
1SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

User's Guide
SLLU270–May 2019

TCAN45xx Software User's Guide

The purpose of this document is to give an overview and some basic examples of the TI TCAN45xx SPI to
CAN FD bridge device to assist with the development of a custom application. This document refers to the
device data sheet for register descriptions.

Contents
1 Introduction ... 3
2 TCAN45xx SPI to CAN Basics... 4
3 Device Features.. 5
4 CAN / CAN FD ... 7
5 Software Optimization Tips ... 20
6 Software Libraries .. 23

List of Figures

1 Integrated CAN Application... 3
2 CAN Application with TCAN45xx .. 4
3 Example Watchdog Timer Behavior (60 ms and INT output).. 5
4 Example Watchdog Timer Behavior (60 ms and INH output) ... 6
5 Nominal bit Time ... 8
6 Nominal bit time for the TCAN45xx ... 8
7 Visual Representation of MRAM Allocation... 12
8 SID Filter Element.. 12
9 XID Filter Element.. 14
10 Rx FIFO / Buffer Element ... 15
11 Tx Event FIFO Element ... 16
12 Tx FIFO / Buffer Element ... 17
13 An Example Inefficient SPI Transfer... 21
14 An Example Efficient SPI Transfer... 21
15 Inefficient Transfer of Large Data .. 22
16 Efficient Transfer of Large Data .. 22
17 AutoSAR Abstraction Layers ... 24
18 Microcontroller Abstraction.. 25
19 32-bit SPI Read or Write Example ... 26
20 SPI Packet Breakdown .. 26
21 Multi-word SPI Packet Example .. 26

List of Tables

1 Design Requirements ... 6
2 Design Selections.. 6
3 CAN Bit Timing Values.. 8
4 Message RAM ... 9
5 Message RAM Design Example ... 10
6 Message RAM Design Example Continued .. 11

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com

2 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

7 Message RAM Design Example Register Values.. 11
8 SID Filter Element.. 13
9 SFT... 13
10 Filter and Mask Example .. 13
11 SFEC... 13
12 XID Filter Element.. 14
13 Rx FIFO / Buffer Element ... 15
14 Tx Event FIFO Element ... 16
15 Tx FIFO / Buffer Element ... 17
16 Example CAN Message ... 18
17 SPI Writes ... 19
18 SPI Reads... 19
19 SPI Reads ... 20

Trademarks
All trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CAN SW Application

Interrupt
Service
Routine

(ISR)
Software accesses

direct memory-
mapped system

memory and CAN
controller registers
to send and receive

CAN data

CAN (FD) Controller

Controller handles
transactions to/from

systems memory to the
TXD/RXD lines

Internal or External
Memory

Storage of Tx and Rx
FIFO/Buffers

CAN TransceiverTXD

RXD

CAN Software writes
packets to be transmitted

into memory

CAN Controller writes
received packets to

memory

www.ti.com Introduction

3SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

1 Introduction
The TCAN45xx family of SBCs support classic CAN and CAN FD communication with SPI interface. This
allows users to incorporate CAN or CAN FD into their system without a deep understanding of the
CAN/CAN FD protocol.

For developers that already have software built around the common Bosch M_CAN controller, it is quick to
port over to the TCAN45xx. Only the low-level register read and write functions must be changed to be a
SPI-based read and write. The register set is the same. A CAN Controller is integrated into the
microcontroller/processor and an external transceiver is required to communicate on a CAN bus, as
shown in Figure 1.

Figure 1. Integrated CAN Application

For users who wish to add CAN FD functionality (or additional CAN busses), but their selected
microcontroller has no built in CAN controller, the TCAN45xx includes the memory, CAN FD Controller
and transceiver in a single package. Figure 2 shows how an existing solution can be ported to an external
controller by changing the code that writes to registers to use a SPI read or write instead.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CAN SW Application
Interrupt
Service
Routine

(ISR)

Only need to
change memory
access method

SPI Controller

Tx/Rx FIFO memory and
CAN Controller registers are

no longer direct memory
mapped.

SPI Read and SPI
Write function to
convert register
access to SPI

transactions is the
only difference

CAN
Transceiver

TXD

RXD

Internal
Memory

Storage of Tx
and Rx FIFO/

Buffers

CAN (FD) Controller

TCAN45xx

TCAN45xx SPI to CAN Basics www.ti.com

4 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 2. CAN Application with TCAN45xx

2 TCAN45xx SPI to CAN Basics
The TCAN45xx gives CAN FD functionality to applications without requiring anything more than a SPI bus.
The TCAN45xx handles all CAN and CAN FD traffic, and includes the transceiver in the package. This
makes adding CAN functionality to a system quick and easy, since the only requirement on the processor
is to have a SPI interface. There are many features of the TCAN45xx family, which include CAN and non-
CAN related functions, such as a watchdog timer, CAN transceiver and controller with CAN FD support,
on-device memory for storing and sending CAN messages, partial networking and more. This document
provides several configuration and use case examples to aid in quick development.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

Time

WDT
Reset

WDT
Counter

 < 60 ms < 60 ms 60 ms

INT

WDT
Timeout

www.ti.com Device Features

5SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

3 Device Features
This portion of the document pertains to device features which are not directly CAN related.

3.1 Watchdog Timer (TCAN4550 Only)
The watchdog timer (WDT) is a feature which must be reset by the host (via SPI write to the WD_BIT 18
of the Modes of Operation and Pin Configuration register, or via a general purpose input pin) within the
timer window; otherwise, a watchdog action occurs. This feature is available on the TCAN4550. There are
3 options for watchdog actions (selectable via the WD_ACTION bits in the Modes of Operation and Pin
Configuration register):
1. Set an interrupt flag, if an output is configured to reflect WDT output, then the pin shows a low (default)
2. Pulse the inhibit (INH) pin with a low-high-low pattern of ≈ 300 ms, and place TCAN4550 into standby

mode
3. Pulse watchdog output reset pin with a low-high-low pattern of ≈ 300 ms

These watchdog action options allow the user flexibility in their use of the timer, as well as behavior when
it times out. It is possible to automatically recover/reset a host processor if it does not respond within a
certain amount of time to reset the WDT, allowing for automatic recovery in the event of a system failure.

Figure 3. Example Watchdog Timer Behavior (60 ms and INT output)

An example watchdog timer situation is shown in Figure 3. The WDT is configured for 60 ms time out
value. Three reset writes are performed before the timer overflows. In this example, the processor does
not reset the watchdog timer after the 3rd reset, and the WDT counter hits the timeout value. Once the
WDT hits the time out value, it performs the watchdog action. In this example, the action is set to the
default interrupt flag, and the output is configured to reflect the WDT output. Figure 4 shows what the INH
pin behavior is when the watchdog behavior is configured to pulse the inhibit pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

Time

WDT
Reset

60 ms

INT

INH

300 ms 60 ms 300 ms

Device Features www.ti.com

6 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 4. Example Watchdog Timer Behavior (60 ms and INH output)

3.1.1 Configuring the Watchdog Timer
To configure the watchdog timer, the designer must decide the following items:

Table 1. Design Requirements

Design Requirement Available Options Description

Watchdog timer timeout
value 60 ms / 600 ms / 3 s / 6 s

The time out value, the amount of time the
microcontroller has to reset the watchdog timer,
otherwise a WDT interrupt occurs.

Watchdog timeout action Interrupt flag / Inhibit pin and standby mode / Pulse
watchdog output pin

Describes what the TCAN4550 does when the
watchdog time out has occurred.

Watchdog clock
reference 20 MHz / 40 MHz Sets the appropriate clock divider based on the

input oscillator frequency

Reset pulse method SPI Write / SPI Write or GPIO Pulse
Sets how the timer is reset, either via SPI only, or
enable a GPIO input pulse to reset the timer. The
SPI method is always enabled

Once the parameters in question are selected, then the desired values may be written to the Modes of
Operation and Pin Configuration Register (0x0800).

As an example, a watchdog timer timeout value of 600 ms, a timeout action of Inhibit pin, and standby
mode is selected. The user must also make sure that the enable bit is set for the watchdog timer.

Table 2. Design Selections

Design
Requirement Selected Options Register Bits Value

Watchdog timer
timeout value 600 ms 0x0800 [29:28] 2'b01

Watchdog
timeout action Inhibit pin and standby mode 0x0800 [17:16] 2'b10

Watchdog clock
reference 40 MHz 0x0800 [27] 1'b1

WD_Enable Enabled 0x0800 [3] 1'b1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com Device Features

7SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

The power up default of the Modes of Operation and Pin Configuration Register (0x0800) is 0xC8000468.
The appropriate bits must be set in this register according to Table 2. This results in a value of
0xD8020468. The watchdog has been configured, but does not start until the first WD Reset pulse has
occurred (from either the WD input pin if configured, or a SPI write to the WD_RESET bit). Once this pulse
has occurred, the watchdog timer begins and the microcontroller must reset the watchdog counter within
the configured timeout value window to prevent the watchdog action from occurring.

3.2 Starting the Watchdog Timer
The watchdog timer does not start until the initial write to the WD_BIT (0x0800 [18]) or a pulse to the
GPIO pin that is configured for watchdog input (if enabled).

3.2.1 Resetting the Watchdog Timer
Once the timer has been started, the microcontroller must clear the watchdog counter before the
watchdog timer has crossed the timeout value. This may be accomplished by writing to 0x0800 [18]
(WD_BIT), which resets the timer's counter, and the process repeats.

3.2.2 Watchdog Timeout
If the microcontroller is unable to reset the timer before the timeout value, then a watchdog interrupt is set,
and the TCAN4550 performs the action described by the WD_ACTION bits in 0x0800 [17:16].

4 CAN / CAN FD
This section of the document pertains to the CAN controller core, and the portions required to
communicate on a CAN bus.

A CAN controller is a state machine that manages the protocol-specific details, leaving the microcontroller
to manage the actual data being sent and received.

In a CAN system, there are a few critical variables that must be set correctly to ensure proper
communication across the peripheral devices. Bit timing is the most critical.

4.1 Bit Timing Setup
In the CAN protocol, there are 4 sections to a nominal bit time: the sync segment, the prop segment, and
the phase 1 and phase 2 segments. This is shown in Figure 5. Each CAN bit is over-sampled by the CAN
controller. In the example below, each CAN bit is sampled 10 times (10 time quanta). The state of the bit
is sampled between phase 1 and phase 2. This determines if the current CAN bit is a 1 or a 0. The sync
segment is required to be a single time quanta (tq) while the other 3 segments are controllable to set the
CAN data rate. In the example below, the propagation delay segment is 3 tq, phase 1 is 4 tq, and phase 2
is 2 tq. Therefore, the sum equals 10 tq. The sample point in this example is 80% to allow for enough time
for the signal to propagate through a CAN bus. If the sample clock were 10 MHz (40 MHz input clock with
a prescaler of 1:4), then the CAN data rate would be 1 Mbps (10 MHz / (10 tq/bit) = 1 Mbps).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq

Nominal Bit Time
(Single CAN bit)

Sync Prop + Phase 1 Phase 2

Sample Point

1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq 1 tq

Nominal Bit Time
(Single CAN bit)

Sync Phase 1 Phase 2Prop

Sample Point

CAN / CAN FD www.ti.com

8 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 5. Nominal bit Time

The TCAN45xx takes the timing parameters in 2 single values: Prop + Phase 1, and Phase 2. This tells
the CAN controller when to sample the bit, and how many tq are in a bit. Since the sync bit is required and
always equal to a single time quanta, this is assumed by the TCAN45xx and does not require the
microcontroller to input this data. Figure 6 shows how the TCAN45xx would interpret these values, and
how a user can envision the single data bit.

Figure 6. Nominal bit time for the TCAN45xx

The TCAN45xx registers for the CAN bit timing interpret values greater than the raw register value. For
example, if a user inputs 0 into the phase 2 bits, then the TCAN45xx interprets it as a value of 1. This is
because none of the prop or phase values may be 0 tq. So care must be taken when inputting the bit
timing settings that the microcontroller writes 1 less than the desired value. Table 3 outlines the
parameters required for this example.

Table 3. CAN Bit Timing Values

Segment Raw value Register value
Prescaler 4 3

Prop + Phase 1 7 tq 6
Phase 2 2 tq 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com CAN / CAN FD

9SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

The table above shows the raw values, and the values that would be entered into the register. The
prescaler value is used to scale the input 40 MHz clock, in this example, to a 10 MHz clock, with 10 time
quanta to achieve a nominal bit rate of 1 Mbps. There is 1 additional parameter called the sync jump
width, which allows the CAN controller to compensate for a certain number of time quanta of error. This
value is generally set equal to Phase 2. Refer to a CAN protocol manual for more information. As an
example, if the microcontroller were to write these values to the TCAN45xx, it would write 0x02030601 to
the NBTP (0x101C) register. In the previous write, the nominal resynchronization jump width is set to the
same value as Phase 2 (note that NSJW is bits [31:25]).

It is also important to note that there is a separate register for CAN FD bit rate switching (BRS) enabled
messages, which allows the CAN controller to switch to a faster speed for the data payload portion of the
message. The process is the same, but the values are written to the DBTP (0x100C) register instead. In
systems with CAN FD and bit rate switching enabled, there will frequently be an additional propagation
delay offset needed to properly sample bits. This delay is called the transmitter delay compensation and
has its own register called TDCR (0x1048). If this value is not set properly, high speed data payloads will
likely interpret the data incorrectly, or go into an error state.

4.2 Message RAM
The Message RAM (MRAM) is a block of memory to be used by the TCAN45xx for sending and receiving
CAN messages. The layout of this memory is up to the system designer. It is very important to note that
the TCAN45xx does NOT perform any checks of the MRAM layout to ensure a valid configuration which is
free from any overlapping sections. As such, it is critical that the MRAM be properly configured or
unanticipated behavior may occur.

Overlapping memory sections also may occur without directly realizing it. A read or write to the MRAM
address space wraps around to the start of the MRAM after the last address of the MRAM. For example,
on the TCAN45xx, there is 2 kB of MRAM, occupying address 0x8000 to 0x87FF. If a user attempts to
read or write to register 0x8800, this is the same as a read or write to 0x8000. So it becomes critical to
make sure that the MRAM memory is not over-allocated, either.

Another feature of the MRAM is Error Correcting Code (ECC) functionality. This feature is able to correct a
single bit error per word of memory, and detect and warn the M_CAN module if there are more errors.
This is important to keep in mind while reading or writing to the MRAM, since the ECC is updated on a
write to memory only. On a fresh power up of the system, the ECC values will not be valid for the data in
MRAM, and attempting to perform an action that reads from the MRAM without first writing results in a Bit
Error Uncorrectable error (BEU). Particularly, it is important that the user writes at least 8 bytes of payload
data (in addition to the header) into a TX buffer, regardless of if the Data Length Code (DLC) of the packet
is less than 8.

4.2.1 MRAM Sections
There are 7 sections that are available for use within the MRAM memory space. All of these are optional,
and the order of sections does not matter.

Table 4. Message RAM

Start Address
Location Section Name Description

SIDFC.FLSSA 11-bit ID Filter 11-bit ID Filter Elements, used to filter any incoming 11-bit ID CAN message. The system
designer writes to this section.

XIDFC.FLESA 29-bit ID Filter 29-bit ID Filter Elements, used to filter any incoming 29-bit ID CAN message. The system
designer writes to this section.

RXF0C.F0SA Rx FIFO 0 Rx FIFO 0, a FIFO which stores incoming CAN messages. The system designer reads from this
section.

RXF1C.F1SA Rx FIFO 1 Rx FIFO 1, a FIFO which stores incoming CAN messages. The system designer reads from this
section.

RXBC.RBSA Rx Buffers
Rx Buffers is a series of buffers which specific CAN messages can be sent to. These are not a
FIFO, and if new data is received into the buffer without the old data being read, the original data
is lost. The system designer reads from this section.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CAN / CAN FD www.ti.com

10 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Table 4. Message RAM (continued)
Start Address
Location Section Name Description

TXEFC.EFSA Transmit Event
FIFO

A FIFO which stores CAN message transmit event messages. These elements are generated by
the TCAN45xx when transmitting a message, and are for the microcontroller to read to see the
status of a sent message. The system designer reads from this section.

TXBC.TBSA Tx Buffers
These Tx Buffers store CAN messages to be transmitted. When sending a CAN message, data
must first be loaded into the buffer, then a transmission request must be sent to the TCAN45xx
from the microcontroller to start the transmission. The system designer writes to this section.

It is important to realize that each of these sections are optional. The system designer can select which
sections they require, and how many elements of each section are needed. As mentioned earlier, the
TCAN45xx does not check the configuration registers to ensure that the MRAM is laid out free of overlaps,
so the designer needs to ensure that this is the case. There are no requirements on the order of these
sections, or that they must be 'back to back'. The system designer is given full control over the use of the
MRAM.

4.2.2 Example MRAM Configuration
As mentioned in Section 4.2.1, there are 7 sections available for use. This section will walk through the
configuration of an example setup.

Table 5. Message RAM Design Example

Section Name Number of Elements Maximum Data Size
11-bit Filter (SID Filter) 2 -
29-bit Filter (XID Filter) 1 -

Rx FIFO 0 4 (Warn at 2) 48 Bytes
Rx FIFO 1 5 (Warn at 3) 64 Bytes
Rx Buffers 0 -

Tx Event FIFO 3 -
Tx Buffers 10 (Tx FIFO) 64 Bytes

Table 5 lists the number of elements the system designer of this example desires. Once the number of
elements and the desired maximum data payload (of the CAN message) is known, then the system
designer is able to start calculating the start addresses to ensure that there are no overlaps.

There are a few notes to keep in mind when calculating the start addresses. The lower 2 bits are ignored
by the TCAN45xx. This means that every start address must be on a 4 byte boundary (0x00, 0x04, 0x08,
0x0C, etc). For the TCAN45xx family, the MRAM memory space starts at 0x8000. However, when writing
the start address into the TCAN45xx start address registers, the leading bit is dropped. For example, if a
section has a start address of 0x800C, a user would simply write 0x000C into the start address bits of the
appropriate configuration register. When performing a SPI read or write to the memory location, the
0x800C address must be used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com CAN / CAN FD

11SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Table 6 outlines the necessary calculations to determine the start address.

Table 6. Message RAM Design Example Continued

Section Name Maximum Data
Size

Bytes per
Element

Number of
Elements

Total Bytes per
Section

Start
Address

End
Address

Start
Address
(Hex)

11-bit Filter (SID
Filter) - 4 2 8 0 7 0x8000

29-bit Filter (XID
Filter) - 8 1 8 8 15 0x8008

Rx FIFO 0 48 Bytes 8 + Max data size
= 56 4 (Warn at 2) 224 16 239 0x8010

Rx FIFO 1 64 Bytes 8 + Max data size
= 72 5 (Warn at 3) 360 240 599 0x80F0

Rx Buffers - 0 0 - - -

Tx Event FIFO - 8 3 (Warn at 2) 24 600 623 0x8258

Tx Buffers 64 Bytes 8 + Max data size
= 72 10 (Tx FIFO) 720 624 1343 0x8270

In Table 6, the system designer determines how many bytes are in each element (from the data sheet),
and then is able to determine how many bytes are used by each section. This allows the designer to
determine the start address of each section while ensuring that no overlap occurs. In this example, the
decimal values of the register ignore the 0x8000 prefix which is shown in the hex value of the address.
When writing these start address into the appropriate configuration register, the 0x8000 prefix will be
removed, but to read or write from these portions of memory, the 0x8000 prefix is required.

The next step in this process determines the actual register values needed for each of the elements.

Table 7. Message RAM Design Example Register Values
Register Name Register Name Register Address Number of Elements Section Start Address Register Value

11-bit Filter (SID Filter) SIDFC 0x1084 2 0x8000 0x00020000

29-bit Filter (XID Filter) XIDFC 0x1088 1 0x8008 0x00010008

Rx FIFO 0 RXF0C 0x10A0 4 (Warn at 2) 0x8010 0x02040010

Rx FIFO 1 RXF1C 0x10B0 5 (Warn at 3) 0x80F0 0x030500F0

Rx Buffers RXBC 0x10AC 0 - 0x00000000

Rx Element Size Config RXESC 0x10BC 0 B (Rx Buffers), 64 B
(FIFO 1), 48 B (FIFO 0) - 0x00000076

Tx Event FIFO TXEFC 0x10F0 3 (Warn at 2) 0x8258 0x02030258

Tx Buffers TXBC 0x10C0 10 (Tx FIFO) 0x8270 0x0A000270

Tx Element Size Config TXESC 0x10C8 64 B - 0x00000007

The register values shown in Table 7 configures the TCAN45xx MRAM based on the design example.
Each of the registers shown are protected write registers meaning that the user cannot write to them
unless the CCE and INIT bits in the CCCR register are set. This ensures that no accidental device
configuration changes may occur while the device is operating on a CAN bus. Setting the CCE and INIT
bits puts the device into an initialization mode and prevents it from interfering with the CAN bus. At this
point, the next step would be to write the desired ID filters to the appropriate sections and finish
configuring the TCAN45xx. Figure 7 shows a visual representation of the example MRAM allocation. Not
all of the memory is used but there is no requirement that it must be. The memory in this example is also
tightly packed together to prevent gaps between the sections in memory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

W0
SFEC
[2:0]

31 24 23 16 15 8 7 0

SFID1[10:0]

S
F

T
[1

:0
]

RES SFID2[10:0]

MRAM Memory
(2 kB)

0x8000
SID Filters
XID Filters

Rx FIFO 0

Rx FIFO 1

0x8008
0x8010

0x80F0

0x8258
Tx Event FIFO

0x8270

Tx Buffers

0x87FF

CAN / CAN FD www.ti.com

12 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 7. Visual Representation of MRAM Allocation

4.2.3 11-bit Filters (SID Filters)
The SID filter allows a system designer to either reject or accept CAN messages based on ID. When
accepting a packet, there are options as to which of the 3 available receiving FIFOs / Buffers to send it to
(RX FIFO 0/1 or RX Buffers). It is also possible to mark a message as 'high priority', and set another
interrupt to alert the processor. The TCAN45xx will only compare an incoming message to the SID filters if
the incoming message uses a standard ID (11 bits). If the incoming message contains an extended ID,
then the XID filters will be used instead.

The filter must first match an ID based on the SFT value (and the values entered in SFID1 and SFID2).
When an ID is matched, the action described in the Standard Filter Element Configuration (SFEC) is
performed. If the behavior of a filter element is to accept the packet, the filter index will be added to the
header of the CAN packet in the MRAM, so that the user may know which filter the ID matched with.

As stated earlier in Section 4.2, since MRAM values are unknown after power up and the ECC values are
not valid. It is important that data must be written to each of the filter locations in MRAM that are
configured for use in the SIDFC or XIDFC registers. Failure to do this results in a M_CAN BEU error,
which puts the TCAN45xx device into initialization mode, and require user intervention before CAN
communication can continue.

Figure 8. SID Filter Element

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com CAN / CAN FD

13SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Table 8. SID Filter Element

Name Description Bits
SFT Standard Filter Type [31 : 30]

SFEC Standard Filter Element Configuration [29 : 27]
SFID1 Standard Filter ID 1 [26 : 16]

Reserved Reserved [15 : 11]
SFID2 Standard Filter ID 2 [10 : 0]

4.2.3.1 Standard Filter Type (SFT)
The standard filter type sets what type of filter this element is. This describes how to match this filter with
an incoming CAN message

Table 9. SFT

Value (Binary) Description
2b00 Range Filter: Accepts all IDs from SFID1 to SFID2
2b01 Dual ID Filter: Matches both SFID1 and SFID2 (ID must be exact match)

2b10 Classic Filter: SFID1 is the filter, SFID2 is the mask. 0 in the mask corresponds to "don't care". See below for
more information

2b11 Filter Element Disabled: This filter will match nothing.

For the range and dual ID filter, the ID of the incoming CAN message must match (or be within the range)
of the values SFID1 and SFID2. The classic filter uses a filter and mask setup, which allows a designer to
match all IDs that have desired bits set in the ID. Table 10 shows a filter and mask example. A 0 in the
mask corresponds to a "don't care" and a 1 signifies that the bit must match the value in the filter.

Table 10. Filter and Mask Example

Example 1 Example 2 Example 3 Example 4 Example 5
Filter (SFID1) 11b001 0010 1111 11b001 0010 1111 11b001 0010 1111 11b000 0000 0000 11b000 0000 0000
Mask (SFID2) 11b000 1111 1111 11b000 1111 1111 11b000 1110 1111 11b000 0000 1000 11b000 0000 1000
Example ID 11b001 0001 1111 11b001 0010 1111 11b001 0011 1111 11b000 0000 1000 11b111 1111 0111

Result Not matched Matched Matched Not matched Matched

4.2.3.2 Standard Filter Element Configuration (SFEC)
The standard filter element configuration describes the action to be performed if an incoming CAN
message matches the filtering rule described SFT (and the values in SFID1 and SFID2). There are 8
options available for matching

Table 11. SFEC

Value (Binary) Description
3b000 Disable filter element. Does nothing, matches nothing
3b001 Store in Rx FIFO 0
3b010 Store in Rx FIFO 1
3b011 Reject message. No interrupt will be set, and message is simply ignored.
3b100 Set as priority message (interrupt), message storage location depends on other filters or default behavior
3b101 Set as priority (interrupt) and store in FIFO 0
3b110 Set as priority (interrupt) and store in FIFO 1

3b111
Store into Rx Buffer or as debug message. If this is used, SFT is ignored and SFID1 is the filter. SFID2[10:9]
describes where to store message, SFID2[5:0] describes which Rx Buffer to put the message (must be within

the Rx Buffer configuration)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

W0
EFEC
[2:0]

31 24 23 16 15 8 7 0

EFID1[28:0]

W1

E
F

T
[1

:0
]

R
E

S

EFID2[28:0]

CAN / CAN FD www.ti.com

14 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

4.2.4 29-bit Filter (XID Filter)
An XID filter operates just like the SID filter, except that it is ran against extended IDs. Please read
Section 4.2.3 for more information. The values and behavior are the same for XID, but with 29-bit filters
and masks instead of 11-bit filters used by the SID filter. This means that each element consists of 2
words (8 bytes) instead of 1 word (4 bytes). Table 12 shows the XID Filter element.

As stated earlier in Section 4.2, since MRAM values are unknown after power up and the ECC values are
not valid. It is important that data must be written to each of the filter locations in MRAM that are
configured for use in the SIDFC or XIDFC registers. Failure to do this results in a M_CAN BEU error,
which will put the TCAN45xx device into initialization mode, and require user intervention before CAN
communication can continue.

Figure 9. XID Filter Element

Table 12. XID Filter Element

Name Description Word Bits
EFEC Extended Filter Element Configuration

W0
[31 : 29]

EFID1 Extended Filter ID 1 [28 : 0]
EFT Standard Filter ID 1

W1
[31 : 30]

Reserved Reserved [29]
EFID2 Extended Filter ID 2 [28 : 0]

4.2.5 Rx FIFO 0 / 1
The Rx FIFO gives the user 2 separate FIFOs, if so desired, to choose where to place incoming CAN
messages. For example, a designer might want all 11-bit ID messages to go into Rx FIFO 0, but all 29-bit
ID messages to go into Rx FIFO 1. Another example is all messages which are low priority (based on ID)
go to Rx FIFO 1, and all high priority messages go to Rx FIFO 0. There is no restriction on how these
FIFOs may be used, and there is no requirement that both must be configured. It is acceptable to have
only Rx FIFO 0 or Rx FIFO 1 (as a note, the default behavior of the TCAN45xx is to accept all packets
into Rx FIFO 0 unless the packet matches a filter, then the action described in the filter will be performed).

Each Rx FIFO element contains an 8 byte header, which contains the received ID, data length code
(DLC), and many diagnostic flags, such as whether CAN FD was used, or if bit rate switching was
enabled. A timestamp is also contained in this header, which allows the designer to know when the packet
was received. After the 8 byte header, there is data from the incoming message, up to the maximum
allowed data size as described in the Rx FIFO configuration register. If the DLC is greater than the
maximum data size described in the configuration register, then the data is truncated and anything past
the maximum data size is lost. If the DLC is less than the maximum data size allowed, then the designer
must not assume that any data after the DLC-described size is valid. The TCAN45xx does NOT clear out
the data fields. For example, if the Rx FIFO is configured to allow up to 8 bytes, but the DLC is 7 bytes,
then the last byte of data in memory is not automatically cleared, and should not be used. It contains the
last value that was written by a previous CAN message.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

...

W3 DB7[7:0] DB6[7:0] DB5[7:0] DB4[7:0]

W0 E
S

I
31 24 23 16 15 8 7 0

ID[28:0]

W1 RXTS[15:0]

X
T

D

R
T

R

R
E

S

DLC[3:0]

B
R

S

F
D

F

A
N

M
F

FIDX[6:0]

W2 DB3[7:0] DB2[7:0] DB1[7:0] DB0[7:0]

Wn DBm[7:0] DB(m-1)[7:0] DB(m-2)[7:0] DB(m-3)[7:0]

www.ti.com CAN / CAN FD

15SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 10. Rx FIFO / Buffer Element

Table 13. Rx FIFO / Buffer Element

Name Description Word Bits
ESI Error State Indicator

W0

[31]

XTD Extended Identifier (When set to 0, ID[28 : 18] is
used for standard ID) [30]

RTR Remote Transmission Request [29]

ID Identifier (When XTD is 0, ID[28 : 18] is used for
standard ID) [28 : 0]

ANMF Accepted Non-matching Frame of Filter Element

W1

[31]
FIDX Filter Index that Message Matched if ANMF = 0 [30 : 24]

Reserved Reserved [23 : 22]
FDF FD Format [21]
BRS Bit Rate Switch [20]
DLC Data Length Code [19 : 16]

RXTS Rx Timestamp [15 : 0]
DB3 Data Byte 3

W2

[31 : 24]
DB2 Data Byte 2 [23 : 16]
DB1 Data Byte 1 [15 : 8]
DB0 Data Byte 0 [7 : 0]
DBm Data Byte m

Wn

[31 : 24]
DB(m-1) Data Byte (m-1) [23 : 16]
DB(m-2) Data Byte (m-2) [15 : 8]
DB(m-3) Data Byte (m-3) [7 : 0]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

W0 E
S

I

31 24 23 16 15 8 7 0

ID[28:0]

W1 TXTS[15:0]

X
T

D

R
T

R

DLC[3:0]

B
R

S

F
D

F

MM[7:0]
ET

[1:0]

CAN / CAN FD www.ti.com

16 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

4.2.6 Rx Buffers
The Rx Buffers allow the designer to place certain CAN messages into a buffer. These buffers contain the
same 8 byte header of the Rx FIFOs (see Section 4.2.5) and the data comes after the header. The only
difference is that these buffers do not behave like a FIFO. A SID or XID filter element must explicitly tell
the TCAN45xx which of the Rx Buffers an incoming message must be sent to. This also means that if a
new packet is matched and a filter instructs it to be moved to a Rx Buffer, which already has unread data
in it, that data in the buffer is over-written.

4.2.7 Tx Event FIFO
The Tx Event FIFO stores messages from the TCAN45xx when a request to transmit a CAN message
from the Tx Buffer has been received. Each FIFO element is 8 bytes long and contains the ID that was
transmitted, whether CAN FD or bit rate switching was used or not, as well as diagnostic flags such as a
transmission time stamp, and the error state indicator bit. In order to have a Tx Event FIFO element
written, when transmitting a message, the Event FIFO Control bit (EFC) must be set to 1 in the
corresponding Tx Buffer header.

Figure 11. Tx Event FIFO Element

Table 14. Tx Event FIFO Element

Name Description Word Bits
ESI Error State Indicator

W0

[31]

XTD Extended Identifier (When set to 0, ID[28 : 18] is
used for standard ID) [30]

RTR Remote Transmission Request [29]

ID Identifier (When XTD is 0, ID[28 : 18] is used for
standard ID) [28 : 0]

MM Message Marker

W1

[31 : 24]

ET Event Type: 2b01 = Tx Event, 2b10 =
Transmission in spite of cancellation [23 : 22]

FDF FD Format [21]
BRS Bit Rate Switch [20]
DLC Data Length Code [19 : 16]

TXTS Tx Timestamp [15 : 0]

4.2.8 Tx Buffers
Tx Buffers are used as the buffer to load an outgoing CAN message details and data. The layout of each
element is very similar to the Rx FIFO / Buffer (see Section 4.2.5) where there is an 8 byte header used,
and the data payload to be sent comes after it. There 3 main types transmission topologies available:
1. Dedicated Tx Buffers: Each individual buffer is handled by the microcontroller, with the intent of each

buffer having its own message ID
2. Tx FIFO: The TCAN45xx handles buffer management. The microcontroller reads the Tx FIFO put

index to place new messages in the correct buffer. When requesting multiple messages be sent, the
Tx FIFO get index is referenced and sends data based on what was first added to the FIFO

3. Tx Queue: Similar to a Tx FIFO except that consecutive messages do not need to be placed in
consecutive buffers. When writing to a buffer, the destination buffer must not have a pending

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

...

W3 DB7[7:0] DB6[7:0] DB5[7:0] DB4[7:0]

W0 E
S

I

31 24 23 16 15 8 7 0

ID[28:0]

W1

X
T

D

R
T

R

R
E

S

DLC[3:0]

B
R

S

F
D

F

MM[7:0]

W2 DB3[7:0] DB2[7:0] DB1[7:0] DB0[7:0]

Wn DBm[7:0] DB(m-1)[7:0] DB(m-2)[7:0] DB(m-3)[7:0]

E
F

C

RES

www.ti.com CAN / CAN FD

17SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

transmission request. If multiple transmission requests are made at the same time via the TXBAR
register, the TCAN45xx prioritizes messages with the lowest ID (highest priority). The priority is not
based on the order which the transmission request was made or data was written into the queue.

It is possible to have both dedicated Tx Buffers and either a Tx FIFO or Tx Queue. In this situation, the
dedicated buffers consist of the first buffers, and the FIFO or queue start after the end of the dedicated
buffers.

As stated earlier in Section 4.2, since MRAM values are unknown after power up and the ECC values will
not be valid, it is important that at least 2 words (8 bytes) of payload data be written into any TX buffer
element, even if the DLC is less than 8. Failure to do this will result in a M_CAN BEU error, which puts the
TCAN45xx device into initialization mode, and require user intervention before CAN communication can
continue.

Figure 12. Tx FIFO / Buffer Element

Table 15. Tx FIFO / Buffer Element

Name Description Word Bits
ESI Error State Indicator

W0

[31]

XTD Extended Identifier (When set to 0, ID[28 : 18] is
used for standard ID) [30]

RTR Remote Transmission Request [29]

ID Identifier (When XTD is 0, ID[28 : 18] is used for
standard ID) [28 : 0]

MM Message Marker, used when storing a Tx Event
FIFO entry

W1

[31 : 24]

EFC Event FIFO Control, stores a log in the Tx Event
FIFO when set to 1 [23]

Reserved Reserved [22]
FDF FD Format [21]
BRS Bit Rate Switch [20]
DLC Data Length Code [19 : 16]

Reserved Reserved [15 : 0]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CAN / CAN FD www.ti.com

18 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Table 15. Tx FIFO / Buffer Element (continued)
Name Description Word Bits
DB3 Data Byte 3

W2

[31 : 24]
DB2 Data Byte 2 [23 : 16]
DB1 Data Byte 1 [15 : 8]
DB0 Data Byte 0 [7 : 0]
DBm Data Byte m

Wn

[31 : 24]
DB(m-1) Data Byte (m-1) [23 : 16]
DB(m-2) Data Byte (m-2) [15 : 8]
DB(m-3) Data Byte (m-3) [7 : 0]

4.3 Sending and Receiving CAN Messages
In order to transmit a CAN message on the TCAN45xx, the following should be complete:
1. Ensure that the TCAN45xx is in standby mode (register 0x0800[7:6] = 0b01). This forces M_CAN into

INIT mode.
2. Set the M_CAN CCCR register to allow for configuration. Set CCE and INIT bits if not already set.

NOTE: The CSR bit reads back a 1 when in standby mode, but the user MUST write a 0 to this bit
when doing a read-modify-write; otherwise, CAN communications fails.

3. If CAN FD and Bit Rate Switching (BRS) support is desired, it must be globally enabled via the FDF
and BRS bits in the CCCR register during configuration. See the device datasheet for more information
about this register

4. Any desired device features should be configured (see Section 3)
5. CAN timing information must be set (see Section 4.1)
6. The MRAM sections should be configured and initialized with any data (see Section 4.2)
7. Put the TCAN45xx device into "normal" mode (register 0x0800[7:6] = 0b10) to turn on the transceiver

and enable the CAN core for transmission

Once these steps are complete, the microcontroller is able to transmit a message by writing to the Tx
Buffer and then requesting the message be sent by writing to the TXBAR register.

4.3.1 Writing a CAN Message to the Tx Buffer
For this example CAN message, the example device configuration from Section 4.2.2 are used for Tx
Buffer elements, maximum data size, and start address.

(1) CAN FD and BRS must be enabled globally in the CCCR register during configuration by setting the FDF and BRS flags.

Table 16. Example CAN Message

Parameter Value
ID 0x12345678

Message Marker 0x1
Message Format CAN FD with Bit Rate Switching enabled (1)

Data 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77

With the desired CAN message information in Table 16, it the following procedure can take place
1. Check Tx FIFO/Queue Status register (TXFQS: 0x10C4) bits [5:0] to make sure the free level is

greater than 0 (meaning that at least 1 buffer is open/free) and that TFQF bit is set to 0
2. Read TXFQS.TFQPI to get which index the message should be loaded into
3. Calculate the memory offset to determine the start address. For this example, it is assumed that the

Put Index read back as 3, note that what your read may be different. Buffer address = Tx Buffer Start
address + (Tx Buffer Element Size x Put Index). In this example, it becomes 0x8264 + (0x48 x 0x3) =
0x833C. Note that 0x48 is a hexadecimal value, corresponding to 72. The TX Buffer Element size is

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com CAN / CAN FD

19SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

the sum of the 2 words of header (8 bytes) and the configured element data size (64 bytes in this
example).

4. Write the CAN message to memory
5. Send transmission request to the TCAN45xx

To achieve this procedure, the SPI writes are shown below in Table 17

Table 17. SPI Writes

Register Address Action Value Notes
TXFQS 0x10C4 Read 0x0003030A Put index is 3, free level is 10, bit for full FIFO is NOT set

Tx Buffer[3] 0x833C Write 0x52345678 Header word #1, XTD and ID set

Tx Buffer[3] 0x8340 Write 0x01B70000 Header word #2, Set message marker, enable event FIFO, CAN FD
and BRS, and set the DLC to 7

Tx Buffer[3] 0x8344 Write 0x44332211 Write the first 4 bytes of data
Tx Buffer[3] 0x8348 Write 0x00776655 Write the last 3 bytes of data

TXBAR 0x10D0 Write 0x00000008 Request buffer 3 (bit 3) start transmission

After the SPI writes listed in Table 17, the TCAN45xx starts the transmission process for the data in buffer
index 3. Since the event FIFO bit was set, an entry is added to the event FIFO, which the microcontroller
may read.

4.3.2 Reading a CAN Message from a Rx FIFO
For this example CAN message, the example device configuration from Section 4.2.2 is used for Rx Buffer
elements, maximum data size, and start address.

To read a message from the TCAN45xx FIFO, the process can be broken down into the following steps
1. Determine where the new message is (Rx FIFO 0, Rx FIFO 1, or Rx Buffer)
2. Based on the buffer location of the new message, determine the buffer index and then the start

address to read from MRAM
3. Read the MRAM to retrieve the message
4. Acknowledge the new message is read to release the FIFO element for a new message

The process varies slightly depending on if the new message is in a Rx Buffer or a Rx FIFO; since they
are fundamentally different. The FIFOs require the microcontroller to read a FIFO status register which
tells the microcontroller how many new messages are in the FIFO, and what index to start reading at. The
buffer requires the microcontroller to read the New Message Register, which tells the microcontroller
which buffers have unread messages in them. At the end of each read, the microcontroller must let the
TCAN45xx know that the new message has been received in order to release the FIFO element for reuse.
The example below will give an example of responding to a new message interrupt in Rx FIFO 1, and that
the message received was the message described in Section 4.3.1. The process of reading a message
from Rx FIFO 0 is almost identical, except, instead of reading FIFO 1 registers, FIFO 0 registers are read
instead. For example, instead of reading RXF1S to get the get index to calculate the start address, the
microcontroller would read RXF0S. The IR register has separate bits for Rx FIFO 0 or Rx FIFO 1 new
messages, to let the microcontroller know which set of registers should be read.

Table 18. SPI Reads
Register Address Action Value Notes

Device
Interrupts 0x0820 Read 0x80000082 M_CAN_INT bit is set, so M_CAN has an interrupt

IR 0x1050 Read 0x00000010 New message in RX FIFO 1, need to read RX FIFO 1 status to get more
information

IR 0x1050 Write 0x00000010 Clear the interrupt by writing the bit back to the IR register

RXF1S 0x10B4 Read 0x00040301 There is 1 unread message in the FIFO at index 3

- 0x81C8 - - Based on setup in Table 7, start address for index 3 is: hex(72 * 3) + 0x80F0 =
0x81C8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

Software Optimization Tips www.ti.com

20 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Table 18. SPI Reads (continued)
Register Address Action Value Notes

(1) This start address is calculated with [(Data Size + 8) x Get Index] + Start Address. Data size comes from the element size
configuration (RXESC) plus the 8 bytes of header. Get index is read from the RXF1S register. Start address is in the RXF1C
register, but without the 0x8 prefix.

Rx FIFO 1 [3] 0x81C8 (1) Read 0x52345678 Header word #1, XTD is set and ID[28:0] = 0x12345678

Rx FIFO 1 [3] 0x81CC Read 0x01B70000 Header word #2, 7 bytes of data sent with CAN FD and BRS enabled

Rx FIFO 1 [3] 0x81D0 Read 0x44332211 First 4 bytes of data, 0x11 is the first received byte

Rx FIFO 1 [3] 0x81D4 Read 0x00776655 Last 3 bytes of data, 0x77 was the last received byte

RXF1A 0x10B8 Write 0x00000003 Write the index of the FIFO index read to acknowledge that it has been read
and clear it for use

4.3.3 Reading a CAN Message from a Rx Buffer
Reading a message from the Rx Buffer is similar to the process of reading a message from a Rx FIFO (as
shown in Section 4.3.2) but calculating the start address varies. The difference is that the Rx Buffer index
to use for the address calculation comes from the New Data 1/2 registers instead of a Rx FIFO 0/1 Status
register.

In the below example, it is assumed that the Rx Buffer element is configured with 5 elements, with a start
address configured at 0x8100 and RXESC configured for Rx Buffer data size of 32 bytes (unrelated to any
previous setup examples).

(1) This start address is calculated via with [(Data Size + 8) x Get Index] + Start Address. Data size comes from the element size
configuration (RXESC) plus the 8 bytes of header. Get index is read from the NDAT1/NDAT2 register. Start address is in the
RXBC register, but without the 0x8 prefix.

Table 19. SPI Reads

Register Address Action Value Notes
Device

Interrupts 0x0820 Read 0x80000082 M_CAN_INT bit is set, so M_CAN has an interrupt

IR 0x1050 Read 0x00080000 New message sent to dedicated Rx Buffer
IR 0x1050 Write 0x00080000 Clear the interrupt by writing the bit back to the IR register

NDAT1 0x1098 Read 0x00000004 There is 1 new message in Rx Buffer index 2 (3rd element)
- 0x8150 - - Start address for index 2 is: hex(40 * 2) + 0x8100 = 0x8150

Rx Buffer [2] 0x8150 (1) Read 0x52345678 Header word #1, XTD is set and ID[28:0] = 0x12345678
Rx Buffer [2] 0x8154 Read 0x01B70000 Header word #2, 7 bytes of data sent with CAN FD and BRS enabled
Rx Buffer [2] 0x8158 Read 0x44332211 First 4 bytes of data, 0x11 is the first received byte
Rx Buffer [2] 0x815C Read 0x00776655 Last 3 bytes of data, 0x77 was the last received byte

NDAT1 0x1098 Write 0x00000004 Write the bit corresponding to the buffer that was read

5 Software Optimization Tips
This section outlines common issues, and tips on how ensure maximum performance from the software-
side.

5.1 SPI Transaction Idle Time
The most common issue that hurts CAN throughput is poor SPI throughput. The following are common
causes with examples following the graphical representation in Figure 13.
1. Idle time between CS and start of data
2. Idle time between MCU's SPI Words
3. Idle time between end of data and CS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CS

SCLK
MOSI
MISO

1

2 2 2

3

CS

SCLK
MOSI
MISO

www.ti.com Software Optimization Tips

21SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 13. An Example Inefficient SPI Transfer

These issues add to the idle time spent doing nothing, which limits how much data can be passed to the
TCAN45xx. To fix these issues, an oscilloscope is required. It will take time to optimize the SPI driver
code to the point where there are no significant delays. While the steps to optimize the code is processor-
specific, the following are things to look for to improve SPI performance:
• Use MCU's SPI hardware FIFOs: Most processors' SPI module support FIFO operation, which allows

the user to queue up several words of data at once. The SPI hardware then automatically shifts data
onto the bus with minimal between-word/byte delays (labeled at 2 in Figure 13).

• Use the MCU's SPI hardware chip select control: It is typically best to use the SPI module's chip select
control logic instead of a GPIO that is controlled via software. The minimum spacing for #1 and #3 in
the picture above is a limit of the SPI hardware in the MCU. Letting the hardware module control when
the chip select normally ensures that these delays are kept to a minimum. This is not always possible,
since some hardware SPI modules are incapable of holding chip select low during a large SPI transfer
(8 bytes is the minimum transfer size of the TCAN45xx). This optimization may not be possible on all
MCU's/processors. In these situations, software control of chip select is required.

The goal of the SPI transaction is to look like Figure 14, where no time is wasted during the SPI
transaction. This maximizes SPI throughput, which allows the CPU to spend less time on the actual SPI
transactions, and more time on the CAN messages.

Figure 14. An Example Efficient SPI Transfer

5.2 Use Burst Reads and Writes
Since every SPI transaction requires a single word (4 bytes) header, doing single word data transfers is
inefficient (only 50% of the SPI bus data is register data). By using larger SPI packets, throughput can be
significantly increased by transferring large chunks of data when possible, such as reading or writing a
CAN message from/to the TCAN45xx). The TCAN45xx SPI header has a word parameter, which tells it
how many words (4 bytes each) of data will be transferred. Valid values are 0 to 255 words (0x00, 0xFF),
where 0 is interpreted as 256 words.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

CS

Data
SPI

Header
Data

Address N

Data Data Data

Address N+1
Address N+2

Address N+3

CS

Data
SPI

Header
Data

Address N

SPI
Header

Data
SPI

Header
Data

SPI
Header

Data

Address N+1 Address N+2 Address N+3

Software Optimization Tips www.ti.com

22 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

In Figure 15, an example 4 words of continuos data are transferred with single word transactions only. It is
easy to see how throughput is hurt since each transfer requires a new SPI header. Over large blocks of
data, this inefficiency will hinder throughput.

Figure 15. Inefficient Transfer of Large Data

Figure 16. Efficient Transfer of Large Data

As shown in Figure 16, a burst transfer is used. In this specific example, 4 words of data are being
transferred in a single SPI transaction. Using this burst mode whenever possible helps keep SPI
throughput up. Some common tasks for the TCAN45xx that is able to take advantage of this feature are
as follows:
• MRAM Reads or Writes: Since the MRAM is a large 2 KB block of memory that is read from and

written to by the host processor, burst transfers are helpful when attempting to read or write CAN
messages where many words of data are typically moved.

• M_CAN Configuration: Upon configuration of the TCAN45xx, many of the registers must be written to.
It is possible to use burst transfers to configure the part is few SPI transactions. This is a start up
benefit, rather than an operating benefit.

5.3 Bulk Reading Incoming CAN Messages
In many systems, there is a delay between a CAN message being received by the TCAN45xx and the
host processor reading it. In some cases, this initial latency could be large enough that multiple CAN
messages is received before the host intervenes. The process to read a CAN message is typically the
following:
1. Read Interrupt Registers to see if new message interrupt is set.
2. Read the RXFIFO status register. This will tell the host which index to read, and how many unread

messages there are in the FIFO.
3. Calculate the address to read from (see Section 4.3.2 for more information) and perform the read from

MRAM.
4. Write the index to the acknowledge index to release it for accepting new messages.
5. Return to step 2 until the number of unread messages is 0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

www.ti.com Software Libraries

23SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

This procedure is the regular and easier to follow method for reading a message from the MRAM, but it is
not the most efficient. To improve on this procedure, extra reads to the RXFIFO status registers can be
omitted, as well as writes to the acknowledge register. This tip only provides an advantage when there is
more than 1 new message in the FIFO. An outline of this improved procedure is below.
1. Read Interrupt Registers to see if new message interrupt is set.
2. Read the RXFIFO status register. From this, the starting index and current fill level are both known.
3. Calculate the address to read from (see Section 4.3.2 for more information) and perform the read from

MRAM. Repeat this step for the number of unread messages that was read in step 2. As a note, it is
possible to optimize this step further and perform a single SPI transaction to pull multiple FIFO
elements of data at a time. NOTE: The FIFOs on this device are circular, and the data does NOT
move. This means that care must be taken when reading messages that loop around the end of the
FIFO, since the host has to start a new SPI transaction for index 0.

4. Once all messages were read from the MRAM, write only the index of the last read message to the
acknowledge register. The TCAN45xx will assume that all messages from the first to the supplied
index have been read and releases them all.

5. It is recommended to go back to step 2 and see if any new messages came in during this burst read
procedure. If not, then exit the read routine.

WARNING
There is a concern regarding the depth of the FIFO for this tip.
Care must be taken to ensure that the FIFO does NOT overflow
while a read is in progress. Since acknowledging of the FIFO
doesn't occur until the end of reading ALL new messages, if the
host does not perform this process fast enough while many new
messages are coming into the TCAN45xx, it is possible that
messages could be lost. This concern exists for the standard
method of reading messages, but in certain situations where there
are several messages in the FIFO, and not many elements free for
new messages, delaying the release of the registers could more
easily cause data loss.
When burst reads are being performed, care must be taken to
ensure that a read over flow of the MRAM FIFO location does not
occur. For example, if a FIFO has 10 elements, and the initial status
read says the get index is 8 and there are 3 messages to be read,
the software will need to perform a read to indexes 8, 9, 0. Trying
to read index 10 (the 11th element) of a 10 element FIFO will result
in an out of bounds issue and the data will not be expected CAN
message.

6 Software Libraries

6.1 AutoSAR
AutoSAR (Automotive Open Systems Architecture) is a partnership of automotive-interested parties that
have worked towards developing a specification for automotive systems. It provides specifications that
describe the software modules which communicate with hardware and builds a common methodology of
application development. The advantage of such specifications is that drivers for different hardware
modules can be written in a way that are easily adaptable for many different processors or
microcontrollers, since they are not built for a specific piece of hardware, but rather rely on lower-layer
function calls which are defined by AutoSAR.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

Microcontroller / Processor

TCAN4x5x

MCAL

ECU Abstraction Layer

Services Layer

Run Time Environment (RTE)

Application Layer

Hardware

AutoSAR

Software Libraries www.ti.com

24 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 17 shows the different layers and how a user's application can communicate with hardware through
the AutoSAR layer. There are 3 main types of AutoSAR blocks which play into the system.
• MCAL: The Microcontroller Abstraction Layer (MCAL) provides standardized function calls to

peripherals of a microcontroller such as the IOs, bus ports (SPI or I2C), or even memory. By
abstracting these peripherals to common function calls, it makes it possible to simply swap MCAL
drivers for a different processor when migrating, but all the code above should behave the same with
very little to no modifications. These drivers are processor/vendor specific since they deal with the
specific code required to perform a function

• ECU Abstraction Layer: This layer provides a common set of functions that an electronic control unit
(ECU) would use such as CAN communication or GPIOs for sensing buttons or controlling lights.
These modules are designed to be processor independent and call on the MCAL layer to handle
whatever functions are required. In the case of the TCAN45xx, the MCAL driver for SPI is used to
communicate to the TCAN45xx.

• Services Layer: This layer provides background services to the application such as network services
and bus communication services. An example for the TCAN45xx is that a beacon bus communication
may be desired (a periodic bus ping to check status of devices on the bus) and this service
communicates to the TCAN45xx ECU abstraction driver in order to actually send and receive the CAN
messages.

Figure 17. AutoSAR Abstraction Layers

Texas Instruments provides the necessary ECU abstraction layer driver source code necessary to
integrate the TCAN45xx into an AutoSAR environment. Contact TI to get the source code.

6.2 Microcontroller Abstraction
A lower-level API is available for controlling various TCAN45xx functions and sending CAN messages. It
does not have as significant of an overhead as AutoSAR, but is not abstracted as much. These libraries
are provided to help a developer add the TCAN45xx to their system. This API abstracts TCAN45xx
function calls to call upon a SPI abstraction layer function, allowing the user to quickly change code to a
different microcontroller by only changing the code which controls the SPI peripheral. There are 3 main
layers in this abstraction
• SPI Abstraction Layer: Responsible for handling the processor-specific SPI function calls to perform

register reads and writes to the TCAN45xx
• TCAN45xx API Layer: Provides a set of functions for performing TCAN45xx actions. For example,

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

Microcontroller / Processor

TCAN4x5x

SPI Abstraction Layer

ECU Abstraction Layer

Application Layer

Hardware

Software TCAN4x5x API

www.ti.com Software Libraries

25SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

functions for reading a CAN message, or sending a CAN message
• Application Layer: The end-user's code which calls upon the API to communicate with the TCAN45xx

easily and without much overhead

Figure 18. Microcontroller Abstraction

Texas Instruments provides Microcontroller Abstraction source code but it is important to note that the SPI
Abstraction Layer driver is developed for a MSP430FR6989. The appropriate SPI drivers will need to be
written for other processors.

6.2.1 Updating the SPI Abstraction Layer for Other Microcontrollers
All of the code in the TCAN45xx API software layer relies on the SPI Abstraction Layer. There are 8
functions that reside in this layer. The first 2 listed below are the fixed-length single-word read and write
functions. The next 6 are the multi-word read and write functions
• uint32_t AHB_READ_32 (uint16_t address) : Single-register 32-bit word read
• void AHB_WRITE_32 (uint16_t address, uint32_t data) : Single-register 32-bit word write
• void AHB_READ_BURST_START (uint16_t address, uint8_t words) : Send the SPI header for a

multi-word read, providing the starting register address and how many words are read
• uint32_t AHB_READ_BURST_READ () : Returns a 32-bit word of data that is read, without toggling

the CS pin
• void AHB_READ_BURST_END () : At the end of a multi-register read, this function ends a SPI

transaction by pulling the CS pin high
• void AHB_WRITE_BURST_START (uint16_t address, uint8_t words) : Send the SPI header for a

multi-word write, providing the starting register address and how many words are written
• void AHB_WRITE_BURST_WRITE (uint32_t data) : Writes a 32-bit word of data, without toggling the

CS pin
• void AHB_WRITE_BURST_END () : At the end of a multi-register write, this function ends a SPI

transaction by pulling the CS pin high

For the multi-register read and write functions, there are 3 individual function calls to perform the read or
write. The start of the SPI transaction transmits the correct command code, register address, and number
of words that is transmitted but does not start any data transfer. The READ/WRITE functions do the actual
data transfer to make it easier to put into a loop to handle each word of reading and writing. The END
function will pull the CS pin high to signal to the TCAN45xx that the SPI transaction is complete.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270
http://www.ti.com/product/MSP430FR6989

Op
Code

Register
Address

Words

Data

8 bits 16 bits 8 bits 32 bits

SPI Header Data

AHB_xx_BURST_START AHB_xx_BURST_READ/WRITE AHB_xx_BURST_END

CS

Data

32 bits

Data

AHB_xx_BURST_READ/WRITE

Op
Code

Register
Address

Words

Data

8 bits 16 bits 8 bits 32 bits

SPI Header Data

AHB_xx_BURST_START AHB_xx_BURST_READ/WRITE AHB_xx_BURST_END

CS

Op
Code

Reg
Address

Words

Data

8 bits 16 bits 8 bits 32 bits

CS

Software Libraries www.ti.com

26 SLLU270–May 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

TCAN45xx Software User's Guide

Figure 19. 32-bit SPI Read or Write Example

In Figure 19, a single 32-bit (1 word) SPI read or write example is shown. The first word contains the SPI
header, which tells the TCAN45xx what action to perform (read or write), what register address to start at,
and how many words of data to read/write.

Figure 20. SPI Packet Breakdown

Figure 20 shows how a single word read or write can be broken up into 3 functions. The START function
pulls CS low and sends the SPI header. The READ/WRITE function is responsible for reading or writing a
single word at a time, for however many words were stated in the SPI header. The END function is
responsible for pulling CS high, to signal the end of the transfer.

Figure 21. Multi-word SPI Packet Example

Figure 21 shows a 2 word SPI transfer example, and how the READ/WRITE function is called twice to do
each individual word transfer. This is helpful for cutting down on SPI overhead when transferring a CAM
message to or from the TCAN45xx, and minimizes the maximum SPI frequency required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU270

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	TCAN45xx Software User's Guide
	1 Introduction
	2 TCAN45xx SPI to CAN Basics
	3 Device Features
	3.1 Watchdog Timer (TCAN4550 Only)
	3.1.1 Configuring the Watchdog Timer

	3.2 Starting the Watchdog Timer
	3.2.1 Resetting the Watchdog Timer
	3.2.2 Watchdog Timeout

	4 CAN / CAN FD
	4.1 Bit Timing Setup
	4.2 Message RAM
	4.2.1 MRAM Sections
	4.2.2 Example MRAM Configuration
	4.2.3 11-bit Filters (SID Filters)
	4.2.3.1 Standard Filter Type (SFT)
	4.2.3.2 Standard Filter Element Configuration (SFEC)

	4.2.4 29-bit Filter (XID Filter)
	4.2.5 Rx FIFO 0 / 1
	4.2.6 Rx Buffers
	4.2.7 Tx Event FIFO
	4.2.8 Tx Buffers

	4.3 Sending and Receiving CAN Messages
	4.3.1 Writing a CAN Message to the Tx Buffer
	4.3.2 Reading a CAN Message from a Rx FIFO
	4.3.3 Reading a CAN Message from a Rx Buffer

	5 Software Optimization Tips
	5.1 SPI Transaction Idle Time
	5.2 Use Burst Reads and Writes
	5.3 Bulk Reading Incoming CAN Messages

	6 Software Libraries
	6.1 AutoSAR
	6.2 Microcontroller Abstraction
	6.2.1 Updating the SPI Abstraction Layer for Other Microcontrollers

	Important Notice

