PMP5922 rev C is what TPS59610EVM-732 is based upon. Below are additional waveforms for each of the 5 switchers on the board. But first is shown a detailed thermal picture of the highest current switcher, the 1.8V at 5A.

Table of Contents:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Device 1</th>
<th>Device 2</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR2 channel</td>
<td>TPS51916</td>
<td>CSD86330Q3D</td>
<td>2-4</td>
</tr>
<tr>
<td>CPU waveforms</td>
<td>TPS51610</td>
<td>CSD86330Q3D</td>
<td>5</td>
</tr>
<tr>
<td>GPU waveforms</td>
<td>TPS51610</td>
<td>CSD86330Q3D</td>
<td>6</td>
</tr>
<tr>
<td>1.05V channel</td>
<td>TPS53219</td>
<td>CSD86330Q3D</td>
<td>7-8</td>
</tr>
<tr>
<td>1.2V channel</td>
<td>TPS53311</td>
<td></td>
<td>9-10</td>
</tr>
</tbody>
</table>
DDR2 channel 1.8V 5A TPS51916 & CSD86330Q3D off 3.3V

Full load switching Thermal image: 0.9V linear not loaded
PMP5922C: TPS51916 DDR2 switcher only loaded 667kHz
3.634Vin 2.843In 1.790Vout at 5.07A Chokes MPT420-R47 x2
Chokes hottest at 61 & 58 degrees Celsius;
dual switch CSD86330Q3D at 44 degrees C;
ambient at 23-25 deg. C
DDR2 channel continued: Major Waveform:

Output ripple:
Efficiency calculations above ignore power from 5V used mostly for gate drive.
DDR2 continued:

Step load response:

17-Jan-11 Reading Floppy Disk Drive
26:18:34

26 &s 20.0 mV

26 &s 10.0 mV

maximum(1) 3.7 mV
Freq(1) 55.4939 kHz
Fall(1) 5.835 μs
rise(1) 18.832 μs

26 μs 80 mV

50 mV DC

18 mV 500 Q

Qq

PMP5922C 1.8V 5A Step load response TPS51016 675kHz 3.75Vin and 5V Bias
Upper trace channel 4 at 5A/V load from zero to 5A at about 1A/sec.
Lower trace the 1.8V/µs at terminals about 40mV peak undershoot from initial Vout of 1.8V.
CPU Channel waveforms:

Full Load Ripple:

Load step & dump:
GPU Channel waveforms:

Beyond Full Load Ripple:

Load step and Dump response:
using on board dynamic load of 4.7A
(720 & R711 were 100mW each)

〜1A DC load
peak undershoot of -42mV from final value
peak overshoot of +32mV from final value
On board load step now 3A
Dynamic load: Note: Step and dump well above max expected application load

PMP-5922C 1.8V 5A off 3.3Vin Test Report (TPS51916) Texas Instruments
Qq

1.05V 3.5A off 3.3V TPS53219 & CSD86330Q3D
Main waveform:

Load step and dump response:
- Using on board dynamic load of 4.3A
- R712 & R713 were 100mΩ each
- 16 DC load
- Peak undershoot of ~10mv from final value
- Peak overshoot of 34mv from final value
- On-board load step now 1.5A

259 mV/s
SLOW TRIGGER
NORMAL
Output ripple:

Main switching waveform at full load
667kHz
Rise and fall times well under 2ns
1.05V 3.5A off 3.3V TPS3219 & CSD86330Q3D continued:
Step load response:

Output ripple at full load:
6375μV
13mV peak to peak
Load dump response:
1.2V Channel: TPS53311 with integrated FETs
Main waveform:
Output ripple:
1.2V Channel: TPS53311 with integrated FETs continued:

Step load response:

Output ripple at full load
less than 10mV peak to peak
Load dump response:

- Load dump response:

 - **Maximum**: 15.1 mW
 - **Freq**: --
 - **Fall**: 3.026 mV
 - **Rise**: 21.853 mV
 - **Peak**: 168.3 mV

Step load response

- From no load to about 2A load
- Top trace is Tout at 2V/div
- Bottom trace is Vout at 50mV/division
- 10 mV/division
- 100 mV/division

Note: 15:57:01
PMP5922C 1.8V 5A off 3.3Vin Test Report (TPS51916) Texas Instruments

18-Jan-11
13:59:51

26 μs
50mV

26 μs
18.6mV

maximum(1)
141.6mV
peak(1)
2.36162 MHz
Fall(1)
18.778 μs
rise(1)
3.658 μs

50 mV AC
2.5 V DC
50 mV DC
4 DC 7.4mV

Load dump response
From about 2A to no load
Top trace is 400V at 2A/50V
Bottom trace is Vout at 50mV / division
100mV overshoot

Josh Mandelcorn page 18 of 18 January 7-18, 2011
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its product, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated