Efficiency and Regulation

The efficiency and regulation are shown below:

<table>
<thead>
<tr>
<th>J3</th>
<th>J3</th>
<th>J3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iout</td>
<td>Vout</td>
<td>Iout</td>
</tr>
<tr>
<td>0.00</td>
<td>3.330</td>
<td>0.00</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>3.330</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>1.00</td>
</tr>
<tr>
<td>0.75</td>
<td>3.329</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Max Load Efficiency without bridge

<table>
<thead>
<tr>
<th>J3</th>
<th>J3</th>
<th>J3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iout</td>
<td>Vout</td>
<td>Iout</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>3.328</td>
<td>1.00</td>
</tr>
<tr>
<td>0.75</td>
<td>3.329</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Vin measured at FB1/FB2
Ripple and Noise

48V input; 3.3V/1.5A, 5V/1A, and 10V/200mA loads; 20MHz BWL.

3.3V Output Ripple (C29), 50mV/div
Measured 45mV peak to peak:

5V Output Ripple (C19), 50mV/div
Measured 50mV peak to peak:

10V Output Ripple (C13), 50mV/div
Measured 114mV peak to peak:

Turn On Response

48VIN, Max Loads, 1msec/div:

48VIN, 0A Loads, 1msec/div:

Top, 5V output, 1V/div; Middle, 3.3V output, 1V/div; Bottom, 10V output, 5V/div
Loop Stability

The measured Bode plot of the converter is shown below.

Bandwidth, Phase Margin, and Gain Margin Data

<table>
<thead>
<tr>
<th>VIN</th>
<th>3.3VI</th>
<th>5VI</th>
<th>10VI</th>
<th>BW</th>
<th>PM</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.200</td>
<td>4.7</td>
<td>54</td>
<td>11</td>
</tr>
<tr>
<td>36.0</td>
<td>0.00</td>
<td>1.00</td>
<td>0.200</td>
<td>5.0</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>36.0</td>
<td>1.50</td>
<td>0.00</td>
<td>0.200</td>
<td>5.1</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>36.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.000</td>
<td>5.4</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>36.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>5.7</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>48.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.200</td>
<td>5.4</td>
<td>57</td>
<td>12</td>
</tr>
<tr>
<td>48.0</td>
<td>0.00</td>
<td>1.00</td>
<td>0.200</td>
<td>5.7</td>
<td>60</td>
<td>17</td>
</tr>
<tr>
<td>48.0</td>
<td>1.50</td>
<td>0.00</td>
<td>0.200</td>
<td>5.8</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>48.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.000</td>
<td>6.2</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>48.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>6.3</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>57.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.200</td>
<td>5.9</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>57.0</td>
<td>0.00</td>
<td>1.00</td>
<td>0.200</td>
<td>6.1</td>
<td>61</td>
<td>17</td>
</tr>
<tr>
<td>57.0</td>
<td>1.50</td>
<td>0.00</td>
<td>0.200</td>
<td>6.2</td>
<td>61</td>
<td>13</td>
</tr>
<tr>
<td>57.0</td>
<td>1.50</td>
<td>1.00</td>
<td>0.000</td>
<td>6.7</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>57.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>6.7</td>
<td>63</td>
<td>18</td>
</tr>
</tbody>
</table>
Dynamic Loading

One output at a time was pulsed. The outputs not being pulsed were loaded to their maximum value.

36V INPUT

3.3V load step, 150mA to 750mA:

3.3V Response
50mV/div, 1msec/div
Measured 84mV peak to peak:

5V Response
50mV/div
Measured 123mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 294mV peak to peak:
3.3V load step, 750mA to 1.5A:

3.3V Response
50mV/div, 1msec/div
Measured 112mV peak to peak:

5V Response
50mV/div
Measured 139mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 331mV peak to peak:
5V load step, 100mA to 500mA:

3.3V Response
50mV/div, 1msec/div
Measured 127mV peak to peak:

5V Response
50mV/div
Measured 161mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 372mV peak to peak:
5V load step, 500mA to 1A:

3.3V Response
50mV/div, 1msec/div
Measured 144mV peak to peak:

5V Response
50mV/div
Measured 200mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 413mV peak to peak:
10V load step, 20mA to 100mA:

3.3V Response 5V Response
50mV/div, 1msec/div 50mV/div
Measured xxmV peak to peak: Measured xxmV peak to peak:
(No significant variation higher than (No significant variation higher than
switching frequency ripple) switching frequency ripple)

10V Response
50mV/div, 1msec/div
Measured 450mV peak to peak:

10V load step, 100mA to 200mA:

3.3V Response 5V Response
100mV/div, 1msec/div 50mV/div
Measured xxmV peak to peak: Measured xxmV peak to peak:
(No significant variation higher than (No significant variation higher than
switching frequency ripple) switching frequency ripple)

10V Response
100mV/div, 1msec/div
Measured 275mV peak to peak:
48V INPUT

3.3V load step, 150mA to 750mA:

3.3V Response
50mV/div, 1msec/div
Measured 73mV peak to peak:

5V Response
50mV/div
Measured 103mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 247mV peak to peak:
3.3V load step, 750mA to 1.5A:

3.3V Response
50mV/div, 1msec/div
Measured 92mV peak to peak:

5V Response
50mV/div
Measured 116mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 275mV peak to peak:
5V load step, 100mA to 500mA:

3.3V Response
50mV/div, 1msec/div
Measured 109mV peak to peak:

5V Response
50mV/div
Measured 139mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 319mV peak to peak:
5V load step, 500mA to 1A:

3.3V Response
50mV/div, 1msec/div
Measured 120mV peak to peak:

5V Response
50mV/div
Measured 166mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 347mV peak to peak:
10V load step, 20mA to 100mA:

- 3.3V Response
 - 50mV/div, 1msec/div
 - Measured xxmV peak to peak:
 - (No significant variation higher than switching frequency ripple)

- 5V Response
 - 50mV/div
 - Measured xxmV peak to peak:
 - (No significant variation higher than switching frequency ripple)

10V load step, 100mA to 200mA:

- 3.3V Response
 - 100mV/div, 1msec/div
 - Measured 400mV peak to peak:

- 5V Response
 - 100mV/div
 - Measured 247mV peak to peak:
57V INPUT

3.3V load step, 150mA to 750mA:

3.3V Response
50mV/div, 1msec/div
Measured 69mV peak to peak:

5V Response
50mV/div
Measured 94mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 231mV peak to peak:
3.3V load step, 750mA to 1.5A:

3.3V Response
50mV/div, 1msec/div
Measured 86mV peak to peak:

5V Response
50mV/div
Measured 105mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 250mV peak to peak:
5V load step, 100mA to 500mA:

3.3V Response
50mV/div, 1msec/div
Measured 97mV peak to peak:

5V Response
50mV/div
Measured 130mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 291mV peak to peak:
5V load step, 500mA to 1A:

3.3V Response
50mV/div, 1msec/div
Measured 111mV peak to peak:

5V Response
50mV/div
Measured 153mV peak to peak:

10V Response
100mV/div, 1msec/div
Measured 319mV peak to peak:
10V load step, 20mA to 100mA:

3.3V Response
50mV/div, 1msec/div
Measured xxmV peak to peak:
(No significant variation higher than switching frequency ripple)
5V Response
50mV/div
Measured xxmV peak to peak:
(No significant variation higher than switching frequency ripple)

10V Response
100mV/div, 1msec/div
Measured 369mV peak to peak:

10V load step, 100mA to 200mA:

3.3V Response
100mV/div, 1msec/div
Measured xxmV peak to peak:
(No significant variation higher than switching frequency ripple)
5V Response
50mV/div
Measured xxmV peak to peak:
(No significant variation higher than switching frequency ripple)

10V Response
100mV/div, 1msec/div
Measured 234mV peak to peak:
Note: PMP8408 RevC is built on PMP8407 RevC PCB.
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI reference designs or use thereof. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI reference designs or Buyer’s use of TI reference designs.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. TI warrants and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/Ts16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/Ts16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated