User's Guide Using the TPS8802EVM

ABSTRACT

This quick-start guide describes the operation and use of the TPS8802 evaluation module (EVM) and the accompaning EVM graphical user interface control software.

Table of Contents

1 Introduction	3
1.1 Applications	3
1.2 Features	3
1.3 Recommended Equipment	3
2 Setup	4
2.1 Sensor Connections	4
2.2 Jumper and Switch Configurations	4
2.3 Power Connection	5
2.4 USB2ANY Connection	6
3 Analog Evaluation	8
3.1 CO AFE Evaluation	9
3.2 Photo AFE Evaluation	
3.3 Power Management and Sleep Mode	19
3.4 Horn Driver Evaluation	21
3.5 Register Map	
4 Board Layout	29
5 Schematic and Bill of Materials	33
5.1 Schematic	33
5.2 Bill of Materials	34
6 Revision History	36

List of Figures

Figure 2-1. Switch, Jumper, and Power Connections	5
Figure 2-2. TPS880x GUI Connected to USB2ANY Adapter	6
Figure 2-3. Test Command Successful	7
Figure 3-1. Evaluation Selection Menu	8
Figure 3-2. CO Amplifier Settings	9
Figure 3-3. Clean Air CO Amplifier Output	. 10
Figure 3-4. CO Amplifier Output with Sensor and Calibration Gas	.10
Figure 3-5. COTEST EN Register Bit	11
Figure 3-6. CO Connectivity Test without Sensor	. 12
Figure 3-7. CO Connectivity Test with Sensor	. 12
Figure 3-8. Photo Amplifier Settings	. 13
Figure 3-9. LED Power Supply Settings	. 14
Figure 3-10. LED Driver Settings	.15
Figure 3-11. EVM Photo Measurement Probe Configuration	.16
Figure 3-12. LED A Signals	. 17
Figure 3-13. LED B Signals	. 17
Figure 3-14. Photo Signal with Photo Chamber	. 18
Figure 3-15. Power Management Evaluation	. 19
Figure 3-16. Power Management Measurement	. 19
Figure 3-17. Sleep Mode with SLP_BST = 1	.20
Figure 3-18. TPS8802EVM and Three-terminal Piezo Setup	.21
Figure 3-19. Register Map: CONFIG2 Register	.22
Figure 3-20. Register Map: ENABLE2 Register	. 22

Figure 3-21. Register Map: BOOST Register	23
Figure 3-22. EVM Three-terminal Horn Driver Measurement Probe Configuration	23
Figure 3-23. Untuned HORNSL, HORNBR, and HORNFB Waveforms	24
Figure 3-24. Feedback Potentiometer.	24
Figure 3-25. Tuned HORNSL, HORNBR, and HORNFB Waveforms	25
Figure 3-26. TPS8802EVM and Two-terminal Piezo Setup	26
Figure 3-27. Two-terminal Piezo Waveforms (HORNFB to ground)	<mark>27</mark>
Figure 3-28. Two-terminal Piezo Waveforms (HORNFB to MCU)	<mark>27</mark>
Figure 3-29. Register Map Search Function	28
Figure 4-1. TPS8802EVM Top Layer PCB Layout	
Figure 4-2. TPS8802EVM Ground Layer PCB Layout	30
Figure 4-3. TPS8802EVM Power Layer PCB Layout	31
Figure 4-4. TPS8802EVM Bottom Layer PCB Layout	32
Figure 5-1. TPS8802EVM Schematic	33

List of Tables

Table 2-1. VMCU and VBST Power-up Voltage	4
Table 5-1. Bill of Materials	.34

Trademarks

USB2ANY[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

1 Introduction

The TPS8802EVM is used to evaluate the TPS8802 smoke and CO alarm analog front end (AFE) and power management IC. The EVM allows for easy connection from the TPS8802 to a user-supplied photoelectric chamber and carbon monoxide sensor. The TPS8802 GUI interfaces with the EVM to quickly evaluate the photo amplifier, LED driver, and CO amplifier performance, system power consumption, and other blocks with the register map. For a more thorough evaluation, an external microcontroller can be connected to the TPS8802EVM to create a smoke detection system.

1.1 Applications

- 10-year battery smoke and CO alarms
- AC powered smoke and CO alarms

1.2 Features

- Dual LED drivers for blue and IR LEDs
- · Wide bandwidth, low offset photodiode amplifier
- · Ultra-low power CO transimpedance amplifier
- LDOs for internal analog blocks and external microcontroller
- Single buffered analog output AMUX for CO and photo signals
- Serial interface for configuring amplifiers, drivers, regulators
- Default-enabled boost converter for 2-V battery operation
- Horn driver with self-resonant and PWM modes
- Interconnect driver for multi-alarm connection
- · Power-saving sleep mode with wake-up interrupt
- · Battery test load
- Under-voltage, over-temperature fault monitors
- Wide input voltage range for flexible power supply configuration

1.3 Recommended Equipment

- 2-V to 15.5-V power supply capable of 100 mA
- USB2ANY[™] interface adaptor
- TPS880x GUI software
 - Installation files are available in the TPS8802EVM product folder
- Multimeter for measuring supply current, regulator voltages and CO amplifier output
- Oscilloscope for measuring photodiode signal pulse shape

2 Setup

Specific connections on the TPS8802EVM board require configuration before starting the evaluation.

2.1 Sensor Connections

TI recommends connecting a photoelectric smoke chamber and CO sensor to the TPS8802EVM for the evaluation. The TPS8802EVM has a built-in photodiode (D7), blue LED (D8), and IR LED (D6) for functional testing. These components can be de-soldered in order to connect a photoelectric chamber photodiode, IR LED, and/or blue LED its place. Ensure the photodiode wires are kept short to preserve signal integrity.

The CO sensor is connected to J17 screw terminals with the sensor counter terminal tied to AGND.

2.2 Jumper and Switch Configurations

The S1 switch position determines the VMCU and VBST voltage at power-up. Ensure that only one S1 subswitch is in the ON position. Table 2-1 displays the VMCU and VBST voltage corresponding with each S1 switch position. For proper operation with the USB2ANY adapter, set VMCU to 3.3 V with sub-switch 4.

Tuble 2 1. This of and a borr ower-up totage												
S1 Switch Position	VMCU (V)	VBST (V)										
1	1.5	3										
2	1.8	3										
3	2.5	4										
4	3.3	5										

The J2 jumper connects VBST to VCC. With the J2 jumper connected and the power supply connected to VBAT, the boost converter supplies power via VCC. This configuration allows the EVM to operate at a voltage level from 2 V to 11.5 V^1 .

The J6 jumper selects the I^2C device address. Connect J6 to the AGND position to set the address to 0x3F. Connect J6 to the VMCU position to set the address to 0x2A. The GUI is compatible with both options and defaults to 0x2A.

¹ The J14 shunt connecting VBAT to DINB limits the VBAT voltage to 11.5 V. If the shunt is moved to J1 connecting LEDLDO to DINB, up to 15.5 V can be supplied on VBAT.

Figure 2-1. Switch, Jumper, and Power Connections

2.3 Power Connection

Connect the power supply to VBAT and PGND. Set the power supply to 2 V, 100 mA². Enable the power supply and measure the voltage on VMCU (TP27) to ensure it is operating at the voltage option selected by S1:

- 1.5 V
- 1.8 V
- 2.5 V
- 3.3 V

Measure the voltage on VBST to ensure it is either 3 V, 4 V, or 5 V. See Table 2-1 for more information on the initial VMCU and VBST voltage.

Setup

² Peak current drawn from the supply is 600 mA for boost converter operation. If device does not power up with 100 mA current limit, increase the power supply current limit to 600 mA.

2.4 USB2ANY Connection

Use a USB cable to connect the USB2ANY adapter to a computer with the TPS880x GUI installed. Open the TPS880x GUI and verify the USB2ANY adapter is recognized (see Figure 2-2). With the EVM powered, connect the USB2ANY adapter to the EVM using the USB2ANY adapter 10-pin ribbon cable. Click **EXPLORE TPS8802EVM** then **QUICK START** and select the device address corresponding to the J6 jumper (see Section 2.2). Send the test command to verify the EVM, USB2ANY adapter, and GUI software are all connected.

Figure 2-2. TPS880x GUI Connected to USB2ANY Adapter

Figure 2-3. Test Command Successful

3 Analog Evaluation

Click **START EVALUATION** and select the feature to evaluate. The **Analog Front End** section guides the CO AFE and photo AFE evaluation, and the **Power Saving Mode** section guides the standby power consumption and sleep mode evaluation. Enter the register map to evaluate the other blocks in the TPS8802 device.

Figure 3-1. Evaluation Selection Menu

3.1 CO AFE Evaluation

If a CO sensor is available, connect it to the J17 terminal block. Select the feedback resistance and reference voltage in the GUI software. The TPS8802EVM default configuration uses the internal resistors and references. To use an external feedback resistor, solder a resistor to R5. To use an external input resistor, replace the R1 0- Ω resistor with the required input resistance. The output resistor filters the CO amplifier output when a capacitor is installed on C3.

Set the **AMUX SELECTION** to **CO AMPLIFIER**. Enable the CO amplifier and measure the voltage on AMUX_BUF.

File	Options Tools Help		
٥	IN ANALOG FRONT END CO AMPLIFIER		I2C ADDRESS 0x2A 0x3F
A		SURE 2 SETUP TEST	
7			
•		Configure Settings for CO amplifier	
	CARBON MONOXIDE DETECTOR	CO amplifier should be enabled after connecting CO sensor	
1		Enable CO Amplifier Enables/Disables CO amplifier. Set AMUX to output CO	
		Feedback Resistance	Reference Voltage
		Feedback resistance for the CO amplifier in kOhms. When external, connect a resistor between COO and CON	Reference voltage for the CO amplifier in mV. When external, connect a voltage to COP.
	PHOTO ELECTRIC SMOKE DETECTOR	CO Input Resistor Inverting input of amplifier to CON Pin Low-Impedance	CO Amplifier Output Resistor Output of amplifier to COO pin. Low-Impedance 100kΩ
) USB2ANY/OneDemo device Hardware Connected	4	SETUP TEST

Figure 3-2. CO Amplifier Settings

Figure 3-3. Clean Air CO Amplifier Output

Figure 3-4. CO Amplifier Output with Sensor and Calibration Gas

3.1.1 CO Connectivity Test

A simple test confirms that the CO sensor is connected to the EVM. Remove the shunt connected to J7 and connect a shunt to J15 and J16. Write COTEST_EN = 1 and measure the pulse shape on AMUX_BUF using an oscilloscope. When COTEST_EN = 1, the PREF pin is pulled low and injects charge into the CO sensor and amplifier. The AMUX pulse shape is different if the CO sensor is disconnected. Write COTEST_EN = 0, remove the J15 and J16 shunts, and connect the J7 shunt when finished.

ile	Options Tools Help											
¢	Register Map	Auto Read	Off	,		READ	REGIST	ER	READ	ALL RI	GISTER	S WHITE ALL CONTRACT Immediate Write
	Q Search Registers by name or address (0x)								Searc	h Bitfi	elds	F V
	Register Name	Address	Value	7	6	5	В 4	its 3	2	1	0	CO REGISTER
	INTERRUPT MASK REGISTER	0x03	0x00	0	0	0	0	0	0	0	0	
	V CONFIGURATION REGISTERS											
	CONFIG1 REGISTER	0x04	0x38	0	0	1	1	1	0	0	0	REFOP3_EN
	CONFIG2 REGISTER	0x05	0x02	-	-	0	0	0	0	1	0	CO REGISTER / CO REGISTER / COREF[6:5]
												COREF
	ENABLE1 REGISTER	0x06	0x10	(22)	0	0	1	0	0	<u>_</u>	0	b00 v
8	ENABLE2 REGISTER	0x07	0x00	0	0	-	- 2	0	0	0	0	
												COREGISTER / COREGISTER / COGAIN[4:3]
		0x08	0x00	-	-	0	0	0	0	0	0	boo v
	CONTROL REGISTER	0,000	0,00			U	Ū	U	U	U	Ŭ	
	V SLEEP TIMER REGISTERS	000	000	0	0		0	0	0	0		CO REGISTER / CO REGISTER / COTEST_DIR[2]
	SLEEP TIMERT REGISTER	0x09	UXUU	U	U	U	U	U	0	U	0	COTEST_DIR
	SLEEP TIMER2 REGISTER	A0x0	0x00	0	0	0	0	0	0	0	0	
	V GPIO AMUX REGISTER										. 1	CO REGISTER / CO REGISTER / COTEST_EN[1]
	GPIO AMUX REGISTER	0x0B	0x10	0	-	0	1	0	0	0	0	COTEST_EN
	v CO SWITCH AND BATTERY TEST REGISTER											
	CO SWITCH AND BATTERY TEST REGISTER	0x0C	0x70	0	1	1	1	~	0	0	0	COREGISTER / COREGISTER / COAMP_EN[0]
	V CO REGISTER											COAMP_EN
	CO REGISTER	Ø 0x0D	0x03	0	0	0	0	0	0	1	1	
	V BOOST REGISTER											
	BOOST CONVERTER REGISTER	0x0E	0xF2	1	1	1	1	0	0	1	0	
	* LEDLDO REGISTER											
	LEDLDO REGISTER	0x0F	0x00		1	-	-	0	0	0	-	
		1 10000	li veccedo					124		1.52		Powered By GUI Con

Figure 3-6. CO Connectivity Test without Sensor

Figure 3-7. CO Connectivity Test with Sensor

3.2 Photo AFE Evaluation

Connect the photoelectric chamber to the EVM. If a photoelectric chamber is not available, place a box over the EVM to block ambient light and reflect the EVM LED light into the photodiode when testing the photo AFE.

Enable the photo amplifier, photo gain amplifier, and set the **AMUX SELECTION** to **PHOTO GAIN AMPLIFIER**. Select the photo reference on the EVM with jumper J7 and enable the photo reference voltage if the reference is set to PREF. Set the gain factor to the required value. If no extra gain is required, set the **AMUX SELECTION** to **PHOTO AMPLIFIER**.

It is recommended to install a 470 k Ω resistor connecting PREF to VINT if the photo gain is set to 11x, 20x, or 35x. The 470 k Ω resistor changes the PREF voltage to 70mV and prevents the gain stage output from dropping below 50 mV in worst-case conditions.

File	Options Tools	Help		
٢	네 ANALOG FRONT END	PHOTO AMPLIFIER		I2C ADDRESS 0x2A 0x3F
÷				
Ę		1 CONFI	IGURE 2 SETUP TEST	AMUX SELECTION PHOTO GAIN AMPLIFIER -
	T	\odot	Configure settings for photo amplifier	
-	DETECTOR		Enable Photo Amplifier	Photo Reference Voltage
1			Enables/Disables photo input amplifier.Sets the AMUX to the photo amplifier output.	Set PREF to 50mV when the input or gain stage are enabled. Reference the gain stage to PREF.
			Enable Photo Gain Amplifier Enables/Disables photo gain amplifier. Sets the AMUX to the photo gain output.	Gain Factor Gain factor applied for amplification, available v photo gain is enabled.
	PHOTO ELECTRIC SMOKE DETECTOR	○	Connect LED anode to VBST, LEDLDO, or	VBST with diode
<i>E</i> / e	D USB2ANY/OneDemo de	evice Hardware Connecte	d.	🐺 Texas Instruments

Figure 3-8. Photo Amplifier Settings

Configure the power to the LEDs. By default, LED A is connected to LEDLDO and LED B is connected to VBAT. Use the J1, J5, J8, and J14 jumpers to select which supply powers each LED. Enable the LEDLDO if it powers either LED.

File	Options To	ools Help				
٢	네 ANALOG FRONT E	ND PHOTO AMP	LIFIER		I2C ADDRESS	0x2A Ox3F
A			CONFIGURE	2 SETUP		
Ŧ				TEST		~
			 Config 	l ure LED power settings	I	
	CARBON MONOXIDE DETECTOR				POOCT CONVERTER	
1				LED LDO	BOOST CONVERTER	
				C	C	gram ▲
				LED LDO Voltage	BOOST OUTPUT VOLTAGE	Block Di
				7.5 Volts 👻	4.7 Volts 👻	
	贾					
	PHOTO ELECTRIC SMOKE DETECTOR		Config	ure LED Enable PWM Settings		
					SETUP	Powered By BUI Composer Th
<i>E</i> e	USB2ANY/OneDe	mo device Hardwar	e Connected.			🐺 Texas Instruments

Figure 3-9. LED Power Supply Settings

Configure the PWM pulse settings for the LED driver. The default setting 201 ms pulse rate and 1 ms pulse width sufficiently tests the LED driver. This setting controls the PWM signal from the USB2ANY adapter to the EVM.

Configure the LED current for each driver. The default EVM CSA resistance is 10 Ω and the default EVM CSB resistance is 1.3 Ω . These resistors can be switched on the EVM to change the LED current and temperature compensation. Set the DAC voltage to fine tune the LED current. Set the temperature coefficient to the required setting. Click **SETUP TEST** after configuring the photo amplifier, LED power supply, and LED driver.

Select the LED to be tested. Enable the LED PWM to send the PWM signal to the LEDEN pin. Enable LEDPIN_EN to control the LED driver using the LEDEN pin. Place a box over the EVM if the EVM LEDs and

measure the photo input stage amplifier. Probe AMUX BUF to measure the photo gain stage amplifier.

Use an oscilloscope to measure the LED current, photo input amplifier, and photo gain amplifier signals. Probe LEDEN to measure the LED control signal. Probe CSA or CSB to measure the LED driver current. Probe PDO to

photodiode are used to block ambient light and reflect the LED light into the photodiode.

www.ti.com

Analog Evaluation

Figure 3-11. EVM Photo Measurement Probe Configuration

Figure 3-13. LED B Signals

Figure 3-14. Photo Signal with Photo Chamber

3.3 Power Management and Sleep Mode

3.3.1 Power Management

The power management evaluation page allows the user to conveniently control many blocks that are critical for system power consumption. Use the interface to enable and disable each block. Connect a multimeter in series with the power supply to measure current. Remove the J4 USB2ANY adapter cable when performing critical measurements. Raise the VBAT voltage above VINT and VMCU if the boost converter is disabled. In Figure 3-16, the VBAT voltage is raised to 3.6 V to maintain regulation of the MCULDO.

Figure 3-15. Power Management Evaluation

Figure 3-16. Power Management Measurement

3.3.2 Sleep Mode

Sleep mode disables blocks for a programmable amount of time and flags the MCU when sleep mode is exited. Enter the required amount of sleep time via the GUI and click **ENTER** to start the sleep timer. Click **EXIT** to exit sleep mode if the device is in sleep mode. Probe the GPIO pin to measure the interrupt signal that occurs when the sleep timer finishes.

CLEAR INTERRUPT resets the interrupt signal. The interrupt signal is reset whenever the STATUS1 register is read. By default, the GUI reads all registers every 5 seconds. Disable the automatic register reading by navigating to the **Register Map** page and changing the **Auto Read** setting to **Off**.

Figure 3-17. Sleep Mode with SLP_BST = 1

3.4 Horn Driver Evaluation

The TPS8802EVM supports direct connection with a piezo horn. The HBEN pin and HORN_EN register bit enables the integrated horn driver and operates independent of any smoke or CO condition. Connect the piezo horn terminal to the respective EVM terminal as shown in Figure 3-18. The silver (HORNSL, M) and brass (HORNBR, G) connect to the J13 terminal block. For a three-terminal piezo horn, connect the piezo feedback terminal to PIEZOF in the J10 terminal block. Additionally, populate jumpers at J11 and J12 for a three-terminal piezo configuration.

3.4.1 Three-Terminal Piezo Evaluation

In the TPS880x GUI navigate to the register map. The horn driver evaluation modifies the following registers: configuration register, enable register, and the boost converter register. The configuration register determines how the horn driver is configured.

ft								B	ite –						
	Register Name		Address	Value	7	6	5	4	3	2	1	0	CONFIG2 REGISTER		
Ķ	 REVISION ID REGISTER STATUS REGISTERS 												CONFIGURATION REGISTERS / CONFIG2 REGISTER / RESERVED1[7:6]		
dis.	► INTERRUPT MASK REGISTER												RESERVED1 b00		
-	CONFIGURATION REGISTERS CONFIG1 REGISTER		0x04	0x38	0	0	1	1	1	0	0	0	CONFIGURATION REGISTERS / CONFIG2 REGISTER /		
	CONFIG2 REGISTER	0	0x05	0x02			0	0	0	0	1	0			
	► ENABLE REGISTERS														
	► CONTROL REGISTERS												CONFIGURATION REGISTERS / CONFIG2 REGISTER / HORN_SEL[4]		
	► SLEEP TIMER REGISTERS												HORN SEL		
	► GPIO AMUX REGISTER														
	► CO SWITCH AND BATTERY TEST REGISTE	R											CONFIGURATION REGISTERS / CONFIG2 REGISTER / HORN_THR[3:2]		
	► CO REGISTER												HORN_THR		
	BOOST REGISTER												9% VBST 🔻		
	► LEDLDO REGISTER														
	PHOTO CONTROL REGISTER												CONFIGURATION REGISTERS / CONFIG2 REGISTER / T_BSTACT[1:0]		
	► LED DAC A REGISTER												T_BSTACT		
	▶ LED DAC B REGISTER												10 milliseconds •		

Figure 3-19. Register Map: CONFIG2 Register

- For two-terminal mode: HORNSEL = 0.
- For three-terminal mode: HORNSEL = 1.
- HORN_THR (relevant to three-terminal mode), see Section 3.4.2.

The enable register controls the horn driver circuit.

A										-			
	Register Name		Address	Value	7	6	5	в 4	its 3	2	1	0	ENABLE2 REGISTER
Ŧ	► REVISION ID REGISTER												ENABLE REGISTERS / ENABLE2 REGISTER / LEDSEL[7]
	▶ STATUS REGISTERS												
- die	▶ INTERRUPT MASK REGISTER												
	► CONFIGURATION REGISTERS												ENABLE REGISTERS / ENABLE2 REGISTER / BST_CHARGE[6]
n	v ENABLE REGISTERS												BST_CHARGE
-	ENABLE1 REGISTER		0x06	0x10		0	0	1	0	0	-	0	
	ENABLE2 REGISTER	0	0x07	0x00	0	0	-	-	0	0	0	0	ENABLE REGISTERS / ENABLE2 REGISTER / RESERVED2[5:4]
	► CONTROL REGISTERS												RESERVED2 b00
	▶ SLEEP TIMER REGISTERS												
	▶ GPIO AMUX REGISTER												ENABLE REGISTERS / ENABLE2 REGISTER / INT_DIR[3]
	▶ CO SWITCH AND BATTERY TEST REGISTER												
	► CO REGISTER												
	▶ BOOST REGISTER												ENABLE REGISTERS / ENABLE2 REGISTER / LEDPIN_EN[2]
	► LEDLDO REGISTER												LEDPIN_EN
	▶ PHOTO CONTROL REGISTER												ENABLE REGISTERS / ENABLE2 REGISTER / HORN EN[1]
	▶ LED DAC A REGISTER												
	▶ LED DAC B REGISTER												
													ENABLE REGISTERS / ENABLE2 REGISTER / SLP_EN[0]
													SLP_EN

Figure 3-20. Register Map: ENABLE2 Register

• Set HORN_EN = 1.

Since the boost converter supplies the horn driver supply voltage, adjusting the booster converter registers affects the horn loudness.

				7	6	5	4	3	2	1 0	BOOST CONVERTER REGISTER	
۴	REVISION ID REGISTER STATUS REGISTERS										BOOST REGISTER / BOOST CONVERTER REGISTER , BST_CLIM[7:4]	/
ψ	INTERRUPT MASK REGISTER CONFIGURATION REGISTERS										BST_CLIM 500 mA	v
	ENABLE REGISTERS CONTROL REGISTERS										BOOST REGISTER / BOOST CONVERTER REGISTER , VBST	/ VBST[3:0]
	 ► SLEEP TIMER REGISTERS ► GPIO AMUX REGISTER 										4.7 Volts	٣
	CO SWITCH AND BATTERY TEST REGISTER CO REGISTER											
	BOOST REGISTER BOOST CONVERTER REGISTER	0x0E	0xF2	1	1	1	1	0	0	1 0		
	LEDLDO REGISTER PHOTO CONTROL REGISTER LED DAC A REGISTER LED DAC B REGISTER											

Figure 3-21. Register Map: BOOST Register

- Set BST_CLIM = 30 mA to 500 mA.
- Set VBST = 2.7 V to 15 V.

Use an oscilloscope to probe the EVM test points: HORNSL (TP16), HORNBR (TP16), and HORNFB (TP35).

Figure 3-22. EVM Three-terminal Horn Driver Measurement Probe Configuration

3.4.2 Three-Terminal Piezo Tuning

Set the HBEN pin (TP31) high by connecting it to the VMCU voltage. An untuned piezo feedback network exhibits the following waveform.

Figure 3-23. Untuned HORNSL, HORNBR, and HORNFB Waveforms

From the figure above, HORNSL, HORNBR, and HORNFB operate below the expected piezo rated frequency of 3.5 kHz. To tune the piezo, enable the horn driver circuit and adjust the potentiometer, see Figure 3-24. A current ammeter in series with the VBAT power supply will also assist with piezo tuning, tune the potentiometer to achieve the peak current draw for the system and the resonant oscillation observed in Figure 3-25.

Figure 3-24. Feedback Potentiometer

Achieving resonance on the horn pins, the duty cycle can be further fine-tuned in the register map under the configuration registers: CONFIG2 register with the HORN_THR registers. To achieve maximum loudness, adjust the "HORN_THR" value that operates the horn driver circuit at approximately 50% duty cycle. A tuned piezo will generate the following waveforms.

Figure 3-25. Tuned HORNSL, HORNBR, and HORNFB Waveforms

HORNSL and HORNBR are square waves out of phase by 180° with each other. Both waveforms operate near a 50% duty cycle. Additionally, HORNSL, HORNBR, and HORNFB oscillate at the piezo resonance frequency of 3.5 kHz.

3.4.3 Two-Terminal Piezo Evaluation

Connect a function generator or a microcontroller digital output pin to the HBEN test point: TP31 and connect HORNFB to ground. For an alternative configuration, feed the HORNFB pin with an inverse polarity waveform of HBEN square wave. To improve rise time and fall time of the output and reduces power dissipation, place a 1-mH inductor between the external piezo M wire and EVM HORNSL terminal. Additionally, remove jumper J11 and jumper J12 with PIEZOF terminal floating.

Figure 3-26. TPS8802EVM and Two-terminal Piezo Setup

In Figure 3-27, set a square wave with the piezo oscillation frequency on the HBEN test point and ground the HORNFB test point. Probe both the HORNBR test point and HORNSL test point to measure the piezo voltage waveforms.

Figure 3-27. Two-terminal Piezo Waveforms (HORNFB to ground)

For Figure 3-28, set square waveforms is on both the HBEN test point and the HORNFB test point (equal but opposite polarity). Likewise, probe the piezo test points to observe the piezo voltage waveforms.

Figure 3-28. Two-terminal Piezo Waveforms (HORNFB to MCU)

3.5 Register Map

Use the register map to evaluate other blocks in the TPS8802. Use the search to find register bits that correspond to a certain block or function. Load and save register map configurations in the **File** menu. Click the question mark icon (?) to display more information about the selected register or bits.

File	Options	Tools	Help													
١	Register Map			Auto Read	Every 5 se	с	۲	READ) REGIS	TER	READ	ALL RE	GISTERS	WRITE REGISTER WRITE ALL REGISTERS Immediate Write V		
ŧ	Q horn							× Search Bitfields				h Bitfi	elds	FIELD VIEW		
	Register Name		Address	Value	7	6	5	4	3	2	1	0	CONFIG2 REGISTER			
۴	CONFIG2 REGIS	TER	•	0x05	0x02	-	-	0	0	0	0	1	0	REVISION ID REGISTER / CONFIG2 REGISTER /		
վե			0.07	0,00	0	0			0	0	0	0	RESERVED1 b00			
ľ														REVISION ID REGISTER / CONFIG2 REGISTER / INT_HYS[5]		
														INT_HYS		
														REVISION ID REGISTER / CONFIG2 REGISTER / HORN_SEL[4]		
														HORN_SEL		
									REVISION ID REGISTER / CONFIG2 REGISTER / HORN_THR[3:2]							
														HORN_THR		
														REVISION ID REGISTER / CONFIG2 REGISTER / T_BSTACT[1:0]		
														T_BSTACT b10		
<i>∎</i> / c:) 🔺 Hardware no	t Connected.	Please plug vou	r Target Device into vou	r computer's l	JSB do	rt. and	click th	e Con	nect ic	on at	left.		Powered By GUI Composer™		

Figure 3-29. Register Map Search Function

4 Board Layout

Figure 4-1. TPS8802EVM Top Layer PCB Layout

Figure 4-2. TPS8802EVM Ground Layer PCB Layout

Figure 4-3. TPS8802EVM Power Layer PCB Layout

Figure 4-4. TPS8802EVM Bottom Layer PCB Layout

5 Schematic and Bill of Materials

5.1 Schematic

A. It is recommended to install a 470 kΩ resistor connecting PREF to VINT if the photo gain is set to 11x, 20x, or 35x. The 470 kΩ resistor changes the PREF voltage to 70 mV and prevents the gain stage output from dropping below 50 mV in worst-case conditions.

Figure 5-1. TPS8802EVM Schematic

5.2 Bill of Materials

Table 5-1. Bill of Materials

REF DES	QTY	VALUE	DESCRIPTION	SIZE	PART NUMBER
PCB1	1		Printed Circuit Board		TPS880x
C2, C7, C12	3	0.1 µF	Capacitor, ceramic, 0.1 µF, 25 V, ±5%, X7R, 0603	0603	06033C104JAT2A
C4, C13, C16, C18	4	1 µF	Capacitor, ceramic, 1 µF, 16 V, ±10%, X5R, 0603	0603	C0603C105K4PACT U
C5	1	1 µF	Capacitor, ceramic, 1 µF, 16 V, ±10%, X7R, 0603	0603	EMK107B7105KA-T
C6, C11	2	4.7 μF	Capacitor, ceramic, 4.7 µF, 25 V, ±10%, X7R, 0805	0805	C2012X7R1E475K12 5AB
C8, C9, C14, C15	4	47 µF	Capacitor, ceramic, 47 µF, 16 V, ±20%, X6S, 1210	1210	GRM32EC81C476ME 15L
C17, C21, C22	3	1000 pF	Capacitor, ceramic, 1000 pF, 50 V, ±10%, X7R, 0603	0603	C0603X102K5RACT U
C20	1	330 pF	Capacitor, ceramic, 330 pF, 50 V, ±10%, X7R, 0603	0603	C0603C331K5RACT U
C23	1	100 pF	Capacitor, ceramic, 100 pF, 50 V, ±5%, C0G/NP0, 0603	0603	885012006057
C24, C25	2	10 pF	Capacitor, ceramic, 10 pF, 50 V, ±5%, C0G/NP0, 0603	0603	06035A100JAT2A
D1, D2, D3	3	100 V	Diode, Switching, 100 V, 0.15 A, SOD-123	SOD-123	1N4148W-TP
D5	1	20 V	Diode, Schottky, 20 V, 0.5 A, SOD-123	SOD-123	MBR0520LT1G
D6	1	Infrared	LED, Infrared, TH	D5.5 mm	SFH 4556
D7	1		Silicon PIN Photodiode, TH	D5.7×H9 mm	SFH 213
D8	1	Blue	LED, Blue, TH	D3.1 mm	LTL1CHTBK4
H1, H2, H3, H4	4		Machine Screw, Round, #4-40 × 1/4, Nylon, Philips panhead	Screw	NY PMS 440 0025 PH
H5, H6, H7, H8	4		Standoff, Hex, 0.5"L #4-40 Nylon	Standoff	1902C
J1, J5, J6, J7, J8, J14	6		Header, 2.54 mm, 3×1, Tin, TH	Header, 2.54 mm, 3×1, TH	22284033
J2, J9, J11, J12, J15, J16	6		Header, 2.54 mm, 2×1, Tin, TH	Header, 2.54 mm, 2×1, TH	22284023
J3, J10, J13, J17	4		Terminal Block, 5.08 mm, 2×1, TH	Terminal Block, 5.08 mm, 2×1, TH	039544-3002
J4	1		Header (shrouded), 100mil, 5×2, Gold, TH	5×2 Shrouded header	5103308-1
L1	1	33 µH	Inductor, Drum Core, Ferrite, 33 uH, 0.7 A, 0.38 ohm, SMD	5×3×4.8 mm	SDR0503-330KL
LBL1	1		Thermal Transfer Printable Labels, 0.650" W × 0.200" H - 10,000 per roll	PCB Label 0.650 × 0.200 inch	THT-14-423-10
R1	1	0	Resistor, 0, 5%, 0.063 W, 0402	0402	RC0402JR-070RL
R2	1	10.0 kΩ	Resistor, 10.0 k, .1%, .0625 W, 0402	0402	RT0402BRD0710KL
R3	1	100 kΩ	Resistor, 100 k, 0.1%, 0.1 W, 0603	0603	RG1608P-104-B-T5
R4	1	10.0 Ω	Resistor, 10.0, 0.5%, 0.1 W, 0603	0603	RT0603DRE0710RL
R6	1	1.30 Ω	Resistor, 1.30, 0.5%, 0.1 W, 0603	0603	RT0603DRE071R3L
R7, R8	2	33 kΩ	Resistor, 33 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060333K0JNE A
R9, R10	2	1.0 kΩ	Resistor, 1.0 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04021K00JNE D
R11	1	2.4 MΩ	Resistor, 2.4 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06032M40JNE A
R13	1	10.0 kΩ	Resistor, 10.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06034K70JNE A

Table 5-1. Bill of Materials (continued)							
REF DES	QTY	VALUE	DESCRIPTION	SIZE	PART NUMBER		
R14, R17	2	1.5 MΩ	Resistor, 1.5 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06031M50JNE A		
R16	1	620 Ω	Resistor, 620, 1%, 0.1 W, 0603	0603	RC0603FR-07620RL		
R18	1	5.6 MΩ	Resistor, 5.6 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06035M60JNE A		
R19	1	500 kΩ	Trimmer, 500 kΩ, 0.5W, TH	375×190×375mi I	3386P-1-504LF		
R20	1	1.00 MΩ	Resistor, 1.00 M, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06031M00FKE A		
R22, R23	2	10 MΩ	Resistor, 10 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060310M0JNE A		
S1	1		Switch, Slide, SPST 4 poles, SMT	SW, SMT Half Pitch 4SPST, 5.8×2.7×6.25 mm	218-4LPST		
SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6, SH-J7, SH-J8	8	1×2	Shunt, 100 mil, Flash Gold, Black	Closed Top 100mil Shunt	SPC02SYAN		
TP1, TP3, TP4, TP7, TP8, TP11, TP12, TP13, TP14, TP16, TP17, TP20, TP21, TP22, TP23, TP24, TP25, TP26, TP27, TP30, TP31, TP33, TP34, TP35, TP36	25		Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010		
TP9, TP18, TP19, TP28, TP32, TP37, TP38	5		Test Point, Multipurpose, Black, TH	Black Multipurpose Testpoint	5011		
U1	1		TPS8802DCP, DCP0038A (HTSSOP-38)	DCP0038A	TPS8802DCP		

6 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	Changes from Revision A (May 2020) to Revision B (July 2022)					
•	Added Section Abstract	1				
•	Added Section Trademarks	2				
•	Updated the numbering format for tables, figures, and cross-references throughout the document	3				
•	Added Section 3.4	21				
•	Added Section 3.4.1	21				
•	Added Section 3.4.2	24				
•	Added Section 3.4.3	26				

Changes from Revision * (October 2019) to Revision A (May 2020)					
Added Figure 3-4	9				
• Added recommendation to install a 470 k Ω resistor connecting PREF to VINT in Section 3.2 .					
Updated silkscreen labels in Figure 4-1	29				
Added Figure 4-2	29				
Added Figure 4-3	29				
Updated PCB revision to CSTM002A in Figure 4-4	29				
• Added recommendation to install a 470 kΩ resistor connecting PREF to VINT in Figure 5-1	33				
 Changed R13 to 10.0 kΩ, changed C17 to 1nF, de-populated R15, C19, TP5, TP6 in Figure 5 	-1 33				
Changed C17 value to 1000 pF in Table 5-1					
Changed R13 value to 10.0 kΩ in Table 5-1					
Deleted R15, C19, TP5, TP6 in Table 5-1					

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated