

ABSTRACT

This user's guide can be used as a guide for integrating the TPS65931211-Q1 power management integrated circuit (PMIC) into a system powering the Automotive Sitara AM62A processor.

Table of Contents

1 Introduction	2
2 Device Versions	2
3 Processor Connections	3
3.1 Power Mapping	3
3.2 Control Mapping	7
4 Supporting Functional Safety ASIL-B Requirements	10
5 Static NVM Settings	
5.1 Application-Based Configuration Settings	
5.2 Device Identification Settings	12
5.3 BUCK Settings	
5.4 LDO Settings	14
5.5 VCCA Settings	
5.6 GPIO Settings	
5.7 Finite State Machine (FSM) Settings	17
5.8 Interrupt Settings	17
5.9 POWERGOOD Settings	20
5.10 Miscellaneous Settings	21
5.11 Interface Settings	22
5.12 Watchdog Settings	22
6 Pre-Configurable Finite State Machine (PFSM) Settings	
6.1 Configured States	
6.2 PFSM Triggers	25
6.3 Power Sequences	
7 Application Examples	30
7.1 Entering and Exiting S2R (Suspend to RAM)	30
7.2 Entering and Exiting Standby	30
7.3 Entering and Existing LP_STANDBY	31
8 References	

Trademarks

All trademarks are the property of their respective owners.

1

1 Introduction

This user's guide describes a power distribution network (PDN), using the TPS65931211-Q1 PMIC to supply the Sitara AM62A processor.

The following topics are described to clarify platform system operation:

- 1. PDN power resource connections
- 2. PDN digital control connections
- 3. PMIC static NVM configuration
- 4. PMIC Pre-configurable Mission States

PMIC and processor data manuals provide recommended operating conditions, electrical characteristics, recommended external components, package details, register maps, and overall component functionality. In the event of any inconsistency between any user's guide, application report, or other referenced material, the data sheet specification is the definitive source.

2 Device Versions

There are different orderable part numbers (OPNs) of the TPS6593-Q1 device available with unique NVM settings to support different end product use cases and processor types. The unique NVM settings for each PMIC device are optimized per PDN design to support different processors, processing loads, SDRAM types, system functional safety levels, and end product features (such as low power modes, processor voltages, and memory subsystems). The NVM settings can be identified by both NVM_ID and NVM_REV registers. Each TPS6593 PMIC device is distinguished by the part number, NVM_ID, and NVM_REV.

	PDN USE CASE	Orderable Part Number	TI_NVM_ID (TI_NVM_REV)
•	Supports Functional Safety up to ASIL-B level.	TPS65931211 RWERQ1	0x11 (0x05)
•	Supports AM62A low power modes (including Partial IO and Suspend to		
	RAM).		
•	Up to 10.5 A ⁽¹⁾ in multiphase (3-phase) configuration to supply the		
	processor CORE rail with selectable 0.75V or 0.85V.		
•	Up to 4 $A^{(1)}$ to supply the VDDS_DDR with selectable 1.1V for LPDDR4.		
•	Supports I/O level of 3.3 V and 1.8 V.		
•	Supports optional end product features:		
	 Compliant high-speed SD Card memory 		
	– eMMC		
	 eFuse ROM programming supply 		
	 Compliant USB 2.0 Interface 		
	 Ethernet PHY 		
	– HDMI		

Table 2-1. TPS6593-Q1 Orderable Part Number for AM62/

(1) TI recommends having 15% margin between the maximum expected load current and the maximum current allowed per each PMIC output rail.

3 Processor Connections

This section details how the TPS65931211-Q1 power resources and GPIO signals are connected to the processor and other peripheral components.

3.1 Power Mapping

Figure 3-1 shows the power mapping between the TPS65931211-Q1 PMIC power resources and processor voltage domains. Some of the external peripherals like uSD card, Ethernet PHY and HDMI are optional and might not be needed for the end product. These optional systems peripherals were included in the AM62A SK EVM for development and testing purposes.

This PDN uses the TPS6593-Q1 PMIC and discrete power components to meet the power/sequence requirements of the processor and system peripherals. Some of the discrete components are optional depending upon end product features. In this configuration, PMIC uses a 3.3 V input voltage. The TPS22965 Load Switch connects the 3.3V pre-regulator (VSYS_3V3) to the processor 3.3V IO domains. The unused feedback pin, FB_B3, of the TPS65931211-Q1 has been configured per NVM settings, Table 5-3, to provide voltage monitoring for the 3.3V IO domain. This monitoring function enables all of the processor CORE, digital and analog supplies to have voltage monitoring coverage as needed for functional safety ASIL-B systems.

LDO1 of the TPS65931211-Q1 PMIC is configured as bypass to supply the SD card dual-voltage I/O (3.3 V and 1.8 V). A processor GPIO control signal with a logic high default value and an external pull-up is used to set SD IO to 3.3 V initially. After the power-up sequence, the processor can set GPIO signal low to select 1.8 V level as needed for high-speed card operation per SD specification. This bypass configuration allows control of the LDO1 voltage from 3.3V to 1.8V without the need to establish I2C communication during boot from SD card operations. The bypass configuration on LDO1 requires connecting its input supply pin (PVIN_LDO12) to 3.3V.

The AM62A processor supports multiple low power modes. For the Partial I/O low power mode, the entire SoC is OFF except I/O pins in CANUART I/O bank to maintain wakeup capability. This mode is supported by turning OFF the PMIC and keeping the 3.3V pre-regulator ON to supply VDDSHV_CANUART (3.3V) and an external discrete to supply VDD_CANUART (0.75 V or 0.85 V).

Note

The PMIC voltage monitor on FB_B3 must be connected to 3.3 V. If 3.3 V is not connected to FB_B3 when the monitor is enabled then the device goes to the hardware SAFE RECOVERY state, and the processor voltages are disabled.

Texas Instruments

www.ti.com

Note

The external discrete that supplies VDD_CANUART is only needed for Partial IO. When not using Partial IO, VDD_CANUART needs to be connected to the multi-phase Buck1/2/3 and VDDSHV_CANUART can be connected to the same 3.3 V rail that supplies the DVDD3V3(VDDSHVx).

Figure 3-1. Example Power Connections

Table 3-1 identifies which power resources are required to support different system features.

	l	Power Mapping)		System F	eatures ⁽¹⁾			
Device	Device Power Resource Voltage Processor Domains		Active SoC	Partial IO (Low Power Mode)	IO + DDR (Low Power Mode)	SD Card interface			
3.3V pre- regulator (LM5141-Q1)	BUCK	3.3V	VDDSHV_CANUART PMIC Supply	R	R	R			
TLV705075	LDO	0.75V	VDD_CANUART	R	R	R			
			VDD_CORE	R					
	BUCK123	0.75V or 0.85V	VDDA_CORE_CSIRX0	R					
	DUCKIZJ	(2)	VDDA_CORE_USB	R					
			VDDA_DDR_PLL0	R					
	FB_B3	3.3V	monitors 3.3V IO domain	R		R			
	BUCK4	1.1V or 1.2V	VDDS_DDR	R		R			
	BUCK5	1.8\/	DVDD1V8(VDDSHVy)	R		R			
		1.01	VMON_1P8_SOC ⁽³⁾	0					
TPS65931211	LDO1	3.3V / 1.8V	VDDSHV5	0			R		
-Q1	LDO2	1.8V	VPP (eFUSE)	0					
	LDO3	0.85V (2)	VDDR_CORE	R					
	LDO4		VDDA_1P8_USB	R					
				VDDA_TEMP	R				
		1.81/	VDDS_OSC0	R					
		1.00	1.00	VDDA_MCU	R				
			VDDA_PLL	R					
							VDDA_1P8_CSIRX0	R	
			DVDD3V3(VDDSHVx)	R					
TPS22965-	Lood Switch	2 2)/	VDDSHV_MCU	R					
Q1		3.30	VMON_3P3_SOC ⁽³⁾	0					
			VDDA_3P3_USB	R					
TPS62824	BUCK	2.5V	VDD_2V5_ETHERNET PHY	0					
TLV75510P	LDO	1.0V	VDD1P0_ETHERNET PHY	0					
TLV75512P	LDO	1.2V	CVCC12_HDMI TRANSMITTER	0					

Table 3-1. PDN Power Mapping and System Features

(1) 'R' is required and 'O' is optional.

(2) If the multiphase Buck1/2/3 is configured to output 0.85V, both CORE rails on the AM62A (VDD_CORE and VDDR_CORE) are supplied by Buck1/2/3. In this case, LDO3 becomes a free power resource.

(3) VMON_3P3_SOC and VMON_1P8_SOC are not supply pins but voltage monitor inputs for the 1.8 V and 3.3 V SoC power supply. If VMON_1P8_SOC and VMON_3P3_SOC are not used to monitor the SOC power rails, they must still be connected to their respective 1.8V and 3.3V power rails.

3.1.1 Supporting 0.85V on VDD_CORE

In this PDN, VDD_CORE is operating at 0.75V and supplied by the multi-phase Buck1/2/3. VDDR_CORE is supplied by LDO3 (0.85V). However, if BUCK1/2/3 is configured to output 0.85V, then both CORE rails (VDD_CORE and VDDR_CORE) must be supplied by BUCK1/2/3 and LDO3 becomes a free resource. Per AM62A data sheet, VDD_CORE and VDDR_CORE are expected to be powered by the same source so they ramp together when VDD_CORE is operating at 0.85V. LDO3 is configured to be part of the TPS65931211-Q1 power-up sequence and requires an input supply as well as the input/output capacitors to prevent an LDO3 fault condition. The state of GPIO6 sets the output voltage on the multi-phase Buck1/2/3. See Section 3.2 for information about polarity of digital pins.

3.1.2 Using 5V Input Supply

The PDN described in this user's guide was designed for 3.3V input supply. However the TPS65931211-Q1 NVM also supports 5V input supply. The default NVM settings on TPS65931211-Q1 have the UV/OV disabled on VCCA so PMIC can use either voltage (3.3V or 5V). If 5V supply is used, then a 3.3V discrete Buck is required for the 3.3V IO domain instead of a power switch. The external 3.3V Buck can be enabled by GPIO4 and needs to ramp from 0V to 3.3V within the 10ms delay that was assigned to GPIO4 in the any2active sequence.

LDO1 is configured as "bypass" and requires a 3.3V supply. This LDO can be supplied by the output of the discrete 3.3V regulator. TI also recommends supplying the remaining LDOs (LDO3 and LDO4) with the discrete 3.3V regulator to reduce power dissipation. VIO_IN must be supplied by 3.3V as well.

When using 5V instead of 3.3V, the voltage from the pre-regulator cannot be directly connected to VDDSHV_CANUART. In this case, VDDSHV_CANUART can be supplied by the same discrete 3.3 V Buck that supplies the remaining 3.3 V signals on the processor.

3.2 Control Mapping

Figure 3-2 shows the digital control signal mapping between processor and PMIC. Specific GPIO pins have been assigned to key signals in order to ensure proper operation. The digital connections allow system features including Partial IO, I/O + DDR, functional safety up to ASIL-B, and compliant dual voltage SD card operation. GPIO4 was configured as push-pull output to enable the external 3.3V power-switch at the beginning of the sequence.

GPIO9 and GPIO11 are configured to enable LDO2 (VPP) and LDO1 (SD card interface). The TPS65931211-Q1 enables LDO1 when a rising edge is detected on GPIO11 after nRSTOUT is released and PMIC is in Active state. Similarly, the PMIC enables LDO2 when a rising edge is detected on GPO9 after nRSTOUT is released.

GPIO5, GPIO6 and GPIO10 are configured to set the output voltages on some of the PMIC power resources and the state (high or low) for these GPIOs need to be set before the assigned rail turns ON. GPIO5 is configured to set the output voltage on LDO1 to support UHS-I SD cards (3.3V or 1.8V). GPIO6 is configured to set the voltage on the multiphase Buck1/2/3 to support either VDD_CORE voltage (0.75V or 0.85V). GPIO10 is configured to set the voltage on Buck4 to support LPDDR4 (1.1V) or DDR4 (1.2V).

The PMIC_LPM_EN0 on the AM62A processor is a dual function control signal used to trigger a Low Power Mode (active low) or PMIC enable (active high). This signal drives the PMIC GPIO3 (nSLEEP2) when triggering IO+DDR mode (suspend to RAM). Alternatively, the PMIC_LPM_EN0 signal can drive the PMIC enable pin when triggering Partial IO low power mode.

7

Figure 3-2. TPS65931211-Q1 Digital Connections

Note

PMIC IO can have distinct power domains for input and output functionality. The SDA function for I2C1 and I2C2 use the VINT voltage domain as an input and the VIO voltage domain as an output. When configured as an input GPIO3 is in the VRTC domain. When configured as an output, GPIO4 is in the VINT domain. Please refer to the device data sheet for a complete description.

Table 3-2 shows the digital signals on the TPS65931211-Q1 that were configured as open drain and the AM62A domain they must be pulled up to.

PMIC open drain signal	AM62A signal name	AM62A Power Domain
nINT	EXTINTn	VDDSHV0
nRSTOUT	MCU_PORz	VDDS_OSC (1.8V)
SCL_I2C1	I2C0_SCL	VDDSHV0
SDA_I2C1	I2C0_SDA	VDDSHV0
GPIO1 (SCL_I2C2)	MCU_I2C0_SCL	VDDSHV_MCU
GPIO2 (SDA_I2C2)	MCU_I2C0_SDA	VDDSHV_MCU

Table 3-2. Open-drain signals and AM62 Power Domain

Please use Table 3-3 as a guide to understand GPIO assignments required for each PDN system feature. If the feature listed is not required, the digital connection can be removed; however, the GPIO pin is still configured per NVM defined default function shown. After the processor has booted up, the processor can reconfigure unused GPIOs to support new functions. Reconfiguring a GPIO function is possible as long as that function is only needed after boot and default function does not cause any conflicts with normal operations (for example, two outputs driving same net).

Dovice	GPIO N	lapping	System Features ⁽²⁾			
Device	PMIC Pin	NVM Function	Active SoC	Functional Safety	IO + DDR	SD Card
	nPWRON/ ENABLE	Enable	R	R		
	INT	INT	R	R		
	nRSTOUT	nRSTOUT	R			
	SCL_I2C1	SCL_I2C1	R			
	SDA_I2C1	SDA_I2C1	R			
	GPIO_1	SCL_I2C2		R		
	GPIO_2	SDA_I2C2		R		
	GPIO_3	nSLEEP2			R	
	GPO GPIO_4 (enables 3.3V power-switch)	R				
	GPIO_5	GPI (sets output voltage on LDO1)	O (3)			R
TPS65931211-Q1	GPIO_6	GPI (sets output voltage on BUCK1/2/3)	R			
	GPIO_7	nERR_MCU		R		
	GPIO_8	DISABLE_WDOG		O ⁽¹⁾		
	GPIO_9 GPIO_9 (enables/disables LDO2) GPIO_10 (sets output voltage on BUCK4)	GPI (enables/disables LDO2)				
		GPI (sets output voltage on BUCK4)	R			
	GPIO_11	GPI (enables/disables LDO1)				R

Table 3-3. Digital Connections by System Feature

 If it is desired to disable the watchdog through hardware, GPIO_8 is required and must be set high by the time nRSTOUT goes high. After nRSTOUT is high, the watchdog state is latched and the pin can be configured for other functions through software.
 R is Required. O is optional.

GPIO5 from the PMIC does not need to be connected to the processor if LDO1 is not used to supply the uSD card interface.

4 Supporting Functional Safety ASIL-B Requirements

To achieve a system functional safety level of ASIL-B, the following PDN features are available:

- PMIC over voltage and under voltage monitoring on the power resource voltage outputs
- Watchdog monitoring of safety processor
- MCU error monitoring
- MCU and Main Domain cold reset
- I²C communication
- Error indicator, EN_DRV, for driving external circuitry (optional)
- Read-back of EN_DRV pin

Additional Safety Features

- PMIC current monitoring on all output power rails
- Switch short-to-ground detection on BUCK regulator pins (SW_Bx)
- Read-back of nINT and nRSTOUT logic output pins

The PMIC internal over voltage and under voltage monitoring and their respective monitoring threshold levels are enabled by default and can be updated through I²C after startup. PMIC power rails connected directly to the processor are monitored by default. The unused feedback pin of BUCK3 on TPS65931211-Q1, FB_B3, is assigned to monitor the load switch output voltage that supplies the 3.3V I/O domain. A 3.3V supply must be connected to the feedback pin in order to prevent an error since the PMIC is expecting the 3.3V to be present.

The internal Q&A Watchdog is enabled on the TPS65931211-Q1 NVM. Once the device is in ACTIVE state, the trigger or Q&A watchdog settings can be configured through the secondary I2C2 (GPI01/GPI02) in the device. The primary and secondary I2C CRC is not enabled by default but must be enabled with the I2C_2 trigger described in Section 6.2. Once enabled the secondary I2C is disabled for 2ms. It is recommended to enable I2C CRC and wait a minimum of 2ms before starting the Q&A Watchdog. The steps for configuring and starting the watchdog can be found in the TPS6593-Q1 data sheet. Setting the DISABLE_WDOG signal high disables the watchdog timer if this feature needs to be suspended during initial development or is not required in the system.

GPIO_7 of the primary TPS65931211-Q1 PMIC is configured as the MCU error signal monitor, and must be enabled though the ESM_MCU_EN register bit. MCU and Main Domain reset is supported through the connection between the nRSTOUT pin of the PMIC and the MCU_PORz pin of the processor.

There is an option to use the EN_DRV to indicate an error has been detected and the system is entering SAFE state. This signal can be utilized if the system has external circuitry that needs to be driven by an error event. In this PDN, the EN_DRV is not utilized, but available if needed.

The current monitoring is enabled by default for all BUCKs and LDOs.

ASIL-B							
External SW Wdog	INTn	Safety MCU Processing ESM Safety MCU Reset	Safety Status Signal with IO Read-Back feature	System Input Voltage Monitoring			
PMIC: Q&A Watchdog and I2C2.	PMIC: nINT pin connected to EXTINTn on the processor	PMIC: nERR_MCU connected to MCU_ERRORn on the processor	PMIC: ENDRV	VCCA OV/UV is disabled by default but can be enabled by I2C.			

Table 4-1. PMIC System Level Safety Features

Device	Power Resource	PDN Power Rail	ASIL-B Supply Voltage Monitoring
TPS65931211-Q1 (PMIC)	BUCK1-3	VDD_CORE	PMIC - OV & UV
	BUCK4	VDDS_DDR	PMIC - OV & UV
	BUCK5	DVDD1V8(VDDSHVy)	PMIC - OV & UV
	LDO1	VDDSHV5	PMIC - OV & UV check with mike if UV/OV are monitored when LDO is configured as bypass
	LDO2	VPP (eFUSE)	PMIC - OV & UV
	LDO3	VDDR_CORE	PMIC - OV & UV
	LDO4	VDDA_MCU	PMIC - OV & UV
TPS22965-Q1	Load Switch	DVDD3V3(VDDSHVx)	PMIC (FB_B3) - OV & UV

 Table 4-2. PMIC Power Monitoring Safety Features

Note

Refer to the Safety Manual of the TPS6593-Q1 device for full descriptions and analysis of the PMIC functional safety features. These functional safety features can assist in achieving up to ASIL-B rating for a system.

5 Static NVM Settings

The TPS6593-Q1 PMIC consist of user register space and an NVM. The settings in NVM, which are loaded into the user registers during the transition from INIT to BOOT BIST, are provided in this section. Note: The user registers can be changed during state transitions, such as moving from STANDBY to ACTIVE mode. The user register map is described in the TPS6593-Q1 data sheet.

5.1 Application-Based Configuration Settings

In the TPS6593-Q1 data sheet, there are seven application-based configurations for each BUCK to operate within. The following list includes the different configurations available:

- 2.2 MHz Single Phase for DDR Termination
- 4.4 MHz VOUT Less than 1.9 V, Multiphase or High COUT Single Phase
- 4.4 MHz VOUT Less than 1.9 V, Low COUT, Single Phase Only
- 4.4 MHz VOUT Greater than 1.7 V, Single Phase Only
- 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase
- 2.2 MHz Full VOUT Range and VIN Greater than 4.5 V, Single Phase Only
- 2.2 MHz Full VOUT and Full VIN Range, Single Phase Only

The seven configurations also have optimal output inductance values that optimize the performance of each buck under these various conditions. Table 5-1 shows the default configurations for the BUCKs. These settings cannot be changed after device startup.

Device	BUCK Rail	Recommended Inductor Value				
	BUCK1	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH			
TPS65931211-Q1	BUCK2	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH			
	BUCK3	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH			
	BUCK4	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH			
	BUCK5	2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase	470 nH			

Table 5-1. Application Use Case Settings

5.2 Device Identification Settings

These settings are used to distinguish which device is detected in a system. These settings cannot be changed after device startup.

Table 0-2. Device Identification (VVIII Octungs				
Register Name	Field Name	TPS65931211-Q1		
		Value	Description	
DEV_REV	DEVICE_ID			
NVM_CODE_1	TI_NVM_ID	0x11		
NVM_CODE_2	TI_NVM_REV	0x5		
PHASE_CONFIG	MP_CONFIG	0x3	3+1+1	

Table 5-2. Device Identification NVM Settings

5.3 BUCK Settings

These settings detail the voltages, configurations, and monitoring of the BUCK rails stored in the NVM. All these settings can be changed though I^2C after startup. Some settings, typically the enable bits, are also changed by the PFSM, as described in Section 6.3.

Deviator Name	Field Name	TPS65931211-Q1		
Register Name		Value	Description	
BUCK1_CTRL	BUCK1_EN	0x0	Disabled; BUCK1 regulator	
	BUCK1_FPWM	0x1	PWM operation only.	
	BUCK1_FPWM_MP	0x0	Automatic phase adding and shedding.	
	BUCK1_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	
	BUCK1_VSEL	0x0	BUCK1_VOUT_1	
	BUCK1_PLDN	0x1	Enabled; Pull-down resistor	
	BUCK1_RV_SEL	0x0	Disabled	
BUCK1_CONF	BUCK1_SLEW_RATE	0x3	5.0 mV/µs	
	BUCK1_ILIM	0x5	5.5 A	
BUCK2_CTRL	BUCK2_EN	0x0	Disabled; BUCK2 regulator	
	BUCK2_FPWM	0x1	PWM operation only.	
	BUCK2_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	
	BUCK2_VSEL	0x0	BUCK2_VOUT_1	
	BUCK2_PLDN	0x1	Enabled; Pull-down resistor	
	BUCK2_RV_SEL	0x0	Disabled	
BUCK2_CONF	BUCK2_SLEW_RATE	0x3	5.0 mV/µs	
	BUCK2_ILIM	0x5	5.5 A	
BUCK3_CTRL	BUCK3_EN	0x0	Disabled; BUCK3 regulator	
	BUCK3_FPWM	0x1	PWM operation only.	
	BUCK3_FPWM_MP	0x0	Automatic phase adding and shedding.	
	BUCK3_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.	
	BUCK3_VSEL	0x0	BUCK3_VOUT_1	
	BUCK3_PLDN	0x1	Enabled; Pull-down resistor	
	BUCK3_RV_SEL	0x0	Disabled	
BUCK3_CONF	BUCK3_SLEW_RATE	0x0	33 mV/µs	
	BUCK3_ILIM	0x5	5.5 A	

Table 5-3. BUCK NVM Settings

		TPS659312	TPS65931211-Q1		
Register Name	Field Name	Value	Description		
BUCK4 CTRL	BUCK4 EN	0x0	Disabled; BUCK4 regulator		
_	BUCK4 FPWM	0x0	PFM and PWM operation (AUTO mode).		
	BUCK4_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.		
	BUCK4_VSEL	0x0	BUCK4_VOUT_1		
	BUCK4_PLDN	0x1	Enabled; Pull-down resistor		
	BUCK4_RV_SEL	0x0	Disabled		
BUCK4_CONF	BUCK4_SLEW_RATE	0x3	5.0 mV/µs		
	BUCK4_ILIM	0x5	5.5 A		
BUCK5_CTRL	BUCK5_EN	0x0	Disabled; BUCK5 regulator		
	BUCK5_FPWM	0x0	PFM and PWM operation (AUTO mode).		
	BUCK5_VMON_EN	0x0	Disabled; OV, UV, SC and ILIM comparators.		
	BUCK5_VSEL	0x0	BUCK5_VOUT_1		
	BUCK5_PLDN	0x1	Enable Pull-down resistor		
	BUCK5_RV_SEL	0x0	Disabled		
BUCK5_CONF	BUCK5_SLEW_RATE	0x3	5.0 mV/µs		
	BUCK5_ILIM	0x3	3.5 A		
BUCK1_VOUT_1	BUCK1_VSET1	0x2d	0.750 V		
BUCK1_VOUT_2	BUCK1_VSET2	0x2d	0.750 V		
BUCK2_VOUT_1	BUCK2_VSET1	0x2d	0.750 V		
BUCK2_VOUT_2	BUCK2_VSET2	0x2d	0.750 V		
BUCK3_VOUT_1	BUCK3_VSET1	0xfd	3.30 V		
BUCK3_VOUT_2	BUCK3_VSET2	0xfd	3.30 V		
BUCK4_VOUT_1	BUCK4_VSET1	0x73	1.10 V		
BUCK4_VOUT_2	BUCK4_VSET2	0x73	1.10 V		
BUCK5_VOUT_1	BUCK5_VSET1	0xb2	1.80 V		
BUCK5_VOUT_2	BUCK5_VSET2	0xb2	1.80 V		
BUCK1_PG_WINDOW	BUCK1_OV_THR	0x3	+5% / +50 mV		
	BUCK1_UV_THR	0x3	-5% / -50 mV		
BUCK2_PG_WINDOW	BUCK2_OV_THR	0x3	+5% / +50 mV		
	BUCK2_UV_THR	0x3	-5% / -50 mV		
BUCK3_PG_WINDOW	BUCK3_OV_THR	0x3	+5% / +50 mV		
	BUCK3_UV_THR	0x3	-5% / -50 mV		
BUCK4_PG_WINDOW	BUCK4_OV_THR	0x4	+6% / +60 mV		
	BUCK4_UV_THR	0x4	-6% / -60 mV		
BUCK5_PG_WINDOW	BUCK5_OV_THR	0x4	+6% / +60 mV		
	BUCK5 UV THR	0x4	-6% / -60 mV		

Table 5-3. BUCK NVM Settings (continued)

5.4 LDO Settings

These settings detail the voltages, configurations, and monitoring of the LDO rails stored in the NVM. All these settings can be changed though I^2C after startup. Some settings, typically the enable bits, are also changed by the PFSM, as described in Section 6.3.

After the Section 6.3.4 sequence has completed, the LDOx_EN and LDOx_VMON_EN bits are set and the LDOx_RV_SEL bit is cleared for all LDOs. The other bits remain unchanged, but are still accessible via I²C.

Pagiatar Nama	Field Name	TPS65931211-Q1			
Register Name		Value	Description		
LDO1_CTRL	LDO1_EN	0x0	Disabled; LDO1 regulator.		
	LDO1_SLOW_RAMP	0x1	3mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET		
	LDO1_PLDN	0x1	125 Ohm		
	LDO1_VMON_EN	0x0	Disable OV and UV comparators.		
	LDO1_RV_SEL	0x0	Disabled		
LDO2_CTRL	LDO2_EN	0x0	Disabled; LDO2 regulator.		
	LDO2_SLOW_RAMP	0x1	3mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET		
	LDO2_PLDN	0x0	50 kOhm		
	LDO2_VMON_EN	0x0	Disabled; OV and UV comparators.		
	LDO2_RV_SEL	0x0	Disabled		
LDO3_CTRL	LDO3_EN	0x0	Disabled; LDO3 regulator.		
	LDO3_SLOW_RAMP	0x1	3mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET		
	LDO3_PLDN	0x1	125 Ohm		
	LDO3_VMON_EN	0x0	Disabled; OV and UV comparators.		
	LDO3_RV_SEL	0x0	Disabled		
LDO4_CTRL	LDO4_EN	0x0	Disabled; LDO4 regulator.		
	LDO4_SLOW_RAMP	0x1	3mV/us max ramp up slew rate for LDO output from 0.3V to 90% of LDOn_VSET		
	LDO4_PLDN	0x1	125 Ohm		
	LDO4_VMON_EN	0x0	Disabled; OV and UV comparators.		
	LDO4_RV_SEL	0x0	Disabled		
LDO1_VOUT	LDO1_VSET	0x3a	3.30 V		
	LDO1_BYPASS	0x1	Bypass mode.		
LDO2_VOUT	LDO2_VSET	0x1c	1.80 V		
	LDO2_BYPASS	0x0	Linear regulator mode.		
LDO3_VOUT	LDO3_VSET	0x9	0.85 V		
	LDO3_BYPASS	0x0	Linear regulator mode.		
LDO4_VOUT	LDO4_VSET	0x38	1.800 V		
LDO1_PG_WINDOW	LDO1_OV_THR	0x4	+6% / +60 mV		
	LDO1_UV_THR	0x4	-6% / -60 mV		
LDO2_PG_WINDOW	LDO2_OV_THR	0x4	+6% / +60 mV		
	LDO2_UV_THR	0x4	-6% / -60 mV		
LDO3_PG_WINDOW	LDO3_OV_THR	0x4	+6% / +60 mV		
	LDO3_UV_THR	0x4	-6% / -60 mV		
LDO4_PG_WINDOW	LDO4_OV_THR	0x4	+6% / +60 mV		
	LDO4_UV_THR	0x4	-6% / -60 mV		

Table 5-4. LDO NVM Settings

5.5 VCCA Settings

These settings detail the default monitoring enabled on VCCA. All these settings can be changed though I²C after startup.

Register Name	Field Nome	TPS65931211-Q1		
		Value	Description	
VCCA_VMON_CTRL	VMON_DEGLITCH_SEL	0x1	20 us	
	VCCA_VMON_EN	0x0	Disabled; OV and UV comparators.	
VCCA_PG_WINDOW	VCCA_OV_THR	0x7	+10%	
	VCCA_UV_THR	0x7	-10%	
	VCCA_PG_SET	0x1	5.0 V	
GENERAL_REG_1	FAST_VCCA_OVP	0x0	slow, 4us deglitch filter enabled	
GENERAL_REG_3	LPM_EN_DISABLES_VCCA_VMO N	0x1	VCCA_VMON enabled if VCCA_VMON_EN=1 and LPM_EN=0	

Table 5-5. VCCA NVM Settings

5.6 GPIO Settings

These settings detail the default configurations of the GPIO rails. Note that the contents of the GPIOx_SEL field determine which other fields in the GPIOx_CONF and GPIO_OUT_x registers are applicable. To understand which NVM fields apply to each GPIOx_SEL option, see the *Digital Signal Descriptions* section in TPS6593-Q1 data sheet.

De vieten Neuer		TPS659312	TPS65931211-Q1		
Register Name	Field Name	Value	Description		
GPIO1_CONF	GPIO1_OD	0x0	Push-pull output		
	GPIO1_DIR	0x0	Input		
	GPIO1_SEL	0x1	SCL_I2C2/CS_SPI		
	GPIO1_PU_SEL	0x0	Pull-down resistor selected		
	GPIO1_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.		
	GPIO1_DEGLITCH_EN	0x0	No deglitch, only synchronization.		
GPIO2_CONF	GPIO2_OD	0x0	Push-pull output		
	GPIO2_DIR	0x0	Input		
	GPIO2_SEL	0x2	SDA_I2C2/SDO_SPI		
	GPIO2_PU_SEL	0x0	Pull-down resistor selected		
	GPIO2_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.		
	GPIO2_DEGLITCH_EN	0x0	No deglitch, only synchronization.		
GPIO3_CONF	GPIO3_OD	0x1	Open-drain output		
	GPIO3_DIR	0x0	Input		
	GPIO3_SEL	0x5	NSLEEP2		
	GPIO3_PU_SEL	0x0	Pull-down resistor selected		
	GPIO3_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.		
	GPIO3_DEGLITCH_EN	0x1	8 us deglitch time.		
GPIO4_CONF	GPIO4_OD	0x0	Push-pull output		
	GPIO4_DIR	0x1	Output		
	GPIO4_SEL	0x0	GPIO4		
	GPIO4_PU_SEL	0x0	Pull-down resistor selected		
	GPIO4_PU_PD_EN	0x0	Disabled; Pull-up/pull-down resistor.		
	GPIO4_DEGLITCH_EN	0x0	No deglitch, only synchronization.		

Table 5-6. GPIO NVM Settings

Table 5-6. GPIO NVM Settings (continued)

		TPS65931211-Q1		
Register Name	Field Name	Value	Description	
GPIO5_CONF	GPIO5_OD	0x1	Open-drain output	
	GPIO5_DIR	0x0	Input	
	GPIO5_SEL	0x0	GPIO5	
	GPIO5_PU_SEL	0x0	Pull-down resistor selected	
	GPIO5_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO5_DEGLITCH_EN	0x1	8 us deglitch time.	
GPIO6_CONF	GPIO6_OD	0x0	Push-pull output	
	GPIO6_DIR	0x0	Input	
	GPIO6_SEL	0x0	GPIO6	
	GPIO6_PU_SEL	0x0	Pull-down resistor selected	
	GPIO6_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO6_DEGLITCH_EN	0x1	8 us deglitch time.	
GPIO7_CONF	GPIO7_OD	0x1	Open-drain output	
	GPIO7_DIR	0x0	Input	
	GPIO7_SEL	0x1	NERR_MCU	
	GPIO7_PU_SEL	0x0	Pull-down resistor selected	
	GPIO7_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO7_DEGLITCH_EN	0x0	No deglitch, only synchronization.	
GPIO8_CONF	GPIO8_OD	0x1	Open-drain output	
	GPIO8_DIR	0x0	Input	
	GPIO8_SEL	0x3	DISABLE_WDOG	
	GPIO8_PU_SEL	0x0	Pull-down resistor selected	
	GPIO8_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO8_DEGLITCH_EN	0x0	No deglitch, only synchronization.	
GPIO9_CONF	GPIO9_OD	0x1	Open-drain output	
	GPIO9_DIR	0x0	Input	
	GPIO9_SEL	0x0	GPIO9	
	GPIO9_PU_SEL	0x0	Pull-down resistor selected	
	GPIO9_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO9_DEGLITCH_EN	0x1	8 us deglitch time.	
GPIO10_CONF	GPIO10_OD	0x1	Open-drain output	
	GPIO10_DIR	0x0	Input	
	GPIO10_SEL	0x0	GPIO10	
	GPIO10_PU_SEL	0x0	Pull-down resistor selected	
	GPIO10_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO10_DEGLITCH_EN	0x1	8 us deglitch time.	
GPIO11_CONF	GPIO11_OD	0x1	Open-drain output	
	GPIO11_DIR	0x0	Input	
	GPIO11_SEL	0x0	GPIO11	
	GPIO11_PU_SEL	0x0	Pull-down resistor selected	
	GPIO11_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.	
	GPIO11_DEGLITCH_EN	0x1	8 us deglitch time.	

De sile te se Names	Etald Name	TPS65931211-Q	TPS65931211-Q1		
Register Name	Field Name	Value	Description		
NPWRON_CONF	NPWRON_SEL	0x0	ENABLE		
	ENABLE_PU_SEL	0x0	Pull-down resistor selected		
	ENABLE_PU_PD_EN	0x1	Enabled; Pull-up/pull-down resistor.		
	ENABLE_DEGLITCH_EN	0x1	8 us deglitch time when ENABLE, 50 ms deglitch time when NPWRON.		
	ENABLE_POL	0x0	Active high		
	NRSTOUT_OD	0x1	Open-drain output		
GPIO_OUT_1	GPIO1_OUT	0x0	Low		
	GPIO2_OUT	0x0	Low		
	GPIO3_OUT	0x0	Low		
	GPIO4_OUT	0x0	Low		
	GPIO5_OUT	0x0	Low		
	GPIO6_OUT	0x0	Low		
	GPIO7_OUT	0x0	Low		
	GPIO8_OUT	0x0	Low		
GPIO_OUT_2	GPIO9_OUT	0x0	Low		
	GPIO10_OUT	0x0	Low		
	GPIO11_OUT	0x0	Low		

Table 5-6. GPIO NVM Settings (continued)

5.7 Finite State Machine (FSM) Settings

These settings describe how the PMIC output rails are assigned to various system-level states. Also, the default trigger for each system-level state is described. All these settings can be changed though I²C after startup.

Pagiatar Nama	Field Name	TPS659312	211-Q1	
Register Name		Value	Description	
RAIL_SEL_1	BUCK1_GRP_SEL	0x1	MCU rail group	
	BUCK2_GRP_SEL	0x1	MCU rail group	
	BUCK3_GRP_SEL	0x1	MCU rail group	
	BUCK4_GRP_SEL	0x1	MCU rail group	
RAIL_SEL_2	BUCK5_GRP_SEL	0x1	MCU rail group	
	LDO1_GRP_SEL	0x1	MCU rail group	
	LDO2_GRP_SEL	0x3	OTHER rail group	
	LDO3_GRP_SEL	0x1	MCU rail group	
RAIL_SEL_3	LDO4_GRP_SEL	0x1	MCU rail group	
	VCCA_GRP_SEL	0x0	No group assigned	
FSM_TRIG_SEL_1	MCU_RAIL_TRIG	0x1	Orderly shutdown	
	SOC_RAIL_TRIG	0x3	SOC power error	
	OTHER_RAIL_TRIG	0x2	MCU power error	
	SEVERE_ERR_TRIG	0x0	Immediate shutdown	
FSM TRIG SEL 2	MODERATE ERR TRIG	0x1	Orderly shutdown	

Table 5-7. FSM NVM Settings

5.8 Interrupt Settings

These settings detail the default configurations for what is monitored by nINT pin. All these settings can be changed through I^2C after startup.

Table 5-8. Interrupt NVM Settings

		TPS65931211-Q1		
Register Name	Field Name	Value	Description	
FSM_TRIG_MASK_1	GPIO1_FSM_MASK	0x1	Masked	
	GPIO1_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO2_FSM_MASK	0x1	Masked	
	GPIO2_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO3_FSM_MASK	0x1	Masked	
	GPIO3_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO4_FSM_MASK	0x1	Masked	
	GPIO4_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
FSM_TRIG_MASK_2	GPIO5_FSM_MASK	0x0	Not masked	
	GPIO5_FSM_MASK_POL	0x0	_ow; Masking sets signal value to '0'	
	GPIO6_FSM_MASK	0x0	Not masked	
	GPIO6_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO7_FSM_MASK	0x1	Masked	
	GPIO7_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO8_FSM_MASK	0x1	Masked	
	GPIO8_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
FSM_TRIG_MASK_3	GPIO9_FSM_MASK	0x0	Not masked	
	GPIO9_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO10_FSM_MASK	0x0	Not masked	
	GPIO10_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
	GPIO11_FSM_MASK	0x0	Not masked	
	GPIO11_FSM_MASK_POL	0x0	Low; Masking sets signal value to '0'	
MASK_BUCK1_2	BUCK1_ILIM_MASK	0x0	Interrupt generated	
	BUCK1_OV_MASK	0x0	Interrupt generated	
	BUCK1_UV_MASK	0x0	Interrupt generated	
	BUCK2_ILIM_MASK	0x0	Interrupt generated	
	BUCK2_OV_MASK	0x0	Interrupt generated	
	BUCK2_UV_MASK	0x0	Interrupt generated	
MASK_BUCK3_4	BUCK3_ILIM_MASK	0x0	Interrupt generated	
	BUCK3_OV_MASK	0x0	Interrupt generated	
	BUCK3_UV_MASK	0x0	Interrupt generated	
	BUCK4_OV_MASK	0x0	Interrupt generated	
	BUCK4_UV_MASK	0x0	Interrupt generated	
	BUCK4_ILIM_MASK	0x0	Interrupt generated	
MASK_BUCK5	BUCK5_ILIM_MASK	0x0	Interrupt generated	
	BUCK5_OV_MASK	0x0	Interrupt generated	
	BUCK5_UV_MASK	0x0	Interrupt generated	
MASK_LDO1_2	LDO1_OV_MASK	0x0	Interrupt generated	
	LDO1_UV_MASK	0x0	Interrupt generated	
	LDO2_OV_MASK	0x0	Interrupt generated	
	LDO2_UV_MASK	0x0	Interrupt generated	
	LDO1_ILIM_MASK	0x0	Interrupt generated	
	LDO2_ILIM_MASK	0x0	Interrupt generated	

_	TPS65931211-Q1		1
Register Name	Field Name	Value	Description
MASK_LDO3_4	LDO3_OV_MASK	0x0	Interrupt generated
	LDO3_UV_MASK	0x0	Interrupt generated
	LDO4_OV_MASK	0x0	Interrupt generated
	LDO4_UV_MASK	0x0	Interrupt generated
	LDO3_ILIM_MASK	0x0	Interrupt generated
	LDO4_ILIM_MASK	0x0	Interrupt generated
MASK_VMON	VCCA_OV_MASK	0x0	Interrupt generated
	VCCA_UV_MASK	0x0	Interrupt generated
MASK_GPIO1_8_FALL	GPIO1_FALL_MASK	0x1	Interrupt not generated.
	GPIO2_FALL_MASK	0x1	Interrupt not generated.
	GPIO3_FALL_MASK	0x1	Interrupt not generated.
	GPIO4_FALL_MASK	0x1	Interrupt not generated.
	GPIO5_FALL_MASK	0x1	Interrupt not generated.
	GPIO6_FALL_MASK	0x1	Interrupt not generated.
	GPIO7_FALL_MASK	0x1	Interrupt not generated.
	GPIO8_FALL_MASK	0x1	Interrupt not generated.
MASK_GPIO1_8_RISE	GPIO1_RISE_MASK	0x1	Interrupt not generated.
	GPIO2_RISE_MASK	0x1	Interrupt not generated.
	GPIO3_RISE_MASK	0x1	Interrupt not generated.
	GPIO4_RISE_MASK	0x1	Interrupt not generated.
	GPIO5_RISE_MASK	0x1	Interrupt not generated.
	GPIO6_RISE_MASK	0x1	Interrupt not generated.
	GPIO7_RISE_MASK	0x1	Interrupt not generated.
	GPIO8_RISE_MASK	0x1	Interrupt not generated.
MASK_GPIO9_11 /	GPIO9_FALL_MASK	0x1	Interrupt not generated.
MASK_GPIO9_10	GPIO9_RISE_MASK	0x1	Interrupt not generated.
	GPIO10_FALL_MASK	0x1	Interrupt not generated.
	GPIO11_FALL_MASK	0x1	Interrupt not generated.
	GPIO10_RISE_MASK	0x1	Interrupt not generated.
	GPIO11_RISE_MASK	0x1	Interrupt not generated.
MASK_STARTUP	NPWRON_START_MASK	0x1	Interrupt not generated.
	ENABLE_MASK	0x0	Interrupt generated
	FSD_MASK	0x1	Interrupt not generated.
	SOFT_REBOOT_MASK	0x0	Interrupt generated
MASK_MISC	TWARN_MASK	0x0	Interrupt generated
	BIST_PASS_MASK	0x0	Interrupt generated
	EXT_CLK_MASK	0x1	Interrupt not generated.
MASK_MODERATE_ERR	BIST_FAIL_MASK	0x0	Interrupt generated
	REG_CRC_ERR_MASK	0x0	Interrupt generated
	SPMI_ERR_MASK	0x1	Interrupt not generated.
	NPWRON_LONG_MASK	0x1	Interrupt not generated.
	NINT_READBACK_MASK	0x0	Interrupt generated
	NRSTOUT_READBACK_MASK	0x0	Interrupt generated

	Table 5-8. Interrupt NVM	Settings (co	Table 5-8. Interrupt NVM Settings (continued)					
	Field News	TPS6593121	TPS65931211-Q1					
Register Name	Field Name	Value	Description					
MASK_FSM_ERR	IMM_SHUTDOWN_MASK	0x0	Interrupt generated					
	MCU_PWR_ERR_MASK	0x0	Interrupt generated					
	SOC_PWR_ERR_MASK	0x0	Interrupt generated					
	ORD_SHUTDOWN_MASK	0x0	Interrupt generated					
MASK_COMM_ERR	COMM_FRM_ERR_MASK	0x1	Interrupt not generated.					
	COMM_CRC_ERR_MASK	0x0	Interrupt generated					
	COMM_ADR_ERR_MASK	0x0	Interrupt generated					
	I2C2_CRC_ERR_MASK	0x0	Interrupt generated					
	I2C2_ADR_ERR_MASK	0x0	Interrupt generated					
MASK_READBACK_ERR	EN_DRV_READBACK_MASK	0x0	Interrupt generated					
	NRSTOUT_SOC_ READBACK_MASK	0x1	Interrupt not generated.					
MASK_ESM	ESM_SOC_PIN_MASK	0x1	Interrupt not generated.					
	ESM_SOC_RST_MASK	0x1	Interrupt not generated.					
	ESM_SOC_FAIL_MASK	0x1	Interrupt not generated.					
	ESM_MCU_PIN_MASK	0x0	Interrupt generated					
	ESM_MCU_RST_MASK	0x0	Interrupt generated					
	ESM_MCU_FAIL_MASK	0x0	Interrupt generated					
GENERAL_REG_1	PFSM_ERR_MASK	0x0	Interrupt generated					

5.9 POWERGOOD Settings

These settings detail the default configurations for what is monitored by PGOOD pin. All these settings can be changed though I^2C after startup.

- · · · ·	_	TPS65931211-Q1		
Register Name	Field Name	Value	III-Q1 Description Voltage only VCCA OV/UV threshold affecting PGOOD signal nRSTOUT pin low state forces PGOOD signal Masked PGOOD signal is high when monitored input	
PGOOD_SEL_1	PGOOD_SEL_BUCK1	0x1	Voltage only	
	PGOOD_SEL_BUCK2	0x1	Voltage only	
	PGOOD_SEL_BUCK3	0x1	Voltage only	
	PGOOD_SEL_BUCK4	0x1	Voltage only	
PGOOD_SEL_2	PGOOD_SEL_BUCK5	0x1	Voltage only	
PGOOD_SEL_3	PGOOD_SEL_LDO1	0x1	Voltage only	
	PGOOD_SEL_LDO2	0x1	Voltage only	
	PGOOD_SEL_LDO3	0x1	Voltage only	
	PGOOD_SEL_LDO4	0x1	Voltage only	
PGOOD_SEL_4	PGOOD_SEL_VCCA	0x1	VCCA OV/UV threshold affecting PGOOD signal	
	PGOOD_SEL_TDIE_WARN	0x1	Thermal warning affecting to PGOOD signal	
	PGOOD_SEL_NRSTOUT	0x1	nRSTOUT pin low state forces PGOOD signal to low	
	PGOOD_SEL_NRSTOUT_SOC	0x0	Masked	
	PGOOD_POL	0x0	PGOOD signal is high when monitored inputs are valid	
	PGOOD_WINDOW	0x1	Both undervoltage and overvoltage are monitored	

Table 5-9. POWERGOOD NVM Settings

5.10 Miscellaneous Settings

These settings detail the default configurations of additional settings, such as spread spectrum, BUCK frequency, and LDO timeout. All these settings can be changed though I²C after startup.

Devictor News	_	TPS659312	TPS65931211-Q1		
Register Name	Field Name	Value	Description		
PLL_CTRL	EXT_CLK_FREQ	0x0	1.1 MHz		
CONFIG_1	TWARN_LEVEL	0x1	140C		
	I2C1_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode primary code.		
	I2C2_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode primary code.		
	EN_ILIM_FSM_CTRL	0x0	Buck/LDO regulators ILIM interrupts do not affect FSM triggers.		
	NSLEEP1_MASK	0x1	NSLEEP1(B) does not affect FSM state transitions.		
	NSLEEP2_MASK	0x0	NSLEEP2(B) affects FSM state transitions.		
CONFIG_2	BB_CHARGER_EN	0x0	Disabled		
	BB_VEOC	0x0	2.5V		
	BB_ICHR	0x0	100uA		
RECOV_CNT_REG_2	RECOV_CNT_THR	0xf	0xf		
BUCK_RESET_REG	BUCK1_RESET	0x0	0x0		
	BUCK2_RESET	0x0	0x0		
	BUCK3_RESET	0x0	0x0		
	BUCK4_RESET	0x0	0x0		
	BUCK5_RESET	0x0	0x0		
SPREAD_SPECTRUM_1	SS_EN	0x0	Spread spectrum disabled		
	SS_MODE	0x1	Mixed dwell		
	SS_DEPTH	0x0	No modulation		
SPREAD_SPECTRUM_2	SS_PARAM1	0x7	0x7		
	SS_PARAM2	0xc	0xc		
FREQ_SEL	BUCK1_FREQ_SEL	0x0	2.2 MHz		
	BUCK2_FREQ_SEL	0x0	2.2 MHz		
	BUCK3_FREQ_SEL	0x0	2.2 MHz		
	BUCK4_FREQ_SEL	0x0	2.2 MHz		
	BUCK5_FREQ_SEL	0x0	2.2 MHz		
FSM_STEP_SIZE	PFSM_DELAY_STEP	0xb	0xb		
LDO_RV_TIMEOUT_ REG_1	LDO1_RV_TIMEOUT	0xf	16ms		
	LDO2_RV_TIMEOUT	0xf	16ms		
LDO_RV_TIMEOUT_ REG_2	LDO3_RV_TIMEOUT	0xf	16ms		
	LDO4_RV_TIMEOUT	0xf	16ms		
USER_SPARE_REGS	USER_SPARE_1	0x0	0x0		
	USER_SPARE_2	0x0	0x0		
	USER_SPARE_3	0x0	0x0		
	USER_SPARE_4	0x0	0x0		
ESM_MCU_MODE_CFG	ESM_MCU_EN	0x0	ESM_MCU disabled.		
ESM_SOC_MODE_CFG	ESM_SOC_EN	0x0	ESM_SoC disabled.		
CUSTOMER_NVM_ID_REG	CUSTOMER_NVM_ID	0x0	0x0		

Table 5-	-10. Misce	ellaneous	NVM	Setting	JS

······································					
Pagiatar Nama	Field Name	TPS65931211-Q1			
		Value	Description		
RTC_CTRL_2	XTAL_EN	0x0	Crystal oscillator is disabled		
	LP_STANDBY_SEL	0x0	LDOINT is enabled in standby state.		
	FAST_BIST	0x0	Logic and analog BIST is run at BOOT BIST.		
	STARTUP_DEST	0x3	ACTIVE		
	XTAL_SEL	0x0	6 pF		
PFSM_DELAY_REG_1	PFSM_DELAY1	0x0	0x0		
PFSM_DELAY_REG_2	PFSM_DELAY2	0x0	0x0		
PFSM_DELAY_REG_3	PFSM_DELAY3	0x0	0x0		
PFSM_DELAY_REG_4	PFSM_DELAY4	0x0	0x0		
GENERAL_REG_0	FAST_BOOT_BIST	0x0	LBIST is run during boot BIST		
GENERAL_REG_1	REG_CRC_EN	0x0	Register CRC disabled		

Table 5-10. Miscellaneous NVM Settings (continued)

5.11 Interface Settings

These settings detail the default interface, interface configurations, and device addresses. These settings cannot be changed after device startup.

Desister Neme	Field News	TPS659312	TPS65931211-Q1		
Register Name		Value	Description		
SERIAL_IF_CONFIG	I2C_SPI_SEL	0x0	12C		
	I2C1_SPI_CRC_EN	0x0	CRC disabled		
	I2C2_CRC_EN	0x0	CRC disabled		
I2C1_ID_REG	I2C1_ID	0x48	0x48		
I2C2_ID_REG	I2C2_ID	0x12	0x12		

Table 5-11. Interface NVM Settings

5.12 Watchdog Settings

These settings detail the default watchdog addresses. These settings can be changed though I²C after startup.

Register Name	Field Name	TPS65931211-Q1			
		Value	Description		
WD_LONGWIN_CFG	WD_LONGWIN	0xff	0xff		
WD_THR_CFG	WD_EN	0x1	Watchdog enabled.		

Table 5-12. Watchdog NVM Settings

6 Pre-Configurable Finite State Machine (PFSM) Settings

This section describes the default PFSM settings of the TPS65931211-Q1 devices. These settings cannot be changed after device startup.

6.1 Configured States

In this PDN, the PMIC have the following configured power states:

- PFSM_START
- wait4Enable
- Active (Active SoC)
- S2R (IO + DDR)
- Standby (Partial IO, PMIC OFF)
- TO_SAFE

Figure 6-1 shows the configured PDN power states along with the transition conditions to move between the states. Additionally, the transitions to hardware states, such as SAFE RECOVERY and LP_STANDBY are shown. The hardware states are part of the fixed device power Finite State Machine (FSM) and described in the TPS6593-Q1 data sheet, see Section 8.

Figure 6-1. Pre-Configurable Finite State Machine (PFSM) Mission States and Transitions

When the PMICs transition from the FSM to the PFSM, it waits for a valid ON Request before entering the ACTIVE state. The definition for each power state is described below:

- **PFSM_START** PFSM_START is the first state of the pre-configurable mission states. In this state the PMIC is powered by a valid supply. This state is entered when PMIC transitions from the FSM into PFSM. Once the PMIC arrives the PFSM_START, it waits for a valid ON request before transitioning to the next state.
- ACTIVE The PMIC is powered by a valid supply. The PMIC is fully functional and supply power to all PDN loads. The processor has completed a recommended power up sequence with all voltage domains energized. Refer to the Section 6.3.4 sequence description.
- **S2R** The PMIC is powered by a valid supply. When the GPIO3 (nSLEEP2) is pulled low, only the power resources assigned to the 1.8V IO domain (Buck5) and the DDR (Buck4) are energized while all other domains are OFF to minimize total system power. EN_DRV is forced low in this state. This state supports the IO+DDR (suspend to RAM) low power mode on the AM62A.
- **STANDBY** The PMIC is powered by a valid supply on the system power rail (VCCA > VCCA_UV). All device resources are powered down in the STANDBY state. EN_DRV is forced low in this state. The processor is in the Off state, no voltage domains are energized. Refer to the Section 6.3.2 sequence description.
- **TO_SAFE** If there is an event which causes MODERATE_ERR_INT = '1' or severe error from any of the previous described states, PMIC executes a orderly or immediate sequence and transitions out of the PFSM onto the FSM. MCU power errors and moderate errors result in the orderly shutdown trigger. Severe errors result in the immediate shutdown trigger.

6.2 PFSM Triggers

There are various triggers that can enable a state transition between configured states. Table 6-1 describes each trigger and its associated state transition from highest priority (Immediate Shutdown) to lowest priority. Active triggers of higher priority block triggers of lower priority and the associated sequence.

Trigger	Priority (ID)	Immediate (IMM)	REENTERANT	PFSM Current State	Destination State	Power Sequence or Function Executed
Immediate Shutdown	0	True	False	ANY	TO_SAFE	immediateOff2Safe_pd
Orderly Shutdown	1	True	False	ANY	TO_SAFE	orderlyOff2safe
1 = High (Always True)	2	False	False	STANDBY	LP STANDBY	enterLPstandby
FORCE_STAND BY	3	False	False	ACTIVE, STANDBY, S2R	STANDBY	orderlyOff
WD_ERROR	4	False	True	ACTIVE	ACTIVE	warmReset
ESM MCU Error	5	False	True	ACTIVE	ACTIVE	warmReset
I2C_1	6	False	True	ACTIVE	RUNTIME_BIST	Execute RUNTIME BIST
I2C_2	7	False	True	ACTIVE	ACTIVE	Enable I2C CRC on I 2C1 and I2C2
SU_ACTIVE	8	False	False	STANDBY	ACTIVE	any2active
WKUP1	9	False	False	STANDBY, ACTIVE	ACTIVE	any2active
I2C_0	10	False	False	ACTIVE	STANDBY	orderlyOff
I2C_3	11	False	False	ACTIVE	ACTIVE	Device is prepared for OTA NVM update
FORCE_STAND BY = LOW	12	False	False	PFSM_START	ACTIVE	any2active
MCU_POWER_E RROR	13	False	False	ACTIVE	ACTIVE	warmReset
GPIO9 (rise)	14	False	True	ACTIVE	ACTIVE	ENVPP
GPIO9 (fall)	15	False	True	ACTIVE	ACTIVE	DISVPP
GPIO5 (fall)	16	False	True	ACTIVE	ACTIVE	SD_1V8

 Table 6-1. State Transition Triggers

Trigger	Priority (ID)	Immediate (IMM)	REENTERANT	PFSM Current State	PFSM Destination State	Power Sequence or Function Executed
GPIO5 (rise)	17	False	True	ACTIVE	ACTIVE	SD_3V3
GPIO11 (fall)	18	False	True	ACTIVE	ACTIVE	RST_SDCARD
GPIO11 (rise)	19	False	True	ACTIVE	ACTIVE	EN_SDCARD
A	20	False	False	ACTIVE, S2R	ACTIVE	any2active
D	21	False	False	ACTIVE, S2R	S2R	any2_s2r
1 = High (Always True)	22	True	False	TO_SAFE	SAFE_RECOV ERY	NA

Table 6-1. State Transition Triggers (continued)

6.3 Power Sequences

6.3.1 Sequence: immediateOff2Safe_pd

The immediateOff2Safe_pd sequence occur when transition to the TO_SAFE state. The TPS65931211-Q1 PMIC immediately ceases BUCK switching and enables the pulldown resistors of the BUCKs and LDOs without delay. All rails are immediately shut down to prevent any damage of the PMICs in case of over voltage on VCCA or thermal shutdown. The timing is illustrated in Figure 6-2.

Resource	PMIC	Delay Diagram	Total Delay	Rail Name
EN_DRV	TPS65931211-Q1]	0 us	EN_DRV
LDO2	TPS65931211-Q1]	0 us	VPP
nRSTOUT	TPS65931211-Q1]	0 us	MCU_PORz
BUCK3 Monitor	TPS65931211-Q1	$\overline{}$	0 us	Monitors 3.3V supply
LDO3	TPS65931211-Q1		0 us	VDDR_CORE
BUCK4	TPS65931211-Q1	$\overline{\}$	0 us	VDDS_DDR
LDO4	TPS65931211-Q1	$\overline{\}$	0 us	VDDA_1P8
BUCK5	TPS65931211-Q1	$\overline{\}$	0 us	DVDD1V8(VDDSHVy)
BUCK123	TPS65931211-Q1	$\overline{\}$	0 us	VDD_CORE
LDO1	TPS65931211-Q1		0 us	VDDSHV5
GPIO4	TPS65931211-Q1		0 us	Enable of 3.3 V Power-Switch

Figure 6-2. ImmediateOff Sequence

6.3.2 Sequence: orderlyOff2safe

If a moderate error occurs, an orderly shutdown trigger is generated. This trigger shuts down the PMIC outputs using the recommended power down sequence and proceed to the TO_SAFE state.

If an OFF request occurs, such as the ENABLE pin of the TPS6593-Q1 device being pulled low, the same power down sequence occurs, except that the PMICs go to STANDBY (LP_STANDBY_SEL=0) or LP_STANDBY (LP_STANDBY_SEL=1) states, rather than going to the TO_SAFE state. The power sequence for both of these events is shown in Figure 6-3.

Figure 6-3. OrderlyOff Sequence

6.3.3 Sequence: warmReset

The warmReset sequence can be triggered by either a watchdog, ESM_MCU or MCU_POWER_ERROR. An output failure detection on LDO2 is a valid condition for the MCU_POWER_ERROR trigger which executes a warm reset. An output failure on any of the remaining power resources (Buck1/2/3/4/5 and LDO1/3/4) executes an orderly shutdown. In the event of a warm reset trigger, the nRSTOUT is driven low and the recovery count (register RECOV_CNT_REG_1) increments. Then, all BUCKs and LDOs are reset to their default voltages. The PMICs remain in the ACTIVE state.

At the beginning of the sequence the following instructions are executed:

```
\\ Mask LDO1 UV/OV
REG_WRITE_MASK_IMM ADDR=0x04C DATA=0x03 MASK=0xFC
\\ Set SPMI_LPM_EN
REG_WRITE_MASK_IMM ADDR=0x82 DATA=0x10 MASK=0xEF
\\ Set LPM_EN and AMUXOUT_EN
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xEB
// Increment the recovery counter
REG_WRITE_MASK_IMM ADDR=0xa5 DATA=0x01 MASK=0xFE
```

Note

The watchdog or ESM error is an indication of a significant error which has taken place outside of the PMIC. The PMIC does not actually transition through the safe recovery, however, in order to maintain consistency all of the regulators are returned to the values stored in NVM and the recovery counter is incremented. If the recovery counter exceeds the recovery count threshold the PMICs stay in the safe recovery state. After the sequence, the MCU is responsible for managing the EN_DRV and recovery counter. At the end of the sequence the 'FORCE_EN_DRV_LOW' bit is cleared so that the MCU can set the ENABLE_DRV bit.

Pre-Configurable Finite State Machine (PFSM) Settings

6.3.4 Sequence: any2active

When a trigger causes the any2active sequence to execute, all Buck converters, LDO3 and LDO4 power up in the recommended power up sequence as shown in Figure 6-5. LDO1 can be enabled with a rising edge on GPIO11 after nRSTOUT goes high. LDO2 can be enabled with a rising edge on GPIO9 after nRSTOUT goes high.

At the beginning of the any2active sequence, the PMIC clear SPMI_LP_EN and LPM_EN and set AMUXOUT_EN and CLKMON_EN.

Resource	PMIC	Delay Diagram	Total Delay	Rail Name
GPIO4	TPS65931211-Q1		- 0 us	Enable of 3.3 V Power-Switch
BUCK3 Monitor	TPS65931211-Q1		- 10000 us	Monitors 3.3V supply
BUCK5	TPS65931211-Q1		- 10000 us	DVDD1V8(VDDSHVy)
LDO4	TPS65931211-Q1		- 10000 us	VDDA_1P8
BUCK4	TPS65931211-Q1		- 10600 us	VDDS_DDR
BUCK123	TPS65931211-Q1		- 10900 us	VDD_CORE
LDO3	TPS65931211-Q1		- 11500 us	VDDR_CORE
nRSTOUT	TPS65931211-Q1		- 22500 us	MCU_PORz

Figure 6-5. any2active Sequence

At the end of the any2active sequence the 'FORCE_EN_DRV_LOW' bit is cleared.

Note After the any2active sequence the MCU is responsible for managing the EN_DRV.

6.3.5 Sequence: any2_s2r

The D and A triggers, defined by the NSLEEP2 bit or pin, trigger the any2_s2r sequence to support the IO+DDR low power mode on the processor. This sequence disables all power rails except Buck4 and Buck5 which supplies the 1.8V IO domain and DDR rails.

The following PMIC PFSM instructions are executed automatically in the beginning and at the end of the power sequence:

//Instructions executed at the beginning of the sequence: //mask NSLEEP2 pin and NSLEEP2B bit REG_WRITE_MASK_IMM ADDR=0x07D DATA=0x80 MASK=0x7F

$\ensuremath{//}$ Instructions executed at the end of the sequence:
// unmask NSLEEP2 pin and NSLEEP2B bit
REG_WRITE_MASK_IMM ADDR=0x07D DATA=0x00 MASK=0x7F
// set SPMI_LPM_EN
REG_WRITE_MASK_IMM ADDR=0x82 DATA=0x10 MASK=0xEF
// Clear AMUXOUT_EN, CLKMON_EN, set LPM_EN
REG_WRITE_MASK_IMM ADDR=0x81 DATA=0x04 MASK=0xEB
REG_WRITE_MASK_IMM ADDR=0x081 DATA=0x04 MASK=0xE3

Resource	PMIC	Delay Diagram	Total Delay	Rail Name
EN_DRV	TPS65931211-Q1		0 us	EN_DRV
LDO2	TPS65931211-Q1		0 us	VPP
nRSTOUT	TPS65931211-Q1		200 us	MCU_PORz
BUCK3 Monitor	TPS65931211-Q1		200 us	Monitors 3.3V supply
LDO3	TPS65931211-Q1		400 us	VDDR_CORE
LDO4	TPS65931211-Q1		10600 us	VDDA_1P8
BUCK123	TPS65931211-Q1		11600 us	VDD_CORE
LDO1	TPS65931211-Q1		12200 us	VDDSHV5

Figure 6-6. Suspend to RAM Sequence

7 Application Examples

This section provides examples of how to interact with the PMICs from the perspective of the MCU and over I^2C . Table 7-1 shows how the I^2C commands are presented in the following sections. These examples, when used in conjunction with the data sheet, can be generalized and applied to other use cases.

I2C Address	Register Address	Data	Mask		
0x48 or 0x4C	0x00 - 0xFF	0x00 - 0xFF	0x00 - 0xFF		

Table 7-1. I²C Instruction Format

7.1 Entering and Exiting S2R (Suspend to RAM)

The default configuration of the NVM transitions the PMICs to the ACTIVE state when the ENABLE pin on the TPS65931211 goes high. The nINT pin goes low to indicate that an interrupt has occurred in the PMICs. After a normal power up sequence the BIST_PASS_INT field in the INT_MISC register is set. This interrupt bit indicates that BIST has been completed. Once the BIST_PASS_INT is cleared, the nINT pin is released (goes high) and PMIC can transition to a different state like S2R or Standby. The following section describe how to enter and exit the S2R state by hardware (using the GPIO3 pin) or by software (writing to the NSLEEP2B bit).

Table 7-2. State Table							
NSLEEP2 (GPIO3)	NSLEEP2B (register field)	NSLEEP1B (register field)	NSLEEP1_MASK (register field)	NSLEEP2_MASK (register field)	State / Trigger		
High	Don't care	Don't care	1	0	ACTIVE State / Trigger A		
Low	1	Don't care	1	0	ACTIVE State / Trigger A		
Low	0	Don't care	1	0	S2R State / Trigger D		

Note

The NSLEEP1_MASK bit on register CONFIG_1 is set by default so the NSLEEP1 trigger does not affect FSM state transition. The mask settings can be changed by I2C when the PMIC is in Active state.

The following code block shows how to execute triggers A and D using I2C commands to transition in and out of the S2R state. In this example the, PMIC is already in the S2R state after the GPIO3 was pulled low. The NSLEEP2B register field has effect only if GPO3 (NSLEEP2) is low.

Write 0x48:0x86:0x01:0xFE // Set NSLEEP2B to transition out of the S2R state (Trigger A) Write 0x48:0x86:0x00:0xFE // Clear NSLEEP2B to trigger "any2_s2r" sequence (Trigger D)

Instead of writing to the NSLEEP2B bit to return to the ACTIVE state, it is also possible to use the GPIO3 pin to return the PMIC to the ACTIVE state.

7.2 Entering and Exiting Standby

STANDBY can be entered from ACTIVE, or the S2R states. In order to stay in the mission state of STANDBY and not enter the hardware state LP_STANDBY, the LP_STANDBY_SEL bit must be cleared.

The STANDBY state turns off all regulators. Therefore, it is required to select the state that the STANDBY state returns to. When the ENABLE pin goes low, the orderlyOff sequence is triggered. When the ENABLE pin goes high again, the destination state is dependent upon the STARTUP_DEST bits. The orderlyOff sequence is also triggered by the I2C_0 trigger. In this example, I2C_0 trigger is used to enter the STANDBY state.

```
write 0x48:0xC3:0x00:0xF7 // LP_STANDBY_SEL=0
write 0x48:0x85:0x01:0xFE // set I2C_0 trigger, trigger orderlyOff sequence
Once the PMIC is in Standby state, a wakeup request can be triggered with a rising edge on the
Enable pin.
```

7.3 Entering and Existing LP_STANDBY

Entering the LP_STANDBY hardware state follows the same power-down sequence as entering STANDBY. Exiting LP_STANDBY is different and requires different initializations before entering LP_STANDBY.

When entering LP_STANDBY, the PFSM automatically transitions to the hardware FSM state of SAFE_RECOVERY. From the SAFE_RECOVERY state, the recovery counter is incremented and compared to the recovery count threshold (see RECOV_CNT_REG_2, in Table 5-10). If the recovery count threshold is reached, then the PMICs halt recovery attempts and require a power cycle. Refer to the data sheet for more details.

Write 0x48:0xC3:0x08:0xF7 // LP_STANDBY_SEL=1
Write 0x48:0xC3:0x60;0x9F // Set the STARTUP_DEST=ACTIVE
Write 0x48:0x85:0x01:0xFE // set I2C_0 trigger

8 References

For additional information regarding the PMIC or processor devices, use the following:

- Texas Instruments, AM62A starter kit for low-power Sitara processors
- Texas Instruments, TPS6593 Data sheet
- Texas Instruments, TPS6593-Q1 Safety Manual (request through mySecure)
- Texas Instruments, AM62Ax Data sheet
- Texas Instruments, AM62Ax Sitara Processors Technical Reference Manual

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated