

bq27320EVM-766 Evaluation Module

This evaluation module (EVM) is a complete evaluation system for the bq27320. This EVM includes one bq27320 circuit module, an external current sense resistor. A separate orderable EV2300 or EV2400 PC interface board for gas gauge along with a PC USB cable, and Microsoft® Windows® based PC software is needed when using this EVM. The circuit module includes one bq27320 integrated circuit and all other onboard components necessary to monitor and predict capacity for a system-side or removable battery pack fuel-gauge solution. With the EV2300 or EV2400, users can:

- Read the bq27320 data registers
- Program the chipset for different configurations
- Log cycling data for further evaluation
- Evaluate the overall functionality under different charge and discharge conditions

Contents

1	Featu	res	2
	1.1	Kit Contents	2
	1.2	Ordering Information	2
	1.3	bq27320 Circuits Module Performance Specification Summary	2
2	bq273	20EVM Quick Start Guide	3
	2.1	Items Needed for EVM Setup and Evaluation	3
	2.2	System Requirements	3
	2.3	Software Installation	3
	2.4	Troubleshooting Unexpected Dialog Boxes	3
	2.5	EVM Connections	3
	2.6	PC Interface Connection	5
3	Opera	tion	6
	3.1	Starting the Program	6
	3.2	Setting Programmable bq27320 Options	7
	3.3	Calibration	8
	3.4	Setting the CEDV Parameters	9
4	Circuit	t Module Physical Layout, Bill of Materials and Schematic	10
	4.1	Board Layout	10
	4.2	Bill of Materials	13
	4.3	Schematic	14
5	Relate	ed Documentation from Texas Instruments	15

List of Figures

1	bq27320 Circuit Module Connection to Pack and System Load/Charger	4
2	Registers Screen	6
3	Data Memory Screen	7
4	Calibration Screen	8
5	CEDV Coefficients Calculation Flow	9
6	Top Silkscreen	10
7	Top Layer	10
8	Inner Layer 1	11
9	Inner Layer 2	11
Microsoft, Wind	ows are registered trademarks of Microsoft Corporation.	

1

Features	
----------	--

ures	www.	ti.com
10	Bottom Layer	. 12
11	bq27320EVM Schematic	14

List of Tables

1	Ordering Information	2
2	Performance Specification Summary	2
3	EVM Pins Descriptions	4
4	Circuit Module to EV2300 or EV2400 Connections	5
5	bq27320EVM-766 Bill of Materials	13

1 **Features**

This EVM has the following features:

- Complete evaluation system for the bq27320 CEDV gas gauge •
- Populated circuit module for quick setup •
- Personal computer (PC) software and interface board for easy evaluation •
- Software allows data logging for system analysis •

1.1 Kit Contents

This EVM kit contains the following:

bq27320 circuit module (PWR766)

This EVM is used for the evaluation of the bq27320 device. Visit the product web folder at www.ti.com to properly configure the bq27320.

1.2 Ordering Information

Table 1 lists the EVM ordering information.

Table 1. Ordering Information

Part Number	EVM Part Number	Configuration	Chemistry
bq27320	bq27320EVM-766	1-series cell	Li-ion

1.3 bq27320 Circuits Module Performance Specification Summary

Table 2 summarizes the performance specifications of the bq27320 circuit module.

Table 2. Performance Specification Summary

Specification	Min	Тур	Max	Units
Input Voltage Pack+ to Pack-	2.8	3.6	4.5	V

2 bq27320EVM Quick Start Guide

This section provides the step-by-step procedures required to take a new EVM and configure it for operation in a laboratory environment.

2.1 Items Needed for EVM Setup and Evaluation

The following items are required for setup and evaluation of the EVM:

- bq27320 circuit module
- EV2300 or EV2400 communications interface adapter
- USB cable to the communications interface adapter to the computer
- · Computer setup with Windows XP or higher operating system
- Access to the internet to download bqStudio software setup program
- DC power supply capable of supplying 4.5 V and 2 A. (Constant current and constant voltage capability is desirable.)

2.2 System Requirements

The bqStudio software requires Windows XP or later. Using later versions of the Windows operating system can cause issues with the USB driver support. The EV2300 USB drivers have been tested for Windows 98SE, but no assurance is made for problem-free operation with specific system configurations.

2.3 Software Installation

Find the latest software version of bqStudio on http://www.ti.com/tool/bqstudio. Search by part number for bq27320 to access the tool folder for the device. Use the following steps to install the bq27320 bqStudio software:

- 1. Ensure that the EV2300 or EV2400 is not connected to the personal computer (PC) through the USB cable before starting this procedure.
- 2. Open the archive containing the installation package, and copy its contents into a temporary directory.
- 3. Open the bqStudio installer file that was downloaded from the TI Web site.
- 4. Follow the on-screen instructions until completing the software installation.
- 5. Before starting the evaluation software, connect the EV2300 or EV2400 to the computer using the USB cable.
- 6. If EV2300 is connected, wait until the system prompt *New Hardware Found* appears. Choose *Select Location Manually*, and use the **Browse** button to point to the TIUSBWin2K-XP-1 subdirectory.
- 7. Answer **Continue** to the warning that drivers are not certified with Microsoft.
- 8. If the EV2300 is connected, after the previous installation finishes, another system prompt *New Hardware Found* appears. Repeat steps 1 through 5, but specify the directory as TIUSBWin2K-XP-2.
- 9. Answer **Continue** to the warning that drivers are not certified with Microsoft. Driver installation is now finished.
- 10. For the EV2400, the driver should be installed along with software installation.

2.4 Troubleshooting Unexpected Dialog Boxes

Log in as administrator before downloading the files. The driver is not signed, so the administrator must allow installation of unsigned drivers in the operating system. If using Windows 7, install the software with administrator privileges.

2.5 EVM Connections

The bq27320 evaluation system comprises three hardware components: the bq27320 circuit module, the EV2300 or EV2400 PC interface board, and the PC.

2.5.1 Connecting the bq27320 Circuit Module to a Battery Pack

Figure 1 illustrates the device connection to a battery and system load and charger.

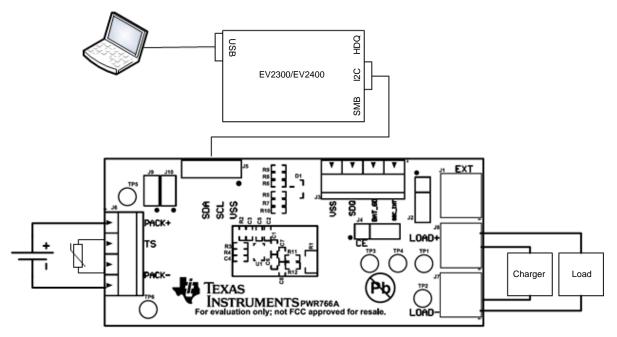


Figure 1. bq27320 Circuit Module Connection to Pack and System Load/Charger

2.5.2 Circuit Module Connections

Contacts on the circuit module provide the following connections:

- Direct connection to the battery pack (J6): PACK+/PACK-
- Charger and load connection (J7 and J8): LOAD+ and LOAD-
- I2C communication port (J5): SDA, SCL, and VSS
- Signal outputs (J3): SOC_INT, SDQ and BAT_GD
- External power connection (J1): EXT

2.5.3 Pin Description

Table 3 lists the EVM pins and their descriptions.

Table 3. EVM Pins Descriptions

Pin Name	Description
PACK+	Pack positive terminal
PACK-	Pack negative terminal
TS	Pack thermistor connection
SDA	I2C communication data line
SCL	I2C communication clock line
BAT_GD	Battery Good push-pull indicator output
SOC_INT	SOC state interrupts output
SDQ	Communication interface to authentication ID IC using SDQ protocol
CE	Chip enable
EXT	External supply connection
LOAD+	High potential of load or charger connection
LOAD-	Low potential of load or charger connection

bq27320EVM Quick Start Guide

2.6 PC Interface Connection

The following steps configure the hardware for interface to the PC:

- 1. Connect the bq27320-based EVM to the EV2300 or EV2400 using wire leads as shown in Table 4.
- 2. Connect the PC USB cable to the EV2300 or EV2400 and the PC USB port.

Table 4. Circuit Module to EV2300 or EV2400 Connections

bq27320EVM	EV2300	EV2400
SDA	SDA	SDA
SCL	SCL	SCL
VSS	GND	GND
J9	Short	Open
J10	Short	Open

The bq27320EVM-766 is now set up for operation.

TEXAS INSTRUMENTS

www.ti.com

Operation

3 Operation

This section details the operation of the bq27320 bqStudio software.

3.1 Starting the Program

With the EV2300 or EV2400 and the bq27320EVM connected to the computer, run bqStudio from the Desktop or installation directory. The window consists of a tools panel at the top and other child windows that can be hidden, docked in various positions, or allowed to float as separate windows. When bqStudio first starts up, the *DashBoard*, the *Registers*, and *Commands* windows should be open (Figure 2). Additional windows can be added by clicking the corresponding icons in the tools panel at the top of the main window.

Clicking the **Scan** (continuous scan) or **Refresh** (single time scan) buttons updates the data in the *Registers* and *Data Memory* windows.

The logging function in bqStudio logs selected Data Registers last received from the bq27320. Enable this function by clicking the **Start Log** button. The default elapsed interval is 4000 milliseconds, to change this interval, go to *Windows*, select *Preferences*, choose *Registers*, and change the Scan/Log Interval from 4000 to 1000 milliseconds. There is no need to log faster than 1 second as the gauge will not update the registers faster than 1 second.

jisters Data Me DashBoard	emory Command		Advanced C	omm Firm	nware Golden In	nage Watch		Errors				Comm	8
o Refresh is ON	I - Click to Turn OFF .3.45	Registers								划 Start Log	Scan Refresh	Comma	nds
•		Registers										Ø BO	ARD_OFFS
-	EV2300	-											CC_OFFSE
	Version:3.1r	Name			Value	Units	Name			Value	Units	- cc	_OFFSET_S
5		At Rate			0	mA	Standby	Time to Empty		8736	min		
		At Rate Time	To Empty		65535	min	Max Loa			-500	mA		OCV_CMD
	12C	Temperature			22.2	degC		d Time to Empty		175	min	🖉 E	BAT_INSER
	12C	Voltage			3946 0	mV mA	Average			0 22.2	cW	R.	AT REMO
		Remaining Ca	nacity		1456	mA	Cycle Co			0	degC		
		Full charge Ca			2200	mAh		State of Charge		67	- %	🛷 SET	T_HIBERNA
	bq27320	Average Curr	2e 7e		0	mA	State of			100	%	CLEA	AR_HIBERN
	0320_0_08	Average Time			65535	min	Charging	Voltage		4200	mV		
0	Addr: 0xAA	Average Time	to Full		65535	min	Charging	Current		200	mA	× S	ET_SNOOZ
	22.2 degC	Standby Curr	ent		-10	mA	CEDV Re			1456	mV	CLI	EAR_SNOC
~							EDV Thr	eshold		0	mV		SEAL
5													
3946 mV		Bit Registers										Log Panel	Clear L
67%		Name	Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Transaction	
		Control (high)	0x0000	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	Name	Cmd
		Control (low)		RSVD	RSVD	CCA	BCA	SNOOZE	BATT_ID1	BATT_ID0	HIBERNATE	RESET	0x41
		Battery Stat	0x0000	FD	OCVCOMP	OCVFAIL	SLEEP	OTC	OTD	FC	CHGINH		
		Battery Stat	0.0000	RSVD	TCA	OCVGD	AUTH_GD	BATTPRES	TDA	SYSDWN	DSG		
000 1000		Operation S	0x0002	RSVD RSVD	RSVD	RSVD INITCOMP	RSVD VDQ	RSVD EDV2	RSVD SEC1	RSVD SEC0	RSVD CALMD		
2000 2000		Gauging Sta	0x40	VDQ	EDV2	EDV1	RSVD	RSVD	RSVD	OCVFR	REST		
0 2		Gauging Sta	0,40	CF	DSG	EDV	RSVD	TC	TD	FC	FD		
												٠	

Figure 2. Registers Screen

The bq27320 comes configured per the default settings detailed in the bq27320 technical reference manual (TRM) (<u>SLUUBE6</u>). Ensure that the settings are correctly changed to match pack and application for the bq27320 solution being evaluated.

IMPORTANT: The correct setting of these options is essential for the best performance. Configure the settings using the *Data Memory* window (Figure 3).

<u> </u>	mands Calibratic	n Advanced Comm Firmware Golden Im	age Watch	Data Graph E	rrors	🖹 🖢 Battery Mana
DashBoard V II	🕽 Registers 🗢 Data	Memory 🛱			-	
to Refresh is ON - Click to Studio Version: 1.3.45	Data Memory	Filter/Search Auto Export	xport Impo	ort Write_A	C P . Read All View	Commands
Δ	Read/Write Data Me	mory Contents				BOARD_
EV2400		Name	Priva	Value	Unit ^	CC_0
Version:0	Calibration	/ Data				CC_OFFS
~	Configuration	CC Gain		9,999	mOhm	
1220		CC Delta		1.000	mOhm	/ OCV_
12C	System Data	CC Offset		-44.97	mA	BAT_I
	Gas Gauging	ADC I Offset	Private	76	mA	
		Board Offset		0.03	uA	BAT_RE
A 1-27000	Settings	Internal Temperature Offset		0	degC 🗉	SET_HIBI
bq27320 0320 0 08	OCV Table	External Temperature Offset		0	degC	
Addr: 0xA		Pack VOffset		-1	mV	CLEAR_HI
24.2 degC	R_b Table	⊿ Temp Model				SET_SN
V		Int Coeff 1		0	num	- 3E1_3N
	Authenticate	Int Coeff 2		0	num	Log Clearlo
		Int Coeff 3		-12324	num	Panel Clear Lo
3927 mV		Int Coeff 4		613.1	degK	- Transaction Lo
67%		Int Min AD		0	-	Name Cm
		Int Max Temp		6131	0.1degK	Name Ch
		Ext Coeff 1 Ext Coeff 2		-11130 19142	num	
		Ext Coeff 2 Ext Coeff 3		-19142	num	
1000		Ext Coeff 3 Ext Coeff 4		2820.3	num degK	
-		Ext Coeff 5		89.2	degK	
-2000 2000		Ext Coeff b 1		328	num	
		Ext Coeff b 2		-605	num	
		Ext Coeff b 3		-2443	num	
		Ext Coeff b 4		469.6	degK	
		RC0		11703	cnt +	< III)

Figure 3. Data Memory Screen

To read all the data from the bq27320 non-volatile flash memory, click on the *Read All* button on the *Data Memory* window. Make sure the device is not sealed and in full access to read and write to the data memory. Clicking on a parameter is the first step for parameter updates and a window pops up providing details on the selected parameter. Next, enter the value in the value textbox and press **Enter**. After pressing **Enter**, bqStudio updates the selected parameter. Click the *Import* button in the *Data Memory* window to import an entire configuration from a specified *.gg.csv file.

Save the configuration to a file by clicking the **Export** button in the *Data Memory* window and entering a file name. The configuration is saved to a *.gg.csv file. The module calibration data is also held in the bq27320 data memory. If the *Gauge Dashboard* is not displaying any information, then the bq27320 may not be supported by the bqStudio version being used: a bqStudio upgrade may be required.

bq27320EVM-766 Evaluation Module

Operation

3.3 Calibration

The bq27320EVM must be calibrated to ensure accurate value reporting. Calibrate the EVM in the *Calibration* window in bqStudio (Figure 4).

🔓 Battery Management Studio (bqStudio) 1.3.45	
File View Window Help		
Registers Data Memory C	ommands Calibration Advanced Comm	🖹 🖣 Battery Mana
🖌 DashBoard 🗸 🖓 🗖	Registers Calibration 🛛	- D = C X - D
Auto Refresh is ON - Click to	Calibration	Commands
bqStudio Version: 1.3.45	Perform Calibration	BOARD_
EV2400 Version:0	Select the type of calibration to perform and enter the actual input parameters.	CC_OF
12C	Calibrate CC Offset	OCV_ BAT_IM
bg27320	Board Offset	E BAT_RE
0320_0_08 Addr: 0xAu 22.3 degC	Temperature Internal Temp Applied Temperature Internal Temp deg C Calibrate Temperature	CLEAR_HII
3913 mV 66%	Current Applied Current mA Calibrate Current	Log Panel Transaction Log Name Cmc
1000	Voltage Applied Voltage mV Calibrate Voltage	
< >	<u>⊆</u> alibrate Gas Gauge	+ (<u>m</u>) +
	👋 Texas Instruments	0.6

Figure 4. Calibration Screen

Calibration consists of the following:

- CC Offset/Board Offset: Check Calibrate CC Offset and Calibrate Board Offset, then click the Calibrate Gas Gauge button to calibrate the Coulomb counter and board offsets. Ensure no current is flowing through the sense resistor during these steps. After a successful calibration, a green check mark shows next to the Calibrate Gas Gauge button.
- Current: Connect a 2-A load to LOAD+/LOAD- or a current source to LOAD-/PACK-. Ensure the
 measured current reported is negative, or else reverse the connections. Check Calibrate Current and
 enter the current into the textbox then click the Calibrate Gas Gauge button.
- Voltage: Apply a known DC voltage to PACK+/PACK- with no current flowing through the sense resistor. Check Calibrate Voltage and enter the voltage into the textbox then click the Calibrate Gas Gauge button.

8

3.4 Setting the CEDV Parameters

TI provides an online gauging parameter calculator (GPC) for CEDV gauges tool (<u>www.ti.com/tool/GPCCEDV</u>) to evaluate the bq27320. After programming the design parameters to the gauge, use the EVM to obtain the experimental data needed to calculate the CEDV coefficients.

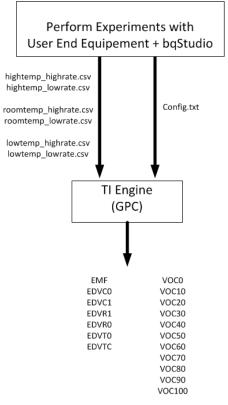


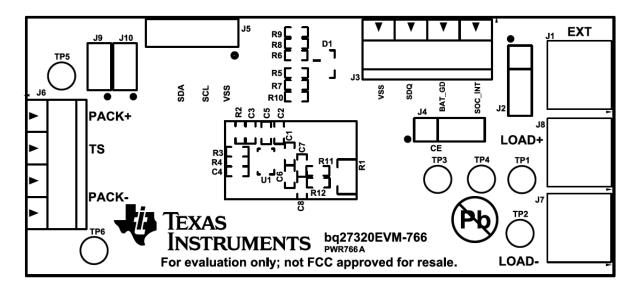
Figure 5. CEDV Coefficients Calculation Flow

The following items are required:

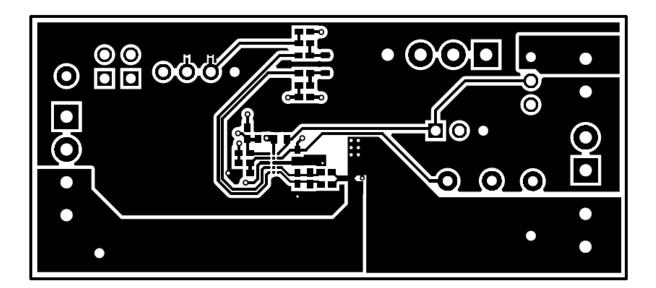
- bqStudio software
- bq27320EVM-766
- Power supply able to source/sink current. For example, a gauge development kit (GDK) or a Keithley sourcemeter. Alternatively, use a regular DC power supply and electronic load.

Refer to Simple Guide to CEDV Data Collection for Gauging Parameter Calculator (GPC) (<u>SLUUB45</u>) for a detailed explanation of the CEDV coefficients data collection process and GPC tool configuration.

9



4 Circuit Module Physical Layout, Bill of Materials and Schematic


This section contains the board layout, bill of materials, and schematic for the bq27320 circuit module.

4.1 Board Layout

This section shows the printed circuit board (PCB) layers (Figure 7 through Figure 10), and assembly drawing (Figure 6) for the bq27320 module.

Figure 6. Top Silkscreen

Figure 7. Top Layer

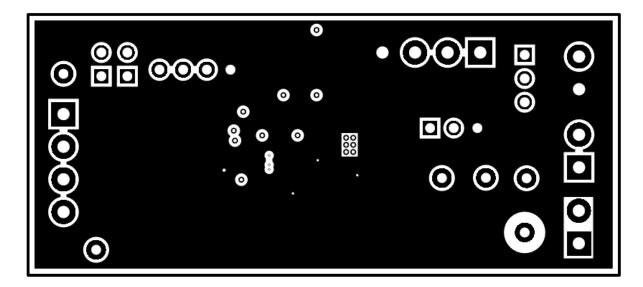


Figure 8. Inner Layer 1

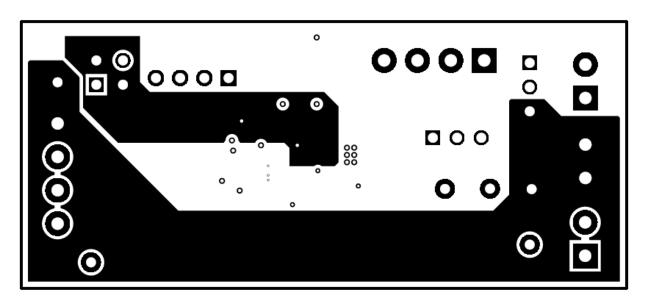


Figure 9. Inner Layer 2

Circuit Module Physical Layout, Bill of Materials and Schematic

www.ti.com

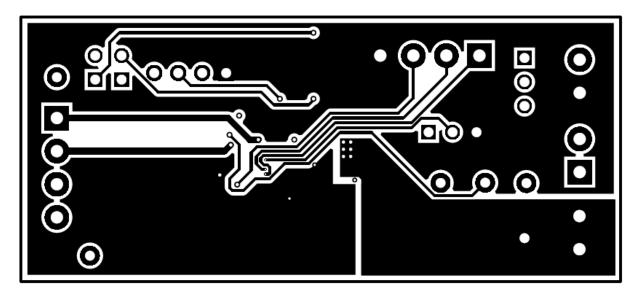
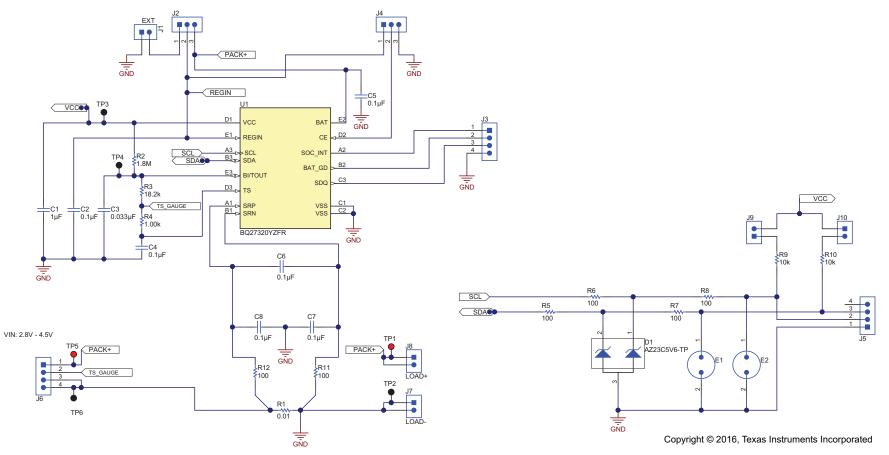


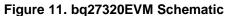
Figure 10. Bottom Layer

Circuit Module Physical Layout, Bill of Materials and Schematic

4.2 Bill of Materials

Table 5 lists the BOM for this EVM.


Designator	Qty	Value	Description	Footprint	PartNumber	Manufacturer
РСВ	1		Printed Circuit Board		PWR766	Any
C1	1	1uF	CAP, CERM, 1 µF, 6.3 V, +/- 20%, X5R, 0402	0402	GRM152R60J105ME15D	Murata
C2, C4, C5, C6, C7, C8	6	0.1uF	CAP, CERM, 0.1 µF, 10 V, +/- 10%, X5R, 0402	0402	GRM155R61A104KA01D	Murata
C3	1	0.033uF	CAP, CERM, 0.033 µF, 10 V, +/- 10%, X7R, 0402	0402	GRM155R71A333KA01D	Murata
D1	1	5.6V	Diode, Zener, 5.6 V, 300 mW, SOT-23	SOT-23	AZ23C5V6-TP	Micro Commercial Components
J1	1		Terminal Block, 6A, 3.5mm Pitch, 2-Pos, TH	TERM_BLK_ED555-2DS	ED555/2DS	On-Shore Technology
J2, J4	2		Header, 100mil, 3x1, Tin, TH	CONN_PEC03SAAN	PEC03SAAN	Sullins Connector Solutions
J3, J6	2		Terminal Block, 6A, 3.5mm Pitch, 4-Pos, TH	TERM_BLK_ED555-4DS	ED555/4DS	On-Shore Technology
J5	1		Header (friction lock), 100mil, 4x1, R/A, TH	CONN_22-05-3041	22-05-3041	Molex
J7	1		Terminal Block, 6A, 3.5mm Pitch, 2-Pos, TH	TERM_BLK_ED555-2DS	ED555/2DS	On-Shore Technology
J8	1		Terminal Block, 6A, 3.5mm Pitch, 2-Pos, TH	TERM_BLK_ED555-2DS	ED555/2DS	On-Shore Technology
J9, J10	2		Header, 100mil, 2x1, Tin, TH	CONN_PEC02SAAN	PEC02SAAN	Sullins Connector Solutions
R1	1	0.01	RES, 0.01, 1%, 0.25 W, 0805	0805_HV	WSL0805R0100FEA18	Vishay-Dale
R2	1	1.8Meg	RES, 1.8 M, 5%, 0.063 W, 0402	0402	CRCW04021M80JNED	Vishay-Dale
R3	1	18.2k	RES, 18.2 k, 1%, 0.063 W, 0402	0402	CRCW040218K2FKED	Vishay-Dale
R4	1	1.00k	RES, 1.00 k, 1%, 0.063 W, 0402	0402	CRCW04021K00FKED	Vishay-Dale
R5, R6, R7, R8, R11, R12	6	100	RES, 100, 1%, 0.063 W, 0402	0402	CRCW0402100RFKED	Vishay-Dale
R9, R10	2	10k	RES, 10 k, 5%, 0.063 W, 0402	0402	CRCW040210K0JNED	Vishay-Dale
TP1, TP5	2	Red	Test Point, Miniature, Red, TH	Keystone5000	5000	Keystone
TP2, TP3, TP4, TP6	4	Black	Test Point, Miniature, Black, TH	Keystone5001	5001	Keystone
U1	1		System-Side Fuel Gauge with Integrated LDO, YZF0015ANAN	YZF0015ANAN	BQ27320YZFR	Texas Instruments


Table 5. bq27320EVM-766 Bill of Materials

4.3 Schematic

Figure 11 illustrates the schematic for the EVM.

5 Related Documentation from Texas Instruments

Please contact the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580 for additional support. When ordering, identify this document by its title and literature number. Updated documents also can be obtained through the TI Web site at <u>www.ti.com</u>.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated