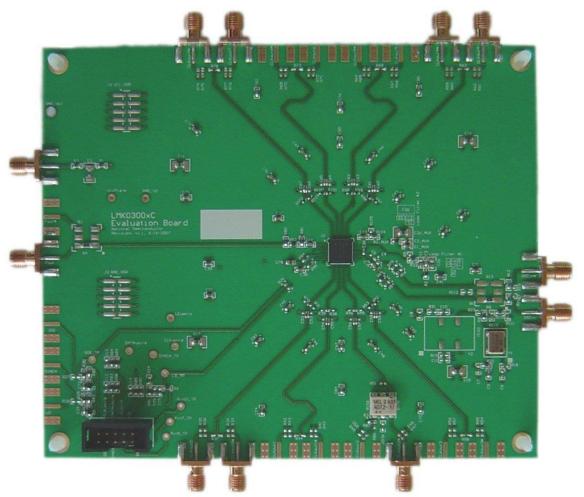
LMK030xxC Evaluation Board

User's Guide

November 2013 SNAU040A



LMK03000C/01C/02C/33C

Precision Clock Conditioner with Integrated VCO Evaluation Board Operating Instructions

April 2009

TABLE OF CONTENTS

EQUIPMENT	5
BASIC OPERATION	
LMK03000C BOARD INFORMATION	
LOOP FILTER #1	9
OSCin	10
Fout	10
Loop Filter	
Features of the board	
Other Important Notes	
1	
Evaluation Board Revision v1.0 Errata	
Results	
PHASE NOISE	
DELAYS	
VCO PERFORMANCE.	
IMPACT OF REFERENCE ON PHASE NOISE	
LMK03001C BOARD INFORMATION LOOP FILTER #1	
OSCin	
Fout	
Loop Filter	18
Features of the board	19
Other Important Notes	19
Evaluation Board Revision v1.0 Errata	
Results	
PHASE NOISE	
DELAYS	
VCO PERFORMANCE	
IMPACT OF REFERENCE ON PHASE NOISE	
LMK03002C BOARD INFORMATION	
LOOP FILTER #1	25
OSCin	26
Fout	
Loop Filter	
Features of the board	
Other Important Notes	
Results	
PHASE NOISE	
DELAYS	
VCO PERFORMANCE	
Loop Filter #2	
IMPACT OF REFERENCE ON PHASE NOISE	
LMK03033C BOARD INFORMATION	
LOOP FILTER #1	
OSCin	
Fout	
Loop Filter	34
Features of the board	35
Nevember 2012 IMK020vvC Evaluation Reard Llear's Quide SNAL1040A 2	

Other Important Notes	35
Evaluation Board Revision v1.0 Errata	
Results	
PHASE NOISE	
DELAYS	
VCO PERFORMANCE	
APPENDIX A: SCHEMATICS	40
APPENDIX B: BILL OF MATERIALS	43
APPENDIX C: BUILD DIAGRAM	45
APPENDIX D: QUICK START ON EVM COMMUNICATION	47

Equipment

Power Supply

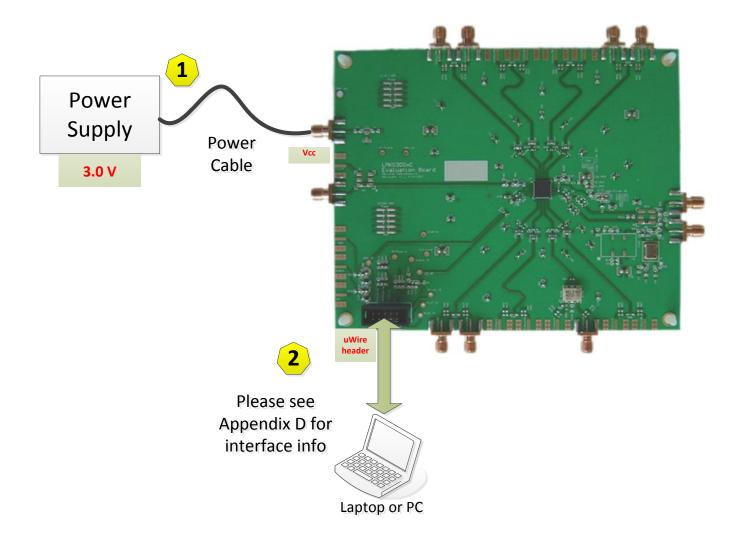
The Power Supply should be a low noise power supply. An Agilent 6623A Triple power supply with LC filters on the output to reduce noise was used in creating these evaluation board instructions.

Phase Noise / Spectrum Analyzer

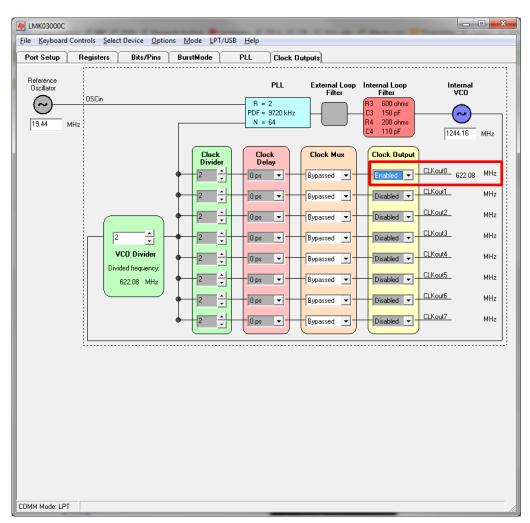
For measuring phase noise an Agilent E5052A is recommended. An Agilent E4445A PSA Spectrum Analyzer with the Phase Noise option is also usable although the architecture of the E5052A is superior for phase noise measurements. At frequencies less than 100 MHz the local oscillator noise of the PSA is too high and measurements will be of the local oscillator, not the device under test.

<u>Oscilloscope</u>

The oscilloscope and probes should be capable of measuring the output frequencies of interest when evaluating this board. The Agilent Infiniium DSO81204A was used in creating these evaluation board instructions.


Reference Oscillator

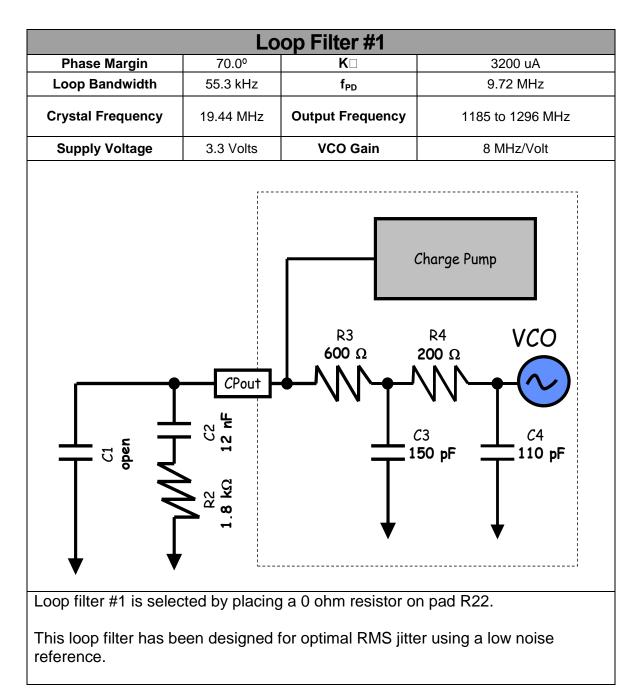
The on board crystal oscillator will provide a low noise reference signal to the device at offsets greater than 1 kHz.


Note: The default loop filter has a loop bandwidth of ~60 kHz. Inside the loop bandwidth of a PLL the noise is greatly affected by any noise on the reference oscillator (OSCin). Therefore any noise on the oscillator less than 60 kHz will be passed through and seen on the outputs. For this reason the main output of a Signal Generator is not recommended for driving OSCin in this setup.

Basic Operation

- 1. Connect a low noise **3.3 V** power supply to the **Vcc** connector located at the top left of the board.
- 2. Please see Appendix D for quick start on interfacing the board. Connect PC to the uWire header.

- 3. Start CodeLoader4.exe.
- 4. Select the USB or LPT Communication Mode on the Port Setup tab as appropriate.
- 5. Enable output to be measured, any of CLKout(0-7) or EN_Fout from either Clock Outputs or Bits/Pins tab. In example below, CLKout0 is enabled.


	ls <u>S</u> elect Device <u>O</u> pt gisters Bits/Pins	BurstMode	PLL	Clock Outputs
	JISCEIS BICS/PINS	Duistmode	FLL	
Power POWERDOWN	Program Pins			
EN_Fout	SYNC*			
Bias Vboost				
VD0030				
Miscellaneous				
DSCin_FREQ	19 -			
PLL_MUX	-			
ΗZ	•			
DIV4 RESET				
PLL_LF				
/CO_R3_LF				
500 ohms /CO_R4_LF	•			
200 ohms	-			
/CO_C3_C4_LF				
C3 = 150 pF, C4 = 110	p 💌			
Channel Outputs ▼ EN_CLKout0				
EN_CENOUR				
EN_CLKout2 EN_CLKout3				
EN_CLKout4 EN_CLKout5				
EN_CLKout6				
EN_CLKout7 EN_CLKout_Global				
MM Mode: LPT				

Program Bits			
POWERDOWN	Powers the part down.		
EN_Fout	Turns on the Fout pin for measuring the internal VCO.		
OSCin_FREQ	Must be set to the OSCin frequency in MHz.		
PLL_MUX	Programmable to many different values to support Lock Detect or aid troubleshooting.		
DIV4	Shall be checked for OSCin frequencies greater than 20 MHz.		
RESET	The registers can be defaulted by checking and unchecking RESET. Software bits will not reflect this.		
VCO_R3_LF VCO_R4_LF VCO_C3_C4_LF	Internal loop filter values, also accessible from Clock Outputs tab.		
EN_CLKout07	Enable CLKout bits from CLKout0 to CLKout7. Also accessible from Clock Outputs tab.		
EN_CLKout_Global Enable all clock outs. If unselected then the EN_CLKouts are overridden and the outputs are all disabled.			

Program Pins GOE Set Global Output Enable to high or low logic level. SYNC* Set SYNC* pin to high or low logic level. TRIGGER Set auxiliary trigger pin to high or low logic level.

- 6. Program the part by clicking "<u>K</u>eyboard Controls" \rightarrow "Load Device" OR by shortcut "Ctrl+L".
- 7. Make measurements... After programming, the uWire cabling can be unplugged from the evaluation board to minimize noise and EMI.
 - 8 SNAU040A

OSCin

By default the board is configured to use the on-board crystal oscillator. It is also possible to use the board with a single ended or differential reference source at the OSCin port. Below are several possible configurations for driving OSCin.

OSCin using on board crystal oscillator [default]			
0 ohm	R8, R11, R20 [power to crystal oscillator], R109		
39 ohm	R9 [can also be 0 ohm – depends on oscillator output power, 39 ohms		
	to be a voltage divider]		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
	R7, R10, R12, R13, R14, R16, R17, R79, R112		

Differential OSCin setup			
0 ohm	R7, R8, R10, R13		
100 ohm	R44		
0.1 uF	C5, C35 (C36 is a 0.1 uF 0402 cap which may be moved to C5)		
Open	C4, C36		
-	R11, R12, R14, R15, R16, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Single ended OSCin setup			
0 ohm	R7, R8		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
-	R10, R11, R12, R13, R14, R16, R17, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Fout

Fout allows direct access to the internal VCO before the clock distribution section. The EN_Fout bit must be selected to enable Fout. A 3 dB pad is placed on R80, R81, and R82.

Loop Filter

R22 and R5 form a "resistor switch" which allows either one of two different loop filters to be selected.

Loop Filter	Resistor Switch	Loop Filter Components	Default Loop Bandwidth
Loop Filter #1 [default]	R22 Shorted	C1, C2, C2p, R2	59.1 kHz
Loop Filter #2	R5 Shorted	C1_AUX, C2_AUX, C2p_AUX, R2_AUX	77 Hz

Features of the board

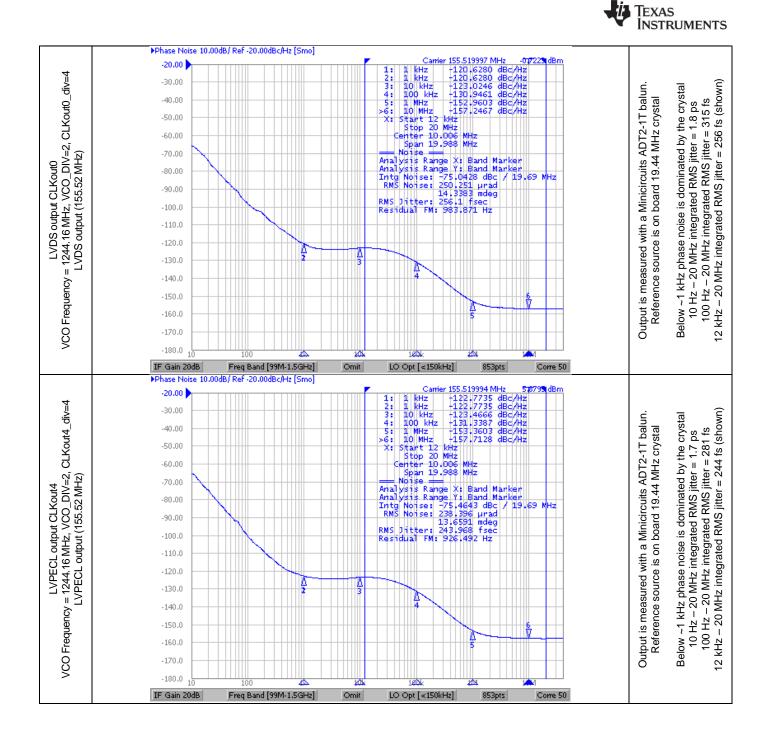
- Either one of two loop filters can be selected by shorting either R22 or R5. More info about each loop filter can be found in the General Description and Appendix A.
- Test points for each of the uWire lines are scattered in the lower left corner of the board and include: GOE TP, DATAuWire, CLKuWire, LEuWire, SYNC TP, and LD TP.
- Ground is located on the unstuffed 10 pin header on the left side of the board. •
- Ground is located on the GND_tp2 in the upper left corner of the board and GND_tp1 located to the right of the Vcc SMA connector.
- Ground is located on the bottom side of the board on each pad of the unstuffed 10 pin header GND_J2.
- Vcc is located on the unstuffed 10 pin header on the upper left side of the board. .
- Vcc is located on VccPlane test point located to the right of the Vcc SMA.
- Vcc is located on the bottom side of the board on each pad of the unstuffed 10 pin header VCC J2

Other Important Notes

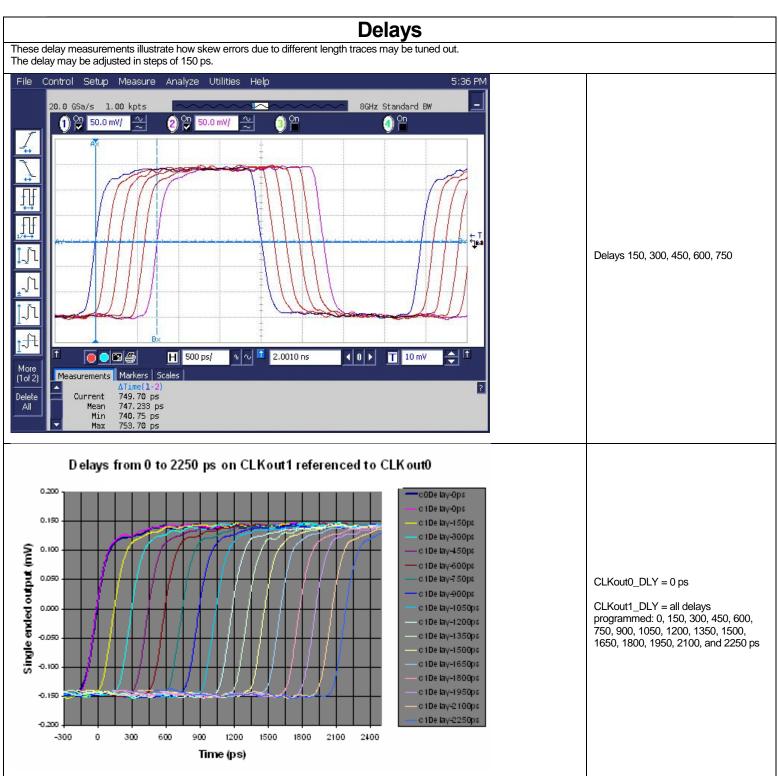
- When changing the OSCin frequency, the OSCin frequency register needs to be changed to match.
- Toggle the SYNC* pin to synchronize the clock outputs when in divided mode.
- For both loop filters, a helper silkscreen is offset from the loop filters to help identify the components according to Texas Instruments Incorporated's traditional reference designators associated with loop filters.

Evaluation Board Revision v1.0 Errata

SYNC* is labeled on the PCB as SYNC, however the logic of SYNC* is still active low!

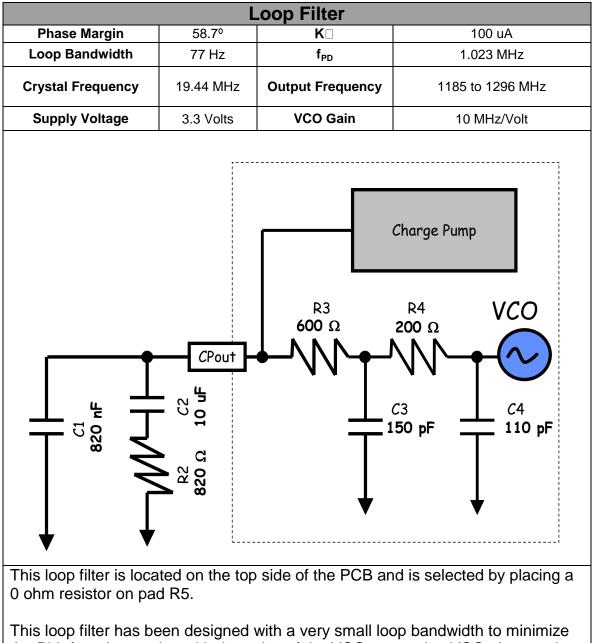


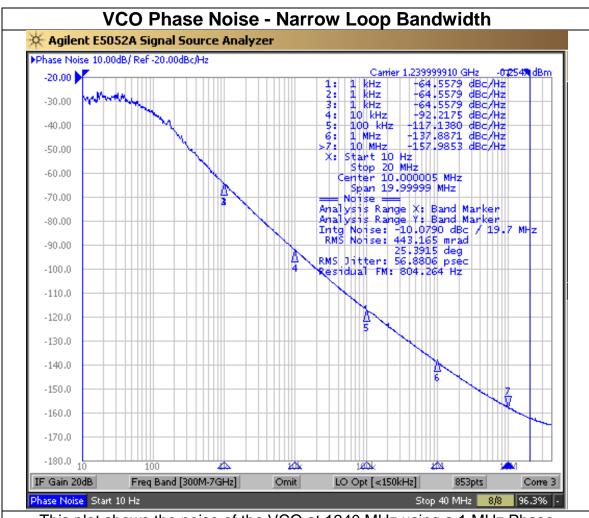
Results


November 2013

LMK030xxC Evaluation Board User's Guide Copyright © 2013, Texas Instruments Incorporated www.ti.com

SNAU040A




VCO Performance

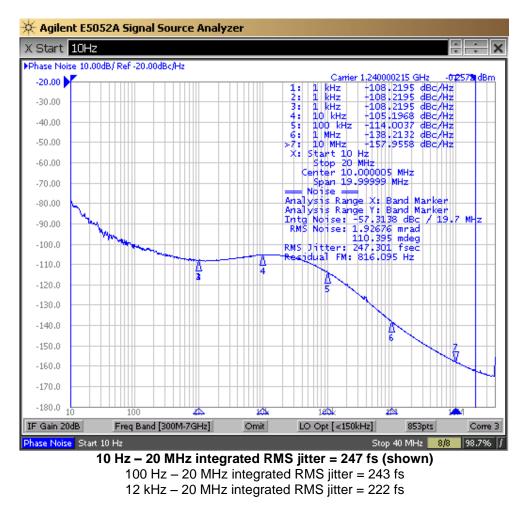
The internal VCO performance is measured by using a narrow bandwidth loop filter. By default the narrow loop bandwidth filter is stuffed as Loop Filter #2 in positions C1_AUX, C2_AUX, C2p_AUX, and R2_AUX and has a loop bandwidth of 77 Hz.

See the Loop Filter section in Board Options for more detail about switching between the two different loop filters.

This loop filter has been designed with a very small loop bandwidth to minimize the PLL from interacting with the noise of the VCO to permit a VCO phase noise measurement.

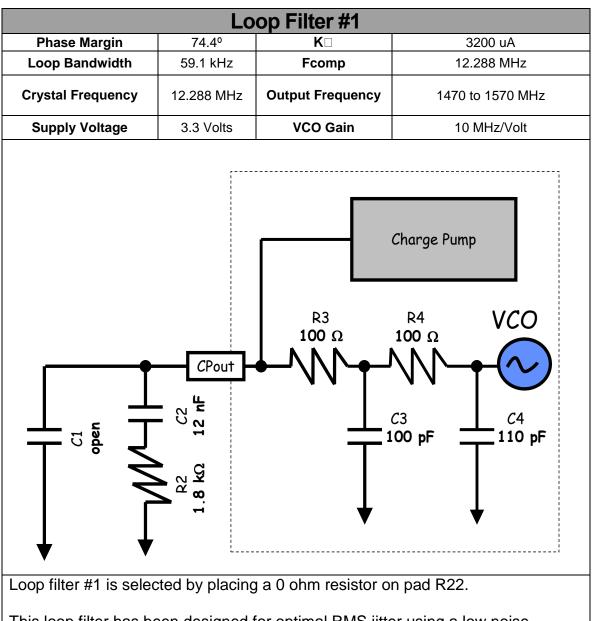
This plot shows the noise of the VCO at 1240 MHz using a 1 MHz Phase Detector Frequency. An external oscillator was used for this plot, since the VCO noise dominates, reference oscillator noise is not critical.

The loop bandwidth has been minimized so that the VCO is the dominant noise contributor.


10 Hz – 20 MHz integrated RMS jitter = 56.9 ps (shown) 100 Hz – 20 MHz integrated RMS jitter = 25.0 ps 12 kHz – 20 MHz integrated RMS jitter = 0.304 ps (datasheet)

Impact of Reference on Phase Noise

Inside the loop bandwidth of a PLL the phase noise is set by the quality of the reference oscillator used. For this reason it is important to select a reference oscillator suitable for the application.


Test Setup

Using the same loop filter as described in the General Description and by driving the OSCin frequency with an ultra low jitter 100 MHz Wetzel Crystal (501-04517D) and setting R = 10 to achieve a phase detector frequency of 10 MHz. A very low integrated RMS jitter of 247 fs is measured vs. the 2.1 ps measured in the Phase Noise section with 19.44 MHz crystal in the bandwidth of 10 Hz to 20 MHz.

Conclusion

This diagram illustrates how the phase noise inside the loop bandwidth is set by the quality of the reference oscillator used. Phase noise outside the loop bandwidth is set by the VCO noise level.

LMK03001C Board information

This loop filter has been designed for optimal RMS jitter using a low noise reference.

OSCin

By default the board is configured to use the on-board crystal oscillator. It is also possible to use the board with a single ended or differential reference source at the OSCin port. Below are several possible configurations for driving OSCin.

OSCin using on board crystal oscillator [default]			
0 ohm	R8, R11, R20 [power to crystal oscillator], R109		
39 ohm	R9 [can also be 0 ohm – depends on oscillator output power, 39 ohms		
	to be a voltage divider]		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
	R7, R10, R12, R13, R14, R16, R17, R79, R112		

Differential OSCin setup			
0 ohm	R7, R8, R10, R13		
100 ohm	R44		
0.1 uF	C5, C35 (C36 is a 0.1 uF 0402 cap which may be moved to C5)		
Open	C4, C36		
	R11, R12, R14, R15, R16, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Single ended	Single ended OSCin setup		
0 ohm	R7, R8		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
-	R10, R11, R12, R13, R14, R16, R17, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Fout

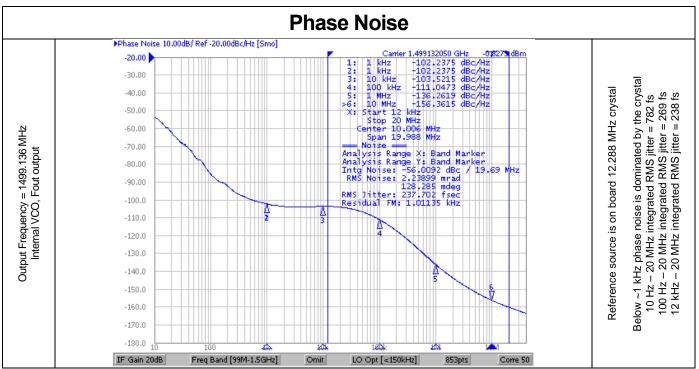
Fout allows direct access to the internal VCO before the clock distribution section. The EN_Fout bit must be selected to enable Fout. A 3 dB pad is placed on R80, R81, and R82.

Loop Filter

R22 and R5 form a "resistor switch" which allows either one of two different loop filters to be selected.

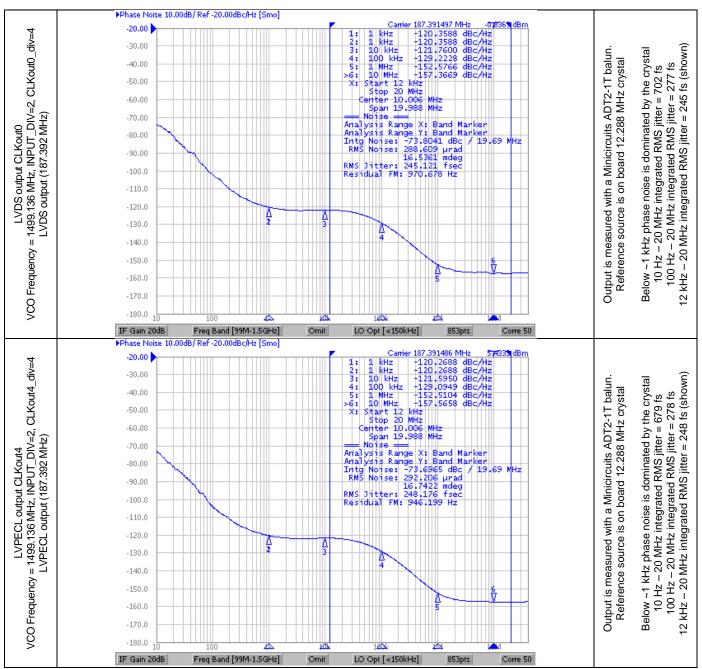
Loop Filter	Resistor Switch	Loop Filter Components	Default Loop Bandwidth
Loop Filter #1 [default]	R22 Shorted	C1, C2, C2p, R2	59.1 kHz
Loop Filter #2	R5 Shorted	C1_AUX, C2_AUX, C2p_AUX, R2_AUX	77 Hz

Features of the board

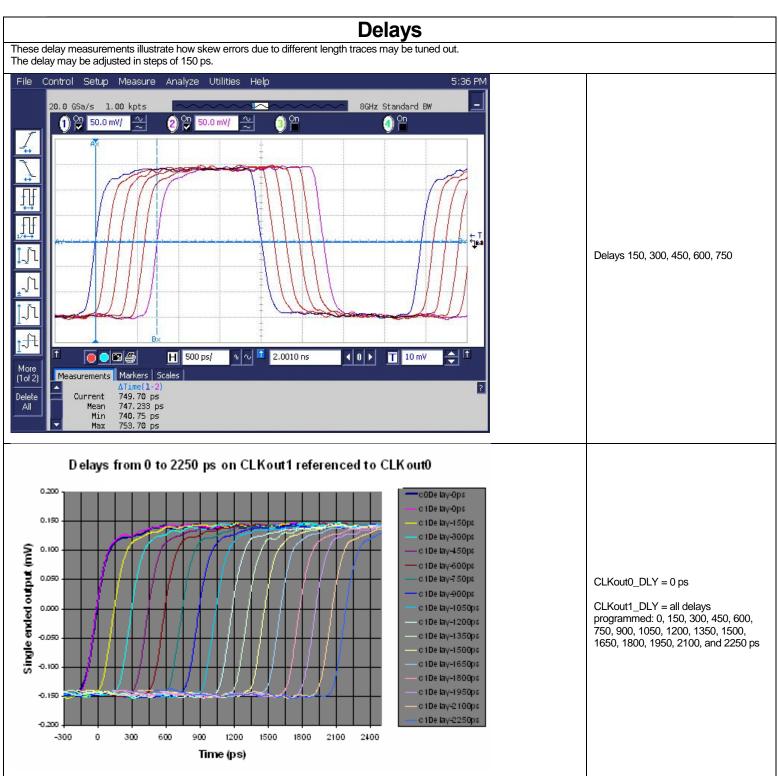

- Either one of two loop filters can be selected by shorting either R22 or R5. More info about each loop filter can be found in the General Description and Appendix A.
- Test points for each of the uWire lines are scattered in the lower left corner of the board and include: GOE_TP, DATAuWire, CLKuWire, LEuWire, SYNC_TP, and LD_TP.
- Ground is located on the unstuffed 10 pin header on the left side of the board.
- **Ground** is located on the GND_tp2 in the upper left corner of the board and GND_tp1 located to the right of the Vcc SMA connector.
- Ground is located on the bottom side of the board on each pad of the unstuffed 10 pin header GND_J2.
- Vcc is located on the unstuffed 10 pin header on the upper left side of the board.
- Vcc is located on VccPlane test point located to the right of the Vcc SMA.
- Vcc is located on the bottom side of the board on each pad of the unstuffed 10 pin header VCC_J2

Other Important Notes

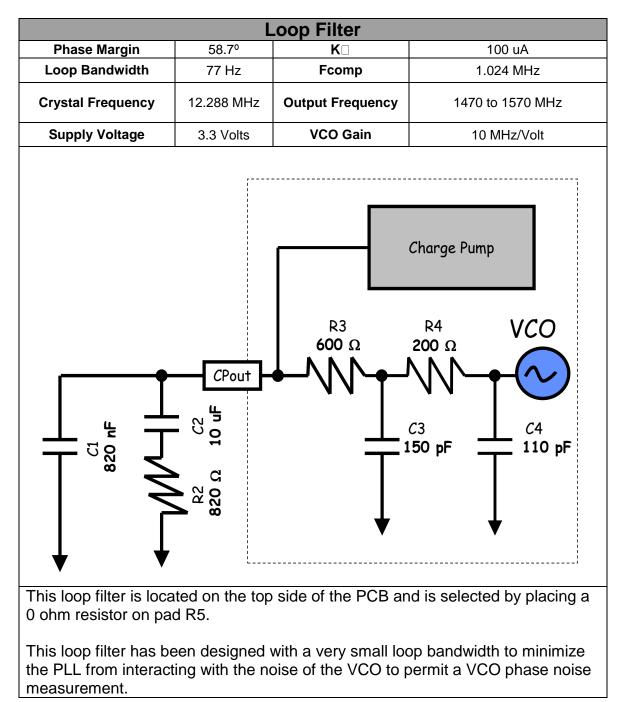
- When changing the OSCin frequency, the OSCin frequency register needs to be changed to match.
- Toggle the SYNC* pin to synchronize the clock outputs when in divided mode.
- For both loop filters, a helper silkscreen is offset from the loop filters to help identify the components
 according to Texas Instruments Incorporated's traditional reference designators associated with loop filters.

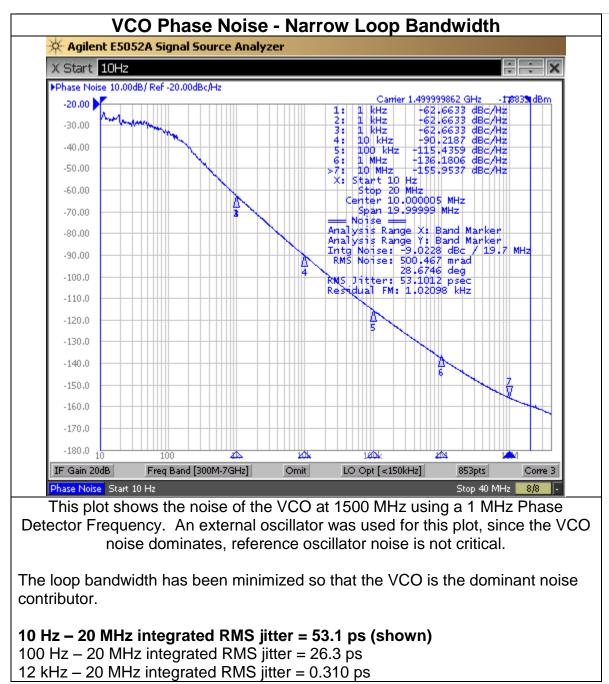

Evaluation Board Revision v1.0 Errata

• SYNC* is labeled on the PCB as SYNC, however the logic of SYNC* is still active low!



Results

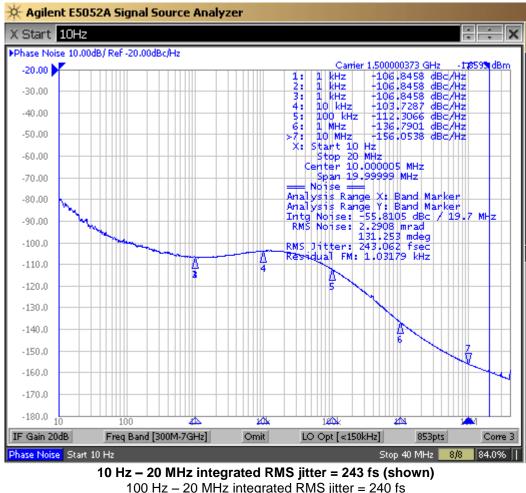




VCO Performance

The internal VCO performance is measured by using a narrow bandwidth loop filter. By default the narrow loop bandwidth filter is stuffed as Loop Filter #2 in positions C1_AUX, C2_AUX, C2p_AUX, and R2_AUX and has a loop bandwidth of 77 Hz.

See the Loop Filter section in Board Options for more detail about switching between the two different loop filters.

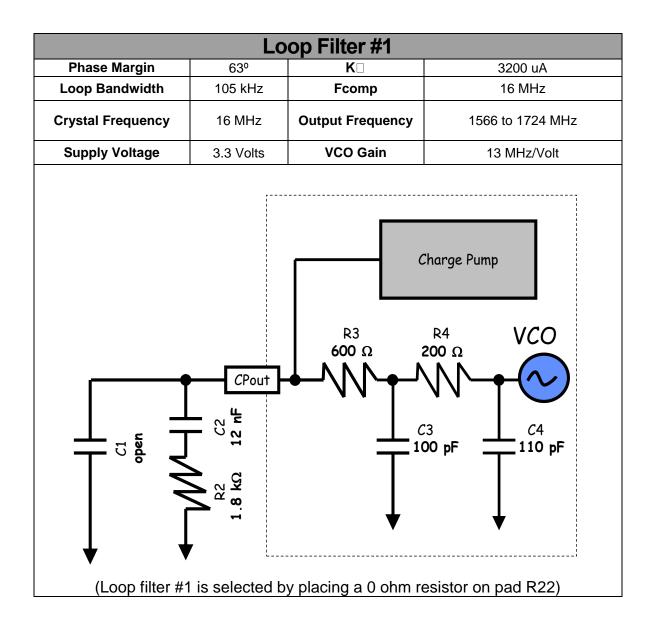


Impact of Reference on Phase Noise

Inside the loop bandwidth of a PLL the phase noise is set by the quality of the reference oscillator used. For this reason it is important to select a reference oscillator suitable for the application.

Test Setup

Using the same loop filter as described in the General Description and by driving the OSCin frequency with an ultra low jitter 100 MHz Wetzel Crystal (501-04517D) and setting R = 10 to achieve a phase detector frequency of 10 MHz. A very low integrated RMS jitter of 243 fs is measured vs. the 782 fs measured in the Phase Noise section with 12.288 MHz crystal in the bandwidth of 10 Hz to 20 MHz.



12 kHz - 20 MHz integrated RMS litter = 240 Is 12 kHz - 20 MHz integrated RMS jitter = 220 fs

Conclusion

This diagram illustrates how the phase noise inside the loop bandwidth is set by the quality of the reference oscillator used. Phase noise outside the loop bandwidth is set by the VCO noise level.

LMK03002C Board information

OSCin

By default the board is configured to use the on-board crystal oscillator. It is also possible to use the board with a single ended or differential reference source at the OSCin port. Below are several possible configurations for driving OSCin.

OSCin using on board crystal oscillator [default]			
0 ohm	R8, R11, R20 [power to crystal oscillator], R109		
39 ohm	R9 [can also be 0 ohm – depends on oscillator output power, 39 ohms		
	to be a voltage divider]		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
	R7, R10, R12, R13, R14, R16, R17, R79, R112		

Differential OSCin setup			
0 ohm	R7, R8, R10, R13		
100 ohm	R17		
0.1 uF	C5, C35 (C36 is a 0.1 uF 0402 cap which may be moved to C5)		
Open	C4, C36		
	R11, R12, R14, R15, R16, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

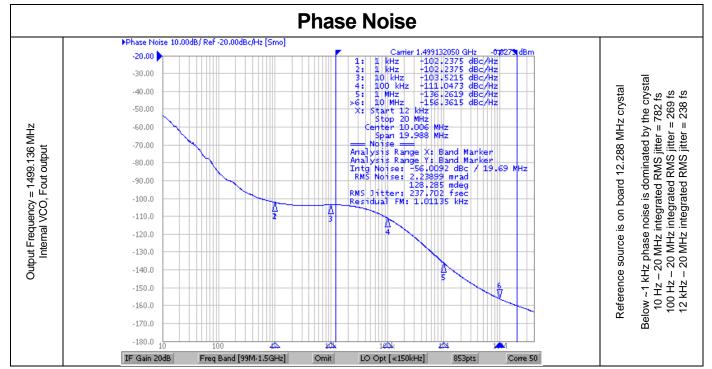
Single ended OSCin setup			
0 ohm	R7, R8		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
-	R10, R11, R12, R13, R14, R16, R17, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Fout

Fout allows direct access to the internal VCO before the clock distribution section. The EN_Fout bit must be selected to enable Fout. A 3 dB pad is placed on R80, R81, and R82.

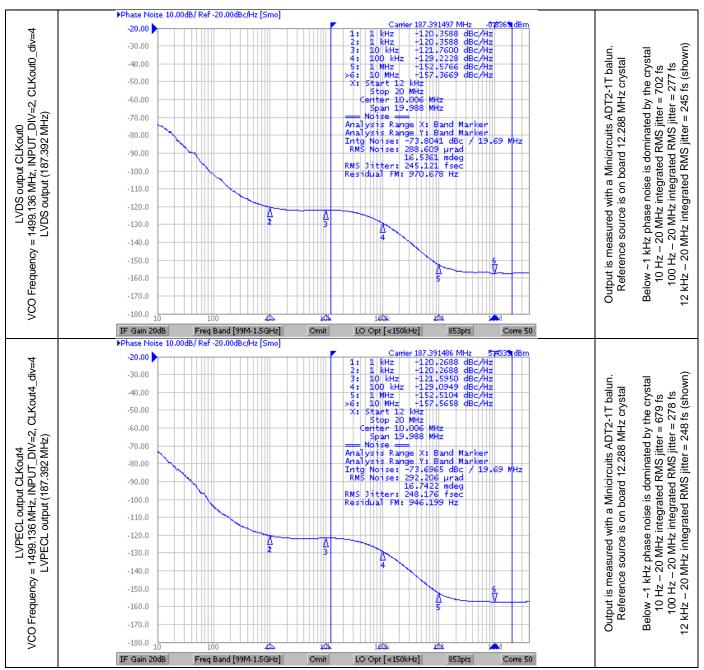
Loop Filter

R22 and R5 form a "resistor switch" which allows either one of two different loop filters to be selected.


Loop Filter	Resistor Switch	Loop Filter Components	Default Loop Bandwidth
Loop Filter #1 [default]	R22 Shorted	C1, C2, C2p, R2	105 kHz
Loop Filter #2	R5 Shorted	C1_AUX, C2_AUX, C2p_AUX, R2_AUX	55 Hz

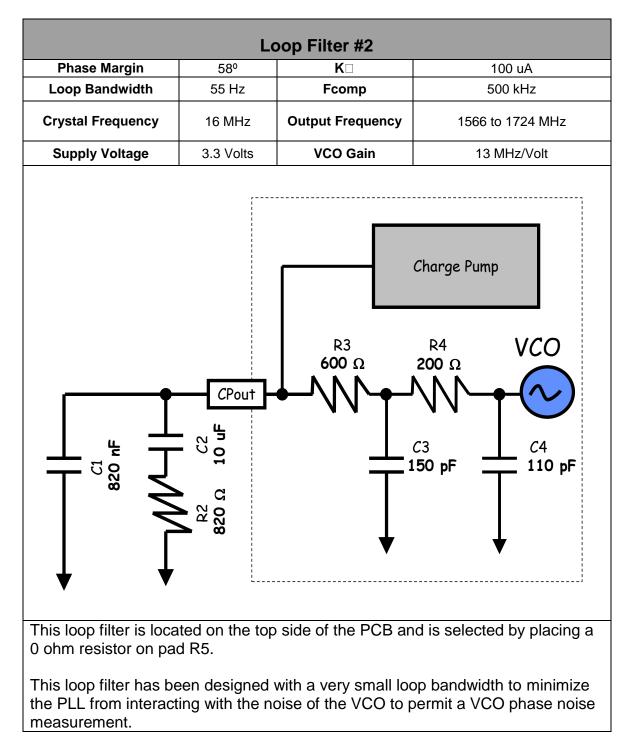
Features of the board

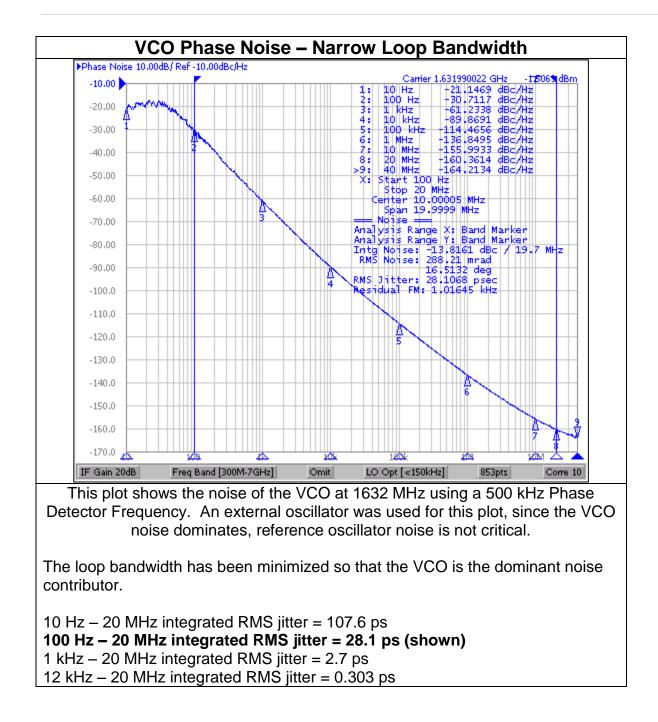
- Either one of two loop filters can be selected by shorting either R22 or R5. More info about each loop filter can be found in the General Description and Appendix A.
- Test points for each of the uWire lines are scattered in the lower left corner of the board and include: GOE_TP, DATAuWire, CLKuWire, LEuWire, SYNC_TP, and LD_TP.
- Ground is located on the unstuffed 10 pin header on the left side of the board.
- **Ground** is located on the GND_tp2 in the upper left corner of the board and GND_tp1 located to the right of the Vcc SMA connector.
- **Ground** is located on the bottom side of the board on each pad of the unstuffed 10 pin header GND_J2.
- Vcc is located on the unstuffed 10 pin header on the upper left side of the board.
- **Vcc** is located on VccPlane test point located to the right of the Vcc SMA.
- Vcc is located on the bottom side of the board on each pad of the unstuffed 10 pin header VCC_J2


Other Important Notes

- When changing the OSCin frequency, the OSCin frequency register needs to be changed to match.
- Toggle the SYNC* pin to synchronize the clock outputs when in divided mode.
- For both loop filters, a helper silkscreen is offset from the loop filters to help identify the components according to Texas Instruments Incorporated's traditional reference designators associated with loop filters.

Results

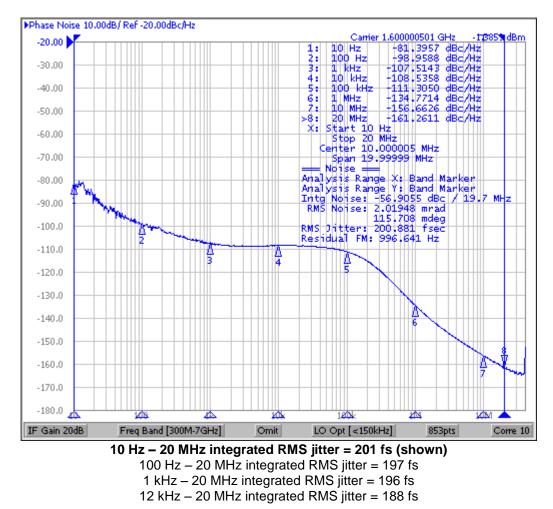




VCO Performance

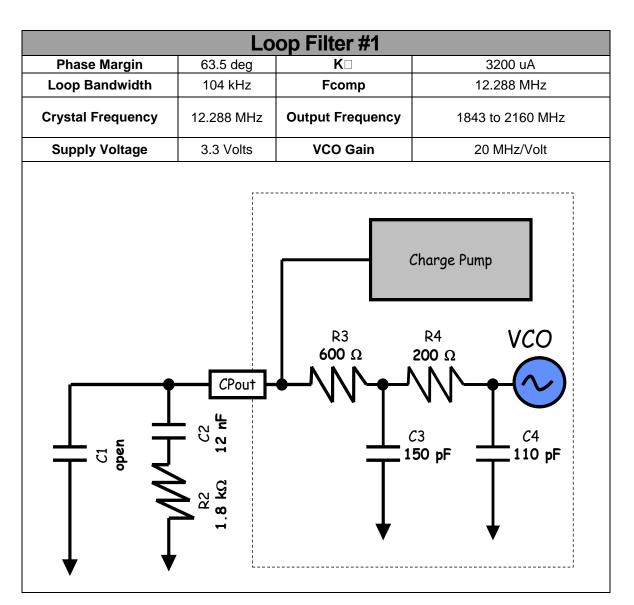
The internal VCO performance is measured by using a narrow bandwidth loop filter. By default the narrow loop bandwidth filter is stuffed as Loop Filter #2 in positions C1_AUX, C2_AUX, C2p_AUX, and R2_AUX and has a loop bandwidth of 55 Hz.

See the Loop Filter section in Board Options for more detail about switching between the two different loop filters.



Impact of Reference on Phase Noise

Inside the loop bandwidth of a PLL the phase noise is set by the quality of the reference oscillator used. For this reason it is important to select a reference oscillator suitable for the application.


Test Setup

Using the same loop filter as described in the General Description and by driving the OSCin frequency with an ultra low jitter 100 MHz Wetzel Crystal (501-04517D) and setting R = 5 to achieve a phase detector frequency of 20 MHz. A very low integrated RMS jitter of 201 fs is measured vs. the 474 fs measured in the Phase Noise section with 16 MHz crystal in the bandwidth of 10 Hz to 20 MHz.

Conclusion

This diagram illustrates how the phase noise inside the loop bandwidth is set by the quality of the reference oscillator used. Phase noise outside the loop bandwidth is set by the VCO noise level.

LMK03033C Board information

OSCin

By default the board is configured to use the on-board crystal oscillator. It is also possible to use the board with a single ended or differential reference source at the OSCin port. Below are several possible configurations for driving OSCin.

OSCin using on board crystal oscillator [default]		
0 ohm	R8, R11, R20 [power to crystal oscillator], R109	
39 ohm	R9 [can also be 0 ohm – depends on oscillator output power, 39 ohms	
	to be a voltage divider]	
51 ohm	R15	
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)	
Open	C4, C5	
	R7, R10, R12, R13, R14, R16, R17, R79, R112	

Differential OSCin setup		
0 ohm	R7, R8, R10, R13	

100 ohm	R44		
0.1 uF	C5, C35 (C36 is a 0.1 uF 0402 cap which may be moved to C5)		
Open	C4, C36		
	R11, R12, R14, R15, R16, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Single ended OSCin setup			
0 ohm	R7, R8		
51 ohm	R15		
0.1 uF	C35, C36 (C5 is a 0.1 uF 0402 cap which may be moved to C36)		
Open	C4, C5		
	R10, R11, R12, R13, R14, R16, R17, R79		
	R20 [remove power from crystal oscillator for noise reasons]		

Fout

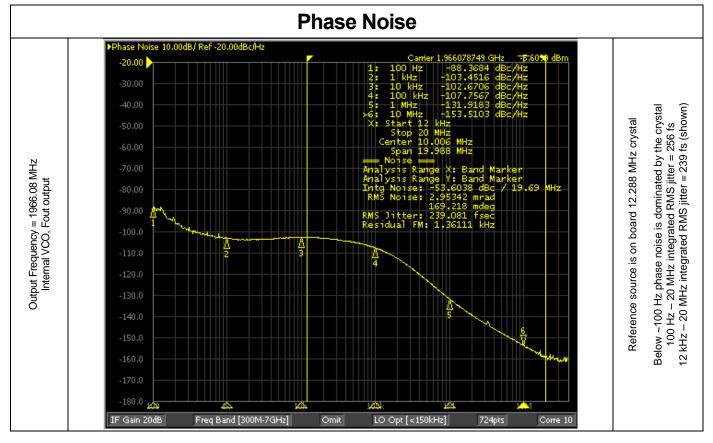
Fout allows direct access to the internal VCO before the clock distribution section. The EN_Fout bit must be selected to enable Fout. A 3 dB pad is placed on R80, R81, and R82.

Loop Filter

R22 and R5 form a "resistor switch" which allows either one of two different loop filters to be selected.

Loop Filter	Resistor Switch	Loop Filter Components	Default Loop Bandwidth
Loop Filter #1 [default]	R22 Shorted	C1, C2, C2p, R2	
Loop Filter #2	R5 Shorted	C1_AUX, C2_AUX, C2p_AUX, R2_AUX	

Features of the board

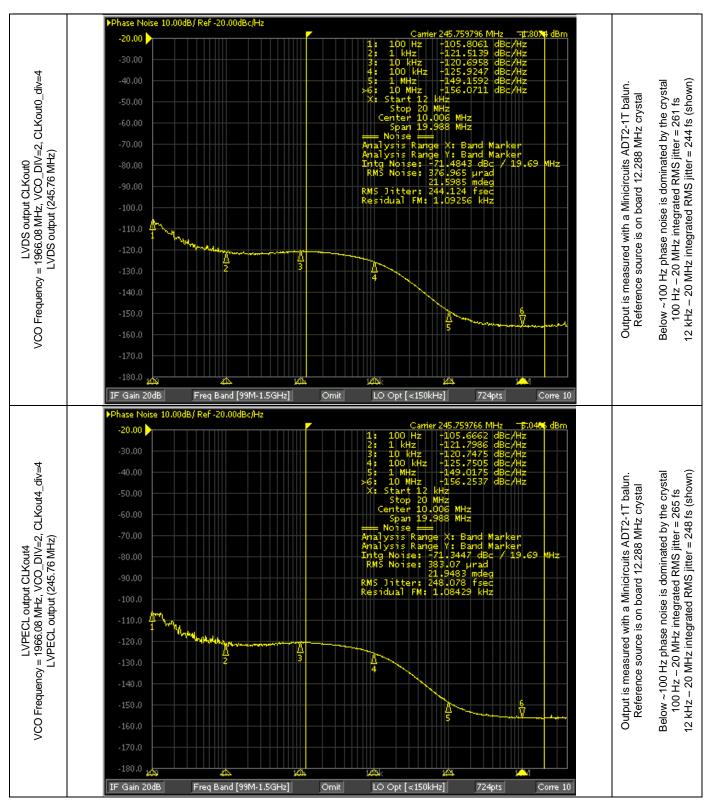

- Either one of two loop filters can be selected by shorting either R22 or R5. More info about each loop filter can be found in the General Description and Appendix A.
- Test points for each of the uWire lines are scattered in the lower left corner of the board and include: GOE_TP, DATAuWire, CLKuWire, LEuWire, SYNC_TP, and LD_TP.
- Ground is located on the unstuffed 10 pin header on the left side of the board.
- Ground is located on the GND_tp2 in the upper left corner of the board and GND_tp1 located to the right
 of the V_{cc} SMA connector.
- **Ground** is located on the bottom side of the board on each pad of the unstuffed 10 pin header GND_J2.
- V_{CC} is located on the unstuffed 10 pin header on the upper left side of the board.
- V_{cc} is located on V_{cc}Plane test point located to the right of the V_{cc} SMA.
- V_{cc} is located on the bottom side of the board on each pad of the unstuffed 10 pin header VCC_J2

Other Important Notes

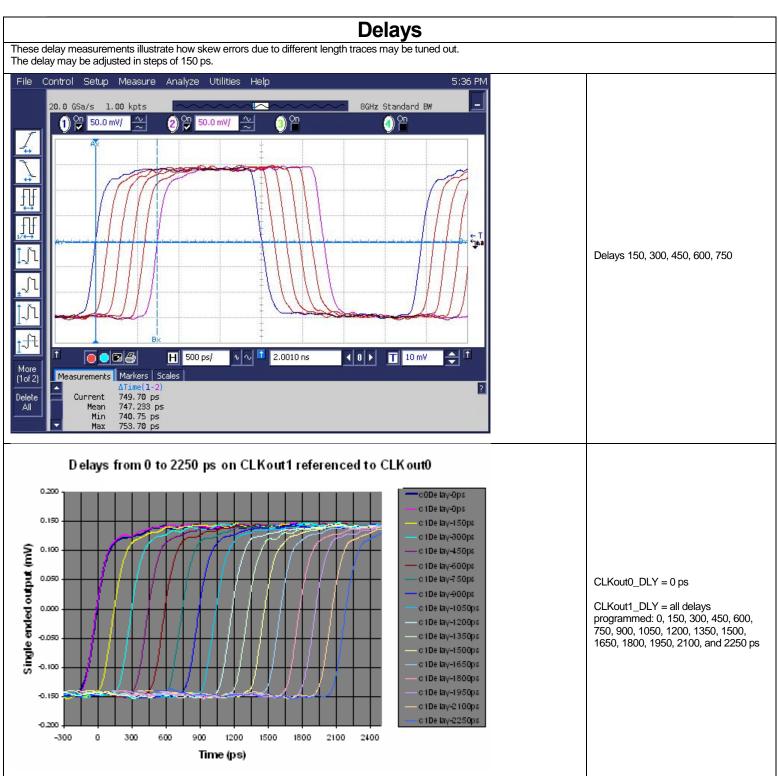
- When changing the OSCin frequency, the OSCin frequency register needs to be changed to match.
- Toggle the SYNC* pin to synchronize the clock outputs when in divided mode.
- For both loop filters, a helper silkscreen is offset from the loop filters to help identify the components
 according to Texas Instruments Incorporated's traditional reference designators associated with loop filters.

Evaluation Board Revision v1.0 Errata

• SYNC* is labeled on the PCB as SYNC, however the logic of SYNC* is still active low!

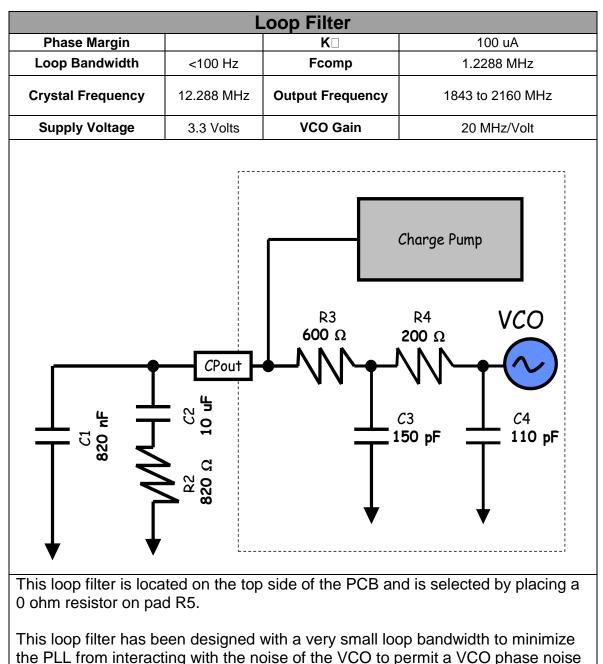

Results

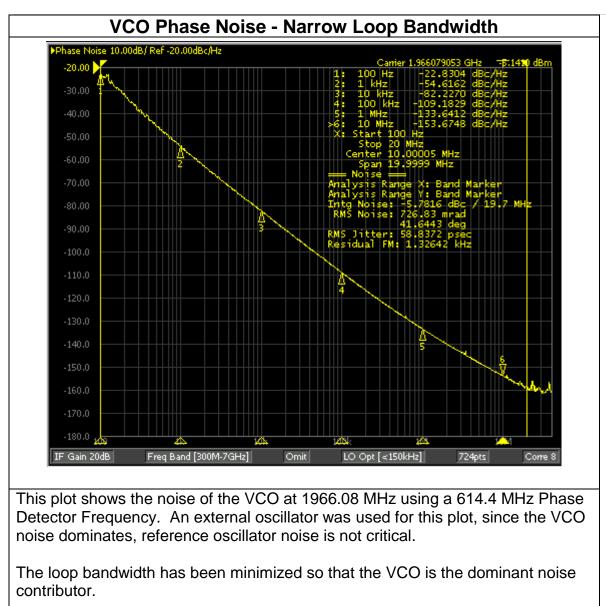
November 2013


LMK030xxC Evaluation Board User's Guide Copyright © 2013, Texas Instruments Incorporated www.ti.com

SNAU040A 35

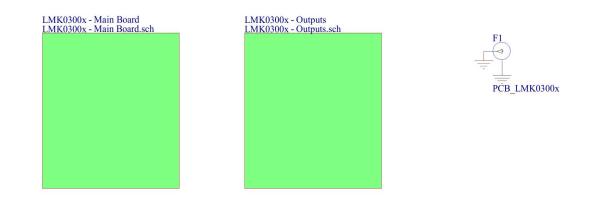
TEXAS INSTRUMENTS

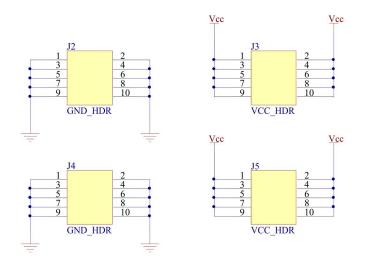


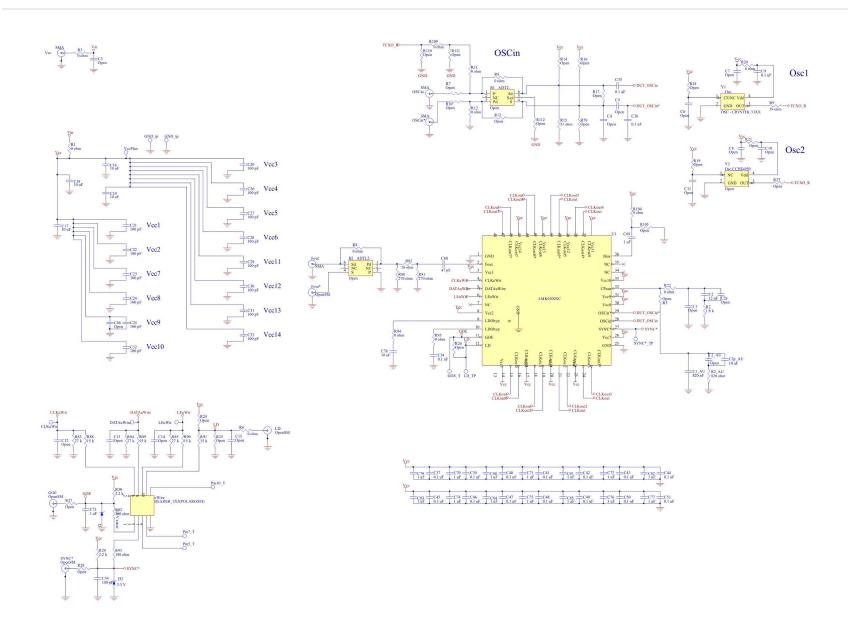

VCO Performance

The internal VCO performance is measured by using a narrow bandwidth loop filter. By default the narrow loop bandwidth filter is stuffed as Loop Filter #2 in positions C1_AUX, C2_AUX, C2p_AUX, and R2_AUX and has a narrow loop bandwidth.

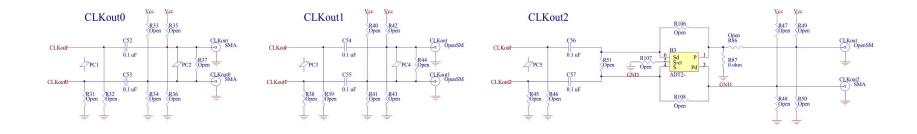
See the Loop Filter section in Board Options for more detail about switching between the two different loop filters.

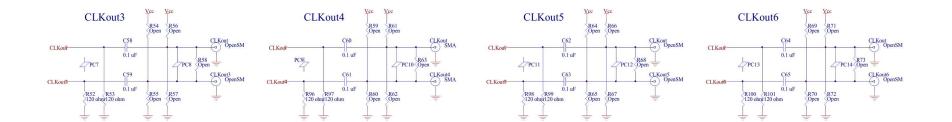


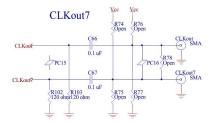

measurement.


100 Hz – 20 MHz integrated RMS jitter = 58.8 ps (shown)

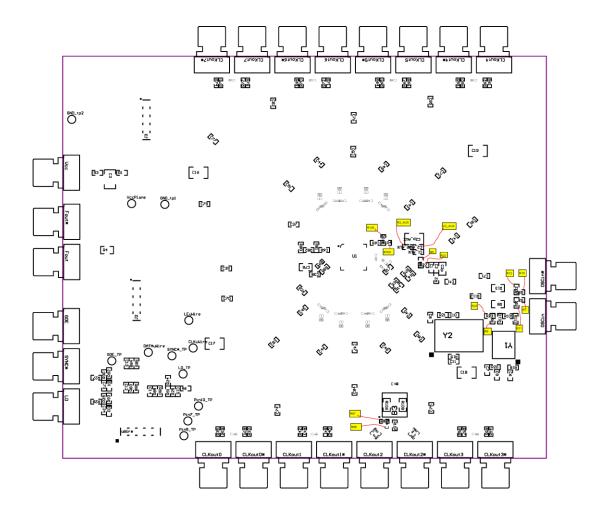
Appendix A: Schematics



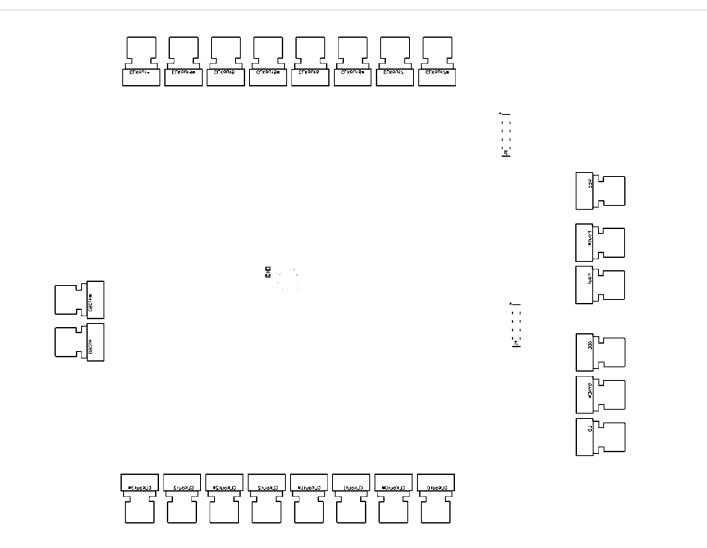

40 SNAU040A



SNAU040A **41**

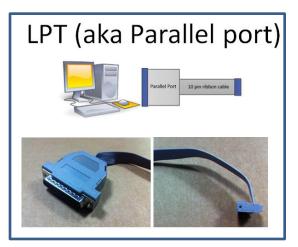


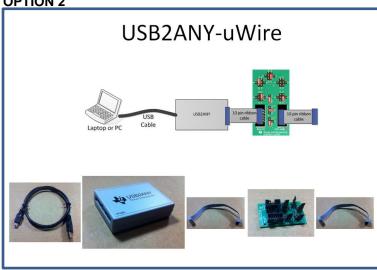
Part	Manufacturer	Part Number	Qnt	Identifier		
Capacitors						
47 pF	Kemet	C0603C470J5GAC	1	C68		
-				C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31,		
100 pF	Kemet	C0402C101J5GAC	14	C32, C33		
100 pF	Kemet	C0603C101J5GAC	1	C34		
12 nF	Kemet	C0603C123K1RACTU	1	C2		
0.1 uF	Kemet	C0603C104J3RAC	16	C9, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C50, C51		
0.1 uF	Kemet	C0402C104J4RAC	18	C35, C36, C52, C53, C54, C55, C56, C57, C58, C59, C60, C61, C62, C63, C64, C65, C66, C67		
820 nF	Kemet	C0603C824K8PAC	1	C1_AUX		
1 uF	Kemet	C0603C105K8VAC	16	C69, C70, C71, C72, C73, C74, C75, C76, C77, C79, C80, C81, C82, C83, C84, C85		
10 uF	Kemet	C0805C106K9PAC	5	C2p_AUX, C16, C17, C18, C19		
10 uF	Kemet	C0805C106K9PAC	1	C78		
Resistors						
0 ohm	Vishay	CRCW0603000ZRT1	10	R1, R3, R6, R11, R12, R20, R22, R95, R104, R109		
0 ohm	Yageo	RC0805JR-070RL	2	R4, R8		
0 ohm	Vishay	CRCW0603000ZRT1	2	R87, R94		
18 ohm	Vishay	CRCW0603180JRT1	1	R82		
39 ohm	Vishay	CRCW0603390JRT1	1	R9		
51 ohm	Vishay/Dale	CRCW060351R0JNEA	1	R15		
120 ohm	Vishay	CRCW0402120RJNED	10	R52, R53, R96, R97, R98, R99, R100, R101, R102, R103		
180 ohm	Vishay	CRCW0603181JRT1	2	R92, R93		
270 ohm	Vishay	CRCW0603271JRT1	2	R80, R81		
820 ohm	Vishay	CRCW0603821JRT1	1	R2_AUX		
1.8 k	Vishay/Dale	CRCW06031K80JNEA	1	R2		
2.2 k	Vishay/Dale	CRCW06032K20JNEA	2	R29, R30		
15 k	Vishay	CRCW0603153JRT1	4	R88, R89, R90, R91		
27 k	Vishay	CRCW0603273JRT1	3	R83, R84, R85		


Appendix B: Bill of Materials

Other				
		LMK03000C/LMK03001C		
	Texas	/		
LMK030xxC	Instruments	LMK03002C/LMK03033C	1	U1
OSC - CRYSTEK				
33xx	Crystek	C3391-19.440	1	Y1
ADT2-1T	Minicircuits	ADT2-1T	1	B3
	Johnson			CLKout0, CLKout0*, CLKout2*, CLKout4, CLKout4*, CLKout7,
SMA	Components	142-0701-851	11	CLKout7*, Fout, OSCin, OSCin*, Vcc
3.3 V zener	Comchip	CZRU52C3V3	2	D1, D2
	Printed Circuits	PCB_LMK0300x rev 1.1,		
PCB_LMK0300x	Corp	6-16-2007	1	F1
HEADER_2X5(P		52004 840 9	4	. Mire
OLARIZED)	FCI Electronics	52601-S10-8	1	
SPCS-8	SPC Technology	SPCS-8	4	Standoffs in the four corners (insert from bottom)
Open				
Open	-	Open	2	B1, B2
				C1, C2_AUX, C6, C7, C8, C10, C11, C12, C13, C14, C15, R5, R7,
_				R10, R14, R16, R17, R18, R19, R21, R23, R24, R25, R26, R27,
Open	-	603	32	R28, R79, R105, R107, R110, R111, R112
Open	-	805	1	С2р
Open	-	Open	1	C3
				C4, C5, R31, R32, R37, R38, R39, R44, R45, R46, R51, R58, R63,
Open	-	402	16	R68, R73, R78
				C86, R33, R34, R35, R36, R40, R41, R42, R43, R47, R48, R49,
0			0.4	R50, R54, R55, R56, R57, R59, R60, R61, R62, R64, R65, R66,
Open	-	603	34	R67, R69, R70, R71, R72, R74, R75, R76, R77, R86
OpenSMA		Open	13	CLKout1, CLKout1*, CLKout2, CLKout3, CLKout3*, CLKout5, CLKout5*, CLKout6, CLKout6*, Fout*, GOE, LD, SYNC*
1		HEADER 2X5	2	J2, J4
Open Open	-	HEADER_2X5	2	
Open Open	-	-		J3, J5
Open	-	805	3	R13, R106, R108
Open	-	Open	1	Y2

Appendix C: Build Diagram



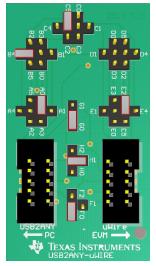

Appendix D: Quick Start on EVM Communication

Codeloader is the software used to communicate with the EVM (Please download the latest version from TI.com - http://www.ti.com/tool/codeloader). This EVM can be controlled through the uWire interface on board. There are two options in communicating with the uWire interface from the computer.

OPTION 1

Open Codeloader.exe \rightarrow Click "Select Device" \rightarrow Click "Port Setup" tab \rightarrow Click "LPT" (in Communication Mode)

OPTION 2



The Adapter Board

This table describes the pins configuration on the adapter board for each EVM board (See examples below table)

EVM	Jumper Bank							Code Loader Configuration		
EVIVI	Α	В	С	D	E	F	G	Н		
LMX2581	A4	B1	C2		E5	F1	G1	H1	BUFEN (pin 1), Trigger (pin 7)	
LMX2541	A4		C3		E4	F1	G1	H1	CE (pin 1), Trigger (pin 10)	
LMK0400x	A0		C3		E5	F1	G1	H1	GOE (pin 7)	
LMK01000	A0		C1		E5	F1	G1	H1	GOE (pin 7)	
LMK030xx	A0		C1		E5	F1	G1	H1	SYNC (pin 7)	
LMK02000	A0		C1		E5	F1	G1	H1	SYNC (pin 7)	
LMK0480x	A0	B2	C3		E5	F0	G0	H1	Status_CLKin1 (pin 3)	
LMK04816/4906	A0	B2	C3		E5	F0	G0	H1	Status_CLKin1 (pin 3)	
LMK01801	A0	B4	C5		E2	F0	G0	H1	Test (pin 3), SYNC0 (pin 10)	
LMK0482x (prelease)	A0	B5	C3	D2	E4	F0	G0	H1	CLKin1_SEL (pin 6), Reset (pin 10)	
LMX2531	A0				E5	F2	G1	H2	Trigger (pin 1)	
LMX2485/7	A0		C1		E5	F2	G1	H0	ENOSC (pin 7), CE (pin 10)	
LMK03200	A0				E5	F0	G0	H1	SYNC (pin 7)	
LMK03806	A0		C1		E5	F0	G0	H1		
LMK04100	A0		C1		E5	F1	G1	H1		

Example adapter configuration (LMK01801)

Open Codeloader.exe \rightarrow Click "Select Device" \rightarrow Click "Port Setup" Tab \rightarrow Click "USB" (in Communication Mode)

*Remember to also make modifications in "Pin Configuration" Section according to Table above.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications				
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive			
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications			
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers			
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps			
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy			
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial			
Interface	interface.ti.com	Medical	www.ti.com/medical			
Logic	logic.ti.com	Security	www.ti.com/security			
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense			
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video			
RFID	www.ti-rfid.com					
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com			
Wireless Connectivity	www.ti.com/wirelessconnectivity					

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated