This user’s guide describes how to set up and operate the LMK04826/8 evaluation module (EVM). The LMK04826/8 is the industry’s highest performance clock conditioner with JEDEC JESD204B support.

Contents
1 Evaluation Board Kit Contents .. 2
2 Quick Start .. 3
3 PLL Loop Filters and Loop Parameters ... 9
4 Default TICS Pro Modes for the LMK0482x 10
5 Using TICS Pro to Program the LMK0482x 11
6 Evaluation Board Inputs and Outputs .. 16
7 Recommended Test Equipment .. 19
Appendix A TICS Pro Usage .. 20
Appendix B Typical Phase Noise Performance Plots 29
Appendix C Schematics .. 39
Appendix D Bill of Materials ... 45

List of Figures
1 Quick Start Diagram .. 3
2 CLKout Page Description Diagram ... 4
3 Continuous SYSREF Output .. 6
4 Pulsed SYSREF Output .. 7
5 Clock Outputs Page Setup for SYSREF Output on SDCLKout7 8
6 Selecting a Default Mode for the LMK04828 Device 10
7 Selecting the LMK04828B ... 12
8 Loading the Device ... 12
9 Setting the Default Mode for LMK04828 ... 14
10 Setting Digital Delay, Clock Divider, Analog Delay and Output Format ... 15
11 TICS Pro - User Controls Page .. 21
12 TICS Pro - Raw Registers Page ... 22
13 TICS Pro - Set Modes Page ... 23
14 TICS Pro - CLKinX Control Page ... 24
15 TICS Pro - SYNC / SYSREF Page .. 25
16 TICS Pro - Clock Outputs Page ... 26
17 TICS Pro - Other Page .. 27
18 TICS Pro - Burst Page ... 28
19 Crystek CVHD-950-122.88 MHz VCXO Phase Noise at 122.88 MHz ... 30
20 LMK04826 DCLKout2, VCO0, 245.76 MHz, Div8, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = Prodyn BIB-100G.. 31
21 LMK04826 DCLKout2, VCO0, 245.76 MHz, Div8, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended ... 32
22 LMK04826 DCLKout2, VCO1, 245.76 MHz, Div10, LVPECL20 /w 240 ohm emitter resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = Prodyn BIB-100G... 33
23 LMK04826 DCLKout2, VCO1, 245.76 MHz, Div10, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended ... 34
1 Evaluation Board Kit Contents
The evaluation board kit includes what is shown in Table 1. Note that -002 and -003 are currently available.

Table 1. EVM Contents

<table>
<thead>
<tr>
<th>Table 1. EVM Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV600788</td>
</tr>
<tr>
<td>Evaluation Board</td>
</tr>
<tr>
<td>USB Communications</td>
</tr>
</tbody>
</table>
1. **Power**

 - Connect power to 4 to 5 V.
 - CLKin
 - Reference clock from signal generator or other external source.
 - 122.88 MHz (Default)

2. **Reference**

 - Reference clock from signal generator or other external source.
 - 122.88 MHz (Default)

3. **USB2ANY**

 - USB cable to Laptop or PC
 - HPA665
 - 10-Pin Ribbon Cable
 - PLL1 Digital Lock Detect LED

4. **Program with TICS Pro**

 - Be sure to press "Ctrl-L" or USB communications → Write All Registers

5. **5 Program with TICS Pro**

 - PLL2 Digital Lock Detect LED
 - These SMAs not used by default.
 - With PCB change, can be used for reference input for single PLL mode.

Figure 1. Quick Start Diagram
2.1 Quick Start Description

The LMK04828/6 EVM allows full verification of the device functionality and performance specifications. To quickly set up and operate the board with basic equipment, refer to the quick start procedure below and test setup shown in Figure 1.

1. Connect a voltage of 4.5 volts to the \(V_{CC} \) SMA connector or terminal block. Device operates at 3.3 V using onboard LP3878-ADJ LDO. VCXO operates at 3.3 V using onboard LP5900 LDO.

2. Connect a reference clock to the CLKin1* port from a signal generator or other source. Use **122.88 MHz** for default. Exact frequency and input port (CLKin0/CLKin1*) depends on programming.

3. Connect USB2ANY to PC and EVM.

 a. Select LMK04828B or LMK04826B from the “Select Device” Menu. Click “Select Device” → “Clock Generator/Jitter Cleaner (Dual Loop)” → “LMK0482x”.
 b. Select **USB2ANY mode** from the Communication Setup window. To access this, select “USB communications” → “Interface”. Confirm PC to USB communications by clicking “Identify” to see blinking green LED on USB2ANY.
 c. Select a default mode from the “Default configuration” Menu. For the quick start use, “CLKin1 122.88 MHz, OSCin 122.88 MHz”.
 d. \texttt{Ctrl+L} must be pressed at least once to load all registers. Alternatively click “USB communications” → “Write All Registers” or the “Write All Registers” button on the Raw Registers page.

5. Measurements may be made at an active CLKout port through its SMA connector.

2.1.1 CLKout Page Description

![Figure 2. CLKout Page Description Diagram](image)

1. **SYNC_DISX**: Prevent the divider from being reset by SYNC/SYSREF path.
2. **DCLKx_DIV**: Divide value for the device clock. If set to 1 then #11 on list must = 1 and #12 must be Divider+DCC+HS.
3. **DDLYdX_EN**: Enable dynamic digital delay for this divider.
4. **DCLKX_HSg_PD**: If clear, glitchless half-step adjustments are enabled.
5. **DCLKX_HS**: Set half step for this divider. #12 must be Divider+DCC+HS.
6. **DCLKX_DDLY_PD**: If clear, the digital delay value is assured when a SYNC occurs.
7. **DCLKoutX_DDLY_CNTL/CNTH**: for controlling the digital delay value.
8. DCLKoutX_ADLYg_PD: If set, power down device clock glitchless analog delay feature.
9. DCLKoutX_ADLY_PD: If set, power down device clock analog delay.
10. DCLKoutX_ADLY: Analog delay (if enabled with #12).
11. DCLKoutX_ADLY_MUX: Enable duty cycle correct and half-step for this device clock divider.
12. DCLKoutX_MUX: Select source for CLKoutX. Can be Divider only, Divider+DCC+HS, Bypass, or Analog Delay+Divider.
13. SDCLKoutY_POL: If set, polarity of SYSREF output clock is inverted.
14. DCLKoutX_POL: If set, polarity of device clock is inverted.
15. SYSREF_GBL_PD: Set the conditional for SDCLKoutY_DIS_MODE registers.
16. CLKoutX_Y_IDL: Increase input drive level to improve noise floor at cost of power.
17. CLKoutX_Y_ODL: Increase output drive level to improve noise floor at cost of power. No effect for CLKoutX in bypass mode.
18. DCLKoutX_FMT: Set the clock output format for CLKoutX.
20. SDCLKoutY_DDLY: The SYSREF clock digital delay setting.
21. SDCLKoutY_HS: Set half step for the SYSREF output.
22. SDCLKoutY_ADLY_EN: Enable analog delay for the SYSREF clock path.
23. SDCLKoutY_ADLY: If enabled, set the analog delay for the SYSREF clock path.
24. SDCLKoutY_MUX: Select device clock or SYSREF clock path for CLKoutY.
25. SDCLKoutY_DIS_MODE: Set the output state of output clock drivers for the SYSREF clock. For values of 1 and 2 works in conjunction with control on this list #15, SYSREF_GBL_PD.
26. SDCLKoutY_FMT: Set the clock output format for CLKoutY.
27. SDCLKoutY_PD: Power down the SYSREF clock path.
28. Clock output frequency for CLKoutX and CLKoutY.

NOTE: Setting a register equal to 0 OR un-checking a register’s checkbox performs the same action. Similarly, setting a register equal to 1 is the same as checking that register’s checkbox.

2.1.2 TICS Pro Tips

• Mousing over different controls will display some help prompt with the register address, data bit location/length, and a brief register description in the lower left Context help pane.

2.2 SYSREF Quick Start

The LM0482x EVK allows for verification of the LM0482x’s implementation of JESD 204B SYSREF functionality. To quickly setup and operate the SYSREF functions, refer to the following procedures.

2.2.1 Continuous SYSREF

1. On the Clock Outputs page, set SDCLKoutY_PD = 0 (where Y is the desired SDCLKout).
2. Set SDCLKoutY_MUX = 1 (Set to “SYSREF” for desired SDCLKout).
3. On the SYNC/SYSREF page, set SYSREF_PD and SYSREF_DDLY_PD = 0.
4. Set SYNC_DISX and SYNC_DISSYSREF = 0 (where X is the desired DCLKout).
5. Perform a SYNC event (toggle SYNC_POL on/off/on).
6. Set SYNC_DISX = 1 (for desired DCLKout’s) and SYNC_DISSYSREF = 1.
7. Set SYSREF_MUX = 3 (SYSREF Continuous).
8. Ensure SYSREF_CLR = 0 (On the right side, in the grey Other SYNC Controls box).
In Figure 3 and Figure 4, the Blue trace is DCLKout6 at 245.76 MHz and the Green trace is SDCLKout7 (SYSREF) at 24.475 MHz. Figure 5 shows the configuration of the LMK0482xB outputs.

Figure 3. Continuous SYSREF Output
2.2.2 Pulsed SYSREF

1. On the Clock Outputs page, set SDCLKoutY_PD = 0 (where Y is the desired SDCLKout).
2. Set SDCLKoutY_MUX = 1 (Set to “SYSREF” for desired SDCLKout).
3. On the SYNC/SYSREF page, set SYSREF_PD and SYSREF_DDLY_PD = 0.
4. Set SYNC_DISX and SYNC_DISSYSREF = 0 (where X is the desired DCLKout).
5. Set SYSREF_PLSR_PD = 0.
6. Perform a SYNC event (toggle SYNC_POL on/off/on).
7. Set SYNC_DISX = 1 (for desired DCLKout's) and SYNC_DISSYSREF = 1.
9. Set SYSREF_PULSE_CNT = 1, 2, 4, or 8 as desired.
10. Perform a SYNC event (toggle SYNC_POL on/off/on).
11. Ensure SYSREF_CLR = 0 (On the right side, in the grey Other SYNC Controls box).

Figure 4. Pulsed SYSREF Output
Figure 5. Clock Outputs Page Setup for SYSREF Output on SDCLKout7
PLL Loop Filters and Loop Parameters

In jitter cleaning applications that use a cascaded or dual PLL architecture, the first PLL's purpose is to substitute the phase noise of a low-noise oscillator (VCXO or crystal resonator) for the phase noise of a "dirty" reference clock. The first PLL is typically configured with a narrow loop bandwidth to minimize the impact of the reference clock phase noise. The reference clock consequently serves only as a frequency reference rather than a phase reference.

The loop filters on the LMK048xx evaluation board are setup using the approach above. The loop filter for PLL1 has been configured for a narrow loop bandwidth (> 100 kHz). The specific loop bandwidth values depend on the phase noise performance of the oscillator mounted on the board. Table 2 and Table 3 contain the parameters for PLL1 and PLL2 for each oscillator option.

TI's Clock Design Tool can be used to optimize PLL phase noise/jitter for given specifications. See: http://www.ti.com/tool/clockdesigntool.

3.1 PLL1 Loop Filter

Table 2. PLL1 Loop Filter Parameters for Crystek 122.88 MHz VCXO

<table>
<thead>
<tr>
<th>PLL1 Loop Filter Parameters for Crystek 122.88 MHz VCXO(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.88 MHz VCXO PLL</td>
</tr>
<tr>
<td>Phase Margin: 50°</td>
</tr>
<tr>
<td>Loop Bandwidth: 14 Hz</td>
</tr>
<tr>
<td>Reference Clock Frequency: 122.88 MHz</td>
</tr>
<tr>
<td>Loop Filter Components: C1_A1 = 100 nF, C2_A1 = 680 nF, R2_A1 = 39 kΩ</td>
</tr>
</tbody>
</table>

(1) Loop Bandwidth is a function of Kφ, Kvco, N as well as loop components. Changing Kφ and N will change the loop bandwidth.

3.2 PLL2 Loop Filter

Table 3. Integrated VCO PLL

<table>
<thead>
<tr>
<th>Integrated VCO PLL(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMK04826</td>
</tr>
<tr>
<td>VCO0</td>
</tr>
<tr>
<td>C1_A2</td>
</tr>
<tr>
<td>C2_A2</td>
</tr>
<tr>
<td>C3 (internal)</td>
</tr>
<tr>
<td>C4 (internal)</td>
</tr>
<tr>
<td>R2_A2</td>
</tr>
<tr>
<td>R3 (internal)</td>
</tr>
<tr>
<td>R4 (internal)</td>
</tr>
<tr>
<td>Charge Pump Current, Kφ</td>
</tr>
<tr>
<td>Phase Detector Frequency</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Kvco</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Phase Margin</td>
</tr>
<tr>
<td>Loop Bandwidth</td>
</tr>
</tbody>
</table>

(1) PLL Loop Bandwidth is a function of Kφ, Kvco, N as well as loop components. Changing Kφ and N will change the loop bandwidth.
4 Default TICS Pro Modes for the LMK0482x

TICS Pro saves the state of the selected LMK0482x device when exiting the software. To ensure a common starting point, the following modes listed in Table 4 may be restored by clicking “Default configuration” and selecting the appropriate device configuration.

Table 4. Default TICS Pro Modes for the LMK0482x

<table>
<thead>
<tr>
<th>Default TICS Pro Mode</th>
<th>Device Mode</th>
<th>CLKin Frequency</th>
<th>OSCin Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKin1 122.88 MHz, OSCin 122.88 MHz</td>
<td>Dual PLL, Internal VCO</td>
<td>122.88 MHz</td>
<td>122.88 MHz</td>
</tr>
</tbody>
</table>

Figure 6. Selecting a Default Mode for the LMK04828 Device
5 Using TICS Pro to Program the LMK0482x

This section will demonstrate how to use TICS Pro. Making measurements with the LMK04828B device will serve as an example. For more information on using TICS Pro, refer to Appendix A. TICS Pro is available for download at http://www.ti.com/tool/ticspro-sw.

Another option is to use CodeLoader4. The tool page for CodeLoader4 is located at http://www.ti.com/tool/codeloader/.

Before proceeding, be sure to follow the instructions in Section 2 to ensure proper connections. To program the LMK04826B, the procedure would be the same, but the LMK04826B would be selected as the device.

5.1 Start TICS Pro Application

Click “Start” → “Programs” → “Texas Instruments” → “TICS Pro”.

The TICS Pro program is installed by default to the Texas Instruments application group.

5.2 Select Device

Click “Select Device” → “Clock Generator/ Jitter Cleaner (Dual Loop)” → “LMK0482x” → “LMK04828B”

Once started, TICS Pro will load the last used device. To load a new device, click “Select Device” from the menu bar, then select the subgroup “Clock Generator/ Jitter Cleaner (Dual Loop)”, then “LMNK0482x”, and finally the device to load. For this example, the LMK04828B is chosen. Selecting the device does cause the device to be programmed. However, it is advisable to press “Ctrl+L” to ensure programming.
5.3 Program/Load Device

Press “Ctrl+L”

Alternatively, click “USB communications” → “Write All Registers” from the menu to program the device to the current state of the newly loaded LMK04828 file. “Ctrl+L” is the accelerator key assigned to the “Write All Registers” option and is very convenient.

Once the device has been loaded, by default TICS Pro will automatically program changed registers, so it is not necessary to load the device again completely. It is possible to disable this functionality by ensuring there is no checkmark by the “Options” → “AutoUpdate”.
Once the device has been initially loaded, TICS Pro will automatically program changed registers, so it is not necessary to reload the device upon subsequent changes in the device configuration. It is possible to disable this functionality by ensuring there is no checkmark by the “Options” → “AutoUpdate”

Because a default mode will be restored in the next step, this step isn’t really needed but is included to emphasize the importance of pressing “Ctrl+L” to load the device at least once after starting TICS Pro, restoring a mode, or restoring a saved setup using the File menu.
5.4 Restoring a Default Mode

Click “Default configuration” → “CLKin1 122.88 MHz, OSCin 122.88 MHz”; then

Press “Ctrl+L”

![TICS Pro - LMK04828B Image]

For the purpose of this walkthrough, a default mode will be loaded to ensure a common starting point. This is important because when TICS Pro is closed, it remembers the last settings used for a particular device. Again, remember to press “Ctrl+L” as the first step after loading a default mode.

5.5 Visual Confirmation of Frequency Lock

After a default mode is restored and loaded, LED D4, and D5 must illuminate when PLL1 and PLL2 are locked to the reference clock applied to CLKin1. This assumes PLL1_LD_MUX = PLL1_DLD, PLL2_LD_MUX = PLL2_DLD and PLLX_LD_TYPE = Output (Push-Pull).
5.6 **Enable Clock Outputs**

While the LMK0482x offers programmable clock output buffer formats, the evaluation board is shipped with pre-configured output terminations to match the default buffer type for each output.

To measure Phase noise at one of the clock outputs, for example DCLKout0:

1. Click on the **Clock Outputs** page,
2. Uncheck “CLKoutX_Y_PD” in the Clock Output box to enable the channel,
3. Set the following as needed:

 a. Digital Delay value.
 b. Clock Divider value (if “Bypass” is not selected as DCLKoutX_MUX).
 c. Analog Delay Value (if “Analog Delay and Divider” is selected as DCLKoutX_MUX).

![Figure 10. Setting Digital Delay, Clock Divider, Analog Delay and Output Format](image)

4. Depending on the configured output type, the clock output SMAs can be interfaced to a test instrument with a single-ended 50-Ω input as follows.

 a. For LVDS:

 i. A balun (like ADT2-1T or high quality Prodyn BIB-100G) is recommended for differential-to-single-ended conversion.

 b. For LVPECL:

 i. A balun can be used, or

 ii. One side of the LVPECL signal can be terminated with a 50-Ω load and the other side can be run single-ended to the instrument.

 c. For HSDS:

 i. A balun (like ADT2-1T or high quality Prodyn BIB-100G) is recommended for differential-to-single-ended conversion.

5. The phase noise may be measured with a spectrum analyzer or signal source analyzer.

TI’s Clock Design Tool can be used to calculate divider values to achieve desired clock output frequencies. See: http://www.ti.com/tool/clockdesigntool
6 Evaluation Board Inputs and Outputs

Table 5 contains descriptions of the inputs and outputs for the evaluation board. Unless otherwise noted, the connectors described can be assumed to be populated by default. Additionally, some applicable TICS Pro programming controls are noted for convenience.

Table 5. Description of Evaluation Board Inputs and Outputs

<table>
<thead>
<tr>
<th>CONNECTOR NAME</th>
<th>SIGNAL TYPE, INPUT/OUTPUT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populated: DCLKout0, DCLKout1, DCLKout2, DCLKout3, DCLKout4, DCLKout5, DCLKout6, DCLKout7, DCLKout8, DCLKout9, DCLKout10, DCLKout11, DCLKout12, DCLKout13</td>
<td>Analog, Output</td>
<td>Clock outputs with programmable output buffers. The output terminations by default on the evaluation board are shown below:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clock Output Pair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDCLKout11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCLKout13</td>
</tr>
<tr>
<td>Populated: OSCout, OSCout*</td>
<td>Analog, Output</td>
<td>Buffered outputs of OSCin port. The output terminations on the evaluation board are shown below:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSC Output Pair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSCout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSCout has a programmable LVDS, LVPECL, or LVCMS output buffer. The OSCout buffer type can be selected in TICS Pro on the Clock Outputs page through the OSCout_FMT control. OSCout is AC-coupled to allow safe testing with RF test equipment. The OSCout output is terminated using 240 (\Omega) emitter-resistor. If OSCout is programmed as LVCMS, each output can be independently configured (normal, inverted, and off/tri-state). Best performance/EMI reduction is achieved by using a complementary output mode like Norm/Inv. It is NOT recommended to use Norm/Norm or Inv/Inv mode.</td>
</tr>
<tr>
<td>VCC</td>
<td>Power, Input</td>
<td>Main power supply input for the evaluation board. The LMK0482x contains internal voltage regulators for the VCO, PLL and other internal blocks. The clock outputs do not have an internal regulator, so a clean power supply with sufficient output current capability is required for optimal performance. On-board LDO regulators and 0 (\Omega) resistor options provide flexibility to supply and route power to various devices. See the schematics in Appendix C for more details.</td>
</tr>
<tr>
<td>Populated: J1</td>
<td>Power, Input</td>
<td>Alternative power supply input for the evaluation board using two unshielded wires (Vcc and GND). Apply power to either Vcc SMA or J1, but not both.</td>
</tr>
<tr>
<td>VccVCXO/Aux</td>
<td>Power, Input</td>
<td>Optional Vcc input to power the VCXO circuit if separate voltage rails are needed. The VccVCXO/Aux input can power these circuits directly or supply the on-board LDO regulators. 0 (\Omega) resistor options provide flexibility to route power.</td>
</tr>
</tbody>
</table>
Table 5. Description of Evaluation Board Inputs and Outputs (continued)

<table>
<thead>
<tr>
<th>CONNECTOR NAME</th>
<th>SIGNAL TYPE, INPUT/OUTPUT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populated:</td>
<td></td>
<td>Reference Clock Inputs for PLL1 (CLKin0, 1). CLKin1 can alternatively be used as an External Feedback Clock Input (FBCLKin) in 0-delay mode or an RF Input (FIN) in External VCO mode.</td>
</tr>
</tbody>
</table>
| CLKin0, CLKin0*, CLKin1* | Analog, Input | Reference Clock Inputs for PLL1 (CLKin0, 1)
FBCLKin/CLKin1* is configured by default for a single-ended reference clock input from a 50-ohm source. The non-driven input pin (FBCLKin/CLKin1) is connected to GND with a 0.1 µF. CLKin0/CLKin0* is configured by default for a differential reference clock input from a 50-ohm source.
CLKin1* is the default reference clock input selected in TICS Pro. The clock input selection mode can be programmed on the Set Modes page through the LMK0482x Sub-Mode.

Not Populated: CLKin1
External Feedback Input (FBCLKin) for 0-Delay
CLKin1 is shared for use with FBCLKin as an external feedback clock input to PLL1 for 0-delay mode. See the LMK04820 family datasheet (literature number SNAS605) for more details on using 0-delay mode with the evaluation board and the evaluation board software.

| **Populated:** | | Feedback VCXO clock input to PLL1 and Reference clock input to PLL2. The single-ended output of the onboard VCXO (U4) drives the OSCin* input of the device and the OSCin input of the device is connected to GND with 0.1 µF.
A VCXO add-on board may be optionally attached through these SMA connectors with minor modification to the components going to the OSCin/OSCin* pins of device. This is useful if the VCXO footprint does not accommodate the desired VCXO device or if the user desires to use the LMK0482xB in single loop mode.
A single-ended or differential signal may be used to drive the OSCin/OSCin* pins and must be AC coupled. If operated in single-ended mode, the unused input must be connected to GND with 0.1 µF.
Refer to the LMK04820 family datasheet section “Electrical Characteristics” for PLL2 Reference Input (OSCin) specifications (literature number SNAS605).

| Test point: VTUNE1_TP | Analog, Input | Tuning voltage output from the loop filter for PLL1.
If a VCXO add-on board is used, this tuning voltage can be connected to the voltage control pin of the external VCXO when this SMA connector is installed and connected through R72 by the user.

| Test point: VTUNE2_TP | Analog, Input | Tuning voltage output from the loop filter for PLL2.

| Test points: SDIO SCK CS* | CMOS, Input/Output | 10-pin header for SPI programming interface and programmable logic I/O pins for the LMK0482x.

| **Populated:** SPI | 10-pin header for SPI programming interface and programmable logic I/O pins for the LMK0482x.
The programmable logic I/O signals accessible through this header include: RDSTRT, SYNC, Status_LD1, Status_LD2, CLKin_SEL0, and CLKin_SEL1. These logic I/O signals also have dedicated SMAs and test points.

| Test point: Status_LD1_TP | CMOS, Input/Output | Programmable status output pin. By default, set to output the digital lock detect status signal for PLL1.
In the default TICS Pro modes, LED D5 will illuminate green when PLL1 lock is detected by the LMK0482x (output is high) and turn off when lock is lost (output is low).

| Status_LD | The status output signal for the Status_LD1 pin can be selected on the User Controls page through the PLL1_LD_MUX control.

| Test point: Status_LD2_TP | CMOS, Input/Output | Programmable status output pin. By default, set to output the digital lock detect status signal for PLL2.
In the default TICS Pro modes, LED D4 will illuminate green when PLL1 lock is detected by the LMK0482x (output is high) and turn off when lock is lost (output is low).

| Status_LD2 | The status output signal for the Status_LD1 pin can be selected on the User Controls page through the PLL2_LD_MUX control. |
Table 5. Description of Evaluation Board Inputs and Outputs (continued)

<table>
<thead>
<tr>
<th>CONNECTOR NAME</th>
<th>SIGNAL TYPE, INPUT/OUTPUT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test points:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLKin0_SEL_TP</td>
<td>CMOS, Input/Output</td>
<td>Programmable status I/O pins. By default, set as input pins for controlling input clock switching of CLKin0 and CLKin1. These inputs will not be functional because CLKin_SEL_MODE is set to 0 (CLKin0 Manual) by default in the User Controls page in TICS Pro. To enable input clock switching, CLKin_SEL_MODE must be 3 and Status_CLKinX_TYPE must be 0 to 2 (pin enabled as an input).</td>
</tr>
<tr>
<td>CLKin1_SEL_TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POPULATED:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNC</td>
<td>CMOS, Input/Output</td>
<td>Programmable status I/O pin. By default, set as an input pin for synchronize the clock outputs with a fixed and known phase relationship between each clock output selected for SYNC. A SYNC event also causes the digital delay values to take effect.</td>
</tr>
<tr>
<td>RESET_TP</td>
<td>CMOS, Input/Output</td>
<td>Programmable status I/O pin.</td>
</tr>
</tbody>
</table>
7 Recommended Test Equipment

Power Supply
The Power Supply must be a low noise power supply, particularly when the devices on the board are being directly powered (onboard LDO regulators bypassed).

Phase Noise / Spectrum Analyzer
To measure phase noise and RMS jitter, an Agilent E5052 Signal Source Analyzer is recommended. An Agilent E4445A PSA Spectrum Analyzer with the Phase Noise option is also usable although the architecture of the E5052 is superior for phase noise measurements. At frequencies less than 100 MHz the local oscillator noise of the E4445A is too high and measurements will reflect the E4445A’s internal local oscillator performance, not the device under test.

Oscilloscope
To measure the output clocks for AC performance, such as rise time or fall time, propagation delay, or skew, it is suggested to use a real-time oscilloscope with at least 1 GHz analog input bandwidth (2.5+ GHz recommended) with 50-Ω inputs and 10+ Gsps sample rate. To evaluate clock synchronization or phase alignment between multiple clock outputs, it is recommended to use phase-matched, 50-Ω cables to minimize external sources of skew or other errors/distortion that may be introduced if using oscilloscope probes.
TICS Pro Usage

TICS Pro is used to program the evaluation board with the USB2ANY interface adapter. TICS Pro can also be used to generate register maps for programming the device and current consumption estimates. This appendix outlines the basic purpose and usage of each page. TICS Pro is available for download at: http://www.ti.com/tool/ticspro-sw.

A.1 TICS Pro Tips

Mousing over different controls will display some help prompt with the register address, data bit location/length, and a brief register description in the lower left Context help pane.

A.2 Communication Setup

The Communication Setup window allows the USB2ANY or DemoMode to be selected. In case multiple evaluation boards are to be connected and run with multiple instances of TICS Pro, the drop-down box will allow specific USB2ANY devices to be selected. Pressing the identify button will identify which USB2ANY is currently selected. Devices used by other instances of TICS Pro won’t display in this list.
A.3 **User Controls**

The **User Controls** page has controls not included on one of the later discussed dedicated pages.

Figure 11. TICS Pro - User Controls Page
A.4 Raw Registers Page

The **Raw Register** page displays the register map including address. The address bits have the shaded background and are not editable. The unshaded bits are the data bits. This register map may be directly manipulated by clicking into the bit field, moving around with the arrow keys, and typing ‘1’ or ‘0’ to change a bit.

All registers may be read or written in addition to individual registers. For individual register read/write, the active register is highlighted in the list of registers and displayed in the top right. An individual register or field may be read back by entering the name into the bottom right and clicking the “Read” button.

Register maps may be exported, but also imported. The import format may simply be the address and register data in hex format as illustrated in the address/value column, one register to a line.

![TICS Pro - Raw Registers Page](image-url)

Figure 12. TICS Pro - Raw Registers Page
A.5 Set Modes Page

The Set Modes page allows the user to quickly configure the LMK0482x into a desired mode. If the LMK0482x is already in the desired mode, or several registers already programmed as needed, the log won’t display any or many register writes.

The top LMK0482x modes section allows the user to set high level usage profiles to allow the device to operate in dual loop, single loop, or distribution mode.

The bottom LMK0482x sub-modes section allows further JESD204B configuration, 0-delay configuration, or clock input configuration which may apply for many of the LMK0482x modes of operation.

Figure 13. TICS Pro - Set Modes Page
A.6 CLKinX and PLLs Page

The **CLKinX and PLLs** page allows entry of the input frequency at the different CLKinX pins, the mode by which the active CLKinX is selected, where the CLKinX inputs are routed to.

This page also illustrates the frequencies that the PLL1 and PLL2 operate at. In distribution mode, the CLKin1 frequency will directly be connected to the VCO/clock distribution path frequency. In addition to the basic PLL dividers and controls, when the PLLX_NCLK_MUX selects the feedback mux as a source, 0-delay modes are achieved. When enabling 0-delay red text will help guide the user through properly setting up 0-delay mode.

When using dual PLL mode, the OSCin Source combo box can be set to “External VCXO” which links the OSCin frequency with the external VCXO frequency. When using single PLL2 mode, the OSCin Source combo box can be set to “Independent” to allow the OSCin frequency to be unlinked from the external VCXO frequency.

Figure 14. TICS Pro - CLKinX Control Page
A.7 COHERENCE / SYSREF Page

The **SYNC / SYSREF** page allows some mode set buttons for JESD204B features. The SYNC dividers button will stop all SYNC inputs, set normal SYNC mode, enable all dividers for SYNC, issue a SYNC by toggling SYNC_POL, set all dividers to ignore SYNC, then return any other changed parameter to its original state. This is a nice feature to ensure all outputs are synchronized together or to be run after changing the digital delay value which requires a SYNC to update. This functionality is also available on any other page through the toolbar as “SYNC Dividers.”

NOTE: To use SYNC or SYSREF, ensure that SYNC_EN = 1. To use SYSREF in continuous, pulser, or re-clocked modes, be sure SYSREF_PD = 0.

The SCLKX_Y_DIS_MODE bits allow the clock outputs to be disabled or set to a low state. Because values 1 and 2 are only conditionally set by the SYSREF_GBL_PD bit, it is possible to power up/down several SYSREF outputs by programming only one register. When changing between 0x00 (Active) and (0x01) Conditional Low, keeping the SYSREF_CLR = 1 during transition will prevent glitch pulses from the SYSREF output.
A.8 Clock Outputs Page

The Clock Outputs page allows control of all the clock outputs format and other options relating to the clock outputs. All the clock outputs are paired and allow two device clocks, two SYSREF clocks, or one of each. The naming convention uses X_Y for controls which can impact both CLKoutX (even clock) and CLKoutY (odd clock), X for controls impacting only CLKoutX and Y for controls impacting only CLKoutY.

Figure 16. TICS Pro - Clock Outputs Page
The **Other** page contains some registers to control the GPIO pins of the LMK0482x. Each pin has two fields, the first is the _TYPE field which allows the input or output mode of the pin to be defined. The second is the _MUX field which, when set for output, controls what the pin will output.

Figure 17. TICS Pro - Other Page
A.10 Burst Page

The Burst page allows the user to program sequences of register programming or pin control.

Figure 18. TICS Pro - Burst Page
The LMK0482x’s dual PLL architecture achieves ultra low jitter and phase noise by allowing the external VCXO or Crystal’s phase noise to dominate the final output phase noise at low offset frequencies and the internal VCO’s phase noise to dominate the final output phase noise at high offset frequencies. This results in the best overall noise and jitter performance.

Table 6 lists the test conditions used for output clock phase noise measurements with the Crystek 122.88 MHz VCXO.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL1 Reference clock input</td>
<td>CLKin1* single-ended input, CLKin1 AC-coupled to GND</td>
</tr>
<tr>
<td>PLL1 Reference Clock frequency</td>
<td>122.88 MHz</td>
</tr>
<tr>
<td>PLL1 Phase detector frequency</td>
<td>1024 kHz</td>
</tr>
<tr>
<td>PLL1 Charge Pump Gain</td>
<td>150 µA</td>
</tr>
<tr>
<td>VCXO frequency</td>
<td>122.88 MHz</td>
</tr>
<tr>
<td>PLL2 phase detector frequency</td>
<td>122.88 MHz</td>
</tr>
<tr>
<td>PLL2 Charge Pump Gain</td>
<td>3200 µA</td>
</tr>
<tr>
<td>PLL2 REF2X mode</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
B.1 VCXO Phase Noise 122.88 MHz

The phase noise of the reference is masked by the phase noise of this VCXO by using a narrow loop bandwidth for PLL1 while retaining the frequency accuracy of the reference clock input. This VCXO sets the reference noise to PLL2. Figure 19 shows the open loop typical phase noise performance of the CVHD-950-122.88 Crystek VCXO.

![Figure 19. Crystek CVHD-950-122.88 MHz VCXO Phase Noise at 122.88 MHz](image)

<table>
<thead>
<tr>
<th>Offset</th>
<th>VCXO Phase Noise at 122.88 MHz (dBc/Hz)</th>
<th>VCXO RMS Jitter to High Offset of 20 MHz at 122.88 MHz (rms fs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>-76.6</td>
<td>515.4</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-108.9</td>
<td>60.5</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-137.4</td>
<td>36.2</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-153.3</td>
<td>35</td>
</tr>
<tr>
<td>100 kHz</td>
<td>-162</td>
<td>34.5</td>
</tr>
<tr>
<td>1 MHz</td>
<td>-165.7</td>
<td>32.9</td>
</tr>
<tr>
<td>10 MHz</td>
<td>-168.1</td>
<td>22.7</td>
</tr>
<tr>
<td>40 MHz</td>
<td>-168.1</td>
<td>—</td>
</tr>
</tbody>
</table>

B.2 Output Measurement Technique

The same technique was used to measure phase noise for all three output types available on the programmable OSCout and CLKout buffers. This was achieved by terminating one side of the LVPECL, LVDS, or LVCMOS output with a 50-Ω load, and measuring the other side single-ended using an Agilent E5052B Source Signal Analyzer.

B.3 Clock Outputs (DCLKout and SDCLKout)

The LMK0482x features programmable HSDS, LVDS, LVPECL buffer modes for the DCLKoutX, SDCLKout pairs. Below is a phase noise measurement of DCLKout2 (best phase noise clock output) using both a balun and single ended.
Figure 20. LMK04826 DCLKout2, VCO0, 245.76 MHz, Div8, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = Prodyn BIB-100G
Figure 21. LMK04826 DCLKout2, VCO0, 245.76 MHz, Div8, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended
Figure 22. LMK04826 DCLKout2, VCO1, 245.76 MHz, Div10, LVPECL20 /w 240 ohm emitter resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = Prodyn BIB-100G
Figure 23. LMK04826 DCLKout2, VCO1, 245.76 MHz, Div10, LVPECL20/w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended
Figure 24. LMK04828 DCLKout2, VCO0, 245.76 MHz, Div10, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = ADT2-1T
Figure 25. LMK04828 DCLKout2, VCO0, 245.76 MHz, Div10, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended
Figure 26. LMK04828 DCLKout2, VCO1, 245.76 MHz, Div12, LVPECL20 /w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Balun = ADT2-1T
Figure 27. LMK04828 DCLKout2, VCO1, 245.76 MHz, Div12, LVPECL20/w 240-Ω Emitter Resistor, DCLKoutX_MUX=Divider, IDL=1, ODL=0, Single Ended
C.1 Power Supply

Direct Power - NO Regulators

LDO for powering LMK04828

Power Plane for LMK Except Outputs

VCO
Digital
PLL1

OSCout
OSCIn
PLL2
CP2

Power Planes for LMK Outputs

CG1
CG2
CG3
CG0

SYSREF

DC-DC to LDO to Power LMK04828

Regulator to power VCO Separately

Regulator to power VCO Separately
C.4 Clock Outputs

C.4.1 Clock Outputs Page 1

SYSREF CLOCK OUTPUTS

SDCLKout1

SDCLKout3

SDCLKout5

SDCLKout7

SDCLKout9

SDCLKout11

SDCLKout13
Bill of Materials for LMK0482x

Table 8. Bill of Materials LMK0482x Evaluation Boards

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB</td>
<td>Printed Circuit Board</td>
<td>Any</td>
<td>SV600788C</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C1, C5, C13, C20, C23, C24, R3, R3_AB1, R11, R12, R19, R30, R55, R75, R82, R84, R95, R109, R113, R310, R323, R327, R329, R331, R334, R335, R336, R337, R338, R339, R340, R346, R349, R364, R373, R375</td>
<td>RES, 0 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW06030000Z0EA</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>C1_A1, C2, C6, C18, C19, C21, C22, C25, C26, C27, C38, C37, C44, C46, C47, C48, C51, C52, C53, C54, C57, C58, C59, C60, C63, C64, C65, C66, C70, C71, C72, C75, C76, C77, C78, C81, C82, C312, C319, C346</td>
<td>CAP, CERM, 0.1µF, 25V, +/-5%, X7R, 0603</td>
<td>Kemet</td>
<td>C0603C104J3RACTU</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>C1_A2</td>
<td>CAP, CERM, 47pF, 50V, +/-5%, C0G/NP0, 0603</td>
<td>Kemet</td>
<td>C0603C470J5GACTU</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>C2_A1</td>
<td>CAP, CERM, 0.68pF, 10V, +/-10%, X5R, 0603</td>
<td>Kemet</td>
<td>C0603C684K8PACTU</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>C2_A2</td>
<td>CAP, CERM, 3900pF, 50V, +/-10%, X7R, 0603</td>
<td>MuRata</td>
<td>GRM188R71H392KA01D</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>C3_AB1, C29, C368</td>
<td>CAP, CERM, 100pF, 50V, +/-5%, C0G/NP0, 0603</td>
<td>Kemet</td>
<td>C0603C101J5GACTU</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>C4</td>
<td>CAP, CERM, 33pF, 100V, +/-5%, C0G/NP0, 0603</td>
<td>AVX</td>
<td>06031A330JAT2A</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>C9</td>
<td>CAP, CERM, 82pF, 50V, +/-10%, C0G/NP0, 0603</td>
<td>Kemet</td>
<td>C0603C820K5GACTU</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>C10, C32, C341, C375</td>
<td>CAP, CERM, 2200pF, 50V, +/-10%, X7R, 0603</td>
<td>Kemet</td>
<td>C0603C222K5RACTU</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>C11</td>
<td>CAP, CERM, 10µF, 10V, +/-20%, X5R, 0805</td>
<td>Kemet</td>
<td>C0805C106M8PACTU</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>C33</td>
<td>CAP, CERM, 12pF, 50V, +/-5%, C0G/NP0, 0603</td>
<td>AVX</td>
<td>06035A120JAT2A</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>C34, C374</td>
<td>CAP, CERM, 2pF, 50V, +/-12.5%, C0G/NP0, 0603</td>
<td>Kemet</td>
<td>C0603C209C5GACTU</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>C35, C310, C317, C324, C352</td>
<td>CAP, CERM, 10µF, 10V, +/-10%, X5R, 0805</td>
<td>Kemet</td>
<td>C0805C106K8PACTU</td>
<td>5</td>
</tr>
</tbody>
</table>
Bill of Materials LMK0482x Evaluation Boards (continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>C69, C322, C326, C367</td>
<td>CAP, CERM, 0.1µF, 25V, +/-10%, X7R, 0603</td>
<td>Kemet</td>
<td>C0603C104K3RACTU</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>C300, C311, C314, C318, C321, C325, C337, C342, C343, C347, C364</td>
<td>CAP, CERM, 1µF, 10V, +/-10%, X5R, 0603</td>
<td>Kemet</td>
<td>C0603C105K8PACTU</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>C304</td>
<td>CAP, CERM, 1000pF, 50V, +/-5%, C0G/NP0, 0603</td>
<td>Kemet</td>
<td>C0603C102J5GACTU</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>C313</td>
<td>CAP, CERM, 10µF, 6.3V, +/-20%, X5R, 0603</td>
<td>Kemet</td>
<td>C0603C106M9PACTU</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>C315, C323</td>
<td>CAP, CERM, 0.01µF, 100V, +/-10%, X7R, 0603</td>
<td>Kemet</td>
<td>C0603C103K1RACTU</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>C340</td>
<td>CAP, CERM, 4.7µF, 10V, +/-10%, X5R, 0603</td>
<td>Kemet</td>
<td>C0603C475K8PACTU</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>C350, C351, C359, C360</td>
<td>CAP, CERM, 0.47µF, 16V, +/-10%, X7R, 0603</td>
<td>Kemet</td>
<td>C0603C474K4RACTU</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>CLKin0, CLKin0*, DCLKout0, DCLKout0*, DCLKout2, DCLKout2*, DCLKout10, DCLKout10*, FBC CLKin*/CLKin1*, OSCin, OSCin*, OSCout, OSCout*, SDCLKout1, SDCLKout1*, SDCLKout3, SDCLKout3*, SDCLKout11, SDCLKout11*</td>
<td>Connector, SMT, End launch SMA 50 ohm</td>
<td>Emerson Network Power</td>
<td>142-0701-806</td>
<td>19</td>
</tr>
<tr>
<td>23</td>
<td>D1, D6</td>
<td>DIODE VARACTOR 15V 20MA SC-79</td>
<td>Skyworks Inc</td>
<td>SMV1249-079LF</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>D2, D3</td>
<td>LED 2.8X3.2MM 565NM RED CLR SMD</td>
<td>Lumex Opto/Components Inc.</td>
<td>SML-LX2832IC</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>D4, D5</td>
<td>LED 2.8X3.2MM 565NM GRN CLR SMD</td>
<td>Lumex Opto/Components Inc.</td>
<td>SML-LX2832GC</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>J1</td>
<td>CONN TERM BLK PCB 5.08MM 2POS OR</td>
<td>Weidmuller</td>
<td>159454000</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>R2, R13, R332</td>
<td>RES, 0 ohm, 5%, 0.125W, 0803</td>
<td>Vishay-Dale</td>
<td>CRCW08050000Z0EA</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>R2_A1</td>
<td>RES, 39k ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW060339K0JNEA</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>R2_A2</td>
<td>RES, 620 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603620RJNEA</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>R4, R9</td>
<td>RES, 100 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603100RJNEA</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>R18, R305, R307, R342, R343, R344, R345, R347, R354, R358, R371, R374</td>
<td>FB, 120 ohm, 500 mA, 0603</td>
<td>Murata</td>
<td>BLM18AG121SN1D</td>
<td>12</td>
</tr>
<tr>
<td>32</td>
<td>R37, R41, R45, R61, R68, R72, R141, R142, R157, R158, R163, R164, R179, R182, R237, R187, R190, R204, R206</td>
<td>RES, 51 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW060351R0JNEA</td>
<td>19</td>
</tr>
<tr>
<td>33</td>
<td>R50, R86, R313, R316, R319, R320, R325, R327, R384</td>
<td>RES, 27k ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW060327K0JNEA</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 8. Bill of Materials LMK0482x Evaluation Boards (continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>PART NUMBER</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>R62, R381</td>
<td>RES, 4.70k ohm, 1%, 0.1W, 0603</td>
<td>Yageo America</td>
<td>RC0603FR-074K7L</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>R63, R64, R66, R67, R70, R73, R88, R91, R92</td>
<td>RES, 560 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603560RJNEA</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>R81, R94, R312, R315, R317, R318, R321, R324</td>
<td>RES, 15k ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW060315K0JNEA</td>
<td>8</td>
</tr>
<tr>
<td>37</td>
<td>R83, R85</td>
<td>RES, 270 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603270RJNEA</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>R100, R101, R105, R106, R107</td>
<td>RES, 0 ohm, 5%, 0.063W, 0402</td>
<td>Vishay-Dale</td>
<td>CRCW0402000Z0ED</td>
<td>5</td>
</tr>
<tr>
<td>39</td>
<td>R103, R104, R111, R112, R125, R126, R133, R134, R231, R232</td>
<td>RES, 240 ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603240RJNEA</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>R333, R341</td>
<td>FB, 120 ohm, 500 mA, 0402</td>
<td>TDK</td>
<td>MMZ1005Y121C</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>R350, R360, R369</td>
<td>RES, 51k ohm, 5%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW060351K0JNEA</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>R351</td>
<td>RES, 2.0k ohm, 1%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW06032K0FKEA</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>R356</td>
<td>RES, 866 ohm, 1%, 0.1W, 0603</td>
<td>Vishay-Dale</td>
<td>CRCW0603866RFKEA</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>S1, S2, S3, S4, S5, S6</td>
<td>0.375" Standoff</td>
<td>VOLTREX</td>
<td>SPCS-6</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>SPI</td>
<td>Low Profile Vertical Header 2x5 0.100"</td>
<td>FCI</td>
<td>52601-G10-8LF</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>U1</td>
<td>LMK04826</td>
<td>Texas Instruments</td>
<td>LMK04826BISQ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMK04828</td>
<td>Texas Instruments</td>
<td>LMK04828BISQ</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>U2</td>
<td>122.88 MHz VCXO</td>
<td>Crystek</td>
<td>CVHD-950-122.88</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>U302</td>
<td>Micropower 800mA Low Noise “Ceramic Stable” Adjustable Voltage Regulator for 1V to 5V Applications, 8-pin LLP, Pb-Free</td>
<td>Texas Instruments</td>
<td>LP3878SD-ADJ/NOPB</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>U303, U305</td>
<td>Ultra Low Noise, 150mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor, 6-pin LLP, Pb-Free</td>
<td>Texas Instruments</td>
<td>LP5900SD-3.3/NOPB</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>Vcc</td>
<td>Connector, TH, SMA</td>
<td>Emerson Network Power</td>
<td>142-0701-201</td>
<td>1</td>
</tr>
</tbody>
</table>
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (June 2013) to B Revision

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted Appendices C - E that regarded obsolete pre-release boards with old interfaces.</td>
<td>2</td>
</tr>
<tr>
<td>Removed "-001 board" as it is obsolete and required older interface.</td>
<td>2</td>
</tr>
<tr>
<td>Revised Section 2 for TICS Pro software and interface.</td>
<td>4</td>
</tr>
<tr>
<td>Deleted Quick Start notes of obsolete pre-release boards that required old interfaces.</td>
<td>4</td>
</tr>
<tr>
<td>Changed PLL Charge Pump gain to “150” from “450” µA and VCO Gain to “2” from “2.5” kHz/V.</td>
<td>9</td>
</tr>
<tr>
<td>Revised Section 4 for TICS Pro software.</td>
<td>10</td>
</tr>
<tr>
<td>Revised Section 5 for TICS Pro software.</td>
<td>11</td>
</tr>
<tr>
<td>Changed Status_CLKinX_TYPE to “2” from “3”.</td>
<td>18</td>
</tr>
<tr>
<td>Moved Schematics and Bill of Materials to Appendices.</td>
<td>19</td>
</tr>
<tr>
<td>Revised Appendix A for TICS Pro software.</td>
<td>20</td>
</tr>
<tr>
<td>Changed PLL1 Charge Pump Gain to “150µA” from “450µA”.</td>
<td>29</td>
</tr>
<tr>
<td>Changed “VCXO RMS Jitter to High Offset” column to correct values.</td>
<td>30</td>
</tr>
<tr>
<td>Deleted Appendices C - E that regarded obsolete pre-release boards with old interfaces.</td>
<td>38</td>
</tr>
<tr>
<td>Revised formatting for Table 8</td>
<td>45</td>
</tr>
</tbody>
</table>
1. **Delivery:** TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User’s acceptance of the EVM is expressly subject to the following terms.

1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 **Limited Warranty and Related Remedies/Disclaimers:**

2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

3 **Regulatory Notices:**

3.1 **United States**

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/it_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan.

2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or

3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備を用いてご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、未製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/sds/ti_ja/general/eStore/notice_02.page

電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/sds/ti_ja/general/eStore/notice_02.page

3.4 European Union
3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:
4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:
4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
6. Disclaimers:

6.1 Except as set forth above, EVMS and any materials provided with the EVM (including, but not limited to, reference designs and the design of the EVM itself) are provided "as is" and "with all faults." TI disclaims all other warranties, express or implied, regarding such items, including but not limited to any epidemic failure warranty or implied warranties of merchantability or fitness for a particular purpose or non-infringement of any third party patents, copyrights, trade secrets or other intellectual property rights.

6.2 Except for the limited right to use the EVM set forth herein, nothing in these terms shall be construed as granting or conferring any rights by license, patent, or any other industrial or intellectual property right of TI, its suppliers/licensors or any other third party, to use the EVM in any finished end-user or ready-to-use final product, or for any invention, discovery or improvement, regardless of when made, conceived or acquired.

7. User's Indemnity Obligations and Representations. User will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any handling or use of the EVM that is not in accordance with these terms. This obligation shall apply whether claims arise under statute, regulation, or the law of tort, contract or any other legal theory, and even if the EVM fails to perform as described or expected.

8. Limitations on Damages and Liability:

8.1 General Limitations. In no event shall TI be liable for any special, collateral, indirect, punitive, incidental, consequential, or exemplary damages in connection with or arising out of these terms or the use of the EVMS, regardless of whether TI has been advised of the possibility of such damages. Excluded damages include, but are not limited to, cost of removal or reinstallation, ancillary costs to the procurement of substitute goods or services, retesting, outside computer time, labor costs, loss of goodwill, loss of profits, loss of savings, loss of use, loss of data, or business interruption. No claim, suit or action shall be brought against TI more than twelve (12) months after the event that gave rise to the cause of action has occurred.

8.2 Specific Limitations. In no event shall TI's aggregate liability from any use of an EVM provided hereunder, including from any warranty, indemnity or other obligation arising out of or in connection with these terms, exceed the total amount paid to TI by User for the particular EVM(s) at issue during the prior twelve (12) months with respect to which losses or damages are claimed. The existence of more than one claim shall not enlarge or extend this limit.

9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI’) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated