

TPS2663-166EVM: Evaluation Module for TPS2663xPWP and TPS1663xPWP

This user's guide describes the evaluation module (EVM) for the Texas instruments TPS2663x and TPS1663x eFuse in PWP packages. The document provides EVM configuration information and test setup details for evaluating the TPS26633 and TPS16630 devices. The EVM schematic, board layout, and bill of materials (BOM) are also included.

Contents

1	Introduction	2
2	Description	2
3	Schematic	3
4	Connector, Jumper, and LED Descriptions	4
5	Test Equipment and Setup	6
6	Test Procedure and Results	8
7	Board Layout	13
8	Bill of Materials	14
9	Evaluating TPS26631 and TPS26636 on TPS2663-166EVM	15

List of Figures

1	TPS2663-166EVM Schematic	3
2	TPS2663-166 EVM Setup	7
3	TPS2663-166EVM Startup for CH1 (V_{IN} = 24 V, I_{LIM} = 6 A, R_{OUT} = 4.8 Ω , MODE = GND)	8
4	TPS2663-166EVM Startup for CH2 (V _{IN} = 24 V, I_{LIM} = 6 A, R_{OUT} = 4.8 Ω , MODE = GND)	8
5	TPS2663-166EVM Current Limit Operation for CH1 (V _{IN} = 24 V, I _{LIM} = 4.5 A, R _{OUT} = 4.5 Ω , MODE = GND)	9
6	TPS2663-166EVM Current Limit Operation for CH2 (V _{IN} = 24 V, I _{LIM} = 4.5 A, R _{OUT} = 4.5 Ω , MODE = GND)	9
7	TPS2663-166EVM Output Hot Short for CH1 (V_{IN} = 32 V, I_{LIM} = 6 A, MODE = OPEN)	10
8	TPS2663-166EVM Output Hot Short for CH2 (V_{IN} = 32 V, I_{LIM} = 6 A, MODE = OPEN)	10
9	TPS2663-166EVM Reverse Input Polarity for CH1 (V _{IN} = -32 V, I _{LIM} = 6 A, MODE = GND)	11
10	TPS2663-166EVM Reverse Current Blocking for CH1 (V_{OUT} = 32 V, V_{IN} = 0 V I _{LIM} = 6 A, MODE = GND)	11
11	TPS2663-166EVM Overvoltage Clamping for CH1 (V_{IN} = 35 V, I_{LIM} = 6 A, MODE = GND)	12
12	TPS2663-166EVM Top Overlay	13
13	TPS2663-166EVM Bottom Overlay	13
14	TPS2663-166EVM Top Layer	13
15	TPS2663-166EVM Bottom Layer	13

List of Tables

1	TPS2663-166EVM Operating Range and Jumper Settings	2
2	Input and Output Connector Description	4
3	Test Points Description	4
4	Jumper Description	5
5	Default Jumper Settings for TPS2663-166EVM	7
6	TPS2663-166EVM BOM	14

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

The TPS2663-166EVM allows reference circuit evaluation of TI's TPS26633 and TPS16630 eFuses. The TPS26633 device is a 4.5 V to 60 V, 6 A eFuse with overvoltage, undervoltage, short-circuit, and reverse current blocking protection, whereas the TPS16630 device is 4.5 V to 60 V, 6 A eFuse with overvoltage, undervoltage, and short-circuit protection.

1.1 EVM Features

TPS2663-166EVM features include:

- 4.5-V to 60-V operating voltage (without TVS on Input)
- 4.5 V to 33 V (For CH1 (TPS26633) with 33-V TVS on input for transient protection)
- 0.6-A to 6-A programmable current limit using onboard jumpers
- Adjustable output power limiting (For CH1 with the TPS26633 device)
- · Adjustable inrush current for large capacitive loads
- Auto-retry or Latch Off MODE configuration using onboard jumpers
- Overvoltage and UVLO configuration using onboard jumpers
- LED status indication for \overline{FLT} output and V_{OUT}

1.2 EVM Applications

- Factory automation and control
- Motor drives
- Active antenna Systems and Remote Radio Units.
- Industrial printers
- Electronic circuit breakers

2 Description

The TPS2663-166EVM enables evaluation of the TPS26633 and TPS16630 eFuses. This EVM has two channels: CH1 and CH2. CH1 is used with the TPS26633 device, whereas CH2 is used with the TPS16630 device. Table 1 provides the operating range and jumper settings for this EVM. To test this EVM, setup the EVM as per the steps provided in Section 5.5. Test procedure and results for this EVM are provided in Section 6. To configure the EVM for another configuration (non-default), see Table 4. To probe different signals on this EVM, see Table 3. Section 5 lists the equipment required to test this EVM. To connect a power supply and load to this EVM, see Section 4.1.

Table 1	. TPS2663	-166EVM	Operating	Range	and	Jumper	Settings
---------	-----------	---------	-----------	-------	-----	--------	----------

Part Number	EVM Function	V _{IN} Range (T1, T3)	I _{LIM} Pin Configuration (J4, J9)	MODE Configuration (J5, J10)
TPS2663-166EVM	4.5 V to 60 V, 6 A eFuse	 4.5 V to 60 V 4.5 V to 33 V (On CH1 with 33-V TVS) 	0.6 A to 6 A	Latch OffAuto retry

3 Schematic

Figure 1 shows the schematic for the TPS2663-166EVM.

4 **Connector, Jumper, and LED Descriptions**

Input and Output Connector Description 4.1

Table 2. Input and Output Connector Description

Connector	Label	Description
T1	VIN1	Power input connector for connecting the power supply for CH1 (TPS26633)
T2	VOUT1	Power output connector for connecting the load for CH1 (TPS26633)
Т3	VIN2	Power input connector for connecting the power supply for CH2 (TPS16630)
T4	VOUT2	Power output connector for connecting the load for CH2 (TPS16630)

4.1.1 **Test Points Description**

Table 3. Test Points Description

Test Points	Label	Description					
	For CH1 (TPS26633)						
TP1	VIN1	Positive voltage input for CH1					
TP2	VOUT1	Positive voltage output for CH1					
TP3	PGOOD1	Power good output for CH1					
TP4	VIN_SYS1	IN_SYS supply for CH1					
TP5	FLTb1	FLT signal output for CH1					
TP6	IMON1	Current monitoring signal for CH1					
TP7	PWR_GND	Input power ground signal for CH1					
TP8	SIG_GND	Signal ground for CH1					
TP9	PWR_GND	Output power ground for CH1					
TP10	SHDNb1	Shutdown input signal for CH1					
		For CH2 (TPS16630)					
TP11	VOUT2	Positive voltage output for CH2					
TP12	PGOOD2	Power good output for CH2					
TP13	VIN2	Positive voltage input for CH2					
TP14	FLTb2	FLT signal output for CH2					
TP15	IMON2	Current monitoring signal for CH2					
TP16	PWR_GND	Input power ground signal for CH2					
TP17	SIG_GND	Signal ground for CH2					
TP18	PWR_GND	Output power ground for CH2					
TP19	SHDNb2	Shutdown input signal for CH2					

Table 4. Jumper Description

Jumper	Label	Description
		For CH1 (TPS26633)
J1	Pullup for FLTfor CH1	This jumper is used for pulling up $\overline{\text{FLT}}$ to VIN_SYS1. OPEN : For pulling up $\overline{\text{FLT}}$ with any other voltage (like V_{IN}), open this jumper and connect pin 2 of J1 externally to the desired voltage (< 60 V). CLOSED : $\overline{\text{FLT}}$ is pulled up from VIN_SYS1.
J2	Pullup for PGOOD for CH1	This jumper is used for pulling up PGOOD for CH1 OPEN: For pulling up PGOOD with any other voltage (like V_{IN}), open this jumper and connect pin 2 of J2 externally to the desired voltage (< 60 V). CLOSED: PGOOD is pulled up from VOUT1.
J3	UVLO Configuration for CH1	To select factory select undervoltage trip level (15.46 V typical) or select external resistors OPEN: Resistors R4 and R7 set the UVLO trip level. CLOSED: Internal UVLO trip level is selected (15.46 V typical).
J4	I _{⊔M} Configuration for CH1	This jumper sets the overcurrent limit: 1-2 : $I_{LIM} = 6 A$ 3-4 : $I_{LIM} = 4.5 A$ 5-6 : $I_{LIM} = 2 A$ 7-8 : $I_{LIM} = 1 A$ 9-10 : $I_{LIM} = 0.6 A$
J5	MODE Configuration for CH1	This jumper configures the device mode for overcurrent and overload conditions. OPEN : Latch-Off (MODE = Open) CLOSED : Auto-retry (MODE = GND)
J6	PLIM Configuration for CH1	This jumper configures the power limiting for the device. OPEN : Resistor R9 sets the power limit. CLOSED : Power limiting is disabled.
	•	For CH2 (TPS16630)
J7	Pullup for FLTfor CH2	This jumper is used for pulling up $\overline{\text{FLT}}$ to VIN2. OPEN : For pulling up $\overline{\text{FLT}}$ with any other voltage (like V_{IN}), open this jumper and connect pin 2 of J7 externally to the desired voltage (< 60 V). CLOSED : $\overline{\text{FLT}}$ is pulled up from VIN2.
J8	Pullup for PGOOD for CH2	This jumper is used for pulling up PGOOD for CH2 OPEN: For pulling up PGOOD with any other voltage (like V_{IN}), open this jumper and connect pin 2 of J8 externally to the desired voltage (< 60 V). CLOSED: PGOOD is pulled up from VOUT2.
J9	I _{LM} Configuration for CH2	This jumper sets the overcurrent limit. 1-2 : $I_{LIM} = 6 A$ 3-4 : $I_{LIM} = 4.5 A$ 5-6 : $I_{LIM} = 2 A$ 7-8 : $I_{LIM} = 1 A$ 9-10 : $I_{LIM} = 0.6 A$
J10	MODE Configuration for CH2	This jumper configures the device mode for overcurrent and overload conditions. OPEN : Latch-Off (MODE = Open) CLOSED : Auto-retry (MODE = GND)

5 Test Equipment and Setup

This section lists the required test equipment and provides instructions to set up the tests.

5.1 Power Supplies

Two adjustable power supplies 0-V to 60-V output, 0-A to 10-A output current limit.

5.2 Meters

Testing requires two digital multimeters (DMM).

5.3 Oscilloscope

A DPO2024 or equivalent, three 10x voltage probes, and a DC current probe.

5.4 Loads

Two resistive loads or an equivalent which can tolerate up to 10-A DC load at 60 V and is capable of the output short.

5.5 Test Setup

Before performing any of the tests listed in Section 6, setup the EVM as per the following steps:

- Make sure that the jumper settings on the EVM are set to the default position as shown in Table 5.
- Connect the power supply, load, oscilloscope, and voltmeter to the EVM as Figure 2 shows.
- Set the power supply output to 0 V.
- Turn ON the power supply and set the power supply output to 24 V and current limit to 10 A.
- Turn OFF the power supply.

Test Equipment and Setup

Table 5. Default Jumper Settings for TPS2663-166EVM									
Jumper	For CH1 (TPS26633)								
	J1	J2	J3	J4	J5	J6			
Position	Closed	Closed	Open	Closed between pin 1 and 2	Closed	Open			
	For CH2 (TPS16630)								
	J7	J8	J9	J10					
Position	Closed	Closed	Closed between pin 1 and 2	Closed					

Figure 2. TPS2663-166 EVM Setup

Test Procedure and Results

6 Test Procedure and Results

6.1 Hot-plug and Start-up With 4.8 Ω Load

Use the following instructions to measure the output slew rate and input inrush current during start-up.

- Set the input supply voltage V_{IN} to 24 V and a current limit of 10 A. Enable the power supply.
- Connect a load of 4.8 Ω at output connector T2 for testing CH1 and T4 for testing CH2.
- Hot-plug the power supply at input connector T1 for testing CH1 and T3 for testing CH2.
- Observe the waveform at V_{IN}, V_{OUT}, FLT, and I_{IN} with an oscilloscope to measure the output slew rate and rise time. The device starts with inrush current of 0.5 A and the output voltage reaches V_{IN} in 50 ms.

Figure 3 and Figure 4 show examples of inrush current during start-up on the TPS2663-166EVM.

Figure 3. TPS2663-166EVM Startup for CH1 (V_{IN} = 24 V, I_{LIM} = 6 A, R_{OUT} = 4.8 Ω , MODE = GND)

Figure 4. TPS2663-166EVM Startup for CH2 (V_{IN} = 24 V, I_{LIM} = 6 A, R_{out} = 4.8 Ω , MODE = GND)

6.2 Current Limit Test

Use the following instructions to perform the current limit test:

- Set the input supply voltage V_{IN} to 24 V and a current limit of 10 A and enable the power supply.
- Set the current limit to 4.5 A using jumper J4 for CH1 and jumper J9 for CH2.
- Connect the power supply at input connector T1 for testing CH1 and T3 for testing CH2. Enable the
 power supply output.
- Connect a load of 4.5 Ω (120 W) at output connector T2 for testing CH1 and T4 for testing CH2.
- Observe the waveform at V_{IN}, V_{OUT}, \overline{FLT} , and I_{IN} with an oscilloscope.
- The device limits the current to 4.5 A for a maximum duration of t_{CL_PLIM(dly)} (162 ms), turns off the internal MOSFET, and auto-retries after a time of t_{TSD_retry} (648 ms).

Figure 5 and Figure 6 show examples of the current limit at 4.5 A for CH1 and CH2, respectively, on the TPS2663-166EVM.

Figure 5. TPS2663-166EVM Current Limit Operation for CH1 (V_{IN} = 24 V, I_{LIM} = 4.5 A, R_{OUT} = 4.5 Ω , MODE = GND)

Figure 6. TPS2663-166EVM Current Limit Operation for CH2 (V_{IN} = 24 V, I_{LIM} = 4.5 A, R_{OUT} = 4.5 Ω , MODE = GND)

Test Procedure and Results

6.3 Output Hot-Short Test

Use the following instructions to perform the output Hot-Short test:

- Set the input supply voltage V_{IN} to 32 V and a current limit of 10 A and enable the power supply.
- Connect the power supply at input connector T1 for testing CH1 and T3 for testing CH2. Enable the
 power supply output.
- Short the output of the device at output connector T2 for testing CH1 and T4 for testing CH2.
 - **NOTE:** With the output powered up, shorting the output can lead to sparking at the output terminals. To minimize the sparking, uninstall capacitor C2 for CH1 and capacitor C9 for CH2.

Capacitors C2 and C9 were uninstalled for this test.

Observe the waveforms of V_{IN}, V_{OUT}, and I_{IN} using an oscilloscope.

Figure 7 and Figure 8 show examples of output hot short on the TPS2663-166EVM. The device turns-off the internal MOSFET and disconnects the output from the input.

Figure 7. TPS2663-166EVM Output Hot Short for CH1 (V_{IN} = 32 V, I_{LIM} = 6 A, MODE = OPEN)

Figure 8. TPS2663-166EVM Output Hot Short for CH2 (V_{IN} = 32 V, I_{LIM} = 6 A, MODE = OPEN)

Test Procedure and Results

6.4 Reverse Input Polarity Test [TPS26633 Only]

Use the following instructions to perform the reverse input polarity test

- Set the input supply voltage V_{IN} to 32 V and a current limit of 10 A and enable the power supply.
- Connect the power supply output to the T1 terminal of the EVM in reverse polarity.
- Observe the waveforms of V_{IN} , V_{OUT} , and I_{IN} using an oscilloscope.

Figure 9 shows an example of reverse input polarity protection on the TPS2663-166EVM. The device turns-off the internal MOSFET and disconnects the output from the input.

Figure 9. TPS2663-166EVM Reverse Input Polarity for CH1 (V_{IN} = -32 V, I_{LIM} = 6 A, MODE = GND)

6.5 Reverse Current Blocking Test [TPS26633 Only]

Use the following instructions to perform the reverse current blocking test:

- Set the input supply voltage V_{IN} to 32 V and a current limit of 10 A and enable the power supply.
- Connect the power supply output to terminal T2 of the EVM with the positive on pin 1 and the negative on pin 2.
- Observe the waveforms of V_{IN} , V_{OUT} , and IOUT using an oscilloscope.

Figure 10 shows an example of the reverse current blocking protection on the TPS2663-166EVM.

Figure 10. TPS2663-166EVM Reverse Current Blocking for CH1 ($V_{OUT} = 32 V$, $V_{IN} = 0 V I_{LIM} = 6 A$, MODE = GND)

Test Procedure and Results

12

6.6 Overvoltage Clamping Test [TPS26633 Only]

Use the following instructions to perform the overvoltage clamping test:

- Set the input supply voltage V_{IN} to 35 V and a current limit of 10 A and enable the power supply.
- Connect the power supply output to the T1 terminal of the EVM.
- Connect a load of 25 Ω (50 W) at output terminal T2.
- Observe the waveforms of V_{IN} , V_{OUT} , \overline{FLT} , and I_{IN} using an oscilloscope.

Figure 11 shows an example of overvoltage clamping on the TPS2663-166EVM for CH1. The device clamps the voltage to $V_{(OVC)}$ voltage, turns off and retries.

Figure 11. TPS2663-166EVM Overvoltage Clamping for CH1 (V_{IN} = 35 V, I_{LIM} = 6 A, MODE = GND)

7 Board Layout

Figure 12 and Figure 13 show the component placement of the EVM board. Figure 14 and Figure 15 show the PCB layout for the top and bottom layers of the EVM.

Figure 12. TPS2663-166EVM Top Overlay

Figure 13. TPS2663-166EVM Bottom Overlay

Figure 14. TPS2663-166EVM Top Layer

Figure 15. TPS2663-166EVM Bottom Layer

Bill of Materials

8 Bill of Materials

Table 6 lists the bill of materials for the TPS2663-166EVM.

Designator	QTY	Value	Description	Package Reference	Part Number	Manufacturer
!PCB1	1		Printed circuit board		PSIL090	Any
C2	1	1000 µF	CAP, AL, 1000 μF, 50 V, ±20%, 0.034 Ω, AEC-Q200 Grade 2, TH	D16xL25	EEU-FC1H102	Panasonic
C3, C4, C7, C8	4	1 µF	CAP, CERM, 1 µF, 100 V, ±10%, X7R, 1206	1206	C3216X7R2A105K160AA	ТDК
C5, C6	2	0.1 µF	CAP, CERM, 0.1 µF, 10 V, ±10%, X7R, 0603	0603	0603ZC104KAT2A	AVX
C9	1	470 µF	CAP, AL, 470 μF, 63 V, ±20%, 0.11 Ω, SMD	LN0	EMVH630GDA471MLN0S	Chemi-Con
D1, D6	2	Red	LED, Red, SMD	Red LED, 1.6 × 0.8 × 0.8 mm	LTST-C190CKT	Lite-On
D2, D7	2	Green	LED, Green, SMD	1.6 × 0.8 × 0.8 mm	LTST-C190GKT	Lite-On
D3, D8	2	60 V	Diode, Schottky, 60 V, 2 A, SMB	SMB	B260-13-F	Diodes Inc.
D4	1	33 V	Diode, TVS, Bi, 33 V, 53.3 Vc, 1500 W, 29 A, SMC (No Polarity Mark)	SMC (No Polarity Mark)	SMCJ33CA-TR	STMicroelectronics
D9	1	58 V	Diode, TVS, Uni, 58 V, 93.6 Vc, SMC	SMC	SMCJ58A-13-F	Diodes Inc.
H1, H2, H3, H4	4		Bumpon, Hemisphere, 0.44 × 0.20, Clear	Transparent Bumpon	SJ-5303 (CLEAR)	3M
J1, J2, J3, J5, J6, J7, J8, J10	8		Header, 100 mil, 2 × 1, Gold, TH	Sullins 100 mil, 1 x 2, 230 mil above insulator	PBC02SAAN	Sullins Connector Solutions
J4, J9	2		Header, 100 mil, 5 × 2, Tin, TH	Header, 5 × 2, 100 mil, Tin	PEC05DAAN	Sullins Connector Solutions
Q1	1	100 V	MOSFET, N-CH, 100 V, 50 A, DQG0008A (VSON- CLIP-8)	DQG0008A	CSD19537Q3	Texas Instruments
Q2	1	50 V	MOSFET, N-CH, 50 V, 0.22 A, SOT-23	SOT-23	BSS138	Fairchild Semiconductor
R2, R16	2	24.3 kΩ	RES, 24.3 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060324K3FKEA	Vishay-Dale
R3, R15	2	49.9 kΩ	RES, 49.9 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060349K9FKEA	Vishay-Dale
R4	1	887 kΩ	RES, 887 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW0603887KFKEA	Vishay-Dale
R5	1	499 kΩ	RES, 499 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	ERJ-3EKF4993V	Panasonic
R6	1	56 kΩ	RES, 56 kΩ, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060356K0JNEA	Vishay-Dale
R7	1	61.9 kΩ	RES, 61.9 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060361K9FKEA	Vishay-Dale
R8. R14. R19. R25	4	30 kΩ	RES. 30 kΩ. 5%. 0.1 W. AEC-Q200 Grade 0. 0603	0603	CRCW060330K0JNEA	Vishav-Dale
R9	1	100 kΩ	RES, 100 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW0603100KFKEA	Vishay-Dale
R10. R21	2	3.0 kΩ	RES. 3.0 kΩ. 5%, 0.1 W. AEC-Q200 Grade 0, 0603	0603	CRCW06033K00JNEA	Vishav-Dale
R11, R22	2	4.02 kΩ	RES. 4.02 kg. 1%, 0.1 W. AEC-Q200 Grade 0, 0603	0603	CRCW06034K02FKEA	Vishav-Dale
R12 R23	2	9.09 kO	RES 9.09 k0 1% 0.1 W AEC-Q200 Grade 0.0603	0603	CRCW06039K09FKFA	Vishav-Dale
R13 R24	2	18 kO	RES 18 k0 5% 0.1 W AEC-0200 Grade 0.0603	0603	CRCW060318K0.INEA	Vishav-Dale
R17	1	1.37 Meg	RES, 1.37 M, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06031M37FKEA	Vishay-Dale
R18	1	182 kΩ	RES, 182 kΩ, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW0603182KFKEA	Vishay-Dale
R20	1	34.0 kΩ	Test Point, Multipurpose, White, TH			
S1, S2	2		Switch, SPST-NO, Off-Mom, 0.05A, 12 VDC, SMD	3.9 × 2.9 mm	PTS820 J20M SMTR LFS	C&K Components
SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6, SH-J7, SH-J8	8	1×2	Shunt, 100 mil, Flash Gold, Black	Closed Top 100 mil Shunt	SPC02SYAN	Sullins Connector Solutions
T1 T2 T3 T4	4		Terminal Block 2 x 1 5 08 mm TH	10 16 x 15 2 x 9 mm	282841-2	TE Connectivity
TP1, TP2, TP4, TP11, TP13	5		Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010	Keystone
TP3, TP5, TP6, TP10, TP12, TP14, TP15, TP19	8		Test Point, Multipurpose, White, TH	White Multipurpose Testpoint	5012	Keystone
TP7, TP8, TP9, TP16, TP17, TP18	6		Test Point, Compact, SMT	Testpoint_Keystone_Comp act	5016	Keystone
U1	1		60-V, 6-A Power limiting, surge protection industrial eFuse, PWP0020T (HTSSOP-20)	PWP0020T	TPS26633PWPR	Texas Instruments
U2	1		60-V, 6-A eFuse with adjustable output power limiting, PWP0020T (HTSSOP-20)	PWP0020T	TPS16630PWPR	Texas Instruments
C1	0	1 µF	CAP, CERM, 1 µF, 100 V, ±10%, X7R, 1206	1206	C3216X7R2A105K160AA	ТDК
D5	0	51 V	Diode, TVS, Bi, 51 V, SMA	SMA	SMAJ51CA	Littelfuse
D10	0	33 V	Diode, TVS, Uni, 33 V, 53.3 Vc. 1500 W. 29 A. SMC	SMC	SMCJ33A-TR	STMicroelectronics
FID1, FID2. FID3.	0		Fiducial mark. There is nothing to buy or mount	N/A	N/A	N/A
FID4, FID5, FID6	0	0	RES, 0, 5%, 0.75 W, AEC-Q200 Grade 0, 2010	2010	CRCW20100000Z0EF	Vishay-Dale

Table 6. TPS2663-166EVM BOM

14 TPS2663-166EVM: Evaluation Module for TPS2663xPWP and TPS1663xPWP

9 Evaluating TPS26631 and TPS26636 on TPS2663-166EVM

Uninstall the device U1 (TPS26633) and install the TPS26631 or TPS26636 device on the board. With the TPS26631 device, close jumper J6. With this configuration, the TPS26631 device selects a factory set over!--voltage protection trip level of $V_{(IN_SYS_OVP)}$.

Revision History

www.ti.com

Revision History

Cł	Changes from Original (August 2019) to A Revision Pag				
•	Updated Section 6.1 title	. 8			
•	Updated Section 9	15			

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated