Using the UCC25710EVM-654

User's Guide

Cit TEXAS INSTRUMENTS

98-W Resonant LLC, 4-String LED Driver

1 Introduction

The UCC25710 Evaluation Module (EVM) was design to demonstrate how the UCC25710 could be used in a multi-transformer LLC half-bridge configuration for driving multiple strings of LEDs, in a high-efficiency application, for the back lighting of a digital TV, with Pulse With Modulation (PWM) dimming.

2 Description

This 98-W evaluation module (EVM) was designed to drive four 98-V, 250-mA LED strings from an isolated $370-\mathrm{V}$ to $410-\mathrm{V}$ input voltage. The EVM was designed to achieve PWM dimming with a $270-\mathrm{Hz}$ to $330-\mathrm{Hz}$ TTL dimming signal capable of dimming down to 1% duty cycle.

2.1 Typical Applications for Multi-String LED Driver

- LED Backlight for LCD Digital TVs and Monitors
- LED General Lighting

2.2 Features

- Zero Voltage Switching
- PWM Dimming
- Accurate LED Current Sharing with Signal Current Control Signal

Texas
INSTRUMENTS

3 Electrical Performance Specifications

Table 1. UCC285710 EVM-654 Electrical Specifications

	PARAMETER	MIN	TYP	MAX	UNITS
Input Characteristics					
$\mathrm{V}_{\text {IN }}$	Input voltage	370	390	410	V
I_{IN}	Input current		0.275		A
OUTPUT1, OUTPUT2, OUTPUT3, OUTPUT4 Characteristics					
$\begin{aligned} & \mathrm{V}_{\mathrm{LED} 1}, \mathrm{~V}_{\mathrm{LED} 2}, \mathrm{~V}_{\mathrm{LED} 3}, \\ & \mathrm{~V}_{\mathrm{LED} 4}, \end{aligned}$	Output voltage set by LED load	96	98	100	V
$\mathrm{I}_{\text {LED } 1}, \mathrm{I}_{\text {LED } 2}, \mathrm{I}_{\text {LED } 3}, \mathrm{I}_{\text {LED } 4}$	Output current ripple			0.0125	AP-p
$\mathrm{I}_{\text {LED } 1}, \mathrm{l}_{\text {LED } 2}, \mathrm{I}_{\text {LED } 3}, \mathrm{I}_{\text {LED } 4}$	Output current	0.245	0.25	0.255	A
$\mathrm{I}_{\text {LED } 1}, \mathrm{I}_{\text {LED2 } 2}, \mathrm{I}_{\text {LED3 }}, \mathrm{I}_{\text {LED } 4}$	Line regulation	0.245	0.25	0.255	
$\mathrm{I}_{\text {LED } 1}, \mathrm{I}_{\text {LED } 2}, \mathrm{I}_{\text {LED } 3}, \mathrm{I}_{\text {LED } 4}$	Load regulation	0.245	0.25	0.255	
$\mathrm{V}_{\text {ovp }}$	Single output OVP	136			V
V_{UV}	Single output under voltage	43			
	Dimming range	1\%		100\%	
	Dimming frequency	270	300	330	Hz
	Current matching between strings (10\% to 100\% dimming)	-2\%		2\%	
	Output power single output			24.5	N
	Full output power			98	W
Systems Characteristics					
$\mathrm{F}_{\text {sw }}$	Switching frequency	84		156	kHz
η	Full load efficiency	91\%	93\%		

4 Schematics

Figure 1. UCC25710EVM-654 Power Stage Schematic

A Note ports with no volue ore not populoted

Figure 2. UCC25710EVM-654 Controller Circuitry Schematic

5 Recommended Test Equipment

5.1 Voltage Sources

- 500-V DC Source Capable of 150 W
- 0-V to 20-V DC Power Supply Capable of 2 W

5.2 Volt Meters

- Two Volt Meters
- Five Current Meters

5.3 Square Wave Generator

- Capable of generating a $270-\mathrm{Hz}$ to $330-\mathrm{Hz}$ square wave with a $0-\mathrm{V}$ to $5-\mathrm{V}$ signal.
- Capable of duty cycles from 1% to 100% (DC).

5.4 Network Analyzer

- Needed to measure voltage loop stability if interested.

5.5 Output Loads

This EVM was design to power LED diode loads only, for proper operation it is recommend that LED diodes be used. Please refer to Figure 3 and Figure 4 for example test setups.

- The EVM feedback circuitry was designed based on an LED load. If another load is used the feedback circuitry will not operate correctly and the EVM will not function properly.
- It is recommended that 32 LEDs be used on each output as a load with the following characteristics.
- Capable of handling 275 mA .
- With a $\mathrm{V}_{\mathrm{f}} \approx 3.06 \mathrm{~V}$ at 250 mA .
- Note that different diodes with a different V_{f} can be used as long as the total voltage drop across the output is $98 \mathrm{~V}+/-2 \mathrm{~V}$ at 250 mA .
- Note to evaluate performance and save on the number of diodes used. All four outputs can be used in parallel to power one string of LEDs.
- Capable of handling 1.1 A
- With a $\mathrm{V}_{\mathrm{f}} \approx 3.06 \mathrm{~V}$ at 1 A
- Note that different diodes with a different V_{f} can be used as long as the total voltage drop across the output is $98 \mathrm{~V}+/-2 \mathrm{~V}$ at 1 A .

5.6 Oscilloscope

- 4-Channel, 100 MHz
- Probes Capable of 500 V or Differential Probes

5.7 Recommended Wire Gauge

- 20 AWG
www.ti.com

6 Recommended Test Setups

Figure 3. Setup 1 Evaluate Current Sharing With $4 \times 32 \times 275-m A$ LED Strings

Figure 4. Test Setup 2 Evaluate Current Sharing With $1 \times 32 \times 1.1-A$ LED String

$7 \quad$ List of Test Points

Table 2. Test Point Description

TEST POINTS	NAME	
TP1	VIN -	Input return
TP2	VIN +	Input supply
TP3, TP12	N/A	Current loop injection point (20-mV injection max)
TP4	LED1 +	LED string 1 supply
TP5	LED1 -	LED string 1 return
TP6	LED2 +	LED string 2 supply
TP7	LED2 -	LED string 2 return
TP8	LED3 +	LED string 3 supply
TP9	LED3 -	LED string 3 return
TP10	LED4 +	LED string 4 supply
TP11	LED4 -	LED string 4 return
TP13	BIAS	Positive input for 12-V bias supply
TP14	DIM	PWM Dimming Input
TP15	BLON	Back light on control (remove jp9 before using)
TP16	ICOMP	Compensation output
TP17	GND	Logic ground
TP18	N/A	Current sense offset

8 Power On/Off Procedure

WARNING

Failure to follow the Power On/Off Procedure may result in unexpected operation and/or irreversible damage to the EVM and/or individual.

1. It is important to follow the power up and power down procedure to ensure the EVM does not get damaged
2. This EVM was designed to show the performance of the UCC25710 in a four-string LED driver application using an LLC resonant converter and does not include all the circuitry required for this application.
(a) Generally this power converter would be preceded by an EMI filter and a PFC pre-regulator. The complete system would also included input Under Voltage Lockout (UVLO) circuitry; which this EVM does not.
3. Connect all bias supplies, loads and test equipment before applying power. Please look at Figure 3 and Figure 4 for examples of test setups that could be used.
4. The EVM was not designed to startup from $0-\mathrm{V}$ input voltage. Please make sure the input voltage is in-between 370 V and 410 V before applying the bias voltage.
5. Apply $370-\mathrm{V}$ to $410-\mathrm{V}$ DC to the input of the power converter with the $500-\mathrm{V}$ DC source.
6. Set the $0-\mathrm{V}$ to $20-\mathrm{V}$ power supply to 12 V , (This powers the UCC25710 LLC controller).
7. When powering down the unit set the $0-\mathrm{V}$ to $20-\mathrm{V} \mathrm{DC}$ supply to 0 V before powering down the $500-\mathrm{V}$ DC Supply.
8. Set the $500-\mathrm{V} D C$ Supply to 0 V .
9. For safety before handling the EVM make sure there are not voltages present on the EVM greater than 50 V , (Observe Volt Meter 1 and Volt Meter 2).

9 Test Data

9.1 Current Matching With PWM Dimming

The following table was taken with a $300-\mathrm{Hz}$ PWM dimming frequency. Each LED output was loaded with 32 Cree XLamp XR-E diodes. At full load the current was controlled to a target current of 250 mA through each LED output string.

Figure 5. $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, Current Matching

Figure 6. $\mathrm{V}_{\mathbb{N}}=370 \mathrm{~V}$, Current Matching

Figure 7. $\mathrm{V}_{\mathrm{IN}}=410 \mathrm{~V}$, Current Matching

9.2 Efficiency

Measuring efficiency with PWM dimming requires the use of power analyzers on the LED output/s. The following efficiency table was taken with LED voltage strings set to roughly 98 V .

98-W EFFICIENCY WITH PWM DIMMING

Figure 8. Efficiency 10\% to 100\% PWM Dimming

9.3 Control Loop Frequency Response

Current loop crossed over at roughly 5 kHz with greater than 45 degrees of phase margin. Each LED output was loaded with 32 Cree XLamp XR-E diodes. At full load the current was controlled to a target current of 250 mA through each LED output string.

CURRENT LOOP FREQUENCY LOOP

Figure 9. Loop Gain, $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, Outputs Loaded with 32 LEDs (98 V) and No PWM Dimming

9.4 Zero Voltage Switching

One of the major benefits of a LLC resonant half-bridge converter is the ability to achieve Zero Voltage Switching (ZVS) at the primary switch node. Figure 10 shows the primary transformer current (CH4), the current sense voltage (CH 3), the switch node on the primary at the drain of FET Q2 (Q2g) and the gate drive signal to FET Q2 (Q2g). The gate drive signal going to FET Q1 is the inverse of CH1. From the waveform in Figure 10 it can be observed that the gate drive signals do not transition until after the switch node has transitioned achieving zero voltage switching.

Gate Drive Transition After Switch Node Achieving ZVS

Figure 10. $\mathrm{V}_{\mathrm{IN}}=390 \mathrm{~V}$, Outputs Loaded with 32, Cree XLamp CR-E , LEDs

Instruments
9.5 LED Current Startup Behavior ($V_{i N}=390$ V)

9.5.1 Total LED Current $=1 \mathrm{~A}$, Individual LED Current $\approx 0.25 \mathrm{~A}$

Figure 11. Current LED1 (CH3) and LED2 (CH4)

Figure 12. Current LED3 (CH3) and LED4 (CH4)

9.6 LED Current During 300-Hz PWM Dimming ($V_{i N}=390$ V)

9.6.1 90\% PWM Dimming

Figure 13. Current LED1 (CH3) and LED2 (CH4)

Figure 14. Current LED3 (CH3) and LED4 (CH4)

9.6.2 1\% PWM Dimming, Peak LED Current ≈ 0.25 A

Figure 15. Current LED1 (CH3) and LED2 (CH4)

Figure 16. Current LED3 (CH3) and LED4 (CH4)

10 Assembly Drawings and Layout

Figure 17. Top Assembly

Figure 18. Bottom Assembly/Layout

11 List of Materials

Table 3. UCC25710EVM-654 98-W LLC 4-String LED Driver

COUNT	REF DES	DESCRIPTION	PART NUMBER	MFR
5	$\begin{aligned} & \text { C1, C6, C15, C22, } \\ & \text { C23 } \end{aligned}$	Capacitor, ceramic, $1 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{X7R},+/-10 \%$, 0805	Std	Std
8	$\begin{aligned} & \text { C10, C11, C12, } \\ & \text { C13, C14, C16, } \\ & \text { C17, C18 } \end{aligned}$	Capacitor, aluminum, $10 \mu \mathrm{~F}, 160 \mathrm{~V},+105^{\circ} \mathrm{C}, 20 \%, 10.00$ mm	ECA2CM100	Panasonic
1	C19	Capacitor, ceramic, 220 pF, 50 V, X7R, +/- 10\%, 0805	Std	Std
5	C2, C3, C4, C5, C7	Capacitor, aluminum, $10 \mu \mathrm{~F}, 450 \mathrm{~V}, \pm 20 \%, 12.5 \times 20.00$ mm	EEUEB2W100	Panasonic
1	C20	Capacitor, ceramic, $4.7 \mathrm{nF}, 50 \mathrm{~V}, \mathrm{X7R},+/-10 \%, 0805$	Std	Std
1	C21	Capacitor, ceramic, $330 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{X7R},+/-10 \%$, 0805	Std	Std
4	$\begin{aligned} & \text { C24, C25, C30, } \\ & \text { C31 } \end{aligned}$	Capacitor, ceramic, 1 nF, $50 \mathrm{~V}, \mathrm{X7R}$, +/- 10\%, 0805	Std	Std
1	C26	Capacitor, ceramic, 270 pF, $50 \mathrm{~V}, \mathrm{X7R},+/-10 \%$, 0805	Std	Std
1	C27	Capacitor, ceramic, $10 \mathrm{nF}, 50 \mathrm{~V}, \mathrm{X7R},+/-10 \%, 0805$	Std	Std
0	C28	Capacitor, ceramic, No Pop, 50 V, X7R, +/- 10\%, 0805	Std	Std
1	C29	Capacitor, ceramic, $47 \mathrm{nF}, 50 \mathrm{~V}, \mathrm{X7R},+/-10 \%, 0805$	Std	Std
1	C9	Capacitor, metalized polypropylene film, $12 \mathrm{nF}, 1000$ VDC, 450 VAC, 0.709×0.236 inch	BFC238330123	Vishay/BC Components
6	$\begin{aligned} & \text { D1, D2, D3, D4, } \\ & \text { D5, D7 } \end{aligned}$	Diode, signal, $200 \mathrm{~mA}, 100 \mathrm{~V}, 350 \mathrm{~mW}, \mathrm{SOD}-123$	1N4148W-7-F	Diodes
8	$\begin{aligned} & \text { D25, D26, D27, } \\ & \text { D28, D29, D30, } \\ & \text { D31, D32 } \end{aligned}$	Diode, Schottky, 1 A, 150 V, SMA	ES1C	Diodes Inc.
2	D34, D35	Diode, rectifier, $1500 \mathrm{~mA}, 600 \mathrm{~V}, \mathrm{SMA}$	RS2JA-13-F	Diodes Inc
2	D36, D37	Diode, Schottky, 1 A, 40 V, DO 41	1N5819	Motorola
3	D6, D8, D33	Diode, Zener, $12 \mathrm{~V}, 500 \mathrm{~mW}$, SOD-123	On Semiconductor	MMSZ5242BT1G
16	$\begin{aligned} & \text { D9, D10, D11, } \\ & \text { D12, D13, D14, } \\ & \text { D15, D16, D17, } \\ & \text { D18, D19, D20, } \\ & \text { D21, D22, D23, } \\ & \text { D24 } \end{aligned}$	Diode, Schottky, 1 A, $150 \mathrm{~V}, \mathrm{SMA}$	STPS1150A	ST
2	F1	Fuse clip, $5 \times 20 \mathrm{~mm}, 0.205 \times 0.220$ inch $\times 2$	0100056H	Wickmann
6	$\begin{aligned} & \mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, ~ \mathrm{~J}, ~ \mathrm{~J} 5, \\ & \mathrm{J6} \end{aligned}$	Terminal block, 2 pin, $15 \mathrm{~A}, 5.1 \mathrm{~mm}, 0.40 \times 0.35$ inch	ED120/2DS	OST
20	JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP10, JP12, JP14, JP17, JP18, JP21, JP22, JP23, JP24, JP25, JP26, JP27	Jumper, 0.800 inch length, PVC insulation, AWG 22, 0.035 inch Dia.	923345-08-C	3M
3	JP11, JP13, JP15	Jumper, 1.000 inch length, PVC insulation, AWG 22, 0.035 inch diameter	923345-10-C	3M
1	JP16	Jumper, 0.600 inch length, PVC insulation, AWG 22, 0.035 inch diameter	923345-06-C	3M
1	JP19	Jumper, 0.900 inch length, PVC insulation, AWG 22, 0.035 inch diameter	923345-09-C	3M
1	JP20	Jumper, 0.300 inch length, PVC insulation, AWG 22, 0.035 inch diameter	923345-03-C	3M
1	JP9	Header, 2 pin, 100 -mil spacing, (36-pin strip), 0.100 inch x 2	PTC36SAAN	Sullins

Table 3. UCC25710EVM-654 98-W LLC 4-String LED Driver (continued)

COUNT	REF DES	DESCRIPTION	PART NUMBER	MFR
2	Q1, Q2	MOSFET, N-channel, $550 \mathrm{~V}, 10 \mathrm{~A}, 350 \mathrm{~m} \Omega$, TO-220V	IPP50R350CP	Infineon
1	Q3	Transistor, NPN, $40 \mathrm{~V}, 600 \mathrm{~mA}$, TO 92	P2N2222A	On Semi
1	Q4	Transistor, PNP, $60 \mathrm{~V}, 600 \mathrm{~mA}$, TO 92	PN2907A	"Micro Commercial Components
1	Q5	MOSFET, N-channel, $250 \mathrm{~V}, 51 \mathrm{~A}, 60 \mathrm{~m} \Omega$, TO-220V	STD	STD
2	R1, R9	Resistor, chip, $1.00 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
2	R11, R30	Resistor, chip, 1.00M, 1/10 W, 1\%, 0805	Std	Std
1	R12	Resistor, chip, 49.9 ת, 1/10 W, 1\%, 0805	Std	Std
1	R13	Resistor, chip, $0.5 \Omega, 1 \mathrm{~W}, 1 \%, 2512$	STD	Std
1	R14	Resistor, chip, $14.0 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R15	Resistor, chip, $10.0 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R16	Resistor, chip, $22 \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
0	R17	Resistor, chip, No Pop, 1/10 W, 1\%, 0805	Std	Std
1	R18	Resistor, chip, 0Ω, 1/10 W, 1\%, 0805	Std	Std
1	R19	Resistor, chip, 4.22 M, 1/10 W, 1\%, 0805	Std	Std
1	R2	Resistor, chip, 100Ω, $1 / 10 \mathrm{~W}, 1 \%$, 0805	Std	Std
1	R20	Resistor, chip, $316 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R21	Resistor, chip, 1.1 M, 1/10 W, 1\%, 0805	Std	Std
1	R22	Resistor, chip, $5.36 \mathrm{M}, 1 / 10 \mathrm{~W}, 1 \%$, 0805	Std	Std
1	R23	Resistor, chip, $105 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R24	Resistor, chip, $33.2 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R25	Resistor, chip, $12.7 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R26	Resistor, chip, $30.1 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R27	Resistor, chip, $17.8 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R28	Resistor, chip, $1.00 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R29	Resistor, chip, $9.09 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
3	R3, R4, R5	Resistor, chip, $3.01 \Omega, 1 / 10 \mathrm{~W}, 1 \%$, 0805	Std	Std
3	R6, R7, R10	Resistor, chip, $10.0 \mathrm{k} \Omega, 1 / 10 \mathrm{~W}, 1 \%, 0805$	Std	Std
1	R8	Resistor, chip, 86.6 , $1 / 10 \mathrm{~W}, 1 \%$, 0805	Std	Std

Table 3. UCC25710EVM-654 98-W LLC 4-String LED Driver (continued)

COUNT	REF DES	DESCRIPTION	PART NUMBER	MFR
1	T1	Transformer, gate drive, 0.453×0.492 inch	56PR3362	Vitec Electronics
4	T2, T3, T4, T5	Transformer 1:2, 1.213×1.276 inch	75PR8112	Vitec Electronics
1	T6	Current transformer 1:100, 0.495×0.495 inch	57PR3634	Vitec Electronics
18	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18	Pin, thru hole, tin plate, for 0.062 PCB's, 0.039 inch	K24A/M	Vector
1	U1	LLC Half-Bridge LED Multi-String Controller, SO-20	UCC25710DW	TI
1	PCB	Printed circuit board, HPA654	Any	
ADDITIONAL HARDWARE				
1	X1 @ F1	Fast acting fuse, $0.3,5 \mathrm{~mm} \times 20 \mathrm{~mm}$	5MF 300R	Bel Fuse Inc
1	X1@ JP9	Sockets jumper closed black	151-8010	Kobiconn
4	X1 @ PCB	Standoff hex 0.500/\#6-32 threaded nylon, mount on bottom of PCB	1903C	Keystone Electronics
4	X1 @ PCB	Nut, mount to top of PCB	4824	Keystone Electronics
3	X1 @ Q1, Q2, Q5	Split lock washer \#6(steel)	Std	Std
3	X1 @ Q1, Q2, Q5	Pan head screw \#6-32 x 3/8 (steel)	Std	Std
3	X1 @ Q1, Q2, Q5	Nut \#6-32 (steel)	Std	Std

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION
PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on Tl's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 370 V to 410 V and the output voltage range of 96 V to 100 V .
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than $50^{\circ} \mathrm{C}$. The EVM is designed to operate properly with certain components above $50^{\circ} \mathrm{C}$ as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI . Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Audio	
Amplifiers	$\underline{\text { www.ti.com/audio }}$
Data Converters	$\underline{\text { amplifier.ti.com }}$
DLP® Products	$\underline{\text { dataconverter.ti.com }}$
DSP	$\underline{\text { www.dip.com }}$
Clocks and Timers	$\underline{\text { www.ti.com/clocks }}$
Interface	$\underline{\text { logic.ti.com }}$
Logic	$\underline{\text { power.ti.com }}$
Power Mgmt	$\underline{\text { microcontroller.ti.com }}$
Microcontrollers	$\underline{\text { www.ti-ri.com/lidrf }}$

Applications

Communications and Telecom	www.ti.com/communications
Computers and Peripherals	$\underline{\text { www.ti.com/computers }}$
Consumer Electronics	$\underline{\text { www.ti.com/consumer-apps }}$
Energy and Lighting	$\underline{\text { www.ti.com/energy }}$
Industrial	$\underline{\text { www.ti.com/industrial }}$
Medical	$\underline{\text { www.ti.com/medical }}$
Security	$\underline{\text { www.ti.com/security }}$
Space, Avionics and Defense	$\underline{\text { www.ti.com/automotive }}$
Transportation and Automotive Video and Imaging Wireless	$\underline{\text { www.ti.com/video }}$
www.ti.com/wireless-apps	

