This user’s guide describes the SN55LVCP22-CVAL evaluation module (EVM). The SN55LVCP22EVM-CVAL highlights the high-speed performance and functionality of the SN55LVCP22 2x2 crosspoint switch. This guide contains the EVM schematic, bill of materials, assembly drawing, and board layouts.

Contents
1 Introduction .. 2
 1.1 Signal Paths .. 3
2 Setup and Equipment Required .. 4
 2.1 Applying an Input .. 4
 2.2 Observing an Output ... 5
 2.3 Typical Test Results .. 6
3 Board Layout ... 7
4 Schematic and Bill of Materials .. 9
1 Introduction

The SN55LVCP22 (LVDS output) is a high-speed 2x2 crosspoint switch. The four different functions that this crosspoint provides are shown in Figure 1. The functions are selected via pins SEL0 and SEL1. Control pins EN0 and EN1 enable or disable the outputs. The receiver has a wide input common-mode voltage range with an ability to accept LVDS, LVPECL and CML signaling levels.

![Figure 1. SN55LVCP22 Functional Configurations](image1)

![Figure 2. SN55LVCP22EVM-CVAL](image2)
1.1 Signal Paths

The signal paths on this EVM include 8 edge-launch SMA connectors (J8-J16) for high-speed data transmission, 2 jumpers for active switch logic control, 2 jumpers (J6 and J7) for enabling and disabling the outputs, and three banana jacks (J3, J4, J5) for power and ground connections. Note GND is tied to VCC01 to allow for proper common mode termination to 50-Ω loads. See Figure 10.
Setup and Equipment Required

The output characteristics of the SN55LVCP22 are specified in the TIA/EIA-644 standard. LVDS drivers nominally provide a 350-mV differential signal, with a 1.25-V offset from ground. These levels are attained when driving a 100-Ω differential line-termination test load. This requirement includes the effects of up to 32 standard receivers with their ground reference up to 1 V different from that of the driver. This common-mode loading limitation of LVDS drivers affects how they are observed and much of the test setup that follows.

The EVM is designed to support the SN55LVCP22 LVDS output device. By using the three power jacks (J3, J4, J5), as well as installing termination resistors (R3-R8 and R11-R16), different methods of termination and probing can be used to evaluate the device output characteristics. The typical setup for the SN55LVCP22 is shown in Figure 3.

![Figure 3. EVM Power Connections for SN55LVCP22 Evaluation - With LVDS Inputs](image)

2.1 Applying an Input

When using a general-purpose signal generator with 50-Ω output impedance, make sure that the signal levels are between 0 V and 4 V with respect to J5, device under test ground (DUT GND), designated as VCC01.

Inputs should be applied to the SMA connectors J8, J9, J10, and J11. Matched cable lengths must be used when connecting the signal generator to the EVM to avoid inducing skew between the noninverting and inverting inputs. The EVM comes with 100-Ω resistors installed across the differential inputs for LVDS termination. The simple 100-Ω terminations do not provide the necessary termination for LVPECL or CML (1) output structures. In order to interface the SN55LVCP22EVM-CVAL with CML or LVPECL drivers, external terminations are required. Figure 4 shows an example termination for LVPECL and CML output structures. Remove resistors R1 and R2 when using the external terminations.

(1) CML is not a standardized physical layer and therefore the output structures and required termination differ from vendor to vendor.
Setup and Equipment Required

The use of external resistors creates a significant stub between the termination and the actual device receivers. The user needs to verify that the transition time of the input signal, coupled with the stub length, does not lead to reflection problems. In normal applications, the termination would be placed as close as possible to the device inputs to minimize reflections.

The control lines SEL0 and SEL1 require LVTTL levels and are stimulated by the VCC power supply, via jumpers J1 and J2. Table 1 shows the different functions and the control line settings for each.

Table 1. Crosspoint Function Table

<table>
<thead>
<tr>
<th>SEL0</th>
<th>SEL1</th>
<th>OUT0</th>
<th>OUT1</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>IN0</td>
<td>IN0</td>
<td>1:2 Splitter</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>IN0</td>
<td>IN1</td>
<td>Repeater</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>IN1</td>
<td>IN0</td>
<td>Switch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>IN1</td>
<td>IN1</td>
<td>1:2 Splitter</td>
</tr>
</tbody>
</table>

2.2 Observing an Output

Direct connection to an oscilloscope with 50-Ω internal terminations to ground is accomplished without R3-R8 installed. The outputs are available at J12-J15 for direct connection to oscilloscope inputs. Matched cable lengths must be used when connecting the EVM to a scope to avoid inducing skew between the noninverting (+) and inverting (-) outputs.

The three power jacks (J3, J4, J5) are used to provide power and a ground reference for the EVM. The power connections to the EVM determine the common-mode load to the device. As mentioned earlier, LVDS drivers have limited common-mode driver capability. When connecting the EVM outputs directly to oscilloscope inputs, setting of the oscilloscope common-mode offset voltage is required, as the oscilloscope presents low common-mode load impedance to the device.

Returning to Figure 3, power supply 1 is used to provide the required 3.3 V to the EVM. Power supply 2 is used to offset the EVM ground relative to the DUT ground. The EVM ground is connected to the oscilloscope ground through the returns on SMA connectors J12-J15. With power applied as shown in , the common-mode voltage seen by the SN55LVCP22 is approximately equal to the reference voltage being used inside the device, preventing significant common-mode current to flow. Optimum device setup can be confirmed by adjusting the voltage on power supply 2 until its current is minimized. It is important to note that use of the dual supplies and offsetting the EVM ground relative to the DUT ground are simply steps needed for the test and evaluation of devices. Actual designs include high-impedance receivers, which do not require the setup steps outlined above.
If the outputs are to be evaluated with a high-impedance probe, direct probing on the EVM board is supported via installation of a 50-Ω resistor across the solder pads for R6 and R8, and another 50-Ω resistor across the solder pads for R3 and R5 for DUT1. Or, LVDS outputs can be observed by installing a 100-Ω resistor at R4, R7, R12, or R15. LVPECL outputs can be observed by installing R3, R5, R11, R13, R14, and R16 (49.9-Ω resistors) and setting power supply #2 to 1.3 V (note that power supply #2 must be able to sink current).

2.3 Typical Test Results

Figure 5 shows typical results obtained with the EVM setup. The DUT was configured to send the IN0+/IN0- inputs to the outputs OUT0+/OUT0- and inputs IN1+/IN1- to outputs OUT1+/OUT1- by setting EN0 and EN1 to a high level and by setting SEL0 to GND and SEL1 to VCC. The stimuli were a $2^{15}-1$ PRBS to J1 and J2 at 1.3 Gbps, and a 650-MHz clock to J3 and J4.

![Figure 5. Typical Test Results of the SN55LVCP22EVM-CVAL](image-url)
Board Layout

Figure 6. Silk Screen

Figure 7. Layer 2 – GND Plane
Figure 8. Layer 3 – PWR Plane

Figure 9. Bottom Layer
4 Schematic and Bill of Materials

The following pages contain the SN55LVCP22EVM-CVAL schematic and bill of materials.

Figure 10. SN55LVCP22EVM-CVAL Schematic
Table 2. SN55LVCP22EVM-CVAL Bill of Materials

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Qty</th>
<th>Part Name</th>
<th>Designator</th>
<th>Value</th>
<th>JEDEC Type</th>
<th>Manufacturer</th>
<th>Part No.</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>32K145_400L5</td>
<td>J8-J15</td>
<td>32K145-400L5</td>
<td>ROSENBERGER</td>
<td>32K145-400L5</td>
<td>EDGE MOUNT SMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>BANANA_RED</td>
<td>J3-J5</td>
<td>101</td>
<td>101_BANANA_ JACK</td>
<td>ABBATRON HH SMITH</td>
<td>101</td>
<td>BANANA JACK, STUD</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CAPS_0603</td>
<td>C9,C10</td>
<td>0.001UF</td>
<td>C0603</td>
<td>YAGEO</td>
<td>CC0603JRNPO8BN102</td>
<td>CAP CER 1000PF 25V 5% NPO 0603</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>CAPS_0603</td>
<td>C11</td>
<td>0.01UF</td>
<td>C0603</td>
<td>TDK CORP</td>
<td>C1608X7R1C103K</td>
<td>CAP CER 1000PF 16V 10% X7R 0603</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>CAP_1206</td>
<td>C5,C6</td>
<td>1UF</td>
<td>C1206</td>
<td>TDK CORP</td>
<td>C3216X7R1C105K/0.85</td>
<td>CAP CER 1UF 16V 10% X7R 1206</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>CAP_1206</td>
<td>C7,C8</td>
<td>0.1UF</td>
<td>C1206</td>
<td>Kemet</td>
<td>C1206F104K3RACTU</td>
<td>CAP CER 0.1UF 25V 10% X7R 1206</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>CAP_POL_1206</td>
<td>C1,C2</td>
<td>10UF</td>
<td>TANT_A</td>
<td>KEMET</td>
<td>T491A106M016AT</td>
<td>CAP TANT 10UF 16V 20% 1206</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>CAP_POL_1206</td>
<td>C3,C4</td>
<td>68UF</td>
<td>TANT_A</td>
<td>AVX CORP</td>
<td>TLJ688M010R1500</td>
<td>CAP TANT 68UF 10V 20% 1206</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>HDR_1X3-HDR_1X3_100MIL</td>
<td>J1,J2,J6,J7</td>
<td>HDR_1X3_100MIL</td>
<td>HDR_1X3_100MIL</td>
<td>100 Mil pitch 1X3 Header</td>
<td>Regular 100 mil header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>RES_0603</td>
<td>R1,R2</td>
<td>100</td>
<td>R0603</td>
<td>PANASONIC</td>
<td>ERJ-3GEYJ101V</td>
<td>RES 100 OHM 1/10W 5% 0603 SMD</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>RES_0603</td>
<td>R3-R8</td>
<td>DNL</td>
<td>R0603</td>
<td>DNL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>SN55LVCP22</td>
<td>DUT1</td>
<td>SN55LVCP22</td>
<td>SN55LVCP22</td>
<td>Ti</td>
<td>SN55LVCP22</td>
<td>Customer Supplied</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>Shunt For line item 9</td>
<td></td>
<td></td>
<td></td>
<td>FCJ</td>
<td>65474-010</td>
<td>MINI JUMP 2POS .100"</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>Standoff, 4-40 Hex - F/F, 0.50" - ALUM</td>
<td></td>
<td></td>
<td></td>
<td>Keystone Electronics</td>
<td>2203</td>
<td>Standoff, 4-40 Hex - F/F, 0.50" - ALUM</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>Screws, 4-40, Phillips panhead 0.375"- SS</td>
<td></td>
<td></td>
<td></td>
<td>Building Fasteners</td>
<td>PMSSS 440 0038 PH</td>
<td>Nuts for the standoff</td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORIAL, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même s’il est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes démontables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
Important Notice for Users of this Product in Japan

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60 °C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio [www.ti.com/audio]
Amplifiers [amplifier.ti.com]
Data Converters [dataconverter.ti.com]
DLP® Products [www.dlp.com]
DSP [dsp.ti.com]
Clocks and Timers [www.ti.com/clocks]
Interface [interface.ti.com]
Logic [logic.ti.com]
Power Mgmt [power.ti.com]
Microcontrollers [microcontroller.ti.com]
RFID [www.ti-rfid.com]
OMAP Applications Processors [www.ti.com/omap]
Wireless Connectivity [www.ti.com/wirelessconnectivity]

Applications

Automotive and Transportation [www.ti.com/automotive]
Communications and Telecomm [www.ti.com/communications]
Computers and Peripherals [www.ti.com/computers]
Consumer Electronics [www.ti.com/consumer-apps]
Energy and Lighting [www.ti.com/energy]
Industrial [www.ti.com/industrial]
Medical [www.ti.com/medical]
Security [www.ti.com/security]
Space, Avionics and Defense [www.ti.com/space-avionics-defense]
Video and Imaging [www.ti.com/video]

For more information, please visit [e2e.ti.com]