications that require slow and gradual startup with lower speed overshoots during handoff, follow the below recommendations:

- Step 1: Decrease Open loop acceleration coefficient A1 [OL\_ACC\_A1] and Open loop acceleration coefficient A2 [OL\_ACC\_A2].
- Step 2: Enable Iq ramp down after transition to closed loop [IQ\_RAMP\_EN]

www.ti.com Advanced Tuning

If there is speed overshoots, decrease ramp rate for reducing difference between estimated theta and open loop theta [THETA ERROR RAMP RATE].

## 7.1.5 Faster Startup Timing

Startup time is the time taken for the motor to reach the target speed from zero speed. For applications that require quick startup time, we recommend choosing either Initial Position Detection (IPD) or Slow first cycle as the startup method.

# **Option 1: Initial Position Detection (IPD)**

- Step 1: Select IPD [MTR\_STARTUP] as the motor startup method.
- Step 2: Increase IPD current threshold [IPD\_CURR\_THR] to rated current of the motor.
- Step 3: Increase IPD clock value [IPD\_CLK\_FREQ] to higher frequency up to a value where the device does not trigger IPD frequency fault. Check Section 7.1.3 (Step 3) for more details.
- Step 4: Select IPD repeating times [IPD REPEAT] to 1 time.
- Step 5: Select Open loop current limit [OL\_ILIMIT] to be the same as Current limit for Torque PI Loop [ILIMIT].

#### Note

Configuring current Limits to a value higher than motor stall current overheats or damages the motor.

- Step 6: Increase Open loop acceleration coefficient A1 [OL\_ACC\_A1] and Open loop acceleration coefficient A2 [OL\_ACC\_A2].
- Step 7: Select Minimum BEMF for handoff [AUTO HANDOFF MIN BEMF] to 0mV.
- If the device triggers Abnormal BEMF [ABN\_BEMF] fault, then recommended to increase the [AUTO\_HANDOFF\_MIN\_BEMF].
- Step 8: Keep increasing ramp rate for reducing difference between estimated theta and open loop theta to 2 deg/ms.
- Step 9: Increase Closed loop acceleration rate [CL\_ACC]

#### Option 2: Slow first cycle

- Step 1: Select Slow first cycle as the motor startup method in [MTR STARTUP].
- Step 2: Select Align or slow first cycle current limit [ALIGN\_OR\_SLOW\_CURRENT\_ILIMIT] to be the same as Current limit for Torque PI loop [ILIMIT].
- Step 3: Keep increasing Align or slow first cycle current ramp rate [ALIGN\_SLOW\_RAMP\_RATE] until the open loop current reaches 100% of the rated current of the motor.
- Step 4: Follow Step 5 to Step 9 in Option 1.

# 7.1.6 Stopping Motor Quickly

For applications that require stopping the motor quickly, configure Motor stop options [MTR\_STOP] to either Low side braking:

- Step 1: Configure Motor stop options [MTR\_STOP] to Low side braking.
- Step 2: Select Speed threshold for BRAKE pin and Motor STOP options. Setting speed threshold to higher speed can result in FETs carrying large current. Setting speed threshold to lower speed results in increase in the stop time of the motor. Recommended to start with 50% of the maximum speed, If the motor phase current exceeds the FET's maximum current rating, then decrease the threshold. If the stop time is too high, then recommended to increase the threshold without hitting the maximum current limit.

Advanced Tuning www.ti.com

## 7.1.7 Preventing Supply Voltage Overshoot During Motor Stop.

For applications that require preventing supply voltage overshoots during motor stop, select active spin down as Motor stop options. Active spin down can be used as a motor stop option in applications where fast stop is not required but some amount of inductive energy going back to power supply is acceptable

Step 1: Configure Motor stop options [MTR\_STOP] to Active spin down

Step 2: Configure active spin down speed threshold [ACT\_SPIN\_THR]. It is recommended to set the ACT\_SPIN\_THR to 50% of the maximum speed. If there is voltage overshoot seen on the power supply, decrease the ACT\_SPIN\_THR till the voltage overshoot reaches acceptable limit.

## 7.1.8 Protecting the Power supply

Protecting the power supply from drawing higher current or potential voltage overshoots is important in battery operated applications or applications that do not have an internal overcurrent or overvoltage protection built into the power supply.

Step 1: When the load on the motor increases, the device draws higher current from the power supply. To limit the current drawn from the power supply, enable bus current limit [BUS\_CURRENT\_LIMIT\_ENABLE] and configure the bus current limit [BUS\_CURRENT\_LIMIT] to protect the power supply from drawing higher current.

For example, limiting the current drawn from power supplies such as batteries is required because the battery life depends on the charge and discharge cycles. Enabling the bus current limit limits the power supply current by limiting the speed of the motor.

Step 2: When a command is issued for the motor to decelerate, based on the deceleration rate, energy from the motor can be pumped back to the power supply, increasing the supply voltage to levels that are possibly unsafe for electronics. Enable the antivoltage surge [AVS] to protect the power supply from voltage overshoots that override any deceleration limit set by any other register and automatically apply a safe deceleration rate.

Figure 7-2 shows overshoot in power supply voltage when AVS is disabled. Motor decelerates from 100% duty cycle to 10% duty cycle at a deceleration rate of 70000Hz/s. Figure 7-3 shows no overshoot in power supply voltage when AVS is enabled.

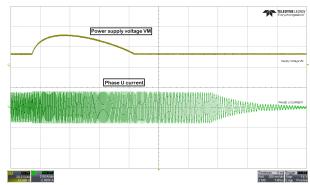



Figure 7-2. Power Supply Voltage and Phase Current Waveform When AVS is Disabled

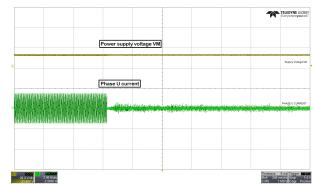



Figure 7-3. Power Supply Voltage and Phase Current Waveform When AVS is Enabled

# 7.2 Hardware Configurations

# 7.2.1 Direction Configuration

The FOC algorithm lets you set the direction of the motor using a register-based direction configuration:

#### Register-based direction configuration

The direction of motor spin can be set based on register setting as shows below.

**DIR\_INPUT 01b**: apply phase sequence OUT A  $\rightarrow$  OUT B  $\rightarrow$ OUT C.

**DIR\_INPUT 10b**: apply phase sequence OUT A  $\rightarrow$  OUT C  $\rightarrow$  OUT B.

www.ti.com Advanced Tuning

## 7.2.2 Brake Configuration

FOC Algorithm enables user to brake the motor under various scenarios. Brake state can be configured to either low side braking (Low-Side Braking) or align brake (Align Braking) through BRAKE\_PIN\_MODE. FOC Algorithm decreases output speed to value defined by BRAKE\_SPEED\_THRESHOLD before entering brake state. As long as BRAKE is driven 'High', motor stays in brake state. Brake functionality can be achieved the following way:

## · Register based Brake configuration.

User can configure the BRAKE\_INPUT in PIN\_CONFIG register to apply the brakes using register settings as below.

- BRAKE\_INPUT 1b: Override pin and brake / align according to BRAKE\_PIN\_MODE
- BRAKE INPUT 10b: Override pin and do not brake / align

## 7.2.3 Real Time Variable Tracking

32-bit algorithm variables can be output in real time from the MCU through the DAC. DAC output is enabled by setting DAC\_EN = 1. The DAC in MSPM0 is 12 bit, thus a scaling needs to be applied before output. User has two ways to scale the variable before output.

# For variables in global IQ format(IQ27):

In the above eqaution setting the DAC\_SCALING\_FACTOR to 1 enables user to represent a data of IQ(1.0) to IQ(-1.0) in between 0 - 3.3V. To represent the data exceeding the value 1.0 use higher DAC\_SCALING\_FACTOR.

For Example: To represent a data from -2.0 to +2.0, set the DAC SCALING FACTOR to 0.5.

#### · For variables in other IQformat:

For output of any other IQ, user can left shit or right shift the variable to bring the data in a 12 bit range before output. This mode is selected by setting DAC\_SCALING\_FACTOR to 0.

If variable value is less than a 12-bit value, set DAC\_SCALE to positive, the DAC output follows as below:

If variable value is greater than a 12-bit value, set DAC\_SCALE to negative, the DAC output follows as below

#### **Note**

Settings DAC\_EN = 1 feeds the variable output to the DAC registers, but user needs to enable the DAC peripheral in TI Sysconfig for the DAC peripheral to function. Also make sure the DAC output pin is not loaded by any other peripheral.

Table 7-1. Address Table for DAC Monitoring

| Variable                      | Address    |
|-------------------------------|------------|
| A phase current               | 0x202001B0 |
| B phase current               | 0x202001B4 |
| C phase current               | 0x202001B8 |
| A phase current raw ADC value | 0x202001BC |
| B phase current raw ADC value | 0x202001C0 |
| C phase current raw ADC value | 0x202001C4 |
| A phase voltage               | 0x20200208 |
| B phase voltage               | 0x2020020C |
| C phase voltage               | 0x20200210 |
| A phase voltage raw ADC value | 0x20200214 |
| B phase voltage raw ADC value | 0x20200218 |
| C phase voltage raw ADC value | 0x2020021C |

Revision History Www.ti.com

**Table 7-1. Address Table for DAC Monitoring (continued)** 

| rable : in radiose rable is: Erre membering (commasa) |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|
| Address                                               |  |  |  |  |
| 0x202002D0                                            |  |  |  |  |
| 0x202002D4                                            |  |  |  |  |
| 0x202002D8                                            |  |  |  |  |
| 0x202002DC                                            |  |  |  |  |
| 0x20200700                                            |  |  |  |  |
| 0x20200708                                            |  |  |  |  |
| 0x202002A4                                            |  |  |  |  |
| 0x202002A8                                            |  |  |  |  |
| 0x202002AC                                            |  |  |  |  |
|                                                       |  |  |  |  |

# **8 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| DATE       | REVISION | NOTES           |
|------------|----------|-----------------|
| March 2024 | *        | Initial Release |

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated