ABSTRACT

This EVM serves as an interface adapter or a bridge between a host PC and one or multiple targeted devices through a standard type-A to mini-B USB cable. The communication between the USB interface adapter and the host PC is through USB, while the communication between the USB interface adapter and the target device or devices is through an inter-integrated circuit (I²C), general-purpose inputs and outputs GPIOs, or both. The bridge converts communication transactions between the USB and I²C/GPIO.

Table of Contents

1 Read This First ... 2
 1.1 Information About Cautions and Warnings .. 2
 1.2 FCC Warning ... 2
2 What is in the Box ... 3
 2.1 List of Hardware Items for Operation .. 3
 2.2 List of Software Items for Operation .. 3
3 Summary of Hardware Design ... 4
 3.1 Ribbon-Cable Connector J2 and Pinout .. 4
 3.2 Configuration of Pullup Resistors for Pins 8, 9, and 10 .. 4
 3.3 LED Indication of USB Attached .. 4
 3.4 Step-by-Step Instructions for Operation and Troubleshooting ... 4
4 PMBUS and SMBUS Communications ... 6
 4.1 Basic SMBUS Transaction Types Supported ... 6
 4.2 Special Signals Used for PMBUS and SMBUS Communications .. 6
 4.3 Packet Error Checking (PEC) Implementation .. 6
 4.4 Communication Clock Speed and Clock Stretching .. 6

Trademarks

All trademarks are the property of their respective owners.
1 Read This First

1.1 Information About Cautions and Warnings

ATTENTION

STATIC SENSITIVE DEVICES

HANDLE ONLY AT

STATIC SAFE WORK STATIONS

CAUTION

This EVM contains components that can potentially be damaged by electrostatic discharge. Always transport and store the EVM in its supplied ESD bag when not in use. Handle using an antistatic wristband. Operate on an antistatic work surface. For more information on proper handling, refer to the *Electrostatic Discharge (ESD)* application note.

WARNING

By default, the I²C data and clock lines are pulled up internally to 3.3 V. If internal pullup resistors are not used and external ones are used instead, please make sure to pull up to 3.3 V only. Operation from 5 V is not specified and may permanently damage this USB Interface Adapter EVM.

The information in the caution and warning is provided for the user's protection. Please read each caution and warning carefully.

1.2 FCC Warning

This equipment is intended for use in a laboratory test environment only. The equipment generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments can cause interference with radio communications, in which case, the user, at their own expense, will be required to take whatever measures can be required to correct this interference.
2 What is in the Box

2.1 List of Hardware Items for Operation

In order to operate this USB interface adapter, the following items are required:

- USB Interface Adapter (see Figure 2-1)
- Standard type-A to type-mini-B (5-pin) USB cable
- 10-pin ribbon cable with connectors on both ends

![USB Interface Adapter](image)

Figure 2-1. USB Interface Adapter

Note

For the USB interface adapter to communicate with multiple I²C targets, build a special 10-pin ribbon cable with multiple connector or connectors, so that all the I²C targeted devices can be daisy-chained together on the same ribbon cable.

2.2 List of Software Items for Operation

In addition to the previously listed hardware items, the following software also is needed:

- Download the Graphical User Interface (GUI) used to configure and monitor selected devices with the Fusion Digital Power designer.

The USB interface adapter is recognized by a PC as a generic human interface device (HID), which is supported by the built-in USB/HID drivers of the Windows operating system. Therefore, it is plug-and-play and no proprietary USB driver is required.

If flashing the firmware onto the USBGPIOv2 is necessary, go to UniFlash and download the needed firmware for the USBGPIOv2. Select the XDS110 Debug probe under detected devices (auto select option is also available). Then select MSP43E401Y under *New Configuration* and click start to proceed with the firmware download.
3 Summary of Hardware Design

The hardware is based on a USB peripheral chip from TI. The major features of the hardware design are detailed in the following sections.

3.1 Ribbon-Cable Connector J2 and Pinout

This connector is used for communications and controls between the USB interface adapter and one or more I²C device(s). A description of each terminal point is shared in Table 3-1.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMBCtrl5/GPIO7</td>
<td>I/O</td>
<td>Used as either the fifth PMBUS CONTROL line (output) or as GPIO pin 7 (input or output, with internal pullup enabled)</td>
</tr>
<tr>
<td>PMBCtrl4/GPIO6</td>
<td>I/O</td>
<td>Used as either the fourth PMBUS CONTROL line (output) or as GPIO pin 6 (input or output, with internal pullup enabled)</td>
</tr>
<tr>
<td>PMBCtrl3/GPIO5</td>
<td>I/O</td>
<td>Used as either the third PMBUS CONTROL line (output) or as GPIO pin 5 (input or output, with internal pullup enabled)</td>
</tr>
<tr>
<td>PMBCtrl2/GPIO4</td>
<td>I/O</td>
<td>Used as either the second PMBUS CONTROL line (output) or as GPIO pin 4 (input or output, with internal pullup enabled)</td>
</tr>
<tr>
<td>+3.3V</td>
<td>PWR</td>
<td>This pin can provide a 3.3-V output power supply at up to 100 mA. Any target device or devices can use this power supply as long as the total current consumption is less than 100 mA.</td>
</tr>
<tr>
<td>Ground</td>
<td>GND</td>
<td>Common ground for the entire evaluation board</td>
</tr>
<tr>
<td>PMBCtrl1/GPIO3</td>
<td>I/O</td>
<td>Used as either the first PMBUS CONTROL line (output) or as GPIO pin 3 (input or output, with internal pullup enabled)</td>
</tr>
<tr>
<td>PMBALETr/SMBALETr/GPIO2</td>
<td>I/O</td>
<td>Used as either the ALERT line (input) for PMBUS or SMBUS communications, or as GPIO pin 2 (input or output, with internal pullup disabled, and with an external programmable pullup)</td>
</tr>
<tr>
<td>PMBC/SMBC/SCL/GPIO1</td>
<td>I/O</td>
<td>Used as either the CLOCK line (output) for PMBUS or SMBUS or I²C communications, or as GPIO pin 1 (input or output, with internal pullup disabled, and with an external programmable pullup)</td>
</tr>
<tr>
<td>PMBD/SMBD/SDA/GPIO0</td>
<td>I/O</td>
<td>Used as either the DATA line (input or output) for PMBUS or SMBUS or I²C communications, or as GPIO pin 0 (input or output, with internal pullup disabled, and with an external programmable pullup)</td>
</tr>
</tbody>
</table>

3.2 Configuration of Pullup Resistors for Pins 8, 9, and 10

The pullups for pins 8, 9, and 10 are configurable through communications with the embedded firmware in the USB interface. The default setting is for all these three pins to have pullups of 2.2 kΩ. Table 3-2 lists the possible options for each pin.

<table>
<thead>
<tr>
<th>Pullup Resistor Option (Byte Value)</th>
<th>Option 1 (0x00)</th>
<th>Option 2 (0x01) (Default)</th>
<th>Option 3 (0x02)</th>
<th>Option 4 (0x03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 8 of J2: ALERT line</td>
<td>No pullup (open)</td>
<td>2.2 kΩ</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 9 of J2: CLOCK line</td>
<td>No pullup (open)</td>
<td>2.2 kΩ</td>
<td>1 kΩ</td>
<td>499 Ω</td>
</tr>
<tr>
<td>Pin 10 of J2: DATA line</td>
<td>No pullup (open)</td>
<td>2.2 kΩ</td>
<td>1 kΩ</td>
<td>499 Ω</td>
</tr>
</tbody>
</table>

3.3 LED Indication of USB Attached

A green LED is mounted next to the USB connector on the USB2GPIOv2. The green LED (D1) illuminates once the device detects and numerates the USB device successfully to indicate a successful communication; otherwise, the LED remains off. After unplugging the USB cable, the LED turns off immediately.

3.4 Step-by-Step Instructions for Operation and Troubleshooting

After the user has acquired the necessary hardware and software, follow these steps to operate the USB interface adapter:
1. Plug in the USB cable to both the PC and the USB interface adapter and wait for the green LED to illuminate.

Troubleshooting: If the green LED does not illuminate after 30 seconds, check to ensure the USB cable is securely connected. If the connection is secure, try a different USB port. If a different USB port does not solve the problem, try to reboot the computer. If rebooting the computer does not fix the problem, try a different USB cable. If trying different USB cable does not solve the problem, contact TI technical support for help.

2. Plug in the 10-pin ribbon cable to both the USB interface adapter and an I²C device board. Make sure that the notch on the ribbon-cable connector matches the keyhole of the socket in the enclosure.

3. Power up the I²C board. Note that the default I²C speed is set at 100 kHz and the default pullups for I²C data and clock lines are set at 2.2 kΩ.

4. Open the Fusion Digital Power designer tool and follow the instructions for the GUI.

Troubleshooting: If the I²C target board cannot talk with the USB interface adapter, first check to ensure the 10-pin ribbon cable has been securely connected. If the ribbon cable has been securely connected, check the I²C communication speed and the pullups for I²C data and clock lines suitable for the application. If not, modify the I²C communication speed and the pullups accordingly. If this still does not solve the problem, contact the manufacturer of the I²C targeted board for help.

![Figure 3-1. Simplified Connection Block-Diagram](image-url)
4 PMBUS and SMBUS Communications

The default firmware for USB Interface Adapter provides support for USB to PMBUS and SMBUS communications. Similar to its I2C application, the USB Interface Adapter acts as a PMBUS and SMBUS host, which can talk with one or multiple PMBUS and SMBUS devices daisy-chained to a 10-pin ribbon cable.

4.1 Basic SMBUS Transaction Types Supported

Because PMBUS communication is derived from SMBUS communication, they share basic SMBUS transaction types in common. These basic SMBUS transaction types include:

- Send byte
- Receive byte
- Write byte
- Read byte
- Write word
- Read word
- Block write
- Block read
- Process call
- Block read – block write process call

In addition, PMBUS communication also supports Group command.

All these commands are implemented in the USB Interface Adapter firmware.

4.2 Special Signals Used for PMBUS and SMBUS Communications

Refer to Table 3-2 for special signal lines used for PMBUS and SMBUS communications.

Specifically, a target device can assert an ALERT signal (by pulling it low) to report a fault or a warning condition to the USB Interface Adapter; the host PC can obtain the ALERT signal by polling the USB Interface Adapter. Note that the USB Interface Adapter does not support any Host Notify Protocol, which means that the USB Interface Adapter cannot become a PMBUS or SMBUS target and, therefore, cannot support a target to temporarily become a host and notify the host about the fault or the warning condition.

For PMBUS communications, the USB Interface Adapter provides five CONTROL signals, each of which can be used to enable or disable the powering up of one or multiple targeted device or devices.

Write Protect signal is not supported; neither is the RESET signal.

4.3 Packet Error Checking (PEC) Implementation

By default, the USB Interface Adapter firmware implements PEC for all the different commands. However, the implementation of PEC byte is optional. There is a special host PC to USB Interface Adapter command that can be used to turn PEC on or off.

If PEC is on or enabled, the firmware in the USB Interface Adapter either appends a PEC byte to a command sent to one or multiple targeted devices or checks the validity of a PEC byte received from a target device.

4.4 Communication Clock Speed and Clock Stretching

The default clock speed is 100 kHz, which is compatible with PMBUS 1.0 and SMBUS 2.0. For compatibility with future PMBUS specs, the clock speed can be increased to 400 kHz or 1 MHz.

As per the SMBus protocol, the minimum and maximum value for the Clock Stretching is 25 ms and 35 ms, respectively.
STANDARD TERMS FOR EVALUATION MODULES

1. **Delivery**: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 **Limited Warranty and Related Remedies/Disclaimers:**

2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.
3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes: (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/it_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lsds/it_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/it_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。
http://www.tij.co.jp/lsds/it_ja/general/eStore/notice_02.page

3.4 European Union

3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
4 EVM Use Restrictions and Warnings:

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED “AS IS” AND “WITH ALL FAULTS.” TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. USER’S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, “CLAIMS”) ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVM(S), REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 **Specific Limitations.** IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. **Return Policy.** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated