User's Guide for TPS61183EVM-528 and TPS61187EVM-528

This user’s guide describes the characteristics, operation, and use of the TPS61183 evaluation module (EVM). This EVM contains Texas Instruments’ either the TPS61183 or TPS61187 IC configured as a WLED power solution providing up to six independently regulated current outputs using a single inductor step-up (boost) converter. The current outputs are ideal for driving a WLED backlight in notebook/laptop computers. This user’s guide includes EVM specifications, recommended test setup, test results, bill of materials, and a schematic diagram.

Contents

1 Applications .................................................................................................................. 2
2 TPS61183/7EVM-528 Electrical Performance Specifications ........................................... 2
3 Modifications .............................................................................................................. 2
4 Connector and Test Point Descriptions ....................................................................... 2
   4.1 Input/Output Connections .................................................................................... 2
5 Schematic and Bill of Materials .................................................................................. 4
6 Test Requirements and Setup ..................................................................................... 6
   6.1 Hardware Requirements ....................................................................................... 6
   6.2 Hardware Setup .................................................................................................... 6
7 HPA528 Assembly Drawings and Layout .................................................................... 6

List of Figures

1 HPA528EVM Schematic ............................................................................................... 4
2 TPS61183/7EVM-528 Component Placement (Viewed from Top) .................................. 6
3 TPS61183/7EVM-528 Top Copper (Viewed from Top) .................................................... 7
4 TPS61183/7EVM-528 Bottom Copper (Viewed from Bottom) ........................................ 7

List of Tables

1 TPS61183/7EVM-528 Electrical and Performance Specifications ................................. 2
2 Bill of Materials .......................................................................................................... 5
1 Applications

Notebook and Monitor LCD display backlight

2 TPS61183/7EVM-528 Electrical Performance Specifications

Table 1 provides a summary of the TPS61183/187EVM-528 performance specifications. All specifications are given for an ambient temperature of 25°C.

Table 1. TPS61183/7EVM-528 Electrical and Performance Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notes and Conditions (1)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IN}$</td>
<td>Input Voltage</td>
<td>4.5</td>
<td>24</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>En</td>
<td>EN Logic high</td>
<td>2.1</td>
<td>20</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PWM</td>
<td>PWM Logic high</td>
<td>2.1</td>
<td>20</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$I_{q_VIN}$</td>
<td>Input quiescent Current</td>
<td>Device enable, switching 600 KHz and no load, $V_{IN} = 21$ V</td>
<td>4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>$V_{IN_UVLO}$</td>
<td>Input UVLO</td>
<td>$V_{IN}$ ramp down</td>
<td>3.50</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V$ ramp up</td>
<td>3.75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{OUT}$ ($V_{(TP2)}$)</td>
<td>J6 connected to 10 WLED configured WLEDEVM-260, JP5 shorted, JP6-13 shorted, EN/PWM = VDDIO, SEL= open</td>
<td>32</td>
<td>38</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$I_{OUT}$ ($I_{JP1}$)</td>
<td>$6 \times I_{FBx}$</td>
<td>$V_{IN}$ = Min to Max, $R_1 = 62$k</td>
<td>120</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>SYSTEMS CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_S$</td>
<td>Switching Frequency</td>
<td>0.8</td>
<td>1</td>
<td>1.2</td>
<td>MHz</td>
</tr>
</tbody>
</table>

(1) The user can estimate the input current by solving the power balance equation, $eff = P_{OUT}/P_{IN} = (V_O \times I_O)/(V_{IN} \times I_{IN})$, for $I_{IN}$ and estimating the efficiency to be a conservative 85%. For example, for $V_O = 32$V, $V_{IN} = 5$V and $I_O = 6 \times 20mA = 120mA$, $I_{IN} = (32V \times 120mA)/(5V \times 0.85) = 0.904A$

3 Modifications

See the appropriate IC datasheet when changing components such as R1 to set the LED current or R4 and R5 to set the OVP threshold. To aid in such customization of the EVM, the board was designed with devices having 0603 or larger footprints. A real implementation likely occupies less total board space.

Note that changing components can improve or degrade EVM performance. For example, using inductors with larger dc resistance lowers the dc/dc converter's efficiency.

4 Connector and Test Point Descriptions

4.1 Input/Output Connections

The connections points are described in the following paragraphs.

4.1.1 J1 – VIN

This header is the positive connection to the input power supply. Twist the input supply and GND leads to the input supply and keep them as short as possible.

4.1.2 J2 – S+/S-

This header provides connection for the positive and negative sense leads for some power supplies. Connecting sense will help ensure proper regulation of the input voltage.

4.1.3 J3 – GND

This header is the return connection to the input power supply.
4.1.4 J4 – 14-Pin Connector

This header facilitates connecting the EVM to the WLEDEVM-260 LED EVM boards. These boards must be ordered separately from the TPS61183/187EVM.

4.1.5 J5 – FPO

This header is the connection for the fault protection output that will indicate fault conditions including OVP, OC, and OT.

4.1.6 J6 – GND

This header connects to the board’s ground plane.

4.1.7 J7 & J8 – GND

This header connects to the board’s ground plane.

4.1.8 JP1 – LEDs ON

The user can remove the shunt on this jumper and connect the high side of external LED strings. When using the WLEDEVM-260 LED EVMs, installing the shunt on this jumper connects the output of the boost converter to J4. Removing the jumper removes the WLEDs from the boost converter feedback path and causes the IC’s over-voltage protection circuitry to activate. Instead of the shunt, the user can place an ammeter across the jumper to measure the total output current (i.e., 6×IFBx).

4.1.9 JP2 – EN-VDDIO

Installing the shunt on this jumper sets the ENABLE pin voltage to VDDIO, thereby enabling the IC’s boost converter. Removing the logic high signal allows the internal pulldown resistor to pull EN to ground, which disables the IC’s boost converter.

Note: With Vin applied, VDDIO/VDD does not reach full regulation until EN is pulled high. While it is possible to enable the IC by tying the EN pin to the unregulated VDDIO/VDD output for evaluation, it is not recommended in a real application.

4.1.10 JP3 – PWM-VDDIO

Installing the shunt on this jumper sets the PWM pin voltage to VDDIO, which sets the current sinks to 100% current and therefore any attached LEDs to full brightness. The user must connect an external PWM signal or use JP4 to take PWM to a logic high (above 2.1 V but no higher than 20 V) in order to enable the current sinks.
Schematic and Bill of Materials

Figure 1. HPA528EVM Schematic

NOTE: For Reference Only, See Table 2 Bill of Materials for Specific Values
### Table 2. Bill of Materials

<table>
<thead>
<tr>
<th>RefDes</th>
<th>Value</th>
<th>Description</th>
<th>Size</th>
<th>Part Number</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4.7uF</td>
<td>Capacitor, Ceramic, 25V, X7R, 10%</td>
<td>1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C2</td>
<td>Open</td>
<td>Capacitor, Ceramic, 25V, X7R, 10%</td>
<td>1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C3</td>
<td>4.7uF</td>
<td>Capacitor, Ceramic, 50V, X5R, 10%</td>
<td>1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C4</td>
<td>Open</td>
<td>Capacitor, Ceramic, 50V, X5R, 10%</td>
<td>1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>C5</td>
<td>1.0uF</td>
<td>Capacitor, Ceramic, 10V, X5R, 10%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>J1, J2, J3, J5, J6</td>
<td>PEC02SAAN</td>
<td>Header, Male 2-pin, 100mil spacing</td>
<td>0.100 inch x 2</td>
<td>PEC02SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>J4</td>
<td>N2514-6002RB</td>
<td>Connector, Male Straight 2x7 pin, 100mil spacing, 4 Wall</td>
<td>0.100 inch x 2X7</td>
<td>N2514-6002RB</td>
<td>3M</td>
</tr>
<tr>
<td>J7, J8</td>
<td>PEC04SAAN</td>
<td>Header, Male 4-pin, 100mil spacing</td>
<td>0.100 inch x 4</td>
<td>PEC04SAAN</td>
<td>Sullins</td>
</tr>
<tr>
<td>L1</td>
<td>10uH</td>
<td>Inductor, 90mohm DC resistance, ±20%</td>
<td>0.205 x 0.205 inch</td>
<td>#A915AY-100M</td>
<td>Toko</td>
</tr>
<tr>
<td>R1</td>
<td>62K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R2</td>
<td>9.09K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R3</td>
<td>0</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R4</td>
<td>1.00M</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R5</td>
<td>53.6K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R6</td>
<td>Open</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R7, R8</td>
<td>1.50K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R9</td>
<td>20.0K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>R10</td>
<td>499K</td>
<td>Resistor, Chip, 1/16W, 1%</td>
<td>0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>TP1, TP2, TP3, TP4, TP5</td>
<td>5000</td>
<td>Test Point, Red, Thru Hole Color Keyed</td>
<td>0.100 x 0.100 inch</td>
<td>5000</td>
<td>Keystone</td>
</tr>
<tr>
<td>U1</td>
<td>TPS61187RTJ</td>
<td>IC, WLED Driver for Notebooks</td>
<td>QFN-20</td>
<td>TPS61187RTJ</td>
<td>TI</td>
</tr>
<tr>
<td>U1</td>
<td>TPS61187RTJ</td>
<td>IC, WLED Driver for Notebooks</td>
<td>QFN-20</td>
<td>TPS61187RTJ</td>
<td>TI</td>
</tr>
<tr>
<td></td>
<td>PCB, 1.75&quot; x 3.5&quot; x 0.062&quot;</td>
<td></td>
<td></td>
<td>HPAB528</td>
<td>Any</td>
</tr>
<tr>
<td>9</td>
<td>Shunt, 100-mil, Black</td>
<td></td>
<td>0.100</td>
<td>929950-00</td>
<td>3M</td>
</tr>
</tbody>
</table>
6 Test Requirements and Setup

6.1 Hardware Requirements

This EVM requires an external power supply capable of providing up to 24V at 3A.

If dimming via an external PWM signal is desired, then a function generator capable of providing a PWM signal between 100 Hz to 22 kHz is required to avoid screen flickering and maintain dimming linearity.

6.2 Hardware Setup

- Connect a power supply capable of supplying up to 24 V at 3 A between the VIN pin and GND (J1 and J3). Do not turn on the power supply.
- JP1 should be connected directly or through an ammeter to the high side of external LED strings. Or, the shunt installed or replaced with an ammeter and the WLEDEVM-260 or WLEDEVM-461 connected to J4.
- Either use JP2 or connect a voltage source supplying at least 2.1-V but no more than 20-V signal to the high impedance EN pin (JP2) referenced to the same ground as J3.
- For PWM Dimming, either use JP3 or connect a second logic signal capable of providing at least 2.1-V but no more than 20-V signal to the PWM input.
- Properly configure JP4-JP9 so that each IFB line either connects directly to an LED string, to the J4 connector, or to GND. Unused IFBx lines should have the appropriate JP4-JP9 jumpers shunted to ground.

7 HPA528 Assembly Drawings and Layout

The following figures (Figure 2 through Figure 4) show the design of the TPS61183/7EVM-528 printed circuit board. The EVM has been designed using a 2-Layer, 2oz copper-clad circuit board 6.58 cm × 5.44 cm with all components in a 1.9cm × 2.2cm active area on the top side and all active traces to the top and bottom layers to allow the user to easily view, probe and evaluate the TPS61183/187 control IC in a practical double-sided application. Moving components to both sides of the PCB or using additional internal layers can offer additional size reduction for space constrained systems.

![Figure 2. TPS61183/7EVM-528 Component Placement (Viewed from Top)]
Figure 3. TPS61183/7EVM-528 Top Copper (Viewed from Top)

Figure 4. TPS61183/7EVM-528 Bottom Copper (Viewed from Bottom)
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables
Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of this Product in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,

2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or

3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjukku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】
本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。

2. 実験局の免許を取得後ご使用いただく。

3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

http://www.tij.co.jp
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User’s Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User’s Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

**Products**  
Audio: [www.ti.com/audio](http://www.ti.com/audio)  
Amplifiers: [amplifier.ti.com](http://amplifier.ti.com)  
Data Converters: [dataconverter.ti.com](http://dataconverter.ti.com)  
DLP® Products: [www.dlp.com](http://www.dlp.com)  
DSP: [dsp.ti.com](http://dsp.ti.com)  
Clocks and Timers: [www.ti.com/clocks](http://www.ti.com/clocks)  
Interface: [interface.ti.com](http://interface.ti.com)  
Logic: [logic.ti.com](http://logic.ti.com)  
Power Mgmt: [power.ti.com](http://power.ti.com)  
Microcontrollers: [microcontroller.ti.com](http://microcontroller.ti.com)  
RFID: [www.ti-rfid.com](http://www.ti-rfid.com)  
OMAP Mobile Processors: [www.ti.com/omap](http://www.ti.com/omap)  
Wireless Connectivity: [www.ti.com/wirelessconnectivity](http://www.ti.com/wirelessconnectivity)

**Applications**  
Automotive and Transportation: [www.ti.com/automotive](http://www.ti.com/automotive)  
Communications and Telecom: [www.ti.com/communications](http://www.ti.com/communications)  
Computers and Peripherals: [www.ti.com/computers](http://www.ti.com/computers)  
Energy and Lighting: [www.ti.com/energy](http://www.ti.com/energy)  
Industrial: [www.ti.com/industrial](http://www.ti.com/industrial)  
Medical: [www.ti.com/medical](http://www.ti.com/medical)  
Video and Imaging: [www.ti.com/video](http://www.ti.com/video)

**TI E2E Community Home Page**  
[www.e2e.ti.com](http://www.e2e.ti.com)

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated