User's Guide TPS650320-Q1 EVM User's Guide

TEXAS INSTRUMENTS

Table of Contents

1 Introduction	2
2 EVM Configurations	2
2.1 Requirements	2
2.2 Operation Instructions	3
2.3 Configuring the USB to I ² C Adapter	3
2.4 Regulator Input Supplies and Features	3
2.5 Selecting the Logic Supply Voltage	5
3 Test Points	6
3.1 Voltage Test Points	6
4 Graphical User Interface	7
4.1 TPS650320-Q1 EVM Debugging	7
4.2 Navigating the GUI	10
4.3 Re-Program PMIC	15
4.4 In-Circuit Programming	16
5 Typical Performance Plots	18
5.1 Power Sequence Plots	18
5.2 Load Transient Plots	18
5.3 Output Voltage Ripple Plots	19
5.4 Efficiency Plots	20
5.5 LDO Output Noise	21
6 TPS650320-Q1 EVM Schematic	22
7 TPS650320-Q1 EVM PCB Lavers	23
8 TPS650320-Q1 EVM Bill of Materials	29

Trademarks

Windows[®] are registered trademarks of Microsoft Corporation. macOS[®] and Mac[®] are registered trademarks of Apple Inc. Linux[®] are registered trademarks of Linus Torvalds. Google Chrome[®] is a registered trademark of Google LLC. Mozilla Firefox[®] is a registered trademark of Mozilla Foundation. All other trademarks are the property of their respective owners.

1 Introduction

The TPS650320-Q1 device is a highly-integrated PMIC for automotive camera modules. This device combines three step down converters and one low-dropout (LDO) regulator. The BUCK1 step-down converter has an input voltage range up to 18.3 V for connections to power over coax. All converters operate in a forced fixed-frequency PWM mode. The LDO can supply 300 mA and operate with an input voltage range from 2.2 V to 5.5 V. The step-down converters and the LDO have separate voltage inputs that enable maximum design and sequencing flexibility.

2 EVM Configurations

The following sections outline how to configure the TPS650320-Q1 EVM for general experimentation.

Figure 2-1. TPS650320-Q1 EVM Top View

2.1 Requirements

- Computer with Windows®, macOS®, or Linux® operating system
- Camera PMIC GUI (Link Here)
- Micro-USB Cable
- TPS650320-Q1 EVM
- DC Power Supply (4.5 V to 19 V)
 - Banana Cables for Power and GND

2.2 Operation Instructions

- 1. Ensure that the USB to I²C Adapter is configured properly using the jumpers mentioned in Configuring the USB to I²C Adapter. This will be the default configurations defined in the tables for most applications.
- Configure regulator input supply rails for the expected application using the jumpers mentioned in Regulator Input Supplies and Features. Take extra care not to exceed absolute maximum ratings when VSYS supplies BUCK2, BUCK3, or the LDO.
- 3. Connect Micro-USB to a PC capable of loading the Camera PMIC GUI.
- 4. Connect VSYS to a power supply capable of supporting the application and enable the supply. Typical supply voltage is 12 V. The PMIC will boot automatically as VSYS is applied.
- 5. The Buck 1 and Buck 2 regulators will power up automatically once a sufficient VSYS voltage is applied.
- 6. Set the SEQ switch (S1) to *On* to enable the Buck 3 and LDO regulators.
- 7. Load the Camera PMIC GUI and ensure the adapter has been recognized by the PC. Refer to TPS650320-Q1 EVM Debugging if the GUI says *Hardware not connected*.
- 8. The GUI will attempt to read all registers and update the register map once the adapter is connected.

2.3 Configuring the USB to I²C Adapter

An onboard MCU acts as a USB adapter to the PMIC. This adapter allows I²C communication to the host PC as well as GPIO assertion and monitoring. By default, the onboard adapter is powered by the USB cable through an onboard dedicated 3.3 V LDO (U4). Additional configurations are allowed by reconfiguring jumpers J18 and J19, shown in Table 2-1 and Table 2-2. The onboard adapter must have power applied through a valid configuration.

Table 2-1. Adapter 1 Ower Source (510)	
Selection Jumper Pin	Adapter Supply Bus
Pin 1 (PMIC Buck 1 Output)	Pin 2 (Adapter Input Supply Rail)
Pin 3 (PMIC LDO Output)	Pin 4 (Adapter Input Supply Rail)
Pin 5 (Dedicated 3.3 V LDO Output - Default)	Pin 6 (Adapter Input Supply Rail)

Table 2-1. Adapter Power Source (J18)

Table 2-2. Dedicated LDO Supply for Adapter (J19)

Selection Jumper Pin	Dedicated 3.3 V LDO Supply Bus
Pin 1 (PMIC Buck 1 Output)	Pin 2 (Dedicated 3.3 V LDO Input Rail)
Pin 3 (PMIC Buck 1 Input)	Pin 4 (Dedicated 3.3 V LDO Input Rail)
Pin 5 (VBUS Rail - Default)	Pin 6 (Dedicated 3.3 V LDO Input Rail)

The following Jumpers in Table 2-3 connect the USB adapter to PMIC functional pins. These can be disconnected for flexibility.

Table 2-3. Adapter PMIC Connections

Jumper	PMIC Pin
J20	nINT
J21	nRST
J22	SEQ
J23	GPIO

2.4 Regulator Input Supplies and Features

The four regulators on the TPS650320-Q1 EVM can be supplied with multiple supplies. The following tables show the possible supply configurations in addition to key specifications and programmable features for each regulator.

2.4.1 Buck 1 Input Supply

Selection Jumper Pin	Buck1 Supply Bus
Pin 1 (VSYS - <i>Default</i>)	Pin 2 (Buck 1 Input Supply Rail)

Table 2-4. Buck 1 Power Source (J33)

2.4.2 Mid-Vin Buck1 Features

Table 2-5. Mid-Vin (Buck1) Features

Feature	Specification
Input Voltage Range	4 V to 18.3 V
Operating Current	Maximum of 800 mA
Current Limiting	1.5 A to 2.5 A
Status Monitoring	UVLO, UV, HOT, OVP, SCG, and OCP
Over-Voltage Protection (OVP)	VOUT = 109% to 115%
Short-Circuit Threshold (SCG)	VOUT = 250 mV to 350 mV

Table 2-6. Mid-Vin (Buck1) Configurable Settings

Feature	Configurable Range
Output Voltage	2.5 V to 4.0 V
PVIN_B1 UVLO Rising	3.64 V to 9.36 V
PVIN_B1 UVLO Falling	3.5 V to 9 V
Output Discharge	Disabled, 125 Ω , 250 Ω , and 500 Ω
Sequencing	Enable, Dependencies, and Fault RST
Sequence Delay (Off and On)	0 ms to 20 ms

Note: Over-voltage monitor settings are available for the TPS650331-Q1, TPS650332-Q1, and TPS650333-Q1.

2.4.3 Buck 2 Input Supply

Table 2-7. Buck 2 Power Source (J15)

Selection Jumper Pin	Buck2 Supply Bus
Pin 1 (VSYS)	Pin 2 (Buck 2 Input Supply Rail)
Pin 3 (Buck1 Output Rail - Default)	Pin 4 (Buck 2 Input Supply Rail)

2.4.4 Buck 3 Input Supply

Table 2-8. Buck 3 Power Source (J16)

Selection Jumper Pin	Buck3 Supply Bus
Pin 1 (VSYS)	Pin 2 (Buck 3 Input Supply Rail)
Pin 3 (Buck1 Output Rail - <i>Default</i>)	Pin 4 (Buck 3 Input Supply Rail)

2.4.5 Low-Vin Buck2 and Buck3 Features

Table 2-9. Low-Vin (Buck2 and Buck3) Features

Feature	Specification
Input Voltage Range	2.5 V to 5.5 V
Operating Current	Maximum of 600 mA
Current Limiting	1.2 A to 2.5 A
Status Monitoring	UV, HOT, OVP, SCG, and OCP
Over-Voltage Protection (OVP)	VOUT = 109% to 115%
Short-Circuit Threshold (SCG)	VOUT = 250 mV to 350 mV

Table 2-10. Low-Vin (Buck2 and Buck3) Configurable Settings

Feature	Configurable Range
Output Voltage	0.9 V to 1.9 V
Under-Voltage Flags (UV)	VOUT = 94.5%, 95%, 95.5%, and 96%
Spread Spectrum	Enable or Disable
Sequencing	Enable, Dependencies, and Fault RST

Table 2-10. Low-Vin (Buck2 and Buck3) Configurable Settings (continued)	
Feature	Configurable Range
Sequence Delay (Off and On)	0 ms to 20 ms

Note: Over-voltage monitor settings are available for the TPS650331-Q1, TPS650332-Q1, and TPS650333-Q1.

2.4.6 Low Noise LDO Input Supply

Table 2-11. PMIC LDO Power Source (J8)					
Selection Jumper Pin	PMIC LDO Supply Bus				
Pin 1 (VSYS)	Pin 2 (PMIC LDO Input Supply Rail)				
Pin 3 (Buck1 Output Rail - Default)	Pin 4 (PMIC LDO Input Supply Rail)				
Pin 5 (Buck2 Output Rail)	Pin 6 (PMIC LDO Input Supply Rail)				
Pin 7 (Buck3 Output Rail)	Pin 8 (PMIC LDO Input Supply Rail)				

2.4.7 Low Noise LDO Features

Table 2-12. Low Noise LDO Features

Feature	Specification			
Input Voltage Range	2.5 V to 5.5 V			
Operating Current	Maximum of 150 mA or 300 mA			
Current Limiting	Minimum of 200 mA or 400 mA			
Status Monitoring	UV, HOT, OVP, SCG, and OCP			
Over-Voltage Protection (OVP)	VOUT = 109% to 115%			
Short-Circuit Threshold (SCG)	VOUT = 250 mV to 350 mV			

Table 2-13. Low Noise LDO Configurable Settings

Feature	Configurable Range			
Output Voltage	1.8 V, or 2.7 V to 3.3 V			
Under-Voltage Flags (UV)	VOUT = 94.5%, 95%, 95.5%, and 96%			
Load Switch Mode	Enable or Disable			
Current Limit	200 mA, 400 mA			
Sequencing	Enable, Dependencies, and Fault RST			
Sequence Delay (Off and On)	0 ms to 20 ms			

Note: Over-voltage monitor settings are available for the TPS650331-Q1, TPS650332-Q1, and TPS650333-Q1.

2.5 Selecting the Logic Supply Voltage

Table 2-14. VIO Power Source (J8)

Selection Jumper Pin	VIO Supply Bus
Pin 1 (Buck1 Output Rail - Default)	Pin 2 (VIO Input Supply Rail)
Pin 3 (Buck2 Output Rail)	Pin 4 (VIO Input Supply Rail)
Pin 5 (Buck3 Output Rail)	Pin 6 (VIO Input Supply Rail)
Pin 7 (PMIC LDO Output Rail)	Pin 8 (VIO Input Supply Rail)
Pin 9 (Dedicated 3.3 V LDO)	Pin 10 (VIO Input Supply Rail)

3 Test Points 3.1 Voltage Test Points

The TPS650320-Q1 EVM contains 30 test points for various measurements. Trace assignments to the test points are shown in Table 3-1. For reference, Figure 3-1 demonstrates the test point locations on the EVM.

Test Point Number					
IP1	SCL				
TP2	VREG				
TP4	Buck 1 Output				
TP5	VBUS				
TP6	SDA				
TP7	V1P8_INT				
TP9	PMIC LDO Input				
TP10	SEQ				
TP11	nRSTOUT				
TP12	Buck 2 Output				
TP13	Buck 2 Input				
TP14	VIO				
TP15	Buck 3 Output				
TP16	Buck 3 Input				
TP17	PMIC LDO Output				
TP18	Buck 1 Input				
TP19	GND				
TP20	GND				
TP21	USBD_N				
TP22	GND				
TP23	GND				
TP24	VSYS				
TP25	GND				
TP26	GND				
TP27	GND				
TP28	GND				
TP29	USBD_P				
TP30	GND				

Table 3-1. TPS650320-Q1 EVM Test Points

Graphical User Interface

Figure 3-1. TPS650320-Q1 EVM Test Point Locations

4 Graphical User Interface

The Graphical User Interface (GUI) for the EVM can be found in the Gallery at TI DevTools. The GUI can be operated through Google Chrome[®] or Mozilla Firefox[®] web browsers. To run the GUI in the browser, click the thumbnail and follow the prompted instructions for first time installation. The GUI requires both a browser plugin and the TI Cloud Agent software for access to the local USB ports. The GUI can also be downloaded for offline operation by hovering over the downward arrow in the GUI thumbnail and selecting the desired platform – Windows[®], Mac[®], or Linux[®]

4.1 TPS650320-Q1 EVM Debugging

Refer to to debug potential issues while using the TPS650320-Q1 EVM.

Figure 4-1. TPS650320-Q1 EVM Debugging Flow Chart

4.1.1 I²C Communication Port and Adapter Debugging

By default, the GUI will recognize two serial ports from the EVM adapter, but may not select the I²C bridge automatically. Once the EVM is powered and the USB cable is connected to the computer, click the connect icon at the bottom left of the GUI. If the bottom notification updates to *Hardware Not Selected*:

1. Click the Options menu at the top of the GUI, select Serial Port.

Figure 4-2. Opening Serial Port Options

2. Use the Ports dropdown to select the alternative interface.

Figure 4-3. Selecting an Alternate Port

After clicking OK, the GUI should connect to the device properly. If communication to the EVM is lost, most issues can be resolved by pressing the nRST_MCU button (S3) on the EVM. Afterwards, further issues can be diagnosed by confirming that MCU_IN (J18) is still present, and that the I²C pull-up domain is still active.

4.1.2 Updating MCU Firmware

If the EVM on-board MCU is showing up under the Device Manager with a *Stellaris...* title, the MCU firmware needs to be updated to communicate with the GUI. One way to do this is with TI's free LM Flash Programmer tool. Once the firmware is updated, the MCU should show up as *ACCtrl...* COM ports in the Device Manager.

- 1. Download the GUI source files from the Gallery. The EVM firmware is the .bin file located in the install_image_TPS6503xx-Q1_GUI/TPS6503xx-Q1_GUI/app/firmware folder.
- 2. Open LM Flash Programmer with the EVM connected through USB.
- 3. Select *USB DFU* in the *Configuration* tab. The Stellaris device should show in the device list box after refreshing.
- 4. Select the *Program* tab.
- 5. Browse to the .bin file downloaded from the GUI.
- 6. Leave all other settings as default.
- 7. Click Program.

4.2 Navigating the GUI

The GUI contains the following five sections, selectable on the left side of the GUI or by clicking the Menu tab in the top left corner.

- Home
- Block Diagram
- Registers
- Device Configuration
- Re-Program PMIC

4.2.1 Home

The Home section is the landing page of the GUI. Here the GUI presents an overview of the EVM and Programming BoosterPack (BOOSTXL-TPS65033), and emphasize navigation to the remaining four sections through the tiles on the bottom of the page.

Figure 4-4. TPS6503xx-Q1 GUI Home Screen

4.2.2 Block Diagram

The Block Diagram section displays the typical components and functional blocks of the PMIC. A block diagram for the Programming BoosterPack is also shown.

Figure 4-5. TPS6503xx-Q1 GUI Block Diagram Page

4.2.3 Registers

The Registers section provides an overview of the internal register map, and includes basic interfaces for each PMIC register. Figure 4-6 illustrates the register page and the primary interactive regions.

Figure 4-6. Register Page Interfaces

The register table displays each register name, address, last known value from the PMIC, and corresponding bit values. Selecting a title or bit fields in the table will update the Field View column on the right side of the GUI. The Field View displays the individual fields contained within the associated register address. Within the register page, clicking a blue icon containing a question mark (?) will expand additional descriptions if available. The expanded description views can then be closed by clicking the red (x) icon.

This register page can poll the device periodically using the *Auto Read* feature in the top right corner, or allow manual read instructions using the *Read Register* and *Read All Registers* buttons.

Graphical User Interface

A dropdown selection at the top right of the register map indicates how the registers are written as the user interacts with the register page. With *Immediate* selected, any update to the register page is automatically sent to the PMIC, whereas *Deferred* will wait for the *Write Register* or *Write All Registers* instructions before communicating with the device. After each write, the register page will automatically read the affected register address to confirm the latest value in the device.

4.2.4 Device Configuration

The Device Configuration section is organized into selectable tabs at the top of the page, where only the contents of the blue tab is actively displayed. Each tab contains categorized visual instruments relating to individual bit fields within the register map. Each instrument is linked to the latest bit values in the register map table, and can be used to alter settings within the PMIC through the dropdown menus or check box features. If the *Auto Read* function in the register map is inactive, the *Read All Registers* button in the top right area of the Device Configuration page can be used to manually refresh the register page, which will then update the instruments with the latest device values.

The PMIC incorporates *Control Lock* and *Configuration Lock* features that can prevent I²C writes to various registers within the device. The status of these locks will always be displayed in the top right hand corner of the Device Configurations page, and can be toggled by clicking their associated checkbox. When the GUI is properly connected to the EVM and write instructions appear to be ignored by the PMIC, confirm the status of these indicators to verify the device is able to accept new write instructions.

Figure 4-7. TPS6503xx-Q1 GUI Device Configuration Page

4.2.4.1 Using Device Configuration to Define Spin Settings

In some circumstances, TI may provide customized, pre-programmed devices for the camera application. Contact a local TI sales representative for more information.

The Device Configuration tabs in the GUI can be used to define custom settings for TI to pre-program into the device Non-Volatile Memory (NVM). Before beginning the spin definition, see the Camera PMIC Spin Selection Guide to determine if there is an exisiting spin that is already compatible with the target application and the image sensor or both.

Since the visual instruments in the Device Configuration page link directly to the corresponding bits and registers in the Register Map page, the Device Configuration page can be used to quickly define desired OTP register settings.

1. Select the desired camera PMIC from the drop-down menu above the tab indicators to start. The GUI will automatically show, hide, or disable features corresponding to the selected PMIC. This drop down box will not be adjustable if a device is connected to the GUI.

File	Options Too	ls Help									
≡м	E Menu										
f	ቹ Device (Configura	ation								
	Device Selection for	Generating N	VM Settin	gs: TPS650333-Q1 🗸	1						
_	BUCK 1			TPS650320-Q1	BUC	K 3		LDO		Sequencing Overview	
/	BUCK 1 Enabled			TPS650330-Q1 S TPS650331-Q1	<u>ıcy Masks</u>	Inte	rrupt Flags	CLEAR	Fault	t Status CLEAR	1
•	Output Voltage	3.30V	~	TPS650332-Q1		•	Warm	Mask Warm	•	Under Voltage	
¥	Output Discharge Under-Voltage	125 ohm 96%	~	BUCK 3 Power Goo	d	٠	Over Current	Mask OCP	•	Over Load Condition Short Circuit	
	Over-Voltage	104%	~	BUCK 2 Power Goo	d	۲	Under Voltage	O Resets PMIC	۲	Over Voltage Protection	
	UVLO Rising UVLO Falling	4.68V	* *	SEO Pin		٠	Over Voltage	O Resets PMIC	۲	Over Temp Shutdown	
			-	Sequence On Delay	0.5ms 🗸				۲	Input Under Voltage	
				Sequence Off Delay	6ms 🗸				•	Over Voltage Status	
						L					

Figure 4-8. Device Selection for Generating NVM Settings

- 2. Select the desired regulator, sequencing, and additional feature settings in each of the tabs. These changes will be reflected in the Register Map page. For determining the power sequence settings, see Section 4.2.4.2.
- 3. Click File > Save Settings in the top left corner of the GUI. This exports the register settings in a JSON file that is provided to generate the NVM spin.

// s	etting	s.json - I	Votepad						-		×	
<u>F</u> ile	<u>E</u> dit	F <u>o</u> rmat	<u>V</u> iew	<u>H</u> elp								
{												^
	"my_	model	": {									
		"\$ref	resh_i	interval":	-1	,						
		"PID"	: 240,	•								
		"RID"	: 8,									
		CONT	KOL_LC	JCK": 0,								
		"CDTO		.IKL : 31, '• 24								
		"CONE		: 51, 'V''' 0								
		"LDO	GPTO (TEG" · 29								
		"BUCK	1 VOUT	ru . 25, r"• 16								
		"BUCK	1 11/10)": 18.								
		"BUCK	2 VOUT	[": 29.								
		"BUCK	3 VOUT	r": 10,								
		"LDO	VOUT":	: 14,								
		"DISC	HARGE_	SETTING":	85	,						v
<											>	
			Ln 37,	Col 33		100%	Unix (LF	5)	UTF-8	3		

Figure 4-9. Example Settings Output

4.2.4.2 Configuring the Power Sequence

The Sequencing Overview tab includes instruments to customize the power sequence of the PMIC. Note that the check boxes are power sequence *masks*. If a particular logic signal needs to be included as part of the regulator or logic power up sequence, leave the box next to the logic signal unchecked. TI recommends to set *Power On Bit* unmasked for each rail that is required in the application.

Figure 4-10. Sequencing Overview Tab

For reference, the GUI can generate example power-up and power-down timing diagrams based on the sequence settings present when the *UPDATING TIMING DIAGRAM* button is clicked. As noted, rise and fall times are approximate, and the maximum sequence length is 200 ms. Changes to regulator enable and output discharge settings are reflected in the timing diagram. If the sequence settings are not valid, the GUI will provide a notifying message and the timing diagram will not be updated. For example, if a regulator is enabled but fails to power-up within 200 ms, the sequence settings are not valid.

Figure 4-11. GUI Generated Timing Diagram

4.3 Re-Program PMIC

The Re-Program PMIC section contains a button for sending the EEPROM Program Command to the device. After the EEPROM Program Command is sent, the device will store the existing register configurations permanently and the PMIC will automatically restart with the latest settings. The device can be re-programmed multiple times to evaluate various configurations.

File	Options Tools H	lelp	
≡ м	nu		
÷	Re-Program PM	/IC	
e			Flash EEPROM
/			30
÷			Click Here to burn register map values into
0			
(د)	 Hardware not Connected. Pl 	lease plug your Target Device into your computer's USB port, and	Formed (s) (d) Connect icon at left.

Figure 4-12. TPS6503xx-Q1 GUI Re-Program PMIC Page

4.4 In-Circuit Programming

The TPS650320-Q1 EVM demonstrates the in-circuit programming capabilities of the TPS650320-Q1 PMIC in a typical application. This section provides an example in-circuit programming procedure with application considerations.

- 1. Verify the desired power and sequence settings using the GUI's Sequencing Overview tools. See Section 4.2.4.2.
- 2. Validate the settings with the BOOSTXL-TPS65033. This socketed board provides a quicker way to evaluate device settings.
- 3. Configure the TPS650320-Q1 EVM for a typical camera application once the following settings are verified and validated:
 - a. Ensure the I2C pull-up jumpers (J24 and J34) are populated.
 - b. Supply the PMIC VIO with either the Buck 1 or Buck 2 output. See Selecting the Logic Supply Voltage.
 - c. Tie the PMIC Buck 1 input to VSYS. See Section 2.4.1.
 - d. Supply the PMIC Buck 2, Buck 3, and LDO with the Buck 1 output. See Section 2.4.
- 4. Apply a Buck 1 input voltage (typical is 12 V) to power up the device. By default, the Buck 1 and Buck 2 regulators are enabled, allowing the 3.3 V and 1.8 V rails to power up.
 - a. In a typical camera application, this may be sufficient to power up the serializer and enable PMIC programming over the Serializer-Deserializer (SerDes) back-channel.
 - b. If additional rails are required, assert SEQ (S1) to enable the Buck 3 and LDO regulators.
- 5. Unlock the configuration and control registers.
- 6. Re-program the PMIC settings. If changing a regulator output voltage, TI recommends disabling the regulator first. If doing this in an application setting shuts down a critical component, change the output voltage in small steps to prevent triggering under or over-voltage fault handling.
- 7. If the device configuration Cyclic Redundancy Check (CRC) is enabled, calculate and write the new configuration CRC by running the GUI's built-in script. For more information on the GUI's capabilities for programming automation, see the BOOSTXL-TPS65033 User's Guide.

vww.ti.	com		Graphical User Inter
File	Options	Tools Help	
≡м	enu	Scripting	
0		📕 Log pane	TPS650320-01 + TPS65033x-01 EVM and BoosterPack GUI
٥			Camera_PMIC_Config_CRC_Generator.js
/			 * To add additional script to the scripting widget, create/upload a * to the 'scripts' folder. Open the scripting.html file in the editor * the file in the Project view. Append the filename to the 'scripts'
-1 			5 * ti-widget-scripting element, separated each script filename by a co
Ŧ			<pre>8 const SCRIPT_START_MESSAGE = 'Script Started'; 9 const SCRIPT_END_MESSAGE = 'Script Ended'; 10 const PID_TPS650333 = 0xF0; 11</pre>
			12 var reg_data = []; 13 var crc = 0x00; 14
		а	<pre>10 16 function main() { 17 /* 18</pre>
			CLOSE
		Block Diagram	Registers Device Configuration
		Typical Device Diagram	Low level register read and write operations Typical Device Settings

Figure 4-13. GUI Configuration CRC Script

- 8. Burn the final PMIC register settings to EEPROM.
- 9. Validate the settings on subsequent startups.

5 Typical Performance Plots

5.1 Power Sequence Plots

5.2 Load Transient Plots

Figure 5-1. TPS650320-Q1 Default Power Up Sequence

VIN = 12 V VOUT = 3.3 V IOUT = 1 mA to 400 mA in 1 μs

Figure 5-3. Buck 1 Load Transient

Figure 5-2. TPS650320-Q1 Default Power Down Sequence

VIN = 3.3 V VOUT = 1.8 V IOUT = 1 mA to 300 mA in 1 μs

Figure 5-4. Buck 2 Load Transient

VIN = 3.3 V VOUT = 1.2 V IOUT = 1 mA to 300 mA in 1 μs

Figure 5-5. Buck 3 Load Transient

5.3 Output Voltage Ripple Plots

Figure 5-7. Buck 1 Output Voltage Ripple

VIN = 3.3 V VOUT = 2.8 V IOUT = 60 mA to 240 mA in 1 μs

Figure 5-6. LDO Load Transient

Figure 5-8. Buck 2 Output Voltage Ripple

5.4 Efficiency Plots

Figure 5-11. Buck 2 Efficiency Curve

5.5 LDO Output Noise

Figure 5-13. LDO Output Noise Density

6 TPS650320-Q1 EVM Schematic

Figure 6-1. TPS650320-Q1 Schematic

7 TPS650320-Q1 EVM PCB Layers

Figure 7-1. Top Layer

Texas Instruments TPS650320-Q1 EVM PCB Layers www.ti.com \bigcirc $\bigcirc \bigcirc$ • o ο $\bigcirc \bigcirc \bigcirc$ ο ο ο \bigcirc ၀ူစီ C \odot ્દ્ર Ο ø ο ο ο • •

Figure 7-2. Mid-Layer 1

TPS650320-Q1 EVM PCB Layers

Figure 7-3. Mid-Layer 2

Figure 7-4. Mid-Layer 3

TPS650320-Q1 EVM PCB Layers

Figure 7-5. Mid-Layer 4

Figure 7-6. Bottom Layer (Mirrored)

8 TPS650320-Q1 EVM Bill of Materials

			P3050320-Q1 EVIV	S650320-Q1 EVM BIII OT Materials				
Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer		
PCB1	1		Printed Circuit Board		BMC054	Any		
C1	1	0.1 µF	CAP, CERM, 0.1 µF, 50 V, ± 20%, X7R, AEC-Q200 Grade 1, 0402	0402	CGA2B3X7R1H10 4M050BB	ТDК		
C2, C4, C5	3		10μF ±10% 10V Ceramic Capacitor X7S 0805 (2012 Metric)	0805	CGA4J3X7S1A10 6K125AE	TDK		
C3, C7	2	10 µF	CAP, CERM, 10 μF, 25 V,± 5%, X7R, AEC-Q200 Grade 1, 1206	1206	C1206C106J3RA CAUTO	Kemet		
C8, C9	2	10 µF	CAP, CERM, 10 µF, 6.3 V,± 10%, X7R, AEC-Q200 Grade 1, 0805	0805	JMJ212CB7106K GHT	Taiyo Yuden		
C10, C14, C28	3	1 µF	CAP, CERM, 1 µF, 10 V, ± 10%, X7R, AEC-Q200 Grade 1, 0603	0603	LMK107B7105KA HT	Taiyo Yuden		
C11, C12	2	2.2 µF	CAP, CERM, 2.2 µF, 6.3 V, ± 10%, X7R, AEC-Q200 Grade 1, 0603	0603	GCM188R70J225 KE22D	MuRata		
C15	1	3300 pF	CAP, CERM, 3300 pF, 50 V, ± 10%, X7R, 0603	0603	C0603C332K5RA CTU	Kemet		
C16	1	10 µF	CAP, CERM, 10 μF, 25 V, ± 20%, X7R, AEC-Q200 Grade 1, 1210	1210	CGA6P1X7R1E10 6M250AC	TDK		
C17	1	10 µF	CAP, CERM, 10 μF, 10 V,± 5%, X7R, AEC-Q200 Grade 1, 0805	0805	C0805C106J8RA CAUTO	Kemet		
C18, C19, C25, C26	4	12 pF	CAP, CERM, 12 pF, 50 V,± 5%, C0G/NP0, AEC- Q200 Grade 1, 0402	0402	GCM1555C1H120 JA16J	MuRata		
C20, C21, C22, C23, C24, C29, C30	7	0.1 µF	CAP, CERM, 0.1 μF, 25 V, ± 10%, X7R, 0402	0402	GRM155R71E104 KE14D	MuRata		
C27	1	2.2 µF	CAP, CERM, 2.2 μF, 10 V, ± 10%, X7R, 0805	0805	C0805C225K8RA CTU	Kemet		
D3	1	Green	LED, Green, SMD	1.7x0.65x0.8 mm	LG L29K- G2J1-24-Z	OSRAM		
H1, H2, H3, H4	4		Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	Screw	NY PMS 440 0025 PH	B&F Fastener Supply		
H5, H6, H7, H8	4		Standoff, Hex, 0.5 in L #4-40 Nylon	Standoff	1902C	Keystone		

Table 8-1. TPS650320-Q1 EVM Bill of Materials (continued)						
Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
J1	1		Connector, Receptacle, Micro- USB Type AB, R/A, Bottom Mount SMT	5.6x2.5x8.2 mm	475890001	Molex
J2, J4, J5, J6, J7, J29, J31	7		Jumper, SMT	shorting jumper, SMT	JMP-36-30X40SM T	Any
J3	1		Header (Shrouded), 1.27mm, 5x2, Gold, SMT	Header(Shrouded) , 1.27 mm, 5x2, SMT	FTSH-105-01-F- DV-K	Samtec
J8	1		Header, 100mil, 5x2, Tin, TH	Header, 5x2, 100 mil, Tin	PEC05DAAN	Sullins Connector Solutions
J9, J10, J11, J12, J13, J14, J25, J26, J27, J28	10		Standard Banana Jack, Uninsulated, 8.9mm	Keystone575-8	575-8	Keystone
J15, J16	2		Header, 100mil, 2x2, Tin, TH	Header, 2x2, 2.54 mm, TH	PEC02DAAN	Sullins Connector Solutions
J17	1		Header, 100mil, 4x2, Tin, TH	Header, 4x2, 100 mil, Tin	PEC04DAAN	Sullins Connector Solutions
J18, J19	2		Header, 100mil, 3x2, Tin, TH	3x2 Header	PEC03DAAN	Sullins Connector Solutions
J21, J22, J33	3		Header, 100mil, 2x1, Tin, TH	Header, 2 PIN, 100 mil, Tin	PEC02SAAN	Sullins Connector Solutions
J24, J34	2		Header, 100mil, 2x1, Tin, SMD	SMD, 2-Leads, Body 200x100 mil	TSM-102-01-T- SV-P-TR	Samtec
J30	1		Connector, SMA, TH	SMA	142-0701-201	Cinch Connectivity
J35	1		Header, 100mil, 3x1, Gold, TH	3x1 Header	TSW-103-07-G-S	Samtec
L1	1	2.2 μH	Inductor, Shielded, Metal Composite, 2.2 µH, 1.9 A, 0.152 ohm, AEC- Q200 Grade 0, SMD	0806	TFM201610ALMA 2R2MTAA	ТDК
L2, L3	2	1 µН	Inductor, Shielded, Metal Composite, 1 µH, 3.1 A, 0.06 ohm, AEC-Q200 Grade 0, SMD	0806	TFM201610ALMA 1R0MTAA	TDK
LBL1	1		Thermal Transfer Printable Labels, 0.650 in W x 0.200 in H - 10,000 per roll	PCB Label 0.650 x 0.200 in	THT-14-423-10	Brady
Q1, Q2, Q3	3	25 V	MOSFET, N-CH, 25 V, 5 A, DQK0006C (WSON-6)	DQK0006C	CSD16301Q2	Texas Instruments
R1, R22, R23, R24	4	1.0 Meg	RES, 1.0 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06031M00J NEA	Vishay-Dale
R2	1	1.0 Meg	RES, 1.0 M, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04021M00J NED	Vishay-Dale

	Table 8-1. TPS650320-Q1 EVM Bill of Materials (continued)								
Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer			
R3	1	4.87 k	RES, 4.87 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04024K87F KED	Vishay-Dale			
R4, R7, R8	3	10 k	RES, 10 k, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW040210K0J NED	Vishay-Dale			
R5, R18	2	100	RES, 100, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW0402100RJ NED	Vishay-Dale			
R6	1	2.0 k	RES, 2.0 k, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04022K00J NED	Vishay-Dale			
R9	1	51	RES, 51, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW040251R0J NED	Vishay-Dale			
R10, R13	2	1.0 k	RES, 1.0 k, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04021K00J NED	Vishay-Dale			
R11, R12, R21	3	330	RES, 330, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW0402330RJ NED	Vishay-Dale			
R14	1	100 k	RES, 100 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0402	0402	ERJ-2GEJ104X	Panasonic			
R15, R16, R17	3	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04020000Z 0ED	Vishay-Dale			
R19	1	6.81 k	RES, 6.81 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04026K81F KED	Vishay-Dale			
R20	1	4.02 k	RES, 4.02 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW04024K02F KED	Vishay-Dale			
R25	1	47 k	RES, 47 k, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	CRCW040247K0J NED	Vishay-Dale			
S1	1		Switch, Slide, SPDT, On-Off-On, 3 Pos, 0.05A, 48 V, TH	9.5x5 mm	AS1E-2M-10-Z	Copal Electronics			
S2, S3	2		Switch, SPST, Off- Mom, 0.05 A, 12 VDC, SMD	3.5x2.9 mm	434153017835	Wurth Elektronik			
SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6, SH-J7, SH-J8, SH-J9	9	1x2	Shunt, 100mil, Flash Gold, Black	Closed Top 100 mil Shunt	SPC02SYAN	Sullins Connector Solutions			

Table 8-1. TPS650320-Q1 EVM Bill of Materials (continued)										
Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer				
TP1, TP2, TP4, TP5, TP6, TP7, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25, TP26, TP27, TP28, TP29, TP30	28		Test Point, Miniature, SMT	Testpoint_Keyston e_Miniature	5015	Keystone				
U1	1		Automotive Camera PMIC	VQFN24	TPS65032001RG ERQ1	Texas Instruments				
U2	1		MSP432E401YTP DT, PDT0128A (TQFP-128)	PDT0128A	MSP432E401YTP DT	Texas Instruments				
U3	1		USB ESD Solution with Power Clamp, 4 Channels, -40 to +85 °C, 6-pin SON (DRY), Green (RoHS & no Sb/Br)	DRY0006A	TPD4S012DRYR	Texas Instruments				
U4	1		Single Output Fast Transient Response LDO, 1.5 A, Adjustable 1.21 to 20 V Output, 2.1 to 20 V Input, 5-pin DDPAK (KTT), -40 to 125 °C, Green (RoHS & no Sb/Br)	KTT0005A	TL1963AQKTTRQ 1	Texas Instruments				
U5	1		Low-Capacitance 6-Channel ±15 kV ESD Protection Array for High- Speed Data Interfaces, RSE0008A (UQFN-8)	RSE0008A	TPD6E004RSER	Texas Instruments				
Y1	1		Crystal, 32.768 kHz, SMD	D1.9xL6 mm	CMR200T-32.768 KDZY-UT	Citizen FineDevice				
Y2	1		Crystal, 25 MHz, 8pF, SMD	3.2x0.75x2.5 mm	NX3225GA-25.00 0M-STD-CRG-2	NDK				
C6	0	10 µF	CAP, CERM, 10 μF, 25 V,± 5%, X7R, AEC-Q200 Grade 1, 1206	1206	C1206C106J3RA CAUTO	Kemet				
C13	0	1 µF	CAP, CERM, 1 μF, 10 V, ± 10%, X7R, AEC-Q200 Grade 1, 0603	0603	LMK107B7105KA HT	Taiyo Yuden				
D4, D5	0	Green	LED, Green, SMD	1.7x0.65x0.8 mm	LG L29K- G2J1-24-Z	OSRAM				
J20, J23	0		Header, 100mil, 2x1, Tin, TH	Header, 2 PIN, 100 mil, Tin	PEC02SAAN	Sullins Connector Solutions				

Table 8-1. TPS650320-Q1 EVM Bill of Materials (continued)										
Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer				
R26, R27	0	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04020000Z 0ED	Vishay-Dale				
S4	0		Switch, Slide, SPDT, On-Off-On, 3 Pos, 0.05A, 48 V, TH	9.5x5 mm	AS1E-2M-10-Z	Copal Electronics				
TP3, TP8	0		Test Point, Miniature, SMT	Testpoint_Keyston e_Miniature	5015	Keystone				

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated