

Using the TPS22945EVM-082 Single Channel Current Limited Load Switch IC

The TPS22945EVM-082 evaluation module (EVM) allows the user to connect power to and control the 5-pin DCK package load switch. The features of the current limiting switch can be easily evaluated using the EVM connections. Table 1 lists a short description of the TPS22945 load switch performance specifications; for additional details on load switch performance, application notes, and the datasheet see ti.com/loadswitch.

Contents

1	Introduction	2			
	1.1 Description	2			
	1.2 Features	2			
2	Electrical Performance	2			
3	Schematic	2			
4	Layout	3			
	4.1 Setup				
5	Operation	5			
6	Test Configurations				
	6.1 On-Resistance (R _{ON}) Test Setup				
	6.2 Timing Test Setup				
_	6.3 Some Examples of TPS22945 Fault Detection Conditions				
7	Bill of Materials (BOM)	8			
	List of Figures				
1	TPS22945EVM-082 Schematic	2			
2	TPS22945EVM-082 Top Assembly				
3	TPS22945EVM-082 Top Layout	3			
4	TPS22945EVM-082 Bottom Layout	4			
5	R _{on} Setup	5			
6	Typical Timing Setup	6			
7	TPS22945 Over Current Shutdown (V _{IN} = 3.3V)	7			
8	TPS22945 Operating in Constant Current Mode with Auto Restart ($V_{IN} = 3.3V$)	7			
	List of Tables				
1	TPS22945 Current Limit, Blanking Time, Enable, and Auto Restart Characteristics	2			
2	TPS22945EVM-082 Bill of Materials	8			

1

Introduction www.ti.com

1 Introduction

Table 1. TPS22945 Current Limit, Blanking Time, Enable, and Auto Restart Characteristics

EVM	Device	Current Limit Minimum	Current Limit Blanking Time	Auto Restart Time	Enable (ON Pin)
HVL082	TPS22945	100 mA	10 ms	80 ms	Active High

1.1 Description

The TPS22945EVM is a two sided PCB containing the TPS22945 load switch device. The VIN and VOUT connections to the device and the PCB layout routing provide a low resistance pathway into and out of the device under test. Test point connections allow the EVM User to control the device with user defined test conditions and make accurate R_{ON} and timing measurements.

1.2 Features

- VIN input voltage range: 1.62 V to 5.5 V.
- EVM allows access to the VIN, VOUT, GND, ON and OC pin of the TPS22945 Load Switch Device.
- On board C_{IN} and C_{OUT} capacitors.
- VIN Sense and VOUT Sense test points provide an accurate measurement point of contact to the device.

2 Electrical Performance

Refer to the datasheet for detailed electrical characteristics of the TPS22945 (SLVS832).

3 Schematic

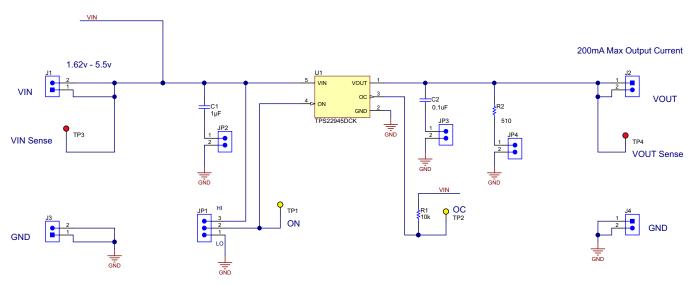


Figure 1. TPS22945EVM-082 Schematic

www.ti.com Layout

4 Layout

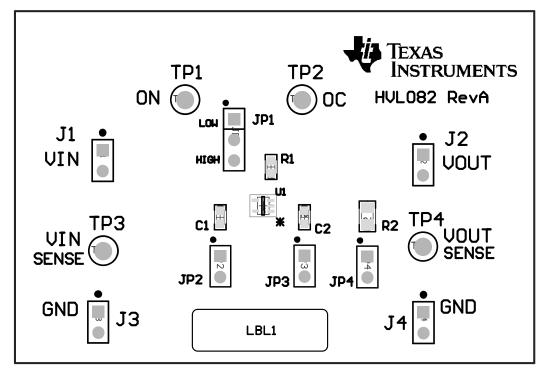


Figure 2. TPS22945EVM-082 Top Assembly

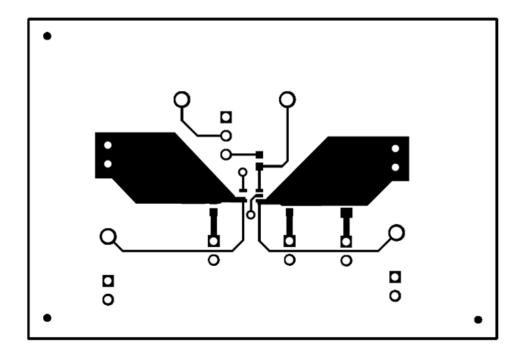


Figure 3. TPS22945EVM-082 Top Layout

Layout www.ti.com

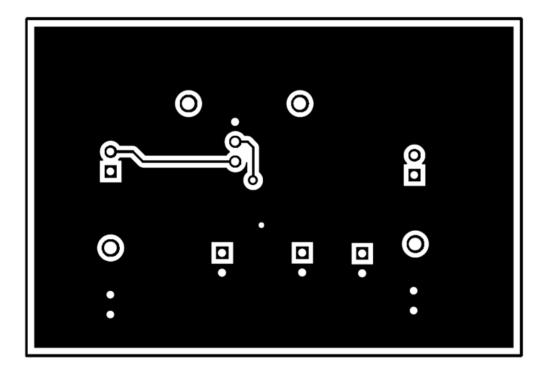


Figure 4. TPS22945EVM-082 Bottom Layout

4.1 Setup

This section describes the jumpers and connectors on the EVM as well as how to properly connect, set up, and use the EVM.

4.1.1 J1 – VIN Connection

This is the connection for the positive lead from the input source

4.1.2 J2 - VOUT Connection

This is the connection point for the output of the device.

4.1.3 JP1 - ON

This is the enable input for the device. A shorting jumper must be installed on JP1 in either the High or Low position. The TPS22945 is active High. ON must not be left floating. An external enable source can be applied to the EVM by removing the shunt and connecting a signal to TP1. Refer to the datasheet for proper ON and OFF voltage level settings. A switching signal may also be used and connected at this point.

4.1.4 TP3 - VIN Sense, TP4 - VOUT Sense

These two connections are used when very accurate measurements of the input or output are required. RON measurements should be made using these sense connections when measuring the voltage drop from VIN to VOUT to calculate the resistance.

www.ti.com Operation

4.1.5 JP2 - Input Capacitor

During normal operation a shorting jumper is placed on JP2 this connects C1 capacitor from the input of the device to ground. Refer to the Applications Section of the datasheet for additional information on selecting the input capacitor.

4.1.6 JP3 - Output Capacitor

During normal operation a shorting jumper is placed on JP3 this connects C2 capacitor from the output of the device to ground. Refer to the Applications Section of the datasheet for additional information on selecting the output capacitor.

4.1.7 J3 – J4– GND

These are connections to GND.

5 Operation

Connect the positive input of the VIN power supply to VIN at J1. Connect the negative lead of the power supply to GND at J3. The input voltage range of the TPS22945EVM-082 is 1.62 V to 5.5 V.

External output loads can be applied to the switch by using J2 VOUT and J4 GND. Configure JP1 as required. JP1 must be installed for proper operation. When the ON pin is asserted high, the output of the TPS22945 will be enabled.

6 Test Configurations

6.1 On-Resistance (R_{ON}) Test Setup

Figure 5 shows a typical setup for measuring On-Resistance. The voltage drop across the switch is measured using the sense connections then divided by the current into the load yielding the RON resistance.

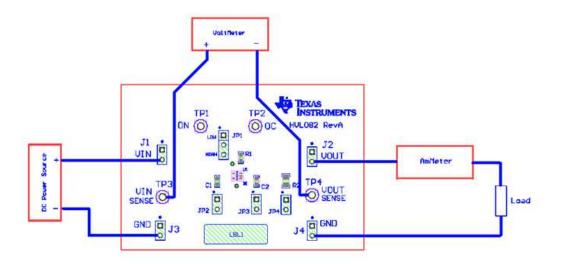


Figure 5. Ron Setup

Test Configurations www.ti.com

6.2 Timing Test Setup

Figure 6 shows a test setup for measuring some of the typical timing features of the TPS22945 load switch. The OC output pin will switch to a low state when an overload condition or other fault conditions are encountered by the device. Connecting the switch as shown below will allow the user to capture these fault conditions with an oscilloscope.

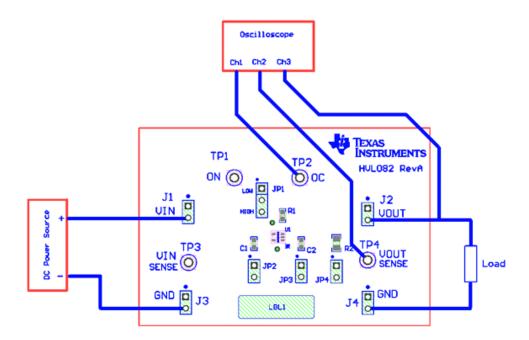


Figure 6. Typical Timing Setup

www.ti.com Test Configurations

6.3 Some Examples of TPS22945 Fault Detection Conditions

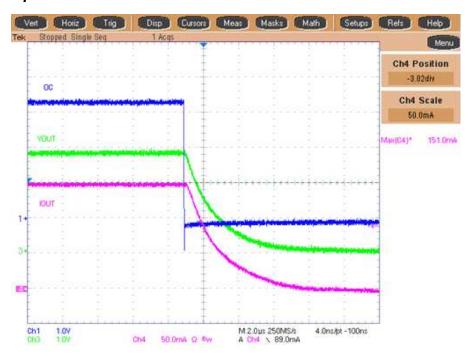


Figure 7. TPS22945 Over Current Shutdown ($V_{IN} = 3.3V$)

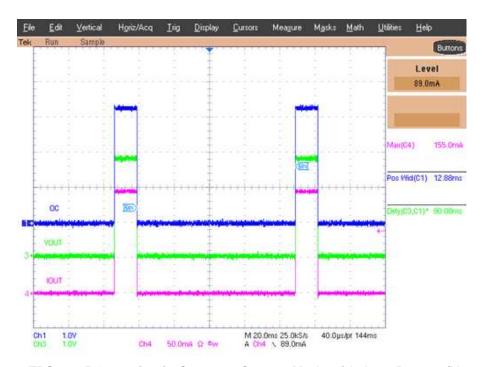


Figure 8. TPS22945 Operating in Constant Current Mode with Auto Restart ($V_{IN} = 3.3V$)

Bill of Materials (BOM) www.ti.com

7 Bill of Materials (BOM)

Table 2. TPS22945EVM-082 Bill of Materials

Designator	Qty	Value	Description	Package Reference	Part Number	Manufacturer
PCB1	1		Printed Circuit Board		HVL082	Any
C1	1	1µF	CAP, CERM, 1µF, 25V, ±10%, X7R, 0603	0603	GRM188R71E105KA12D	Murata
C2	1	0.1µF	CAP, CERM, 0.1µF, 100V, ±10%, X7R, 0603	0603	GRM188R72A104KA35D	Murata
FID1, FID2, FID3	3		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A
J1, J2, J3, J4	4		Header, 100mil, 2x1, Gold, TH	Header, 2x1, 100mil	5-146261-1	TE Connectivity
JP1	1		Header, 100mil, 3x1, Tin plated, TH	Header, 3 PIN, 100mil, Tin	PEC03SAAN	Sullins Connector Solutions
JP2, JP3, JP4	3		Header, 100mil, 2x1, Tin plated, TH	Header, 2 PIN, 100mil, Tin	PEC02SAAN	Sullins Connector Solutions
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	PCB Label 0.650"H x 0.200"W	THT-14-423-10	Brady
R1	1	10k	RES, 10kΩ, 5%, 0.1W, 0603	0603	CRCW060310K0JNEA	Vishay-Dale
R2	1	510	RES, 510 Ω, 5%, 0.125W, 0805	0805	ERJ-6GEYJ511V	Panasonic
TP1, TP2	2	Yellow	Test Point, Multipurpose, Yellow, TH	Yellow Multipurpose Testpoint	5014	Keystone
TP3, TP4	2	Red	Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010	Keystone
U1	1		Low-input-voltage current-limited load switches with shut off and auto-restart feature, DCK0005A	DCK0005A	TPS22945DCK	Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications Amplifiers **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity