User's Guide

TPS65941213-Q1 and LP876411B4-Q1 PMIC User Guide for J721E, PDN-1A

ABSTRACT

This user's guide can be used as a guide for integrating the TPS6594-Q1 and LP8764-Q1 power management integrated circuits (PMICs) into a system powering the Automotive Jacinto 7 DRA829 or TDA4VM processor.

Table of Contents

1 Introduction	
2 Device Versions	2
3 Processor Connections	4
3.1 Power Mapping	
3.2 Control Mapping	
4 Supporting Functional Safety Systems	10
4.1 Achieving ASIL-B System Requirements	
4.2 Achieving up to ASIL-D System Requirements	12
5 Static NVM Settings5	14
5.1 Application-Based Configuration Settings	14
5.2 Device Identification Settings	16
5.3 BUCK Settings	16
5.4 LDO Settings	19
5.5 VCCA Settings	
5.6 GPIO Settings	
5.7 Finite State Machine (FSM) Settings	
5.8 Interrupt Settings	
5.9 POWERGOOD Settings	
5.10 Miscellaneous Settings	
5.11 Interface Settings	
5.12 Multi-Device Settings	
5.13 Watchdog Settings	
6 Pre-Configurable Finite State Machine (PFSM) Settings	
6.1 Configured States	
6.2 PFSM Triggers	
6.3 Power Sequences	
7 Application Examples	
7.1 Initialization	
7.2 Moving Between States; ACTIVE and RETENTION	
7.3 Entering and Exiting Standby	
7.4 Entering and Existing LP_STANDBY	
7.5 Runtime Customization	
8 References	4t

Trademarks

Jacinto[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

Introduction www.ti.com

1 Introduction

This user's guide describes a power distribution network (PDN), PDN-1A, using the TPS6594-Q1 and the LP8764-Q1 devices to supply the J721E processor with combined MCU and Main power rails.

The following topics are described to clarify platform system operation:

- 1. PDN power resource connections
- 2. PDN digital control connections
- 3. Primary (TPS6594-Q1) and secondary (LP8764-Q1) PMIC static NVM contents
- 4. PMIC sequencing settings to support different PDN power state transitions for an advanced processor system

PMIC and processor data manuals provide recommended operating conditions, electrical characteristics, recommended external components, package details, register maps, and overall component functionality. In the event of any inconsistency between any user's guide, application report, or other referenced material, the data sheet specification is the definitive source.

2 Device Versions

There are different orderable part numbers (OPNs) of the TPS6594-Q1 and LP8764-Q1 devices available with NVM settings to support different end product use cases and processor types. The PDN-1A use case supports combined MCU and SOC rails for extended MCU operation where the PDN-0C and PDN-0B supports independent MCU and SOC rails for a dedicated MCU Safety Island. Since both PDN-1A and PDN-0C include the TPS65941213 device, in PDN-1A an additional step is required by the processor to reconfigure the PMICs so that all SOC power rail errors are mapped to the MCU Power error trigger in the PFSM. The context for this mapping is described throughout the document and specific instructions are provided in Section 7.1.

The NVM settings can be identified by both NVM_ID and NVM_REV registers. Each PMIC device is distinguished by the part number, NVM_ID, and NVM_REV values listed in Table 2-1.

Table 2-1. TPS6594-Q1 and LP8764-Q1 Orderable Part Numbers for PDN System

PDN USE CASE	PDN	Orderable Part Number	TI_NVM_ID (TI_NVM_REV)	Orderable Part Number	TI_NVM_ID (TI_NVM_REV)	Error Signal Monitoring
Up to 10.5 A ⁽¹⁾ on the Primary PMIC 3-phase CPU rail Up to 20 A ⁽¹⁾ on the Secondary PMIC 4-phase CORE rail Up to 3.4 A ⁽¹⁾ on the SDRAM, with support for LPDDR4 Supports Processor 2 GHz maximum clock with high-speed SERDES operations Supports 8 Gb of LPDDR4 SDRAM with 4266MTs data rate Supports Functional Safety up to ASIL-D level Supports DDR Retention low power mode Supports I/O level of 3.3 V or 1.8 V Supports optional end product features:	1A ⁽²⁾				(TI_NVM_REV)	
 Compliant high-speed SD Card memory Compliant USB 2.0 Interface On-board Efuse programming of high security processors⁽³⁾ 						

www.ti.com Device Versions

Table 2-1. TPS6594-Q1 and LP8764-Q1 Orderable Part Numbers for PDN System (continued)

	PDN USE CASE	PDN	Orderable Part Number	TI_NVM_ID (TI_NVM_REV)	Orderable Part Number	TI_NVM_ID (TI_NVM_REV)	Error Signal Monitoring
•	Up to 10.5 A ⁽¹⁾ on the Primary PMIC 3-phase CPU rail	0C ⁽²⁾	TPS65941213 RWERQ1	0x13 (0x04)	TPS65941111 RWERQ1	0x11 (0x03)	Dedicated MCU and SOC
•	Up to 14 A ⁽¹⁾ on the Secondary PMIC 4-phase CORE rail	0B	TPS65941212 RWERQ1	0x12 (0x03)	TPS65941111 RWERQ1	0x11 (0x03)	Combined MCU and SOC
•	Up to 3.4 A ⁽¹⁾ on the SDRAM, with support for LPDDR4						
•	Supports Processor 2 GHz maximum clock with high-speed SERDES operations						
•	Supports 8GB of LPDDR4 SDRAM with 4266MTs data rate						
•	Supports Functional Safety up to ASIL-D level with MCU Safety Island						
•	Supports MCU-only and DDR Retention low power modes						
•	Supports I/O level of 3.3 V or 1.8 V Supports optional end product features:						
	 Compliant high-speed SD Card memory 						
	 Compliant USB 2.0 Interface On-board Efuse programming of high security processors 						

⁽¹⁾ TI recommends having 15% margin between the maximum expected load current and the maximum current allowed per each PMIC output rail.

⁽²⁾ PDN-0C and PDN-1A are recommended for all new designs.

⁽³⁾ Efuse functionality is not part of the NVM in PDN-1A. This feature can be enabled during runtime.

Processor Connections Www.ti.com

3 Processor Connections

This section details how the TPS6594-Q1 and LP8764-Q1 power resources and GPIO signals are connected to the processor and other peripheral components.

3.1 Power Mapping

Figure 3-1 shows the power mapping between the PMIC power resources and processor voltage domains required . In this configuration, both PMICs use a 3.3 V input voltage. For Functional Safety applications, there is a protection FET before VCCA that connects to the OVPGDRV pin of the primary PMIC, allowing voltage monitoring of the input supply to the PMICs.

For SD card dual-voltage I/O support (3.3 V and 1.8 V), a discrete LDO, TLV7103318-Q1, is included. The enable pin of this LDO is connected to GPIO10 of the LP876411B4-Q1 PMIC.

This PDN uses five discrete power components with two being required and three optional depending upon end product features. The TPS22965-Q1 Load Switch connects VCCA_3V3 power rail to supply OV protected 3.3 V to processor I/O domains. The TPS62813-Q1 Buck Converter supplies the LPDDR4 SDRAM component with required 1.1V supply. The three optional discrete power components are the LDOs. The TLV3333-Q1 provides 3.3V for the USB. TLV7103318-Q1 provides the selectable dual voltage for the SD card. The third LDO is an TLV73318-Q1 that can be used if an end product uses a high security processor type and desires the capability to program Efuse values on-board. If this feature is not desired, then this LDO can be omitted and processor pins terminated per data manual recommendations.

Note

The PMIC voltage monitor on FB_B3 of the TPS65941213 must be connected to 3.3 V. The VMON_ABIST_EN=1 for both the primary and secondary PMICs. If 3.3 V is not connected to FB_B3 when the monitor is enabled then the self-test fails, the BIST_FAIL_INT interrupt is set, and the device goes to the hardware SAFE RECOVERY state, see Figure 6-1, and main processor voltages are disabled.

Figure 3-1 shows that only VDD1_LPDDR_1V8 and VDD_DDR_1V1 are associated with the retention low power mode and that the MCU Only low power mode is not available. While the MCU Only modes is not supported, the TPS65941213-Q1 regulators are grouped separately between MCU and SOC power rail groups based upon PDN-0C, and described in Section 5.7. By default, any SOC power failure results in all SOC regulators being turned off (this includes VDD_IO_3V3) while MCU rail group regulators remain on. The sequence places the system in a non-functional state. In order to minimize the probability of this occurring it is recommended to map all SOC power errors to the MCU power error trigger. The I²C commands required to perform the mapping are provided in Section 7.1.

The FB_B3 of the TPS65941213-Q1 is part of the MCU_RAIL_GRP, as described here Section 5.7. By connecting FB_B3 of the TPS65941213-Q1 to the VDD_IO_3V3 rail, the PMIC automatically transitions to the safe state in the event of an SOC power error and the mapping of the SOC power error to the MCU power error trigger is not required.

ww.ti.com Processor Connections

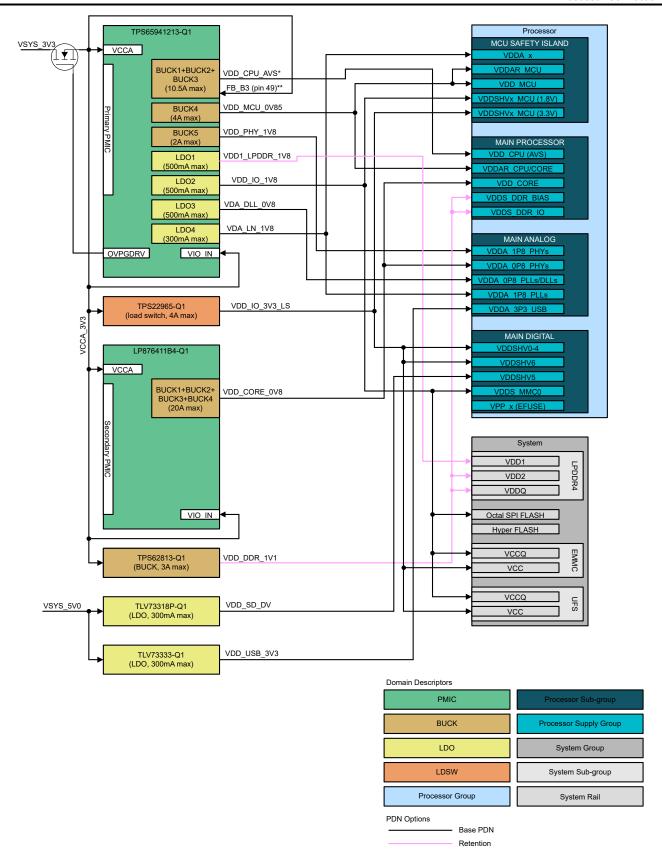


Figure 3-1. Power Connections

* VDD_CPU_AVS, boot voltage of 0.8 V then software sets device specific AVS; 0.68 V – 0.72 V.

Processor Connections
 ** When FB_B3 is connected to the VCCA_3V3, the SOC_RAIL_TRIG must be set to MCU Power error for

Table 3-1 identifies which power resources are required to support different system features. In the Active SoC column, there is an additional option for including or excluding the VPP_x(EFUSE) rail. TLV7103318-Q1 and TLV73333-Q1, which support optional SD CARD and USB Interface features respectively, are enabled by GPIO10 of the LP876411B4-Q1 device. These options are illustrated as part of the power on sequence as shown in Figure 6-6.

Table 3-1. PDN Power Mapping and System Features

		Power Mapping	ina System		eatures ⁽¹⁾						
Device	Power Resource	Power Rails	Processor and Memory Domains	Active SoC	DDR Retention	SD Card	USB Interface				
	BUCK123	VDD_CPU_A VS	VDD_CPU	R							
	FB_B3	VCCA_3V3 ⁽²⁾	NA	R							
		VDD MCU 0	VDDAR_MCU, VDD_MCU								
	BUCK4	VBD_MC0_0 V85	VDDAR_CORE, VDDAR_CPU	R							
	DUCKE	VDD_PHY_1	VDDA_1P8_PHYs	Б							
	BUCK5		UFS: VCCQ	R							
TPS6594121 3-Q1	LDO1	VDD1_DDR_ 1V8	Mem: VDD1	R	R ⁽³⁾						
			VDDSHV1_MCU (1.8 V)								
	LDO2	VDD IO 1V8	VDDS_MMC0	R							
		100_100_100	Octal SPI Flash: VCC	IX.							
			eMMC: VCCQ								
	LDO3 VDA_DLL_0\ 8		VDDA_0P8_PLLs/DLLs	R							
	LDO4	VDA_MCU_1 V8	VDDA_x	R							
			1.8V Analog CLK/PLLs	IX							
LP876511B4- Q1	BUCK1234	VDD_CORE_ 0V8	VDD_CORE, VDDA_0P8_PHYs	R							
							VDDSHV0_MCU,VDDSHV2_ MCU				
TPS22965- Q1	Load Switch	VDD_IO_3V3	VDDSHV0-4,VDDSHV6 (3.3 V)	R							
			eMMC, VCC								
			UFS, VCC								
TPS62813- Q1	BUCK	VDD_DDR_1 V1	VDDS_DDR_BIAS, VDDS_DDR_IO	R	R ⁽⁴⁾						
			Mem: VDD2								
TLV3333-Q1	LDO	VDD_USB_3 V3	VDDA_3p3_USB	0			R				
TLV7103318- Q1	LDO	VDD_SD_DV	VDDSHV5 (3.3V or 1.8V)	0		R					
TLV73318P- Q1	LDO	VPP_EFUSE _1V8	VPP_x(EFUSE)	0							

^{(1) &#}x27;R' is required and 'O' is optional.

each PMIC.

⁽²⁾ Connecting FB B3 to the VDD IO 3V3 LS which supplies VDD IO 3V3 is an alternative connection.

⁽³⁾ LDO1 of the TPS65941213-Q1 remains on when TRIGGER_I2C_7, in FSM_I2C_TRIGGERS Register, is set.

⁽⁴⁾ The TPS62813-Q1 is controlled by the LP876411B4-Q1 GPIO1 and remains active while TRIGGER_I2C_7, in FSM_I2C_TRIGGERS, is set.

www.ti.com Processor Connections

3.2 Control Mapping

Figure 3-2 shows the digital control signal mapping between processor and PMIC devices. For the two PMIC devices to work together, the primary PMIC and secondary PMIC must establish an SPMI communication channel. This SPMI channel allows the TPS6594-Q1 and LP8764-Q1 to synchronize their internal Pre-Configurable State Machines (PFSM) so that they operate as one PFSM across all power and digital resources. With the SPMI the connection between the ENABLE pin or the LDO_VINT to the ENABLE pin (GPIO4) of the LP8764-Q1 is not required.

Other digital connections from the PMICs to the processor provide error monitoring, processor reset, processor wake up, and system low-power modes. Specific GPIO pins have been assigned to key signals in order to ensure proper operation during low power modes when only a few GPIO pins remain operational.

The digital connections shown in Figure 3-2 allow system features including DDR Retention mode, functional safety up to ASIL-D, and compliant dual voltage SD card operation.

Processor Connections www.ti.com

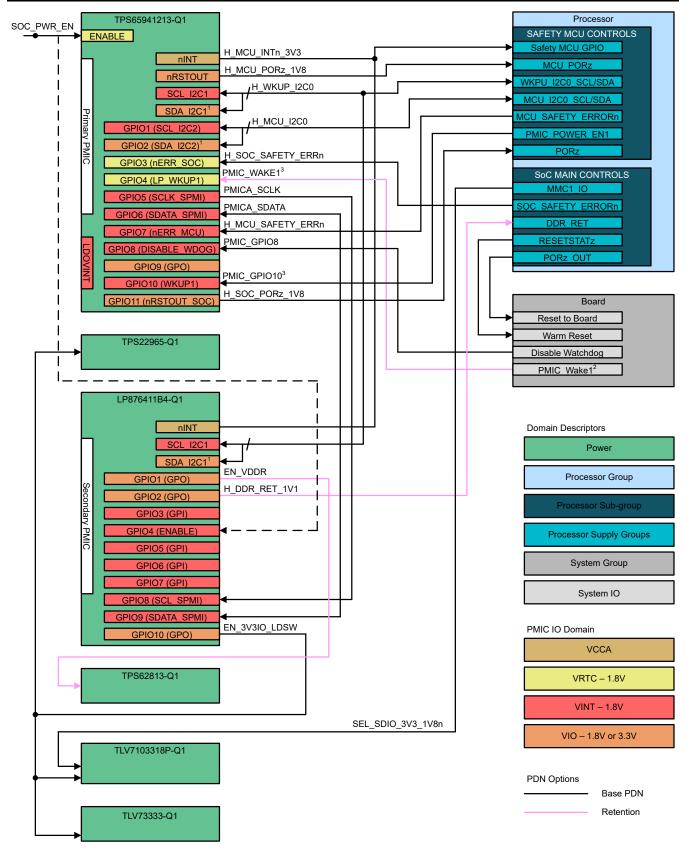


Figure 3-2. TPS6594-Q1 Digital Connections

1. PMIC IO can have distinct power domains for input and output functionality. The SDA function for I2C1 and I2C2 use the VINT voltage domain as an input and the VIO voltage domain as an output. Please refer to the

www.ti.com Processor Connections

device datasheet for a complete description. The PMIC voltage domains indicated are for the PDN-1A NVM configuration.

- 2. PMIC Wake1 is typically a CAN PHY INH output.
- 3. LP_WKUP1 and WKUP1 transition to the ACTIVE state. State Transition Triggers

Note

The PMIC voltage domain of an IO can be different depending upon configuration. When configured as an input GPIO3 and GPIO4 are in the VRTC domain. When configured as an output, GPIO3 and GPIO4 are in the VINT domain.

Note

In addition to the I2C signals, four additional signals are open-drain outputs and require a pullup to a specific power rail. Please refer to Table 3-2 for a list of the signals and the specific power rail.

Table 3-2. Open-drain signals and Power Rail

PDN Signal	Pullup Power Rail
H_MCU_INTn	VDD_IO_3V3
H_MCU_PORz_1V8	VDA_LN_1V8
H_SOC_PORz_1V8	VDA_LN_1V8
H_DDR_RET_1V1	VDD_DDR_1V1_REG
H_WKUP_I2C0	VDD_IO_3V3
H_MCU_I2C0_SCL/SDA	VDD_IO_3V3

Please use Table 3-3 as a guide to understand GPIO assignments required for each PDN system feature. If the feature listed is not required, the digital connection can be removed; however, the GPIO pin is still configured per NVM defined default function shown. After the processor has booted up, the processor can reconfigure unused GPIOs to support new functions. Reconfiguration is possible as long as that function is only needed after boot and default function does not cause any conflicts with normal operations (for example, two outputs driving same net). For details on how functional safety related connections help achieve functional safety system-level goals, see Section 4.

Table 3-3. Digital Connections by System Feature

			ole 3-3. Digital Connect		System Features ⁽¹⁾					
Device			wapping				5(')	LIOD		
Device	PMIC Pin	NVM Function	PDN Signals	Active SoC	Functional Safety	DDR Retention	SD Card	USB Interface		
	nPWRON/ ENABLE	Enable	SOC_PWR_ON	R						
	nINT	INT	H_MCU_INTn		R					
	nRSTOUT	nRSTOUT	H_MCU_PORz_1V8	R						
	SCL_I2C1	SCL_I2C1	H_WKUP_I2C0	R						
	SDA_I2C1	SDA_I2C1	H_WKUP_I2C0	R						
	GPIO_1	SCL_I2C2	H_MCU_I2C0_SCL		R					
	GPIO_2	SDA_I2C2	H_MCU_I2C0_SDA		R					
-	GPIO_3	nERR_SoC	H_SOC_SAFETY_ERRn	R						
TPS659412	GPIO_4	LP_WKUP1	PMIC_WAKE1			R				
13-Q1	GPIO_5	SCLK_SPM I	LEOA_SCLK		F	3				
	GPIO_6	SDATA_SP MI	LEOA_SDATA		R					
	GPIO_7	nERR_MC U	H_MCU_SAFETY_ERRn		R					
	GPIO_8	DISABLE_ WDOG	PMICA_GPIO8	R ⁽³⁾						
	GPIO_9	GPO	Unused ⁽⁴⁾	0						
	GPIO_10	WKUP1	H_PMIC_PWR_EN1	R						
	GPIO_11	nRSTOUT_ SOC	H_SOC_PORz_1V8	R						
LP876411B	nINT	INT	H_MCU_INTn		R					
4-Q1	SCL_I2C1	SCL_I2C1	H_WKUP_I2C0	R						
	SDA_I2C1	SCL_I2C1	H_WKUP_I2C0	R						
	GPIO_1	GPO	EN_VDDR	R		R				
	GPIO_2	GPO	H_DDR_RET_1V1			R				
	GPIO_3	GPI	Unused ⁽⁴⁾	0						
	GPIO_4 ⁽⁵⁾	ENABLE	PMICB_GPIO4	0						
	GPIO_5	GPI	Unused ⁽⁴⁾	0						
	GPIO_6	GPI	Unused ⁽⁴⁾	0						
	GPIO_7	GPI	Unused ⁽⁴⁾	0						
	GPIO_8	SCLK_SPM I	LEOA_SCLK		F	₹				
	GPIO_9	SDATA_SP MI	LEOA_SDATA		F	₹				
	GPIO_10	GPO	EN_3V3IO_LDSW	R		R	R	R		

⁽¹⁾ R is Required. O is optional.

4 Supporting Functional Safety Systems

By using the PDN-1A power solution, the system can leverage the following PMIC functional safety features:

Input Supply Monitoring

⁽²⁾ LP_WKUP1 function is masked in the static settings. Instructions for unmasking the function are provided in Section 7.2.2, Section 7.3 and Section 7.4.

⁽³⁾ If it is desired to disable the watchdog through hardware, GPIO_8 is required and must be set high by the time nRSTOUT goes high. After nRSTOUT is high, the watchdog state is latched and the pin can be configured for other functions through software.

⁽⁴⁾ This GPIO is not required for power sequencing or PMIC functionality and can be configured by software for a different purpose if desired.

⁽⁵⁾ GPIO4 of the LP876411B4-Q1 is not required for the PDN-1A to function correctly.

· Output Voltage and Current Monitoring

- Question and Answer Watchdog
- · Fault Reporting Interrupts
- Enable Drive Pin that provides an independent path to disable system actuators
- Error Pin Monitoring
- · Internal Diagnostics including voltage monitoring, temperature monitoring, and Built-In Self-Test

Refer to the Safety Manual of the TPS6594-Q1 and LP8764-Q1 devices for full descriptions and analysis of the PMIC functional safety features. These functional safety features can assist in achieving up to ASIL-D rating for a system. Additionally, these features help in achieving the functional safety assumptions utilized by the processor to achieve up to ASIL-D rating. See the Safety Manual for Jacinto[™] 7 Processors for a complete list of functional safety system assumptions.

4.1 Achieving ASIL-B System Requirements

To achieve a system functional safety level of ASIL-B, the following PDN features are available:

- PMIC over voltage and under voltage monitoring on the power resource voltage outputs
- · Watchdog monitoring of safety processor
- · MCU error monitoring
- MCU reset
- I²C communication
- Error indicator, EN_DRV, for driving external circuitry (optional)
- · Read-back of EN DRV pin

The PDN has an in-line, external power FET, as shown in Figure 3-1, between the input supply and PMICs. The voltage before and after the FET is monitored by the PMIC, and the PMIC controls the FET through the OVPGDRV pin. The FET can quickly isolate the PMICs when an over-voltage event greater than 6 V is detected on the input supply to protect the system from being damaged. This system protection includes all power rails sourced from the FET. Any power connected upstream from the FET is not protected from over voltage events. In Figure 3-1 the load switch that supplies power to the MCU and Main I/O domains, the discrete buck supplying the DDR, and the discrete LDO supplying EFUSE are all connected after the FET to extend the over voltage protection to these processor domains and discrete power resources.

The PMIC internal over voltage and under voltage monitoring and their respective monitoring threshold levels are enabled by default and can be updated through I²C after startup. PMIC power rails connected directly to the processor are monitored by default. The unused feedback pin of BUCK3 on TPS65941213-Q1, FB_B3, is assigned to monitor the PMIC supply voltage, VCCA_3V3. For monitoring other supplies, the unused feedback pins of the LP876411B4- Q1 (FB_B3 or FB_B4) can be configured through I²C. An example of enabling an unused monitor is provided in Section 7.5.

The internal Q&A Watchdog is enabled on the primary TPS6594-Q1 device. Once the device is in ACTIVE state, the trigger or Q&A watchdog settings can be configured through the secondary I²C in the device. The primary and secondary I²C CRC is not enabled by default but must be enabled with the I2C_2 trigger described in section Table-6-1. Once enabled the secondary I²C is disabled for 2ms. It is recommended to enable I²C CRC and wait a minimum of 2ms before starting the Q&A Watchdog. The steps for configuring and starting the watchdog can be found in the TPS6594-Q1 datasheet. Setting the DISABLE_WDOG signal high on primary TPS6594-Q1 GPIO_8 disables the watchdog timer if this feature needs to be suspended during initial development or is not required in the system. An example of re-purposing GPIO_8 is provided in Section 7.5.

GPIO_7 of the primary TPS6594-Q1 PMIC is configured as the MCU error signal monitor, and must be enabled though the ESM_MCU_EN register bit. MCU reset is supported through the connection between the primary PMIC nRSTOUT pin and the MCU_PORz of the processor. Lastly, there are two I2C ports between the TPS6594-Q1 and the processor. The first is used for all non-watchdog communication, such as voltage level control, and the second allows the watchdog monitoring to be on an independent communication channel.

There is an option to use the EN_DRV of the primary TPS6594-Q1 PMIC to indicate an error has been detected and the system is entering SAFE state. This signal can be utilized if the system has external circuitry that needs to be driven by an error event. In this PDN, the EN_DRV is not utilized, but available if needed.

4.2 Achieving up to ASIL-D System Requirements

For ASIL-C or ASIL-D systems, the following features in addition to the ones described in Section 4.1 can be used:

- PMIC over-voltage monitoring and protection on the input to the PMIC (VCCA)
- · PMIC current monitoring on all output power rails
- · SoC error monitoring
- Switch short-to-ground detection on BUCK regulator pins (SW Bx)
- Residual Voltage Monitoring
- Read-back of Logic Output Pins
 - nINT of both PMICs
 - nRSTOUT and nRSTOUT_SOC of the primary PMIC

The current monitoring is enabled by default for all BUCKs and LDOs for the TPS6594-Q1 and LP8764-Q1 devices.

GPIO_3 of the primary TPS6594-Q1 PMIC is configured as the SoC error signal monitor. Similar to the MCU error signal monitor, this feature is enabled through I²C using the ESM_SOC_EN register bit. The SoC reset functionality is supported through the connection of GPIO_11 on the primary TPS6594-Q1, configured as nRSTOUT_SoC, to the PORz pin of the processor.

Table 4-1. System Level Safety Features

ASIL-B	ASIL-B							
Safety Monitoring Processor	External SW Wdog	INTn	Safety MCU Processing ESM Safety MCU Reset	Safety Status Signal with IO Read-Back feature	System Input Voltage Monitoring	SoC Main Processing ESM	IO Read-Back Feature	
SoC: MCU Island R5 Cores	PMICA: Q&A Watchdog and I2C2	PMICA1 and PMICB2 : nINT	PMICA: nERR_MCU connected to SOC:MCU_SAF ETY_ERRZ PMICA: nRSTOUT connected to MCU_PORz_1 V8	PMICA: ENDRV	PMICA: VSYS_SENSE - OV with Safety FET OVPGDRV PMICA and PMICB with VCCA OV & UV and SoC (VMON1) -UV	PMICA: nERR_SoC connected to SOC: SOC_SAFETY_ ERRZ	PMICA: nINT, nRSTOUT, nRSTOUT_SO C PMICB: nINT	

- 1. PMICA = TPS65941213-Q1
- 2. PMICB = LP876411B4-Q1

Table 4-2. Power Monitoring Safety Features

				ASIL-B	ASIL-D Adds	
Device	Power Resource	PDN Power Rail	Safe State Power Group1	Supply Voltage Monitoring	Supply Current Monitoring	Residual Voltage Monitoring
TPS65941213-Q1 (PMIC-A)	BUCK1-3	VDD_CPU_AVS	SOC	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
	BUCK4	VDD_MCU_0V85	MCU	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
	BUCK5	VDD_PHY_1V8	soc	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
	LDO1	VDD1_LPDDR4_1 V8	soc	PMIC-A - OV & UV	PMIC-A -CM 3	PMIC-A -RVM3
	LDO2	VDD_IO_1V8	MCU	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
	LDO3	VDA_DLL_0V8	soc	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
	LDO4	VDA_LN_1V8	MCU	PMIC-A - OV & UV	PMIC-A -CM	PMIC-A -RVM
LP876411B4-Q1 (PMIC-B)	BUCK1-4	VDD_CORE_0V8	soc	PMIC-B - OV & UV	PMIC-B -CM	PMIC-B -RVM
TPS22965W-Q1	Ld Sw B	VDD_IO_3V3	None	PMIC-A or PMIC-B (FB_B3) - OV & UV6	NA4 5	
TPS62813-Q1	Buck A	VDD_DDR_1V1	None	SoC2	NA2 6	
TLV73333-Q11	LDO -C	VDA_USB_3V3	None	NA3	NA3	
TLV7103318-Q1	LDO-B	VDD_SD_DV_RE G	None	NA3	NA3	
TLV73318P-Q1	LDO-A	VDD_EFUSE_1V8	None	NA3	NA3	

Static NVM Settings www.ti.com

- 1. Rail Group settings for the TPS65941213-Q1 and LP876411B4-Q1 are found in Table 5-7.
- Power rail VDD_DDR_1V1 is safety critical but do not required direct voltage or current monitoring since
 other means are available (for example, SoC internal timeout gaskets and ECC checkers) provide diagnostic
 coverage to detect faults in the DDR voltage.
- 3. Power rails VDDSHV5, VPP_CORE, VPP_MCU, VDDA_3P3_USB, and VDD1_LPDDR4_1V8 are *not safety critical*.
- 4. Power rails VDD_IO_1V8/3V3 are typically *not safety critical* since other means are available (for example, *black-channel checkers*) to provide diagnostic coverage to detect faults in SoC signaling interfaces (for example, CAN, UART, and SPI).
- 5. If an SoC GPIO control signal is used in a *safety critical* interface, then adding voltage and current monitoring to specific VIO power rail may be needed per customer's end product design.
- 6. PMIC-B, Buck3 and 4 have unused remote sense feedback inputs that can be assigned to provide OV and UV voltage monitoring after SoC SW boot for 2x external power rails per desired functional safety needs. Optional OV/UV monitoring of VDD DDR 1V1 and VDD IO 3V3 power rails are examples.

5 Static NVM Settings

The TPS6594-Q1 devices consist of user register space and an NVM. The settings in NVM, which are loaded into the user registers during the transition from INIT to BOOT BIST, are provided in this section. Note: The user registers can be changed during state transitions, such as moving from STANDBY to ACTIVE mode. The user register map is described in the TPS6594-Q1 datasheet.

5.1 Application-Based Configuration Settings

In the TPS6594-Q1 datasheet, there are seven application-based configurations for each BUCK to operate within. The following list includes the different configurations available:

- 4.4 MHz VOUT Less than 1.9 V, Multiphase or High COUT Single Phase
- · 2.2 MHz Single Phase for DDR Termination
- 4.4 MHz VOUT Less than 1.9 V, Low COUT, Single Phase Only
- 4.4 MHz VOUT Greater than 1.7 V, Single Phase Only
- 2.2 MHz Full VOUT Range and VIN Greater than 4.5 V, Single Phase Only
- 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase
- 2.2 MHz Full VOUT and Full VIN Range, Single Phase Only

In the LP8764-Q1 datasheet, there are also seven application-based configurations:

- 4.4MHz Single-Phase and Multi-Phase Configuration
- 2.2MHz Single-Phase Configuration for DDR Termination
- 4.4MHz Single-Phase Configuration Low Output Voltage
- 4.4MHz Single-Phase Configuration High Output Voltage
- 2.2MHz Single-Phase Configuration with 5.0V VIN
- 2.2MHz Single-Phase and Multi-Phase Configuration
- 2.2MHz Single-Phase Generic Configuration

The seven configurations also have optimal output inductance values that optimize the performance of each buck under these various conditions. Table 5-1 shows the default configurations for the BUCKs. The loop parameters associated with the use cases cannot be changed after device startup.

Table 5-1. Application Use Case Settings

BUCK Rail	Default Application Use Case	Recommended Inductor Value
BUCK1	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH
BUCK2	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH
BUCK3	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH
BUCK4	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH
BUCK5	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH
	BUCK1 BUCK2 BUCK3 BUCK4	BUCK1 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase BUCK2 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase BUCK3 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase BUCK4 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase

www.ti.com Static NVM Settings

Table 5-1. Application Use Case Settings (continued)

Device	BUCK Rail	Default Application Use Case	Recommended Inductor Value
	BUCK1	2.2MHz Single-Phase and Multi-Phase Configuration	470 nH
LP876411B4-Q1	BUCK2	2.2MHz Single-Phase and Multi-Phase Configuration	470 nH
LF670411B4-Q1	BUCK3	2.2MHz Single-Phase and Multi-Phase Configuration	470 nH
	BUCK4	2.2MHz Single-Phase and Multi-Phase Configuration	470 nH

Static NVM Settings Www.ti.com

5.2 Device Identification Settings

These settings are used to distinguish which device is detected in a system. These settings cannot be changed after device startup.

Table 5-2. Device Identification NVM Settings

Register Name	Field Name	TPS6594	1213-Q1	LP876411	LP876411B4-Q1		
		Value	Description	Value	Description		
DEV_REV	DEVICE_ID	0x82		0x86			
NVM_CODE_1	TI_NVM_ID	0x13		0xb4			
NVM_CODE_2	TI_NVM_REV	0x4		0x0			
PHASE_CONFIG	MP_CONFIG	0x3	3+1+1	0x0	4		

5.3 BUCK Settings

These settings detail the voltages, configurations, and monitoring of the BUCK rails stored in the NVM. All these settings can be changed though I²C after startup. Some settings, typically the enable bits, are also changed by the PFSM, as described in Section 6.3.

After the Section 6.3.5 sequence has completed, the BUCKx_EN bit is set for BUCK1, BUCK4, and BUCK5 in the TPS65941213. BUCKx_EN is set for the BUCK1 in the LP876411B4. The BUCKx_VMON_EN bit is set for BUCK1, BUCK3, BUCK4 and BUCK5 in the TPS65941213. The BUCKx_VMON_EN bit is set for BUCK1 in the LP876411B4. The BUCKx_RV_SEL bit is cleared for all BUCKs. The other bits remain unchanged, but are still accessible via I²C.

Table 5-3. BUCK NVM Settings

Dawieten News	Field Name	TPS6594	1213-Q1	LP87641	1B4-Q1
Register Name	Field Name	Value	Description	Value	Description
BUCK1_CTRL	BUCK1_EN	0x0	Disabled; BUCK1 regulator	0x0	Disabled; BUCK1 regulator
	BUCK1_FPWM	0x0	PFM and PWM operation (AUTO mode).	0x0	PFM and PWM operation (AUTO mode).
	BUCK1_FPWM_MP	0x0	Automatic phase adding and shedding.	0x0	Automatic phase adding and shedding.
	BUCK1_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	0x0	Disabled; OV, UV, SC and ILIM comparators.
	BUCK1_VSEL	0x0	BUCK1_VOUT_1	0x0	BUCK1_VOUT_1
	BUCK1_PLDN	0x1	Enabled; Pull-down resistor	0x1	Enabled; Pull-down resistor
	BUCK1_RV_SEL	0x1	Enabled	0x1	Enabled
BUCK1_CONF	BUCK1_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs
	BUCK1_ILIM	0x5	5.5 A	0x5	5.5 A
BUCK2_CTRL	BUCK2_EN	0x0	Disabled; BUCK2 regulator	0x0	Disabled; BUCK2 regulator
	BUCK2_FPWM	0x0	PFM and PWM operation (AUTO mode).	0x0	PFM and PWM operation (AUTO mode).
	BUCK2_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	0x0	Disabled; OV, UV, SC and ILIM comparators.
	BUCK2_VSEL	0x0	BUCK2_VOUT_1	0x0	BUCK2_VOUT_1
	BUCK2_PLDN	0x1	Enabled; Pull-down resistor	0x1	Enabled; Pull-down resistor
	BUCK2_RV_SEL	0x1	Enabled	0x1	Enabled
BUCK2_CONF	BUCK2_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs
	BUCK2_ILIM	0x5	5.5 A	0x5	5.5 A

www.ti.com Static NVM Settings

Table 5-3. BUCK NVM Settings (continued)

	Table	TPS659412	NVW Settings (continu	LP876411B4-Q1		
Register Name	Field Name	Value	Description	Value	Description	
BUCK3_CTRL	BUCK3 EN	0x0	Disabled; BUCK3 regulator	0x0	Disabled; BUCK3 regulator	
BOOKS_CTKL	BUCK3_FPWM	0x0	PFM and PWM operation	0x0	PFM and PWM operation	
	BOCKS_FFVVIVI	0.00	(AUTO mode).	UXU	(AUTO mode).	
	BUCK3_FPWM_MP	0x0	Automatic phase adding and shedding.	0x0	Automatic phase adding and shedding.	
	BUCK3_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	0x0	Disabled; OV, UV, SC and ILIM comparators.	
	BUCK3_VSEL	0x0	BUCK3_VOUT_1	0x0	BUCK3_VOUT_1	
	BUCK3_PLDN	0x1	Enabled; Pull-down resistor	0x1	Enabled; Pull-down resistor	
	BUCK3_RV_SEL	0x0	Disabled	0x0	Disabled	
BUCK3_CONF	BUCK3_SLEW_RATE	0x5	1.3 mV/µs	0x2	10 mV/μs	
	BUCK3_ILIM	0x5	5.5 A	0x4	4.5 A	
BUCK4_CTRL	BUCK4_EN	0x0	Disabled; BUCK4 regulator	0x0	Disabled; BUCK4 regulator	
	BUCK4_FPWM	0x0	PFM and PWM operation (AUTO mode).	0x0	PFM and PWM operation (AUTO mode).	
	BUCK4_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	0x0	Disabled; OV, UV, SC and ILIM comparators.	
	BUCK4_VSEL	0x0	BUCK4_VOUT_1	0x0	BUCK4_VOUT_1	
	BUCK4_PLDN	0x1	Enabled; Pull-down resistor	0x1	Enabled; Pull-down resistor	
	BUCK4_RV_SEL	0x1	Enabled	0x0	Disabled	
BUCK4_CONF	BUCK4_SLEW_RATE	0x3	5.0 mV/µs	0x2	10 mV/μs	
	BUCK4_ILIM	0x5	5.5 A	0x4	4.5 A	
BUCK5_CTRL	BUCK5_EN	0x0	Disabled; BUCK5 regulator			
	BUCK5_FPWM	0x0	PFM and PWM operation (AUTO mode).			
	BUCK5_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.			
	BUCK5_VSEL	0x0	BUCK5_VOUT_1			
	BUCK5_PLDN	0x1	Enable Pull-down resistor			
	BUCK5_RV_SEL	0x1	Enabled			
BUCK5_CONF	BUCK5_SLEW_RATE	0x3	5.0 mV/µs			
	BUCK5_ILIM	0x3	3.5 A			
BUCK1_VOUT_1	BUCK1_VSET1	0x37	0.800 V	0x37	0.800 V	
BUCK1_VOUT_2	BUCK1_VSET2	0x37	0.800 V	0x37	0.800 V	
BUCK2_VOUT_1	BUCK2_VSET1	0x37	0.800 V	0x37	0.800 V	
BUCK2_VOUT_2	BUCK2_VSET2	0x37	0.800 V	0x37	0.800 V	
BUCK3_VOUT_1	BUCK3_VSET1	0xfd	3.30 V	0x0	0.3 V	
BUCK3_VOUT_2	BUCK3_VSET2	0xfd	3.30 V	0x0	0.3 V	
BUCK4 VOUT 1	BUCK4_VSET1	0x41	0.850 V	0x0	0.3 V	
BUCK4_VOUT_2	BUCK4_VSET2	0x41	0.850 V	0x0	0.3 V	
BUCK5_VOUT_1	BUCK5_VSET1	0xb2	1.80 V			
BUCK5_VOUT_2	BUCK5_VSET2	0xb2	1.80 V			
BUCK1_PG_WINDOW	BUCK1_OV_THR	0x3	+5% / +50 mV	0x3	+5% / +50 mV	
	BUCK1_UV_THR	0x3	-5% / -50 mV	0x3	-5% / -50 mV	
BUCK2_PG_WINDOW	BUCK2_OV_THR	0x3	+5% / +50 mV	0x3	+5% / +50 mV	
	BUCK2_UV_THR	0x3	-5% / -50 mV	0x3	-5% / -50 mV	
BUCK3_PG_WINDOW	BUCK3_OV_THR	0x7	+10% / +100mV	0x0	+3% / +30mV	
	BUCK3_UV_THR	0x7	-10% / -100mV	0x0	-3% / -30mV	

Static NVM Settings Www.ti.com

Table 5-3. BUCK NVM Settings (continued)

Register Name	Field Name	TPS65941213-Q1		LP876411B4-Q1	
	Field Name	Value	Description	Value	Description
BUCK4_PG_WINDOW	BUCK4_OV_THR	0x3	+5% / +50 mV	0x0	+3% / +30mV
	BUCK4_UV_THR	0x3	-5% / -50 mV	0x0	-3% / -30mV
BUCK5_PG_WINDOW	BUCK5_OV_THR	0x3	+5% / +50 mV		
	BUCK5_UV_THR	0x3	-5% / -50 mV		

www.ti.com Static NVM Settings

5.4 LDO Settings

These settings detail the voltages, configurations, and monitoring of the LDO rails stored in the NVM. All these settings can be changed though I^2C after startup. Some settings, typically the enable bits, are also changed by the PFSM, as described in Section 6.3.

After the Section 6.3.5 sequence has completed, the LDOx_EN and LDOx_VMON_EN bits are set and the LDOx_RV_SEL bit is cleared for all LDOs. The other bits remain unchanged, but are still accessible via I²C.

Note

The LP876411B4-Q1 does not have LDOs.

Table 5-4. LDO NVM Settings

		TPS659	Table 5-4. LDO NVM Settings		LP876411B4-Q1			
Register Name	Field Name	Value	Description	Value	Description			
LDO1 CTPI	LDO1 EN	0x0	Disabled; LDO1 regulator.	Value	Description			
LDO1_CTRL LDO1_EN LDO1_SLOW_RA MP		0x0	25mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET					
	LDO1_PLDN	0x1	125 Ohm					
	LDO1_VMON_EN	0x0	Disable OV and UV comparators.					
	LDO1_RV_SEL	0x1	Enabled					
LDO2_CTRL	LDO2_EN	0x0	Disabled; LDO2 regulator.					
	LDO2_SLOW_RA MP	0x0	25mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET					
	LDO2_PLDN	0x1	125 Ohm					
	LDO2_VMON_EN	0x0	Disabled; OV and UV comparators.					
	LDO2_RV_SEL	0x1	Enabled					
LDO3_CTRL	LDO3_EN	0x0	Disabled; LDO3 regulator.					
	LDO3_SLOW_RA	0x0	25mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET					
	LDO3_PLDN	0x1	125 Ohm					
	LDO3_VMON_EN	0x0	Disabled; OV and UV comparators.					
	LDO3_RV_SEL	0x1	Enabled					
LDO4_CTRL	LDO4_EN	0x0	Disabled; LDO4 regulator.					
	LDO4_SLOW_RA MP	0x0	25mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET					
	LDO4_PLDN	0x1	125 Ohm					
	LDO4_VMON_EN	0x0	Disabled; OV and UV comparators.					
	LDO4_RV_SEL	0x1	Enabled					
LDO1_VOUT	LDO1_VSET	0x1c	1.80 V					
	LDO1_BYPASS	0x0	Linear regulator mode.					
LDO2_VOUT	LDO2_VSET	0x1c	1.80 V					
	LDO2_BYPASS 0x0 Linear regulator mode.							
LDO3_VOUT	LDO3_VSET	0x8	0.80 V					
	LDO3_BYPASS	0x0	Linear regulator mode.					
LDO4_VOUT	LDO4_VSET	0x38	1.800 V					
LDO1_PG_WIND	LDO1_OV_THR	0x3	+5% / +50 mV					
OW	LDO1_UV_THR	0x3	-5% / -50 mV					
LDO2_PG_WIND	LDO2_OV_THR	0x3	+5% / +50 mV					
OW	LDO2_UV_THR	0x3	-5% / -50 mV					

Static NVM Settings Www.ti.com

Table 5-4. LDO NVM Settings (continued)

idalo o il 220 il ili octili go (continuoti)									
Desister Nome	er Name Field Name	TPS65941213-Q1			1B4-Q1				
Register Name		Value	Description						
	LDO3_OV_THR	0x3	+5% / +50 mV						
OW	LDO3_UV_THR	0x3	-5% / -50 mV						
	LDO4_OV_THR	0x3	+5% / +50 mV						
OW	LDO4_UV_THR	0x3	-5% / -50 mV						

5.5 VCCA Settings

These settings detail the default monitoring enabled on VCCA. The settings found in registers VCCA VMON CTRL and VCCA PG WINDOW can be changed though I²C after startup.

Table 5-5. VCCA NVM Settings

Tuble 0 0. VOOA IVIII Octaings								
Desister Name	Field Name	TPS65941	I213-Q1	LP876411B4-Q1				
Register Name	rieid Name	Value	Description	Value	Description			
VCCA_VMON_CTRL	VMON_DEGLITCH_SE L	0x1	20 us	0x1	VCCA 20us, VMON/BUCK 20us			
	VCCA_VMON_EN	0x1	Enabled; OV and UV comparators.	0x1	Enabled; OV and UV comparators.			
VCCA_PG_WINDOW	VCCA_OV_THR	0x7	+10%	0x7	+10%			
	VCCA_UV_THR	0x7	-10%	0x7	-10%			
	VCCA_PG_SET	0x0	3.3 V	0x0	3.3 V			
GENERAL_REG_1	FAST_VCCA_OVP	0x0	slow, 4us deglitch filter enabled	0x0	slow, 4us deglitch filter enabled			
GENERAL_REG_3	LPM_EN_DISABLES_V CCA_VMON	0x1	VCCA_VMON enabled if VCCA_VMON_EN=1 and LPM_EN=0	0x1	VCCA_VMON enabled if VCCA_VMON_EN=1 and LPM_EN=0			

5.6 GPIO Settings

These settings detail the default configurations of the GPIO rails. All of these settings can be changed though I²C after startup. Note that the contents of the GPIOx_SEL field determine which other fields in the GPIOx_CONF and GPIO_OUT_x registers are applicable. To understand which NVM fields apply to each GPIOx_SEL option, see the *Digital Signal Descriptions* section in TPS6594-Q1 data sheet.

Table 5-6, GPIO NVM Settings

Pagistar Nama	Field Name	TPS6594	1213-Q1	LP87641	1B4-Q1
Register Name	rieid Name	Value	Description	Value	Description
GPIO1_CONF	GPIO1_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO1_DIR	0x0	Input	0x1	Output
	GPIO1_SEL	0x1	SCL_I2C2/CS_SPI	0x0	GPIO1
	GPIO1_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO1_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.	0x0	Disabled; Pull-up/pull-down resistor.
	GPIO1_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.
GPIO2_CONF	GPIO2_OD	0x0	Push-pull output	0x1	Open-drain output
	GPIO2_DIR	0x0	Input	0x1	Output
	GPIO2_SEL	0x2	SDA_I2C2/SDO_SPI	0x0	GPIO2
	GPIO2_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO2_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.	0x0	Disabled; Pull-up/pull-down resistor.
	GPIO2_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.

www.ti.com Static NVM Settings

Table 5-6. GPIO NVM Settings (continued)

		TPS6594	O NVM Settings (continu	LP87641	1B4-Q1
Register Name	Field Name	Value	Description	Value	Description
GPIO3 CONF	GPIO3 OD	0x0	Push-pull output	0x0	Push-pull output
_	GPIO3_DIR	0x0	Input	0x0	Input
	GPIO3 SEL	0x2	NERR SOC	0x0	GPIO3
	GPIO3_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO3 PU PD EN	0x1	Enabled; Pull-up/pull-down	0x1	Enabled; Pull-up/pull-down
			resistor.		resistor.
	GPIO3_DEGLITCH_EN	0x1	8 us deglitch time.	0x1	8 us deglitch time.
GPIO4_CONF	GPIO4_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO4_DIR	0x0	Input	0x0	Input
	GPIO4_SEL	0x6	LP_WKUP1	0x0	GPIO4
	GPIO4_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO4_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x1	Enabled; Pull-up/pull-down resistor.
	GPIO4_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x1	8 us deglitch time.
GPIO5_CONF	GPIO5_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO5_DIR	0x1	Output	0x0	Input
	GPIO5_SEL	0x1	SCLK_SPMI	0x0	GPIO5
	GPIO5_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO5_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x1	Enabled; Pull-up/pull-down resistor.
	GPIO5_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x1	8 us deglitch time.
GPIO6_CONF	GPIO6_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO6_DIR	0x0	Input	0x0	Input
	GPIO6_SEL	0x1	SDATA_SPMI	0x0	GPIO6
	GPIO6_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO6_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x1	Enabled; Pull-up/pull-down resistor.
	GPIO6_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x1	8 us deglitch time.
GPIO7_CONF	GPIO7_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO7_DIR	0x0	Input	0x0	Input
	GPIO7_SEL	0x1	NERR_MCU	0x0	GPIO7
	GPIO7_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO7_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x1	Enabled; Pull-up/pull-down resistor.
	GPIO7_DEGLITCH_EN	0x1	8 us deglitch time.	0x1	8 us deglitch time.
GPIO8_CONF	GPIO8_OD	0x0	Push-pull output	0x0	Push-pull output
	GPIO8_DIR	0x0	Input	0x0	Input
	GPIO8_SEL	0x3	DISABLE_WDOG	0x1	SCLK_SPMI
	GPIO8_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected
	GPIO8_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x0	Disabled; Pull-up/pull-down resistor.
	GPIO8_DEGLITCH_EN	0x1	8 us deglitch time.	0x0	No deglitch, only synchronization.

Static NVM Settings Www.ti.com

Table 5-6. GPIO NVM Settings (continued)

Dl. t N	Field News	TPS6594	1213-Q1	LP87641	LP876411B4-Q1		
Register Name	Field Name	Value	Description	Value	Description		
GPIO9_CONF	GPIO9_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO9_DIR	0x1	Output	0x0	Input		
	GPIO9_SEL	0x0	GPIO9	0x1	SDATA_SPMI		
	GPIO9_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected		
	GPIO9_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.	0x0	Disabled; Pull-up/pull-down resistor.		
	GPIO9_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.		
GPIO10_CONF	GPIO10_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO10_DIR	0x0	Input	0x1	Output		
	GPIO10_SEL	0x6	WKUP1	0x0	GPIO10		
	GPIO10_PU_SEL	0x0	Pull-down resistor selected	0x0	Pull-down resistor selected		
	GPIO10_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	0x0	Disabled; Pull-up/pull-down resistor.		
	GPIO10_DEGLITCH_E N	0x1	8 us deglitch time.	0x0	No deglitch, only synchronization.		
GPIO11_CONF	GPIO11_OD	0x1	Open-drain output				
	GPIO11_DIR	0x1	Output				
	GPIO11_SEL	0x2	NRSTOUT_SOC				
	GPIO11_PU_SEL	0x0	Pull-down resistor selected				
	GPIO11_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.				
	GPIO11_DEGLITCH_E N	0x0	No deglitch, only synchronization.				
NPWRON_CONF	NPWRON_SEL	0x0	ENABLE				
	ENABLE_PU_SEL	0x0	Pull-down resistor selected				
	ENABLE_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.				
	ENABLE_DEGLITCH_E N	0x1	8 us deglitch time when ENABLE, 50 ms deglitch time when NPWRON.				
	ENABLE_POL	0x0	Active high	0x0	Active high		
	NRSTOUT_OD	0x1	Open-drain output				
GPIO_OUT_1	GPIO1_OUT	0x0	Low	0x0	Low		
	GPIO2_OUT	0x0	Low	0x0	Low		
	GPIO3_OUT	0x0	Low	0x0	Low		
	GPIO4_OUT	0x0	Low	0x0	Low		
	GPIO5_OUT	0x0	Low	0x0	Low		
	GPIO6_OUT	0x0	Low	0x0	Low		
	GPIO7_OUT	0x0	Low	0x0	Low		
	GPIO8_OUT	0x0	Low	0x0	Low		
GPIO_OUT_2	GPIO9_OUT	0x0	Low	0x0	Low		
	GPIO10_OUT	0x0	Low	0x0	Low		
	GPIO11_OUT	0x0	Low				

5.7 Finite State Machine (FSM) Settings

These settings describe how the PMIC output rails are assigned to various system-level states. Also, the default trigger for each system-level state is described. All these settings can be changed though I²C after startup.

www.ti.com Static NVM Settings

Table 5-7. FSM NVM Settings

Register Name	Field Name	TPS65941	213-Q1	LP87641	1B4-Q1
	Field Name	Value	Description	Value	Description
RAIL_SEL_1	BUCK1_GRP_SEL	0x2	SOC rail group	0x2	SOC rail group
	BUCK2_GRP_SEL	0x2	SOC rail group	0x2	SOC rail group
	BUCK3_GRP_SEL	0x1	MCU rail group	0x0	No group assigned
	BUCK4_GRP_SEL	0x1	MCU rail group	0x0	No group assigned
RAIL_SEL_2	BUCK5_GRP_SEL	0x2	SOC rail group		
	LDO1_GRP_SEL	0x1	MCU rail group		
	LDO2_GRP_SEL	0x1	MCU rail group		
	LDO3_GRP_SEL	0x2	SOC rail group		
RAIL_SEL_3	LDO4_GRP_SEL	0x1	MCU rail group		
	VCCA_GRP_SEL	0x1	MCU rail group	0x1	MCU rail group
FSM_TRIG_SEL_1	MCU_RAIL_TRIG	0x2	MCU power error	0x2	MCU power error
	SOC_RAIL_TRIG	0x3	SOC power error	0x3	SOC power error
	OTHER_RAIL_TRIG	0x1	Orderly shutdown	0x1	Orderly shutdown
	SEVERE_ERR_TRIG	0x0	Immediate shutdown	0x0	Immediate shutdown
FSM_TRIG_SEL_2	MODERATE_ERR_TRI	0x1	Orderly shutdown	0x1	Orderly shutdown

Note

The SOC_RAIL_TRIG for both devices need to be changed to MCU power error (10b) immediately after power up when the FB_B3 of the TPS65941213-Q1 is connected to VCCA_3V3 as described in Figure 3-1.

5.8 Interrupt Settings

These settings detail the default configurations for what is monitored by nINT pin. All these settings can be changed though I²C after startup.

Table 5-8. Interrupt NVM Settings

		10.000.1	interrupt it viii octaings		
Degister Name	Field Name	TPS65941213-Q1		LP87641	1B4-Q1
Register Name	rieid Name	Value	Description	Value	Description
FSM_TRIG_MASK_1	GPIO1_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO1_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO2_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO2_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO3_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO3_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO4_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO4_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'

Static NVM Settings www.ti.com

Table 5-8. Interrupt NVM Settings (continued)

		TPS65941	pt NVM Settings (conti	LP87641	1B4-Q1
Register Name	Field Name	Value	Description	Value	Description
FSM_TRIG_MASK_2	GPIO5 FSM MASK	0x1	Masked	0x1	Masked
_ ^	GPIO5_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO6_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO6_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO7_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO7_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO8_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO8_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
FSM_TRIG_MASK_3	GPIO9_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO9_FSM_MASK_P OL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO10_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO10_FSM_MASK_ POL	0x0	Low; Masking sets signal value to '0'	0x0	Low; Masking sets signal value to '0'
	GPIO11_FSM_MASK	0x1	Masked		
	GPIO11_FSM_MASK_ POL	0x0	Low; Masking sets signal value to '0'		
MASK_BUCK1_2	BUCK1_ILIM_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK1_OV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK1_UV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK2_ILIM_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK2_OV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK2_UV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
MASK_BUCK3_4	BUCK3_ILIM_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK3_OV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK3_UV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK4_OV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK4_UV_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BUCK4_ILIM_MASK	0x0	Interrupt generated	0x0	Interrupt generated
MASK_BUCK5	BUCK5_ILIM_MASK	0x0	Interrupt generated		
	BUCK5_OV_MASK	0x0	Interrupt generated		
	BUCK5_UV_MASK	0x0	Interrupt generated		
MASK_LDO1_2	LDO1_OV_MASK	0x0	Interrupt generated		
	LDO1_UV_MASK	0x0	Interrupt generated		
	LDO2_OV_MASK	0x0	Interrupt generated		
	LDO2_UV_MASK	0x0	Interrupt generated		
	LDO1_ILIM_MASK	0x0	Interrupt generated		
	LDO2_ILIM_MASK	0x0	Interrupt generated		
MASK_LDO3_4	LDO3_OV_MASK	0x0	Interrupt generated		
	LDO3_UV_MASK	0x0	Interrupt generated		
	LDO4_OV_MASK	0x0	Interrupt generated		
	LDO4_UV_MASK	0x0	Interrupt generated		
	LDO3_ILIM_MASK LDO4_ILIM_MASK	0x0 0x0	Interrupt generated Interrupt generated		

www.ti.com Static NVM Settings

Table 5-8. Interrupt NVM Settings (continued)

	Tuble 6	TPS6594	upt NVM Settings (cont 1213-Q1	LP87641	1B4-Q1
Register Name	Field Name	Value	Description	Value	Description
MASK_VMON	VCCA_OV_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	VCCA UV MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
MASK_GPIO1_8_FALL	GPIO1_FALL_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO2_FALL_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO3 FALL MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO4 FALL MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO5_FALL_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO6 FALL MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO7 FALL MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO8 FALL MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
MASK_GPIO1_8_RISE	GPIO1 RISE MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO2_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO3_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO4_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO5_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO6_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO7_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO8_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
MASK_GPIO9_11 /	GPIO9_FALL_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
MASK_GPIO9_10	GPIO9_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO10_FALL_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO11_FALL_MASK	0x1	Interrupt not generated.		
	GPIO10_RISE_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	GPIO11_RISE_MASK	0x1	Interrupt not generated.		
MASK_STARTUP	NPWRON_START_MA SK	0x1	Interrupt not generated.		
	ENABLE_MASK	0x0	Interrupt generated	0x1	Interrupt not generated.
	FSD_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	SOFT_REBOOT_MAS K	0x0	Interrupt generated	0x0	Interrupt generated
MASK_MISC	TWARN_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	BIST_PASS_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	EXT_CLK_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
MASK_MODERATE_E	BIST_FAIL_MASK	0x0	Interrupt generated	0x0	Interrupt generated
RR	REG_CRC_ERR_MAS K	0x0	Interrupt generated	0x0	Interrupt generated
	SPMI_ERR_MASK	0x0	Interrupt generated	0x0	Interrupt generated
	NPWRON_LONG_MAS	0x1	Interrupt not generated.		
	NINT_READBACK_MA SK	0x0	Interrupt generated	0x0	Interrupt generated
	NRSTOUT_READBAC K_MASK	0x0	Interrupt generated	0x1	Interrupt not generated.

Static NVM Settings www.ti.com

Table 5-8. Interrupt NVM Settings (continued)

Decister Name	Field Name	TPS6594	1213-Q1	LP87641	1B4-Q1
Register Name	Field Name	Value Description		Value	Description
MASK_FSM_ERR	IMM_SHUTDOWN_MA SK	0x0	Interrupt generated	0x0	Interrupt generated
	MCU_PWR_ERR_MAS	0x0	Interrupt generated	0x0	Interrupt generated
	SOC_PWR_ERR_MAS K	0x0	Interrupt generated	0x0	Interrupt generated
	ORD_SHUTDOWN_MA	0x0	Interrupt generated	0x0	Interrupt generated
MASK_COMM_ERR	COMM_FRM_ERR_MA SK	0x0	Interrupt generated	0x0	Interrupt generated
	COMM_CRC_ERR_MA	0x0	Interrupt generated	0x0	Interrupt generated
	COMM_ADR_ERR_MA SK	0x0	Interrupt generated	0x0	Interrupt generated
	I2C2_CRC_ERR_MAS K	0x0	Interrupt generated	0x1	Interrupt not generated.
	I2C2_ADR_ERR_MAS K	0x0	Interrupt generated	0x1	Interrupt not generated.
MASK_READBACK_E RR	EN_DRV_READBACK_ MASK	0x0	Interrupt generated	0x1	Interrupt not generated.
	NRSTOUT_SOC_ READBACK_MASK	0x0	Interrupt generated	0x1	Interrupt not generated.
MASK_ESM	ESM_SOC_PIN_MASK	0x1	Interrupt not generated.		
	ESM_SOC_RST_MAS	0x1	Interrupt not generated.		
	ESM_SOC_FAIL_MAS	0x1	Interrupt not generated.		
	ESM_MCU_PIN_MASK	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	ESM_MCU_RST_MAS	0x1	Interrupt not generated.	0x1	Interrupt not generated.
	ESM_MCU_FAIL_MAS	0x1	Interrupt not generated.	0x1	Interrupt not generated.
GENERAL_REG_1	PFSM_ERR_MASK	0x0	Interrupt generated	0x0	Interrupt generated

^{1.} The VCCA_OV_MASK and VCCA_UV_MASK are cleared in both PMICs after the completing BOOT_BIST but before starting the sequence, Section 6.3.5.

5.9 POWERGOOD Settings

These settings detail the default configurations for what is monitored by PGOOD pin. All these settings can be changed though I^2C after startup.

Table 5-9. POWERGOOD NVM Settings

Deviate a Name	Field Name	TPS65941213-Q1		LP876411B4-Q1	
Register Name	rieid Name	Value	ue Description Value		Description
PGOOD_SEL_1	PGOOD_SEL_BUCK1	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK2	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK3	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK4	0x0	Masked	0x0	Masked
PGOOD_SEL_2	PGOOD_SEL_BUCK5	0x0	Masked		

www.ti.com Static NVM Settings

Table 5-9. POWERGOOD NVM Settings (continued)

Dominton Name	Field Name	TPS659412	13-Q1	LP876411	B4-Q1
Register Name	Field Name	Value Description		Value	Description
PGOOD_SEL_3	PGOOD_SEL_LDO1	0x0	Masked		
	PGOOD_SEL_LDO2	0x0	Masked		
	PGOOD_SEL_LDO3	0x0	Masked		
	PGOOD_SEL_LDO4	0x0	Masked		
PGOOD_SEL_4	PGOOD_SEL_VCCA	0x0	Masked	0x0	Masked
	PGOOD_SEL_TDIE_W ARN	0x0	Masked	0x0	Masked
	PGOOD_SEL_NRSTO UT	0x0	Masked	0x0	Masked
	PGOOD_SEL_NRSTO UT_ SOC	0x0	Masked	0x0	Masked
	PGOOD_POL	0x0	PGOOD signal is high when monitored inputs are valid	0x0	PGOOD signal is high when monitored inputs are valid
	PGOOD_WINDOW	0x0	Only undervoltage is monitored	0x0	Only undervoltage is monitored

5.10 Miscellaneous Settings

These settings detail the default configurations of additional settings, such as spread spectrum, BUCK frequency, and LDO timeout. All these settings, except for those in registers GENERAL_REG_0 and GENERAL_REG_1, can be changed though I²C after startup.

Table 5-10. Miscellaneous NVM Settings

Desister Name	Field Name		11213-Q1	LP876411B4-Q1	
Register Name	rieid Name	Value	Description	Value	Description
PLL_CTRL	EXT_CLK_FREQ	0x0	1.1 MHz	0x0	1.1 MHz
CONFIG_1	TWARN_LEVEL		130C	0x0	130C
	TSD_ORD_LEVEL	0x0	140C	0x0	140C
	I2C1_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode controller code.	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode controller code.
	I2C2_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode controller code.	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode controller code.
	EN_ILIM_FSM_CTRL	0x0	Buck/LDO regulators ILIM interrupts do not affect FSM triggers.	0x0	Buck regulators ILIM interrupts do not affect FSM triggers.
	NSLEEP1_MASK	0x0	NSLEEP1(B) affects FSM state transitions.	0x1	NSLEEP1(B) does not affect FSM state transitions.
	NSLEEP2_MASK	0x0	NSLEEP2(B) affects FSM state transitions.	0x1	NSLEEP2(B) does not affect FSM state transitions.
CONFIG_2	BB_CHARGER_EN	0x0	Disabled		
	BB_VEOC	0x0	2.5V		
	BB_ICHR	0x0	100uA		
RECOV_CNT_REG_2	RECOV_CNT_THR	0xf	0xf	0xf	0xf
BUCK_RESET_REG	BUCK1_RESET	0x0	0x0	0x0	0x0
	BUCK2_RESET	0x0	0x0	0x0	0x0
	BUCK3_RESET	0x0	0x0	0x0	0x0
	BUCK4_RESET	0x0	0x0	0x0	0x0
	BUCK5_RESET	0x0	0x0		

Static NVM Settings www.ti.com

Table 5-10. Miscellaneous NVM Settings (continued)

		TPS6594	1213-Q1		P876411B4-Q1	
Register Name	Field Name	Value	Description	Value	Description	
SPREAD_SPECTRUM	SS_EN	0x0	Spread spectrum disabled	0x0	Spread spectrum disabled	
_1	SS_MODE	0x1	Mixed dwell	0x1	Mixed dwell	
	SS_DEPTH	0x0	No modulation	0x0	No modulation	
SPREAD_SPECTRUM	SS_PARAM1	0x7	0x7	0x7	0x7	
_2	SS_PARAM2	0xc	0xc	0xc	0xc	
FREQ_SEL	BUCK1_FREQ_SEL	0x0	2.2 MHz	0x0	2.2 MHz	
	BUCK2_FREQ_SEL	0x0	2.2 MHz	0x0	2.2 MHz	
	BUCK3_FREQ_SEL	0x0	2.2 MHz	0x0	2.2 MHz	
	BUCK4_FREQ_SEL	0x0	2.2 MHz	0x0	2.2 MHz	
	BUCK5_FREQ_SEL	0x0	2.2 MHz			
FSM_STEP_SIZE	PFSM_DELAY_STEP	0xb	0xb	0xb	0xb	
LDO_RV_TIMEOUT_	LDO1_RV_TIMEOUT	0xf	16ms			
REG_1	LDO2_RV_TIMEOUT	0xf	16ms			
LDO_RV_TIMEOUT_	LDO3_RV_TIMEOUT	0xf	16ms			
REG_2	LDO4_RV_TIMEOUT	0xf	16ms			
USER_SPARE_REGS	USER_SPARE_1	0x0	0x0	0x0	0x0	
	USER_SPARE_2	0x0	0x0	0x0	0x0	
	USER_SPARE_3	0x0	0x0	0x0	0x0	
	USER_SPARE_4	0x0	0x0	0x0	0x0	
ESM_MCU_MODE_ CFG	ESM_MCU_EN	0x0	ESM_MCU disabled.	0x0	ESM_MCU disabled.	
ESM_SOC_MODE_ CFG	ESM_SOC_EN	0x0	ESM_SoC disabled.			
CUSTOMER_NVM_ID_ REG	CUSTOMER_NVM_ID	0x0	0x0	0x0	0x0	
RTC_CTRL_2	XTAL_EN	0x0	Crystal oscillator is disabled			
	LP_STANDBY_SEL	0x0	LDOINT is enabled in standby state.	0x0	Normal standby state is used.	
	FAST_BIST	0x0	Logic and analog BIST is run at BOOT BIST.	0x0	Logic and analog BIST is run at BOOT BIST.	
	STARTUP_DEST	0x3	ACTIVE	0x3	ACTIVE	
	XTAL_SEL	0x0	6 pF			
PFSM_DELAY_REG_1	PFSM_DELAY1	0x58	0x58	0x0	0x0	
PFSM_DELAY_REG_2	PFSM_DELAY2	0x9d	0x9d	0x1d	0x1d	
PFSM_DELAY_REG_3	PFSM_DELAY3	0x0	0x0	0x0	0x0	
PFSM_DELAY_REG_4	PFSM_DELAY4	0x0	0x0	0x0	0x0	
GENERAL_REG_0	FAST_BOOT_BIST	0x0	LBIST is run during boot BIST	0x0	LBIST is run during boot BIST	
GENERAL_REG_1	REG_CRC_EN	0x1	Register CRC enabled	0x1	Register CRC enabled	

5.11 Interface Settings

These settings detail the default interface, interface configurations, and device addresses. These settings cannot be changed after device startup.

www.ti.com Static NVM Settings

Table 5-11. Interface NVM Settings

Register Name	Field Name	TPS6594	TPS65941213-Q1		LP876411B4-Q1	
Register Name	rieiu Naille	Value	Description	Value	Description	
SERIAL_IF_CONFIG	I2C_SPI_SEL	0x0	I2C	0x0	12C	
	I2C1_SPI_CRC_EN	0x0	CRC disabled	0x0	CRC disabled	
	I2C2_CRC_EN	0x0	CRC disabled	0x0	CRC disabled	
I2C1_ID_REG	I2C1_ID	0x48	0x48	0x4c	0x4C	
I2C2_ID_REG	I2C2_ID	0x12	0x12	0x13	0x13	

Static NVM Settings Www.ti.com

5.12 Multi-Device Settings

These settings detail whether the device is a operating as a primary or secondary in the system. These settings cannot be changed after device startup.

Table 5-12. Multi-Device NVM Settings

Desister Name	Field Name	TPS6594	1213-Q1	LP87641	LP876411B4-Q1		
Register Name	Field Name	Value	Description	Value	Description		
SPMI_CONFIG_1	SPMI_CRC_EN	0x1	SPMI CRC check enabled	0x1	SPMI CRC check enabled		
	BIT 1	0x1	Controller mode	0x0	Secondary mode		
	SPMI_CLK_SEL	0x2	5MHz	0x2	5MHz		
SPMI_CONFIG_2	SPMI_IF_SEL	0x0	Debug feature and uses controller logic to implement logical secondary.	0x0	Debug feature and uses controller logic to implement logical secondary.		
	SPMI_RETRY_LIMIT	0x3	Three retries in case of error detected	0x3	Three retries in case of error detected		
	SPMI_WD_AUTO_BOO	0x1	SPMI auto boot enabled	0x1	SPMI auto boot enabled		
	SPMI_EN	0x1	SPMI enabled	0x1	SPMI enabled		
	SPMI_WD_EN	0x1	SPMI WD enabled	0x1	SPMI WD enabled		
SPMI_CONFIG_3	SPMI_WD_BOOT_ INTERVAL	0x8	0x8	0x8	0x8		
	SPMI_WD_RUNTIME_ INTERVAL	0x8	0x8	0x8	0x8		
SPMI_CONFIG_4	SPMI_WD_RESPONSE _ TIMEOUT	0x8	0x8	0x8	0x8		
	SPMI_PFSM_RESPON SE_ TIMEOUT	0x8	0x8	0x8	0x8		
SPMI_CONFIG_5	SPMI_WD_RUNTIME_ BIST_TIMEOUT	0x8	0x8	0x8	0x8		
	SPMI_WD_BOOT_BIS T_ TIMEOUT	0x8	0x8	0x8	0x8		
SPMI_CONFIG_6	BOOT_DELAY	0x0	0x0	0x0	0x0		
SPMI_ID	SPMI_SID	0x5	0x5	0x3	0x3		
	SPMI_MID	0x0	0x0	0x0	0x0		

5.13 Watchdog Settings

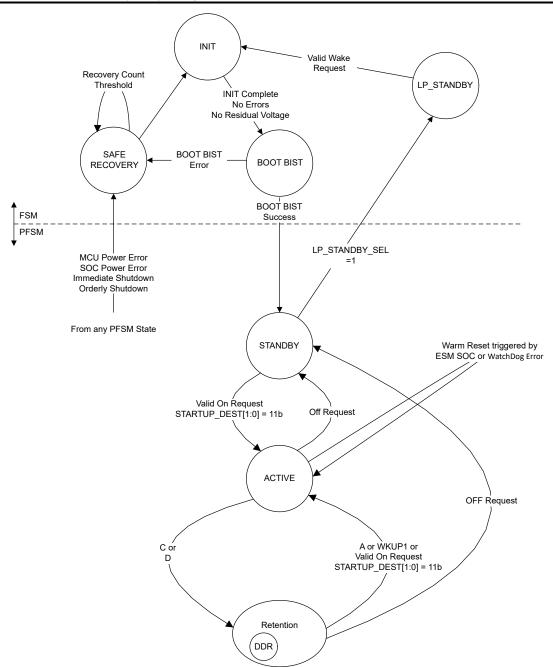
These settings detail the default watchdog addresses. These settings can be changed though I²C after startup.

Table 5-13. Watchdog NVM Settings

Register Name Field N	Field Name	TPS659412	13-Q1	LP876411B4-Q1	
Register Name	rame Field Name		Description	Value	Description
WD_LONGWIN_CFG	WD_LONGWIN	0xff	0xff	0x0	0x0
WD_THR_CFG	WD_EN	0x1	Watchdog enabled.	0x0	Watchdog disabled.

6 Pre-Configurable Finite State Machine (PFSM) Settings

This section describes the default PFSM settings of the TPS6594-Q1 devices. These settings cannot be changed after device startup.


6.1 Configured States

In this PDN, the PMIC devices have the following four configured power states:

- Standby
- Active
- DDR Retention

In Figure 6-1, the configured PDN power states are shown, along with the transition conditions to move between the states. Additionally, the transitions to hardware states, such as SAFE RECOVERY and LP_STANDBY are shown. The hardware states are part of the fixed device power Finite State Machine (FSM) and described in the TPS6594-Q1 data sheet, see Section 8.

Trigger	NSLEEP2	NSLEEP1
Α	1	1
В	1	0
С	0	1
D	0	0

Figure 6-1. Pre-Configurable Finite State Machine (PFSM) Mission States and Transitions

When the PMICs transition from the FSM to the PFSM, several initialization instructions are performed to disable the residual voltage checks on both the BUCK and LDO regulators. Additionally, the FIRST_STARTUP_DONE

bit is set and VCCA OV and UV masks are cleared (which are set in the static configurations, Table 5-8). After these instructions are executed the PMICs wait for a valid ON Request before entering the ACTIVE state. The definition for each power state is described below:

STANDBY The PMICs are powered by a valid supply on the system power rail (VCCA > VCCA_UV). All device resources are powered down in the STANDBY state. EN_DRV is forced low in this state. The processor is in the Off state, no voltage domains are energized. Refer to the Section 6.3.2 sequence description.

The STANDBY state is also entered when an error occurs and the PMIC transitions out of the PFSM mission states and into the FSM states. When the device returns from the FSM state the to PFSM the first state is represented by STANDBY with all of the resources powered down and EN_DRV forced low. The sequence Section 6.3.1 is performed before the PMIC leaves the PFSM and enters the FSM state SAFE RECOVERY.

ACTIVE The PMICs are powered by a valid supply. The PMICs are fully functional and supply power to all PDN loads. The processor has completed a recommended power up sequence with all voltage domains energized in both MCU and Main processor sections. Refer to the Section 6.3.5 sequence description.

Retention The PMICs are powered by a valid supply. When the PMICs I2C_7 triggers are set (DDR Retention), 3 SoC voltage domains (vdds_ddr_bias, vdds_ddr, and vdds_ddr_c) remain energized, in addition to the LPDDR4, while all other domains are off to minimize total system power. EN_DRV is forced low in this state. Refer to the Section 6.3.6 sequence description.

6.2 PFSM Triggers

As shown in Figure 6-1, there are various triggers that can enable a state transition between configured states. Table 6-1 describes each trigger and its associated state transition from highest priority (Immediate Shutdown) to lowest priority (I2C_3). Active triggers of higher priority block triggers of lower priority and the associated sequence.

Table 6-1. State Transition Triggers

Trigger	Priority (ID)	Immediate (IMM)	REENTERANT	PFSM Current State	PFSM Destination State	Power Sequence or Function Executed
Immediate Shutdown ⁽⁷⁾	0	True	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	SAFE ⁽¹⁾	TO_SAFE_SEVERE
MCU Power Error	1	True	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	SAFE ⁽¹⁾	TO_SAFE
Orderly Shutdown ⁽⁷⁾	2	True	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	SAFE ⁽¹⁾	TO_SAFE_ORDERLY
OFF Request	4 ⁽⁹⁾	False	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	STANDBY ⁽²⁾	TO_STANDBY
WDOG Error	5	False	True	ACTIVE	ACTIVE	ACTIVE TO MARM
ESM MCU Error	6	False	True	ACTIVE	ACTIVE	ACTIVE_TO_WARM
ESM SOC Error	7	False	True	ACTIVE	ACTIVE	ESM_SOC_ERROR
I2C_1 bit is high ⁽³⁾	11	False	True	ACTIVE, MCU ONLY	No State Change	Execute RUNTIME BIST
I2C_2 bit is high ⁽³⁾	12	False	True	ACTIVE, MCU ONLY	No State Change	Enable I ² C CRC on I ² C1 and I ² C2 on all devices. ⁽⁴⁾

Table 6-1. State Transition Triggers (continued)

Trigger	Priority (ID)	Immediate (IMM)	REENTERANT	PFSM Current State	PFSM Destination State	Power Sequence or Function Executed
ON Request	15	False	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	ACTIVE	
WKUP1 goes high	16	False	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	ACTIVE	TO_ACTIVE
NSLEEP1 and NSLEEP2 are high ⁽⁵⁾	17	False	False	STANDBY, ACTIVE, MCU ONLY, Suspend- to-RAM	ACTIVE	
NSLEEP1 goes low and NSLEEP2 goes low ⁽⁵⁾	21	False	False	ACTIVE, MCU ONLY	Suspend-to- RAM	TO RETENTION
NSLEEP1 goes high and NSLEEP2 goes low ⁽⁵⁾	22	False	False	ACTIVE, MCU ONLY	Suspend-to- RAM	TO_RETENTION
I2C_0 bit goes high ⁽³⁾	23 ⁽⁸⁾	False	False	STANDBY, ACTIVE, MCU ONLY	LP_STANDBY ⁽²⁾	TO_STANDBY
I2C_3 bit goes high ⁽³⁾	24 ⁽⁸⁾	False	False	ACTIVE, MCU ONLY	No State Change	Devices are prepared for OTA NVM update.

- (1) From the SAFE state, the PFSM automatically transitions to the hardware FSM state of SAFE_RECOVERY. From the SAFE_RECOVERY state, the recovery counter is incremented and compared to the recovery count threshold (see RECOV_CNT_REG_2, in Table 5-10). If the recovery count threshold is reached, then the PMICs halt recovery attempts and require a power cycle. Refer to the datasheet for more details.
- (2) If the LP_STANDBY_SEL bit is set in the TPS65941213-Q1 (see RTC_CTRL_2, in Table 5-10), then the PFSM transitions to the hardware FSM state of LP_STANDBY. When LP_STANDBY is entered, then please use the appropriate mechanism to wakeup the device as determined by the means of entering LP_STANDBY. Refer to the datasheet for more details. LP_STANDBY_SEL in the LP876411B4-Q1 is not applicable to the PFSM triggers.
- (3) I2C 0, I2C 1, I2C 2 and I2C 3 are self-clearing triggers.
- (4) Enabling the I²C CRC, enables the CRC on both I2C1 and I2C2, however, the I2C2 is disabled for 2ms after the CRC is enabled. Be aware when using the watchdog Q&A before enabling I²C CRC. The recommendation is to enable the I²C CRC first, and then after 2ms, start the watchdog Q&A.
- (5) NSLEEP1 and NSLEEP2 of the primary PMIC can be accessed through the GPIO pin or through a register bit. If either the register bit or the GPIO pin is pulled high, the NSLEEPx value is read as a *high* logic level.
- (6) After completion of an OTA update, the processor is required to initiate a reset of the PMICs to apply the new NVM settings.
- (7) These triggers can originate from either the TPS65941213 or the LP876411B4.
- (8) Trigger IDs 23 and 24 are not available until the NSLEEP bits are masked: NSLEEP2 MASK=NSLEEP1 MASK=1.
- (9) Trigger IDs 3, 25, and 26 (not shown) are enabled and activated by the power sequences. These triggers are used to manage the transition between the PFSM and the FSM.

6.3 Power Sequences

6.3.1 TO_SAFE_SEVERE and TO_SAFE

The TO_SAFE_SEVERE and TO_SAFE are distinct sequences that occur before transitioning to the SAFE state. Both sequences shut down all rails without delay. The TO_SAFE_SEVERE sequence immediately ceases BUCK switching and enables the pulldown resistors of the BUCKs and LDOs. This is to prevent any damage of the PMICs in case of over voltage on VCCA or thermal shutdown. The timing is illustrated in Figure 6-2. The TO_SAFE sequence does not reset the BUCK regulators until after the regulators are turned off.

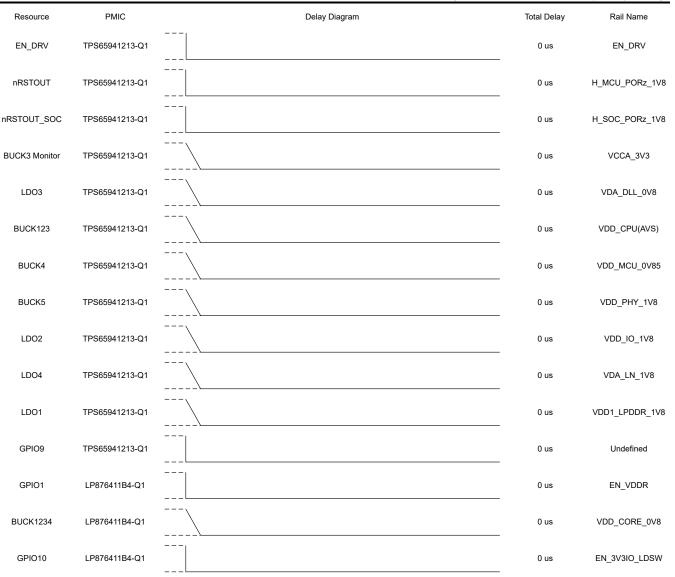


Figure 6-2. TO_SAFE_SEVERE and TO_SAFE Power Sequences

```
Note
TO_SAFE_SEVERE and TO_SAFE Power Sequences
```

After the power sequence shown in Figure 6-2, the TO_SAFE sequence delays the TPS65941213 by 16 ms and the LP876411B4 by 3 ms. The delay ensures that the primary PMIC finishes after the secondary. After these delays, the following instructions are executed on both PMICs:

```
//TPS65941213 and LP876411B4

// Clear AMUXOUT_EN, CLKMON_EN, set LPM_EN

REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xE3

// Reset all BUCK regulators

REG_WRITE_MASK_IMM ADDR=0x87 DATA=0x1F MASK=0xE0
```

The TO_SAFE_SEVERE sequence executes the following instruction after the power sequence:

```
// TPS65941213
// Clear AMUXOUT_EN, CLKMON_EN, set LPM_EN
REG_WRITE MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xE3
// LP876411B4
```



```
// Clear CLKMON_EN, set LPM_EN
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xF3
```

The TPS65941213 has an additional delay of 500 ms at the end of the TO_SAFE_SEVERE sequence. It is important to note that the recovery is not attempted until after the sequence delay is complete.

6.3.2 TO_SAFE_ORDERLY and TO_STANDBY

If a moderate error occurs, an orderly shutdown trigger is generated. This trigger shuts down the PMIC outputs using the recommended power down sequence and proceed to the SAFE state.

If an OFF request occurs, such as the ENABLE pin of the primary TPS6594-Q1 device being pulled low, the same power down sequence occurs, except that the PMICs go to STANDBY (LP_STANDBY_SEL=0) or LP_STANDBY (LP_STANDBY_SEL=1) states, rather than going to the SAFE state. The power sequence for both of these events is shown in .

Both the TO_SAFE_ORDERLY and TO_STANDBY sequences set the SPMI_LP_EN and FORCE EN DRV LOW in the TPS65941213 while only the SPMI_LP_EN is set in the LP876411B4.

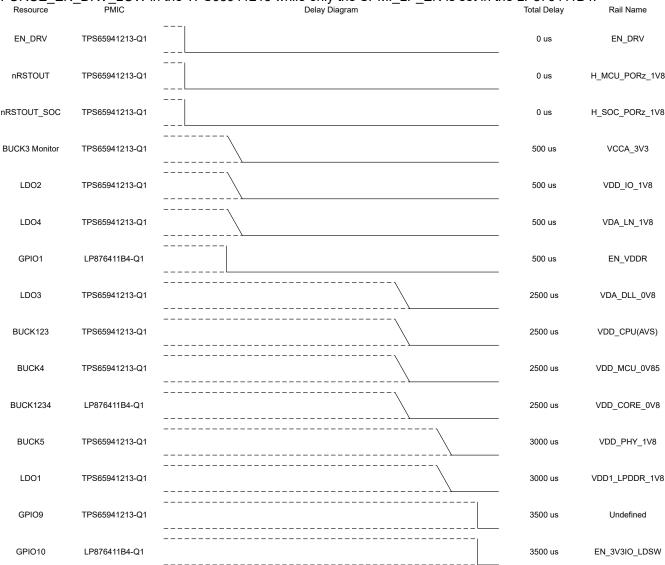


Figure 6-3. TO_SAFE_ORDERLY and TO_STANDBY Power Sequence

At the end of the TO_SAFE_ORDERLY both PMICs wait approximately 16 ms before executing the following instructions:

```
//TPS65941213
// Clear AMUXOUT_EN and CLKMON_EN and set LPM_EN
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xE3
// Reset all BUCKs
REG_WRITE_MASK_IMM ADDR=0x87 DATA=0x1F MASK=0xE0
//LP876411B4
// Clear AMUXOUT_EN and CLKMON_EN and set LPM_EN
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xE3
// Reset all BUCKs
REG_WRITE_MASK_IMM ADDR=0x87 DATA=0x0F MASK=0xF0
```

The resetting of the BUCK regulators is done in preparation to transitioning to the SAFE_RECOVERY state. SAFE_RECOVERY means that the PMIC leaves the mission state. The SAFE_RECOVERY state is where the recovery mechanism increments the recovery counter and determines if the recovery count threshold (see Table 5-10) is reached before attempting to recover.

At the end of the TO_STANDBY sequence, the 16 ms delay is found in the TPS65941213 device only and the same AMUXOUT_EN, CLKMON_EN, and LPM_EN bit manipulations are made in both PMICs. The BUCKs are not reset. After these instructions, the TPS65941213 performs an additional check to determine if the LP_STANDBY_SEL (see Table 5-10) is true. If true then the PMICs enter the LP_STANDBY state and leave the mission state. If the LP_STANDBY_SEL is false, then the PMICs remain in the mission state defined by STANDBY in Configured States.

6.3.3 ACTIVE_TO_WARM

The ACTIVE_TO_WARM sequence can be triggered by either a watchdog or ESM_MCU error. In the event of a trigger, the nRSTOUT and nRSTOUT_SOC signals are driven low and the recovery count (register RECOV_CNT_REG_1) increments. Then, all BUCKs and LDOs are reset to their default voltages. The PMICs remain in the ACTIVE state.

Note

GPIOs do not reset during the sequence as shown in

At the beginning of the sequence the following instructions are executed:

```
//TPS65941213
// Set FORCE_EN_DRV_LOW
REG_WRITE_MASK_IMM ADDR=0x82 DATA=0x08 MASK=0xF7
// Clear_nRSTOUT_and nRSTOUT_SOC
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x00 MASK=0xFC
// Increment the recovery counter
REG_WRITE_MASK_IMM ADDR=0xa5 DATA=0x01 MASK=0xFE
```

Note

The watchdog or ESM error is an indication of a significant error that has taken place outside of the PMIC. The PMIC does not actually transition through the safe recovery as with an MCU_POWER_ERR, however, in order to maintain consistency all of the regulators are returned to the values stored in NVM and the recovery counter is incremented. If the recovery counter exceeds the recovery count threshold the PMICs stay in the safe recovery state.

Note

After the ACTIVE_TO_WARM sequence the processor is responsible for managing the EN_DRV and recovery counter. At the end of the sequence the 'FORCE_EN_DRV_LOW' bit is cleared so that the MCU can set the ENABLE_DRV bit.

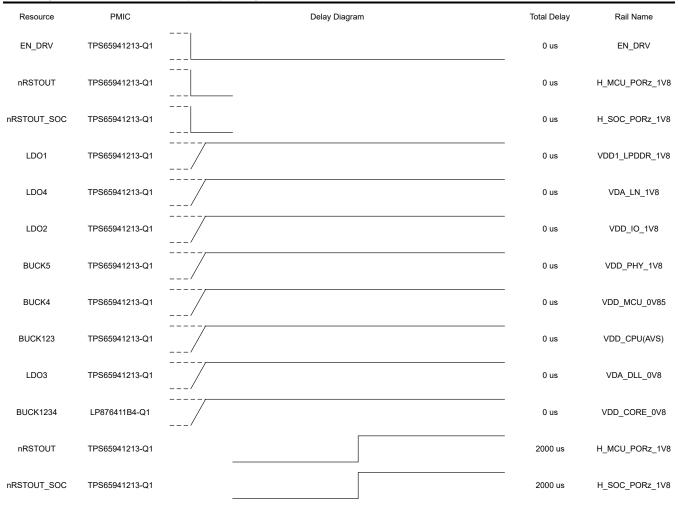


Figure 6-4. ACTIVE_TO_WARM Power Sequence

Note

The regulator transitions do not represent enabling of the regulators but the time at which the voltages are restored to their default values. Since this sequence originates from the ACTIVE state all of the regulators are on.

6.3.4 ESM_SOC_ERROR

In the event of an ESM_SOC error, the nRSTOUT_SOC signal is driven low and then driven high again after 200 µs. There is no change to the power rails. The sequence is shown in Figure 6-5.

Figure 6-5. ESM_SOC_ERROR Sequence

6.3.5 TO ACTIVE

When a trigger causes the TO_ACTIVE sequence to execute, all rails power up in the recommended power up sequence as shown in .

At the beginning of the TO_ACTIVE sequence both PMICs clear SPMI_LP_EN and LPM_EN and set AMUXOUT_EN and CLKMON_EN.

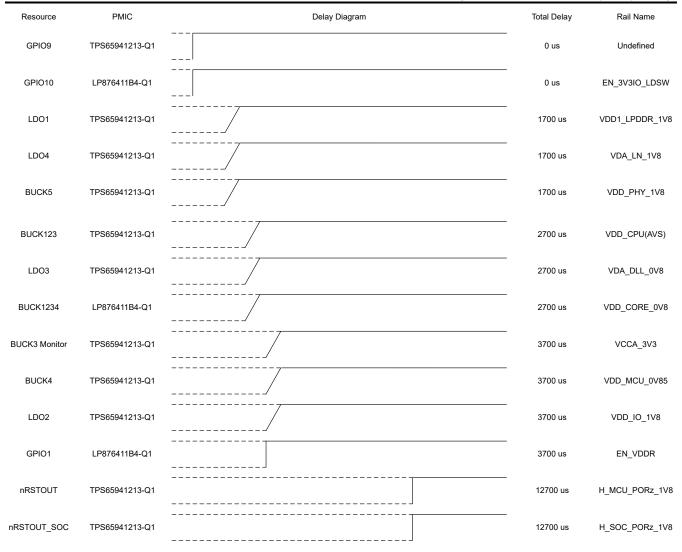


Figure 6-6. TO_ACTIVE Sequence

At the end of the TO_ACTIVE sequence the 'FORCE_EN_DRV_LOW' bit is cleared.

Note

After the TO_ACTIVE sequence the MCU is responsible for managing the EN_DRV.

6.3.6 TO_RETENTION

The C and D triggers, defined by the NSLEEPx bits or pins, trigger the TO_RETENTION sequence. This sequence disables all power rails and GPIOs that are not supplying the retention rails, as described in Figure 3-1. The sequence can be modified using the I2C_7 bit found in register FSM_I2C_TRIGGERS. These bits need to be set by I²C in both PMICs before a trigger for the retention state occurs. If the I2C_7 bit is set high in both PMICs, they enter the DDR retention state as shown in Figure 6-8. LDO1 (VDD1) is not disabled and the GPIO1 of the LP876511B4 (EN_VDDR) is also unchanged. If I2C_7 is set low, these components associated with DDR do not remain active, as shown in Figure 6-7.

Note

The I2C_7 bits need to be set or cleared by I²C in both PMICs before a trigger to the retention state occurs. The I2C_7 trigger is not self-clearing and must be maintained during operation.

In addition to the I2C_7, the processor must also configure the H_DDR_RET_1V1 signal on GPIO2 of the LP876411B4 device. This signal is included in the Section 3.2 but is not part of the power sequence.

The following PMIC PFSM instructions are executed automatically in the beginning of the power sequence to configure the PMICs:

```
// TPS65941213
// Set LPM EN, Clear NRSTOUT_SOC and NRSTOUT
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xF8
// Set SPMI_LP_EN and FORCE_EN_DRV_LOW
REG_WRITE_MASK_IMM ADDR=0x82 DATA=0x18 MASK=0xE7
// LP87641184
// Set SPMI_LP_EN
REG_WRITE_MASK_IMM ADDR=0x82 DATA=0x10 MASK=0xEF
```

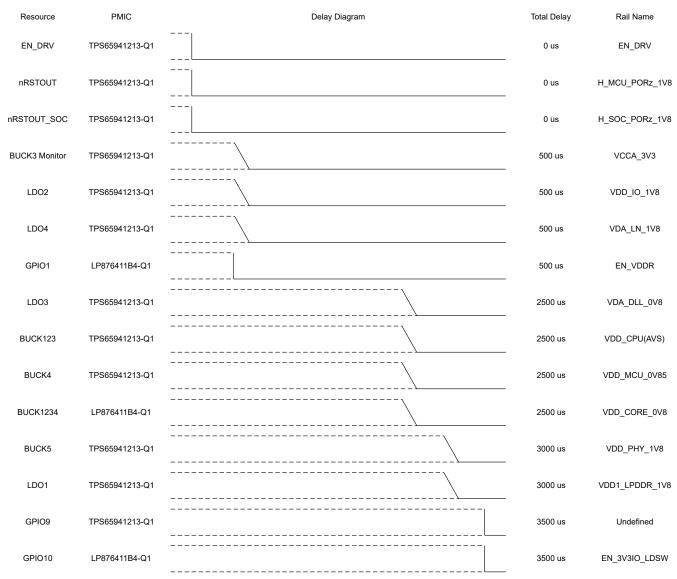


Figure 6-7. TO_RETENTION when I2C_7 is low in both PMICs

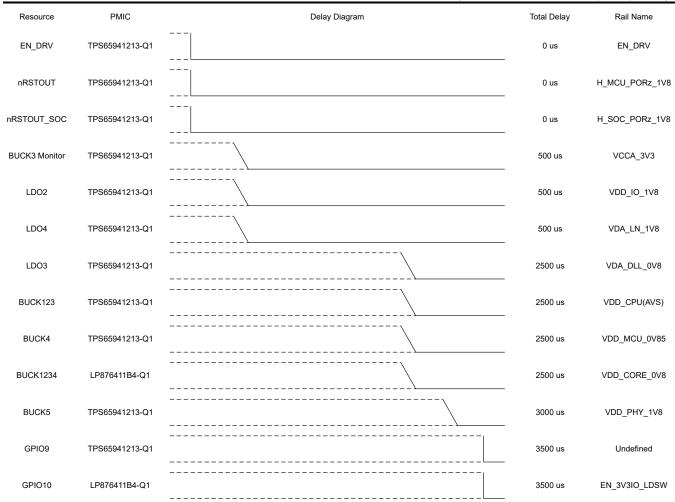


Figure 6-8. TO_RETENTION when I2C_7 is high in both PMICs

At the end of the sequence, both PMICs set the LPM_EN and clear the CLKMON_EN and AMUXOUT_EN. The TPS65941213 device also performs an additional 16 ms delay based upon the contents of the register (PFSM_DELAY_REG_2) to ensure that the TPS65941213 sequence finishes last.

Application Examples www.ti.com

7 Application Examples

This section provides examples of how to interact with the PMICs from the perspective of the MCU and over I²C. Table 7-1 shows how the I²C commands are presented in the following sections. These examples, when used in conjunction with the datasheet, can be generalized and applied to other use cases.

Table 7-1. I²C Instruction Format

	I ² C Address	Register Address	Data	Mask
Write	0x48 or 0x4C	0x00 - 0xFF	0x00 - 0xFF	0x00 - 0xFF
Read	0x48 or 0x4C	0x00 - 0xFF	NA	NA

Note

When the MASK is non-zero, this assumes a read has taken place and then a logical operation applied to only change the desired bit fields before writing the data back.

7.1 Initialization

After initial power up the first two actions are to remap the SOC power triggers to the MCU power error and service (clear) the interrupts.

The default mapping of the SOC Rail trigger in both PMICs is the SOC Power error. In this PDN, the SOC Power error and the associated SOC power error sequence put the PMICs and the processor in a non-functional state. To avoid any SOC power error from causing a transition to this non-functional state, the mapping must be changed to the MCU Power error. The following instructions change the mapping:

```
Write 0x48:0x44:0x08:0xF3 // SOC_RAIL_TRIG = MCU Power Error (10b)
Write 0x4C:0x44:0x08:0xF3 // SOC_RAIL_TRIG = MCU Power Error (10b)
```

Upon a successful power up, the BIST_PASS_INT and ENABLE_INT interrupts are set. Any other interrupts indicate an issue but the automated recovery attempt was successful. The recommended procedure is to:

- 1. Interrogate the interrupts
- 2. Determine the course of action
- 3. Set the NSLEEP bits
- 4. Clear the interrupts

The following example assumes that there are no interrupts other than the BIST_PASS_INT and ENABLE_INT after power up and the enable pin goes high.

7.2 Moving Between States; ACTIVE and RETENTION

The default configuration of the NVM transitions the PMICs to the ACTIVE state when the ENABLE pin on the TPS65941213 goes high (rising edge triggered). The nINT pin goes high to indicate to the MCU that interrupts have occurred in the PMICs. After a normal power up sequence the interrupts are the ENABLE_INT and BIST_PASS_INT. The ENABLE_INT prohibits the PMICs from processing any lower priority triggers below the 'ON Request' in Table 6-1. The blocking of the lower priority triggers is why the PMICs are in the ACTIVE state even though the NSLEEP1 and NSLEEP2 bits are both cleared. Once the ENABLE_INT is cleared the state is defined by Table 7-2. The following sections describe the I²C commands for transitioning between the different states.

Table 7-2. State Table

NSLEEP1	NSLEEP2	I2C_7	I2C_6	State
1	1	NA	NA	ACTIVE

www.ti.com Application Examples

Table 7-2. State Table (continued)

NSLEEP1	NSLEEP2	I2C_7	I2C_6	State
Do not Care	0	1	NA	DDR Retention
	0	0	NA	Retention

7.2.1 ACTIVE

In this example the, PMIC is already in the ACTIVE state after a normal power up event. The PMIC is kept in the ACTIVE state by setting the NSLEEP1 and NSLEEP2 bits before clearing the ENABLE_INT.

```
Write 0x48:0x86:0x03:0xFC // Set NSLEEP1 and NSLEEP2 in TPS65951213
Write 0x48:0x66:0x01:0xFE // Clear BIST_PASS_INT
Write 0x48:0x65:0x26:0xD9 // Clear all potential sources of the On Request
```

7.2.2 RETENTION

As shown in Section 6.3.6, the MCU is powered off and therefore the transition out of the RETENTION to the MCU ONLY or the ACTIVE states must be configured before entering RETENTION. Similar to the MCU ONLY state the I2C_7 triggers must be set for both PMICs. Additionally, the LP876411B4 GPIO2 (H_DDR_RET_1V1), must be set before entering RETENTION. In this example GPIO4 on the TPS65941213 is used to wake the device from RETENTION to ACTIVE.

```
Write 0x48:0x85:0x80:0x7F // I2C_7 is high
Write 0x4C:0x85:0x80:0x7F
Write 0x48:0x34:0xCO;0x3F // Set GPIO4 to WKUP1 (goes to ACTIVE state)
Write 0x48:0x64:0x08:0xF7 // clear interrupt of gpio4, write to clear
Write 0x48:0x4F:0x00:0xF7 // unmask interrupt for GPIO4 falling edge
Write 0x4C:0x3D:0x02:0xFD // set PMICB:GPIO2, H_DDR_RET_1V1
Write 0x48:0x86:0x00:0xFC // trigger the TO_RETENTION power sequence
After the GPIO4 has gone low and the PMICS have returned to the ACTIVE state
Write 0x48:0x86:0x03:0xFC // Set NSLEEPx bits for ACTIVE state
Write 0x48:0x64:0x08:0xF7 // clear interrupt of gpio4
Write 0x4C:0x3D:0x00:0xFD // clear PMICB:GPIO2, DDR_RET
```

In this example the TPS65941213 RTC Timer is used to wake the device from RETENTION to ACTIVE.

```
Write 0x48:0x85:0x80:0x7F // I2C_7 is high
Write 0x4C:0x85:0x80:0x7F
Write 0x48:0xC3:0x01;0xFE // Enable Crystal
Write 0x48:0xC5:0x05:0xF8 // minute timer, enable TIMER interrupts
Write 0x48:0xC2:0x01:0xFE // start timer, if the timer values are non-zero clear before starting
Write 0x48:0xC2:0x31:0xFE // set PMICB:GFI02, H_DDR_RET_1V1
Write 0x48:0x86:0x00:0xFC // trigger the TO_RETENTION power sequence
After the RTC Timer interrupt has occurred and the PMICs have returned to the ACTIVE state
Write 0x48:0x86:0x03:0xFC // Set NSLEEPx bits for ACTIVE state
Write 0x48:0xC5:0x00:0xFB // disable timer interrupt, clear bit 2
Write 0x48:0xC4:0x00:0xDF // clear timer interrupt, clear bit 5
Write 0x4C:0x3D:0x00:0xFD // clear PMICB:GFI02, DDR_RET
```

7.3 Entering and Exiting Standby

STANDBY can be entered from the ACTIVE or the RETENTION states. In order to stay in the mission state of STANDBY and not enter the hardware state LP_STANDBY the LP_STANDBY_SEL bit must be cleared.

Similar to the RETENTION state, the STANDBY state turns off all regulators that power the processor. The ACTIVE state is the only destination state available that the STANDBY state returns to.

When the ENABLE pin goes low, the TO_STANDBY sequence is triggered. When the ENABLE pin goes high again, the PMICs return to the ACTIVE state, defined in the STARTUP_DEST bits. The TO_STANDBY sequence is also triggered by the I2C 0 trigger. When triggered from I2C 0 the PMIC can be triggered to return

Application Examples www.ti.com
to the ACTIVE states by GPIO4, GPIO10, or and RTC timer or alarm. In this example, I2C 0 trigger is used to

enter the STANDBY state and the GPIO4 is used to enter the ACTIVE state.

```
Write 0x48:0xC3:0x00:0xF7 // LP_STANDBY SEL=0
Write 0x48:0x70:0xC0:0x3F // Mask NSLEEP bits
Write 0x48:0x34:0xC0;0x3F // Set GPIO4 to WKUP1 (goes to ACTIVE state)
Write 0x48:0x64:0x08:0xF7 // clear interrupt of GPIO4
Write 0x48:0x4F:0x00:0xF7 // unmask interrupt for GPIO4 falling edge
Write 0x48:0x85:0x01:0xFE // set I2C_0 trigger, trigger TO_STANDBY sequence
After the GPIO4 has gone low and the PMICs have returned to the ACTIVE state
Write 0x48:0x7D:0x00:0x3F // unmask NSLEEP bits
Write 0x48:0x86:0x03:0xFC // Set NSLEEPx bits for ACTIVE state
Write 0x48:0x64:0x08:0xF7 // clear interrupt of GPIO4
```

7.4 Entering and Existing LP_STANDBY

Entering the LP_STANDBY hardware state is the same as entering STANDBY. Exiting LP_STANDBY is different and requires different initializations before entering LP_STANDBY. Also, when the PMICs return from LP_STANDBY the PFSM triggers are gated by the ENABLE_INT while in STANDBY the triggers were gated by the GPIO interrupt.

```
Write 0x48:0xC3:0x08:0xF7 // LP_STANDBY_SEL=1
Write 0x48:0x7D:0xC0:0x3F // Mask NSLEEP bits
Write 0x48:0x34:0xC0;0x3F // Set GPI04 to WKUP1 (goes to ACTIVE state)
Write 0x48:0xC3:0x60;0x9F // Set the STARTUP_DEST=ACTIVE
Write 0x48:0x64:0x08:0xF7 // clear interrupt of GPI04
Write 0x48:0x4F:0x00:0xF7 // unmask interrupt for GPI04 falling edge
Write 0x48:0x85:0x01:0xFF // set I2C_0 trigger, trigger TO_STANDBY sequence
After the GPI04 has gone low and the PMICs have returned to the ACTIVE state
Write 0x48:0x7D:0x00:0x3F // unmask NSLEEP bits
Write 0x48:0x86:0x03:0xFC // Set NSLEEPx bits for ACTIVE state
Write 0x48:0x64:0x08:0xF7 // clear interrupt of GPI04
Write 0x48:0x65:0x02:0xFD // clear ENABLE_INT
```

7.5 Runtime Customization

The TPS65941213 GPIO8 is configured as an input to disable the watchdog. Typically, during development this pin is tied high, so that when the nRSTOUT bit is set WD_PWRHOLD is also set. The configuration of this pin can be utilized for other features or functions but this requires servicing the watchdog before it expires. The watchdog long window is 772 seconds, Table 5-13.

```
Write 0x12:0x09:0x00:0xBF // Disable Watchdog
Write 0x48:0x38:0x01:0x00 // configure GPIO8 as a pushpull output
```

When it is time to enable and configure the watchdog, then in addition to enabling the watchdog the WD_PWR_HOLD must be cleared.

```
Write 0x12:0x09:0x00:0xFB // Clear WD_PWRHOLD
Write 0x12:0x09:0x40:0xBF // Enable Watchdog
```

In addition to the GPIO8 of the TPS65941213 there are also the feedback pins for BUCK3 and BUCK4 on the LP876411B4. These monitors can be used independently since the BUCK3 and BUCK4 regulators are multiphased with BUCKs 1 and 2. When enabling a monitor, the built in self-test is performed. Please refer to the List item.referenceTitle for an explanation of the monitor self-test. If the self-test fails this results in a Moderate error that triggers the TO_SAFE_ORDERLY power sequence.

Unlike the GPIO, the BUCK monitor can become part of the PFSM by assigning a group to the BUCK regulator and unmasking the OV/UV interrupts. Per the Table 5-7 the BUCK3_GRP_SEL and BUCK4_GRP_SEL are not assigned a group.

www.ti.com Application Examples

Table 7-3. Rail Group Associations

Selected Rail group Selection	PFSM Trigger	Description
No Group Assigned	None	OV/UV can set nINT pin for MCU interrogation.
MCU Rail Group	MCU Power Error	OV/UV can trigger TO_SAFE
Soc Rail Group	SoC Power Error	The SoC Power Error trigger is not valid for this PDN. This trigger must not be used.
Other Rail Group	Orderly Shutdown	OV/UV can triggerTO_SAFE_ORDERLY

In this example BUCK3 is used to monitor a 1.1V supply and BUCK4 is used to monitor a 0.8V supply. The wait statement ensures that the built in self-test of the monitors is completed before the OV and UV monitors are unmasked. Refer to the TPS6594-Q1Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications datasheet for more details.

```
Write 0x4C:0x12:0x73:0x00  // Set to 1.1V
Write 0x4C:0x14:0x37:0x00  // Set to 0.8V
Write 0x4C:0x09:0x07:0xF1  // Set slew rate to 0.31mV/us
Write 0x4C:0x0B:0x07:0xF1
Write 0x4C:0x41:0xA0:0x0F  // SOC rail group
Write 0x4C:0x4A:0x33:0xCC  // Mask OV/UV
Write 0x4C:0x4A:0x33:0xCC  // Enable BUCK3 Monitor
Write 0x4C:0x0A:0x10:0xEF  // Enable BUCK4 Monitor
// Startup = 220us, ramp = 42us, settling = 105us, OV/UV test=50us
wait 500us
Write 0x4C:0x4A:0x00:0xCC  // Unmask OV/UV
```

With the TO_SAFE and TO_SAFE_ORDERLY sequences the PMICs transition through the SAFE RECOVERY state as well as hardware states INIT and BOOT BIST. Through this transition the user registers are restored with the NVM settings. For both the GPIO and BUCK monitor customizations, these customizations are not preserved and must be re-applied with every power cycle and transition through the hardware states.

References www.ti.com

8 References

For additional information regarding the PMIC or processor devices, use the following:

- Texas Instruments, DRA829 Jacinto™ Processors Silicon Revisions 1.0 and 1.1 data sheet
- Texas Instruments, DRA829 Safety Manual Jacinto[™] 7 Processors (request through mySecure)
- Texas Instruments, DRA829/TDA4VM/AM752x Technical Reference Manual (Rev. B) reference model
- Texas Instruments, TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications data sheet
- Texas Instruments, 4x 5-A (20-A) multiphase buck converter PMIC with functional safety features for automotive SoCs data sheet
- Texas Instruments, Optimized TPS65941213-Q1 and TPS65941111-Q1 PMIC User Guide for J721E, PDN-0C (Rev. A)
- Texas Instruments, TPS6594-Q1 Safety Manual (request through mySecure)
- Texas Instruments, LP8764-Q1 Safety Manual (request through mySecure)
- Texas Instruments, TPS6594-Q1 Schematic PCB Checklist application note

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated