This evaluation module (EVM) is a complete evaluation system for the bq27621 fuel gauge. The circuit module includes one bq27621 integrated circuit and all other onboard components necessary to monitor and predict capacity for a system-side fuel gauge solution. The circuit module connects directly to a rechargeable lithium-ion battery pack. Without any configuration, the battery voltage, temperature, and State of Charge (SOC in %) can be immediately read from the gauge with confidence. By quickly configuring a few parameters like battery capacity (Design Capacity and Design Energy), full charge condition (Taper Rate), and empty condition (Terminate Voltage), more accurate values of estimated current (in mA) and remaining capacity (in mAh) can be read from the gauge. The bq27621-G1 IC contains three battery profiles for typical rechargeable lithium cells that can be selected based on the maximum charging voltage (4.2 V, 4.3 V, and 4.35 V).

A separate orderable EV2300 or EV2400 PC interface board for gas gauge interface along with a PC USB cable, and Windows®-based PC software is needed when using this EVM. With the EV2300 or EV2400 interface board and Battery Management Studio (bqStudio) software, the user can:

• Read the bq27621 data registers
• Update the RAM for different configurations
• Log cycling data for further evaluation
• Evaluate the overall functionality of the bq27621 solution under different charge and discharge conditions

The latest Windows-based PC software can be downloaded from the product folder on the Texas Instruments Web site.
Contents

1 Features... 3
 1.1 Kit Contents.. 3
 1.2 Ordering Information ... 3
2 bq27621-Based Circuit Module .. 3
 2.1 Circuit Module Connections ... 3
 2.2 Pin Description ... 3
3 Circuit Module Physical Layout, Bill of Materials, and Schematic 4
 3.1 Board Layout ... 4
 3.2 Bill of Materials ... 6
 3.3 Schematic ... 7
 3.4 bq27621 Circuit Module Performance Specification Summary 7
4 EVM Hardware and Software Setup .. 8
 4.1 System Requirements ... 8
 4.2 Software Installation ... 8
5 Troubleshooting Unexpected Dialog Boxes .. 8
6 Hardware Connection ... 8
 6.1 Connecting the bq27621 Circuit Module to a Battery Pack 8
 6.2 PC Interface Connection ... 9
7 Operation .. 9
 7.1 Starting the Program .. 9
 7.2 Setting Programmable bq27621 Options ... 10
8 Related Documentation from Texas Instruments .. 11
9 Revision History .. 12

List of Figures

1 bq27621EVM Layout – Top Silk .. 4
2 bq27621EVM Layout – Top Layer .. 4
3 bq27621EVM Layout – Power Layer .. 5
4 bq27621EVM Layout – Bottom Layer ... 5
5 bq27621EVM Layout – Ground Layer .. 6
6 bq27621EVM Schematic .. 7
7 bq27621 Circuit Module Connection to Pack and System Load/Charger 9
8 Registers Screen ... 10
9 Data Memory Screen ... 11

List of Tables

1 Ordering Information ... 3
2 Bill of Materials ... 6
3 Performance Specification Summary ... 7
4 Circuit Module to EV2300 or EV2400 Connections ... 9
1 Features

- Complete evaluation system for the bq27621 fuel gauge
- Populated circuit module for quick setup
- Personal computer (PC) software and interface board for easy evaluation
- Software that allows data logging for system analysis

1.1 Kit Contents

- bq27621 circuit module (PWR582)

This EVM is used for the evaluation of the bq27621. Visit the product Web folder at www.ti.com to properly configure the bq27621.

1.2 Ordering Information

Table 1. Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>EVM Part Number</th>
<th>Firmware Version</th>
<th>Battery Type</th>
<th>Chemistry ID</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>bq27621-G1</td>
<td>bq27621EVM-G1</td>
<td>v1.05 (0x0105)</td>
<td>4.2 V Li-ion</td>
<td>0x1202</td>
<td>1 cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.3 V Li-ion</td>
<td>0x1210</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.35 V Li-ion</td>
<td>0x354</td>
<td></td>
</tr>
</tbody>
</table>

(1) Using the FW_VERSION (0x0002) Control() subcommand returns 0x0105. See the bq27621-G1 data sheet for information on Control() subcommands.

2 bq27621-Based Circuit Module

The bq27621-based circuit module is a complete and compact example solution of a bq27621 circuit for battery management.

2.1 Circuit Module Connections

Contacts on the circuit module provide the following connections:

- Direct connection to the battery pack (J5): PACK+/LOAD+/CHARGER+, PACK–/LOAD–/CHARGER–
- To the serial communications port (J10): SDA, SCL, and VSS
- Access to signal outputs (J1 and J5): BIN and GPOUT
- External connect to power the IC (J4): EXT VDD and VSS

2.2 Pin Description

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACK+/CHARGER+/LOAD+</td>
<td>Pack positive pin</td>
</tr>
<tr>
<td>PACK–/CHARGER–/LOAD–</td>
<td>Pack negative pin</td>
</tr>
<tr>
<td>SDA</td>
<td>I2C communication data line</td>
</tr>
<tr>
<td>EXT VDD</td>
<td>External supply connection</td>
</tr>
<tr>
<td>SCL</td>
<td>I2C communication clock line</td>
</tr>
<tr>
<td>VSS</td>
<td>Signal return for communication line, shared with charger and ground</td>
</tr>
<tr>
<td>BIN</td>
<td>Battery insertion detection input</td>
</tr>
<tr>
<td>GPOUT</td>
<td>General purpose output</td>
</tr>
</tbody>
</table>
3 Circuit Module Physical Layout, Bill of Materials, and Schematic

This section contains the board layout, bill of materials, and schematic for the bq27621 circuit module.

3.1 Board Layout

This section shows the printed-circuit board (PCB) layers (Figure 1 through Figure 5), and assembly drawing for the bq27621 module.

Figure 1. bq27621EVM Layout – Top Silk

Figure 2. bq27621EVM Layout – Top Layer
Figure 3. bq27621EVM Layout – Power Layer

Figure 4. bq27621EVM Layout – Bottom Layer
3.2 Bill of Materials

Table 2. Bill of Materials

<table>
<thead>
<tr>
<th>Designator</th>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
<th>Package Reference</th>
<th>Part Number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.47 µF</td>
<td>CAP, CERM, 0.47 µF, 10 V, ±10%, X5R</td>
<td>0402</td>
<td>GRM155R61A474KE15D</td>
<td>MuRata</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>1 µF</td>
<td>CAP, CERM, 1 µF, 10 V, ±10%, X5R</td>
<td>0402</td>
<td>GRM155R61A105KE15D</td>
<td>MuRata</td>
</tr>
<tr>
<td>FID1, FID2, FID3</td>
<td>3</td>
<td></td>
<td>Fiducial mark. There is nothing to buy or mount.</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>J1, J4, J6, J7</td>
<td>4</td>
<td></td>
<td>Terminal Block, 6 A, 3.5-mm Pitch, 2-Pos, TH</td>
<td>7.0 x 8.2 x 6.5mm</td>
<td>ED555/2DS</td>
<td>On-Shore Technology</td>
</tr>
<tr>
<td>J2, J3, J8, J9</td>
<td>4</td>
<td>1x3</td>
<td>Header, TH, 100 mil, 1x3, Gold plated, 230 mil above insulator</td>
<td>10.5 x 8.2 x 6.5mm</td>
<td>ED555/3DS</td>
<td>Sullins Connector Solutions</td>
</tr>
<tr>
<td>J5</td>
<td>1</td>
<td></td>
<td>Terminal Block, 6 A, 3.5-mm Pitch, 3-Pos, TH</td>
<td></td>
<td>ED555/3DS</td>
<td>On-Shore Technology</td>
</tr>
<tr>
<td>J10</td>
<td>1</td>
<td></td>
<td>Header, 100 mil, 4x1, R/A, TH</td>
<td>4 x 1 R/A Header</td>
<td>22-05-3041</td>
<td>Molex</td>
</tr>
<tr>
<td>LBL1</td>
<td>1</td>
<td></td>
<td>Thermal Transfer Printable Labels, 0.650" W x 0.200" H 10,000 per roll</td>
<td>PCB Label 0.650"H x 0.200"W</td>
<td>THT-14-423-10</td>
<td>Brady</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>10 kΩ</td>
<td>RES, 10 kΩ, 5%, 0.063 W</td>
<td>0402</td>
<td>CRCW040210KJNED</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>4.7 kΩ</td>
<td>RES, 4.7 kΩ, 5%, 0.063 W</td>
<td>0402</td>
<td>CRCW04024M70FKED</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>R3, R4</td>
<td>2</td>
<td>5.1 kΩ</td>
<td>RES, 5.1 kΩ, 5%, 0.063 W</td>
<td>0402</td>
<td>CRCW04025K10JNED</td>
<td>Vishay-Dale</td>
</tr>
<tr>
<td>TP1, TP7, TP9</td>
<td>3</td>
<td></td>
<td>Black Test Point, Miniature, Black, TH</td>
<td>Black Miniature Testpoint</td>
<td>5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP2, TP3, TP10, TP11</td>
<td>4</td>
<td>White</td>
<td>Test Point, Miniature, White, TH</td>
<td>White Miniature Testpoint</td>
<td>5002</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP4, TP5, TP6, TP8</td>
<td>4</td>
<td>Red</td>
<td>Test Point, Miniature, Red, TH</td>
<td>Red Miniature Testpoint</td>
<td>5000</td>
<td>Keystone</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td></td>
<td>System-Side Fuel Gauge With Dynamic Voltage Correlation</td>
<td>YZF0009AGAH</td>
<td>bq27621YZF-G1</td>
<td>Texas Instruments</td>
</tr>
</tbody>
</table>

Figure 5. bq27621EVM Layout – Ground Layer
3.3 Schematic

![Figure 6. bq27621EVM Schematic](image)

NOTE: Add 10-kΩ pulldown resistor on BIN pin for proper operation.

3.4 bq27621 Circuit Module Performance Specification Summary

Table 3 summarizes the performance specifications of the bq27621 circuit module.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage Pack+ to Pack−</td>
<td>2.7</td>
<td>3.6</td>
<td>4.5</td>
<td>V</td>
</tr>
</tbody>
</table>
4 EVM Hardware and Software Setup

This section describes how to install the bq27621EVM PC software and how to connect the different components of the EVM.

4.1 System Requirements

The software requires Windows XP or later. EV2300 is not officially supported for 64-bit Windows, such as Windows 7 or later. EV2400 is recommended.

4.2 Software Installation

Find the latest software version of Battery Management Studio (bqStudio) in the bq27621 tool folder on power.ti.com. Make a search by Part Number for bq27621 to access the tool folder. Use the following steps to install the bq27621 bqStudio software:

1. Ensure that the EV2300 or EV2400 is not connected to the personal computer (PC) through the USB cable before starting this procedure.
2. Open the archive containing the installation package, and copy its contents into a temporary directory.
3. Open the software file that was downloaded from the TI Web site.
4. Follow the instructions on screen until completing the software installation.
5. Before starting the evaluation software, connect the EV2300 or EV2400 to the computer using the USB cable.
6. If EV2300 is connected, wait until system prompt New Hardware Found appears. Choose Select Location Manually, and use the Browse button to point to subdirectory TIUSBWin2K-XP-1.
7. Answer Continue to the warning that drivers are not certified with Microsoft®.
8. If the EV2300 is connected, after the previous installation finishes, another system prompt New Hardware Found appears. Repeat steps 1 through 5, but specify the directory as TIUSBWin2K-XP-2.
9. Answer Continue to the warning that drivers are not certified with Microsoft. Driver installation is now finished.
10. For the EV2400, the driver should be installed along with software installation.

5 Troubleshooting Unexpected Dialog Boxes

The user that is downloading the files must be logged in as the administrator. The driver is not signed, so the administrator must allow installation of unsigned drivers in the operating system. If using Windows 7, install the software with administrator privileges.

6 Hardware Connection

The bq27621 evaluation system comprises three hardware components: the bq27621 circuit module, the EV2300 or EV2400 PC interface board, and the PC.

6.1 Connecting the bq27621 Circuit Module to a Battery Pack

Figure 7 shows how to connect the bq27621 circuit module to the cells and system load/charger.
Figure 7. bq27621 Circuit Module Connection to Pack and System Load/Charger

NOTE: If you have the PWR545 REV. A EVM board, connect the battery, charger, and load to the PACK+ and PACK– connections on J5 as shown in Figure 7. Do not connect the charger and load to J6 and J7 as shown in the initial release of this EVM User's Guide.

Ensure that the battery is closest to the EVM board followed by the charger and the load when these are connected to J5.

6.2 PC Interface Connection

The following steps configure the hardware for interface to the PC.

1. Connect the bq27621-based EVM to the EV2300 or EV2400 using wire leads as shown in Table 4.
2. Connect the PC USB cable to the EV2300 or EV2400 and the PC USB port.

<table>
<thead>
<tr>
<th>Table 4. Circuit Module to EV2300 or EV2400 Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>bq27621EVM</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>SDA</td>
</tr>
<tr>
<td>SCL</td>
</tr>
<tr>
<td>VSS</td>
</tr>
</tbody>
</table>

The bq27621EVM is now set up for operation.

7 Operation

This section details the operation of the bq27621 bqStudio software.

7.1 Starting the Program

Run bqStudio from the Start → Programs → Texas Instruments → Battery Management Studio menu sequence. When bqStudio starts up, the main perspective (Figure 8) should appear. The main perspective shows the plug-ins panel at the top, the Gauge Dashboard and the Registers and Commands plug-in windows. The plug-in windows are allowed to be hidden, docked in various positions, or allowed to float as separate windows. If bqStudio is starting for the first time, only the welcome screen will be seen. To get to the main perspective, simply close the welcome screen tab. Registers, Data Memory, Commands, and
other plug-ins can be added to the main window by clicking on the corresponding icon in the plug-ins panel at the top of the main window. Data should appear initially in the Gauge Dashboard and Registers sections. The Refresh (single time scan) or the Scan (continuous scan) buttons can be clicked to update the data in the Registers window. The Log button can be used to save scanned values to a file for later analyses.

The logging and continuous scanning interval can be set in the Preferences option found under the Window menu.

Figure 8 shows the main bqStudio perspective. Additional Flag and Status data can be viewed at the bottom of the Registers plug-in window.

Each plug-in window can be resized and docked in various positions within the main bqStudio window. Each plug-in window can also be pulled out from the main window and allowed its own floating window.

7.2 Setting Programmable bq27621 Options

The bq27621 EVM comes configured per the default settings detailed in the bq27621 technical reference manual. Ensure that the settings are correctly changed to match the pack and application for the bq27621 solution being evaluated.

IMPORTANT: The correct setting of these options is essential to get the best performance. The settings can be configured using the Data Memory Plug-in bqStudio Figure 9).
When the *Data Memory* plug-in is first opened, *bqStudio* will read the configuration values from the connected *bq27621EVM*. If the EVM has been reset as indicated by the [ITPOR] bit being set in the *Flags()* register, these values will be the defaults.

To change these values in the *Data Memory* plug-in, double-click on the desired parameter and enter the new value. After the new value has been entered, press the Enter key. After Enter has been pressed, *bqStudio* will update the selected parameter. Please note that the RAM updates will revert back to the defaults when there is a POR or full RESET (indicated by the [ITPOR] bit being set in the *Flags()* register).

The *Import* button in the *Data Memory* plug-in can be clicked to import the configuration from an entire *.gg.csv* file into RAM.

The RAM configuration can be saved to a file by clicking the *Export* button in the *Data Memory* plug-in and entering a file name. The RAM configuration will be saved to a *.gg.csv* file.

8 Related Documentation from Texas Instruments

To obtain a copy of any of the following TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580. When ordering, identify this document by its title and literature number. Updated documents also can be obtained through the TI Web site at www.ti.com.

1. *bq27621-G1, System-Side Fuel Gauge with Dynamic Voltage Correlation* data sheet ([SLUSB85])
2. *Quickstart Guide for bq27621-G1* ([SLUUAP5])
9 Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>November 2013</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
| A | February 2014 | Figure 1 through Figure 4, Figure 6, and Figure 7 are updated with the PWR545, Rev B EVM board.
Figure 8 and Figure 9 are updated with the bq27621-G1A device.
Added the Note following Figure 7.
Added Revision History section. |
| B | April 2014 | Deleted Section 8, Calibrate Screen
Streamlined instructions. |
STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, or documentation (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 Limited Warranty and Related Remedies/Disclaimers:

2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.

2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes: (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lads/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。

http://www.tij.co.jp/lads/ti_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】
開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備をご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

4 EVM Use Restrictions and Warnings:

4.1 EVMs are not for use in functional safety and/or safety critical evaluations, including but not limited to evaluations of life support applications.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. **Disclaimers:**

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM.

7. **User's Indemnity Obligations and Representations.** User will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any handling or use of the EVM that is not in accordance with these terms and conditions. This obligation shall apply whether Claims arise under statute, regulation, or the law of tort, contract or any other legal theory, and even if the EVM fails to perform as described or expected.

8. **Limitations on Damages and Liability:**

8.1 **General Limitations.** In no event shall TI be liable for any special, collateral, indirect, punitive, incidental, consequential, or exemplary damages in connection with or arising out of these terms and conditions or the use of the EVMS provided hereunder, regardless of whether TI has been advised of the possibility of such damages. Excluded damages include, but are not limited to, cost of removal or reinstallation, ancillary costs to the procurement of substitute goods or services, retesting, outside computer time, labor costs, loss of goodwill, loss of profits, loss of savings, loss of use, loss of data, or business interruption. No Claim, suit or action shall be brought against TI more than one year after the related cause of action has occurred.

8.2 **Specific Limitations.** In no event shall TI's aggregate liability from any warranty or other obligation arising out of or in connection with these terms and conditions, or any use of any TI EVM provided hereunder, exceed the total amount paid to TI for the particular units sold under these terms and conditions with respect to which losses or damages are claimed. The existence of more than one claim against the particular units sold to User under these terms and conditions shall not enlarge or extend this limit.

9. **Return Policy.** Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the component(s), excluding any postage or packaging costs.

10. **Governing Law:** These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of TI components in safety-critical applications, Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
<td>audio</td>
<td>automotive</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
<td>amplifier</td>
<td>communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
<td>dataconverter</td>
<td>computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
<td>dlp</td>
<td>consumer-apps</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
<td>dsp</td>
<td>energy</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
<td>ti.com/</td>
<td>ti.com/</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
<td>clock</td>
<td>medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
<td>logic</td>
<td>security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
<td>power</td>
<td>space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>controller</td>
<td>video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td>ti-rfid</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td></td>
<td>ti.com/omap</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td>wireless</td>
<td></td>
</tr>
</tbody>
</table>