

TRS3122EEVM User's Guide

Abstract

This user's guide describes the functional operation of the TRS3122EEVM Evaluation Module (EVM) for use as a design reference as well as a general engineering demonstration for the TRS3122E RS-232 Transceiver. Included in this User's Guide are setup instructions, features, a schematic diagram, an example layout, layout guidelines, and a bill of materials.

Introduction

The TRS3122EEVM is an evaluation module for the TRS3122E device, a 1.8-V high-speed RS-232 transceiver. The module enables device evaluation using the installed DB9 connector and terminal block. The board interfaces data and control CMOS logic levels on the terminal block to RS-232 levels supporting data [RX, TX] channels and flow control [RTS, CTS] channels on the DB9 connector.

TRS3122EEVM Board

Features

- Interface with MCUs or processor from 1.65 V up to 5.5 V
- High-speed RS-232 communication, up to 1 Mbps
- Auto-powerdown plus for very low power consumption (1µA) during shutdown
- Robust IEC61000-4-2 qualification provides robust protection from electrostatic discharge events
- DB9 female connector for direct connection with a computer's RS-232 port
- Screw terminals for easy connection for all power and logic signals

Applications

Any application that needs short range point to point full duplex data communications with hardware flow control.

- Remote Radio Unit (RRU)
- Base Band Unit (BBU)
- Electronic Point of Sale (EPOS)
- Diagnostics & Data Transmission Battery-Powered Equipment

Setup

The VCC screw terminal point needs to be supplied with external power; 1.8 V or 3.3 V is recommended. The VL screw terminal point needs to be supplied with external power; 1.8 V to VCC is recommended. The GND screw terminal point is the ground connection for the TRS3122EEVM.

The DB9 connector mates with a personal computer's RS-232 port or a USB to RS-232 adapter. For initial testing, external wires can be added to screw terminals; CTS2 to RTS2 and TX2 to RX2 to loop back the signal.

The ideal usage involves connecting the terminal block data and control lines to a system that has an UART (Universal asynchronous receiver/transmitter) onboard.

The EVM has pull up resistors on the TRS3122E FORCEOFF and FORCEON pins to keep both driver and receiver active. If desired, these signal can be driven by the external system to fully control all the features of auto-powerdown plus circuitry. The system may also benefit from monitoring the INVALID output to detect if an active connection has been made to the RS-232 port.

Usage at 5 V

The capacitors installed on the TRS3122EEVM were selected for VCC = 1.8 V and VCC = 3.3 V operation. It is required to change some of the onboard capacitors for 5 V testing.

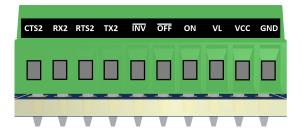
Capacitor Changes

VCC voltage	C1	C2	C4	C5
1.8 V, 3.3 V	100 nF	100 nF	100 nF	100 nF
5 V	47 nF	330 nF	330 nF	330 nF

www.ti.com

Connector/Test Points

DB9 Connector



DB9 Connector Pinout

The female DB9 port provides access to the TRS3122E device through a standard RS-232 pinout. The TRS3122E female port is DCE to mate with a computer's male DTE port. The pin names are counterintuitive on the DCE side. For example the RX pin on EVM is connected to a driver and TX connects to a receiver.

- Pins 1 and 9 are not connected.
- Pins 2, 3, 7, 8 provide access to the RS-232 communication lines RX1, TX1, RTS1, CTS1 respectively.
- Pins 4 and 6 are shorted together by a 0 Ω resistor to loopback the unused handshaking lines.
- Pin 5 is grounded.

Screw Terminal Connector

Screw Terminal Connector Pinout

The screw terminal port provides access to the TRS3122E device communication pins as well as control, output, and power pins. Note that pins are numbered from left to right in the description below.

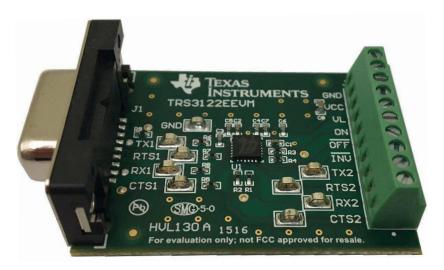
- Pins 1 through 4 provide access to the logic communication lines CTS2, RX2, RTS2, and TX2 respectively.
- Pin 5 connects to the INVALID pin, which has the function described by the INVALID Pin Function Table.

INVALID Pin Function

	OUTPUT			
RIN1, RIN2	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	INVALID
Any L or H	Χ	X	X	Н
All Open	Х	X	X	L

• Pin 6 connects to the FORCEOFF pin, and Pin 7 connects to the FORCEON pin. Please see the Driver Function Table and the Receiver Function Table for pin functions.

Driver Function Table

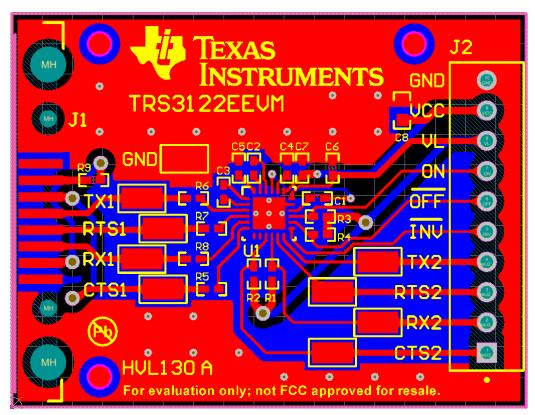

INPUTS			OUTPUT			
DIN	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	DOUT	DRIVER STATUS	
Х	Х	L	X	Hi-Z	Powered off	
L	Н	Н	X	Н	Normal operation with auto- powerdown plus enabled	
Н	Н	Н	X	L		
L	L	Н	<30s	Н	Normal operation with auto- powerdown plus enabled	
Н	L	Н	<30s	L		
L	L	Н	>30s	Hi-Z	Powered off by auto- powerdown plus feature	
Н	L	Н	>30s	Hi-Z		

Receiver Function Table

INPUTS			OUTPUT			
RIN	FORCEOFF	FORCEON	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	ROUT	RECEIVER STATUS	
Х	L	Х	X	Hi-Z	Powered off	
L	Н	X	X	Н	Normal Operation with auto-	
Н	Н	X	X	L	powerdown plus	
Open	Н	X	X	Н	disabled/enabled	

- Pin 8 connects to the VL pin, which is the logic level supply to which all logic inputs and outputs are referenced.
- Pin 9 is connected to VCC, the supply voltage for the device's charge pump.
- Pin 10 is connected to GND.

Board Test Points


EVM top view image

The TRS3122EEVM provides test points for all RS-232 (TX1, RTS1, RX1, CTS1) and logic (TX2, RTS2, RX2, CTS2) communication lines in addition to a ground test point.

Printed Circuit Board Layouts

PCB Layout

PCB Layout

PCB Layer Plots

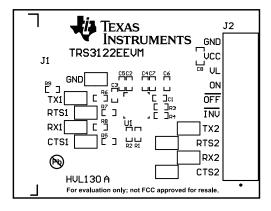


Figure 0-1. Top Layer

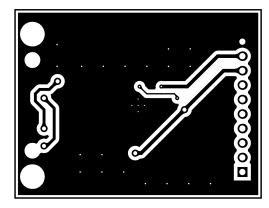


Figure 0-2. Bottom Layer

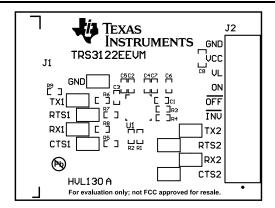


Figure 0-3. Top Overlay

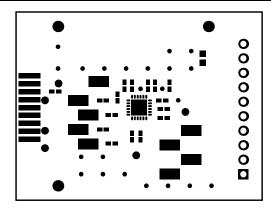


Figure 0-4. Top Solder Mask

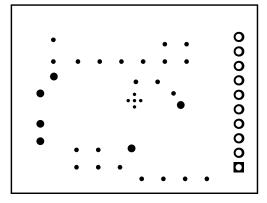
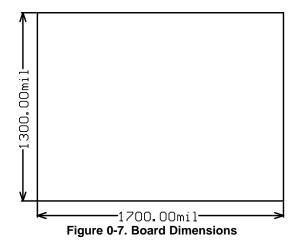
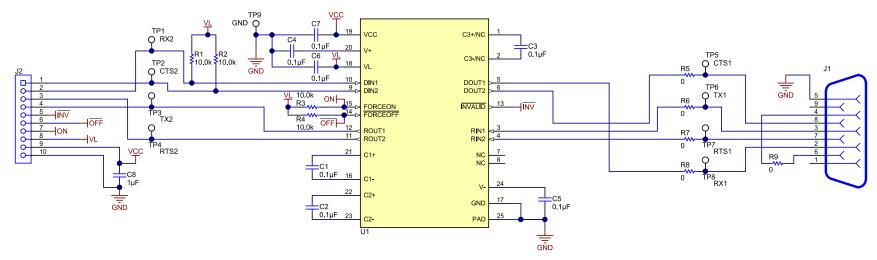



Figure 0-5. Bottom Solder Mask


Figure 0-6. Drill Drawing

www.ti.com

Schematic

TRS3122EEVM Schematic

Bill of Materials

			Description	Package Reference	Part Number	Manufacturer
!PCB1	1		Printed Circuit Board		HVL130	Any
C1, C2, C3, C4, C5, C6, C7	7	0.1 μF	CAP, CERM, 0.1 μF, 25 V, +/- 10%, X7R, 0402	0402	GRM155R71E104K E14D	MuRata
C8	1	1 μF	CAP, CERM, 1 µF, 25 V, +/- 10%, X7R, 0603	0603	GRM188R71E105K A12	MuRata
J1	1		CONN DB9 FEMALE R/A SOLDER SMD	30.81 x10.28 x10.10 mm	190-009-263R001	NorComp
J2	1		Terminal Block, 10x1, 2.54 mm, TH	Term Block, 10x1, 2.54 mm, TH	1725737	Phoenix Contact
R1, R2, R3, R4	4	10.0 k	RES, 10.0 k, 1%, 0.1 W, 0402	0402	ERJ-2RKF1002X	Panasonic
R5, R6, R7, R8, R9	5	0	RES, 0, 5%, 0.063 W, 0402	0402	ERJ-2GE0R00X	Panasonic
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8	8	SMT	Test Point, Miniature, SMT	Testpoint_Keys tone_Miniature	5015	Keystone
TP9	1		Test Point, Miniature, SMT	Testpoint_Keys tone_Miniature	5015	Keystone
U1	1		RS-232 (2 - 2) TRANSCEIVER WITH SPLIT SUPPLY PIN FOR LOGIC SIDE, RGE0024H	RGE0024H	TRS3122ERGER	Texas Instruments
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A

Reference

1. TRS3122E 2Tx/2Rx Low Voltage, Low Power RS232 Transceiver data sheet (SLLSET7)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications Amplifiers **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Security Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

www.ti.com/security

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

Logic

OMAP Applications Processors TI E2E Community www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity