LMK05318EVM

User's Guide

Literature Number: SNAU236A June 2018–Revised December 2018

Contents

Prefa	се		5
1	EVM Qu	iick Start	7
	1.1	Device Revision Identification	8
	1.2	Default EVM Configuration	8
2	Device	Under Test	10
	2.1	Device Start-Up Modes	10
3	EVM Co	nfiguration	
	3.1	Power Supply	
	3.2	Logic Inputs and Outputs	15
	3.3	XO Input	18
	3.4	Reference Clock Inputs	
	3.5	Clock Outputs	20
	3.6	Status Outputs and LEDs	
4	EVM Sc	hematics	22
5	EVM La	youts	33
6		/ I of Materials	
Appe		Software	
	A.1	Software Installation (One-Time)	
	A.2	TICS Pro Usage for LMK05318	
Revis	ion Histo	ory	

List of Figures

1	LMK05318EVM With Default Jumper and DIP Switch Settings	. 6
2	Key Components - EVM Top Side	12
3	Key Components - EVM Bottom Side	13
4	Default Power Jumper Configuration	14
5	XO Input Interface (1 of 2) - 48.0048-MHz Oscillator and SMA Ports	19
6	XO Input Interface (2 of 2) - LMK61E2 Oscillator	20
7	Clock Input Interface - PRIREF (Similar for SECREF)	20
8	Clock Output Interface - OUT0 (Similar for OUT1-OUT7)	21
9	Schematic 1 - Power Supplies	22
10	Schematic 2 - Power Distribution	23
11	Schematic 3 - DC-DC Regulator	24
12	Schematic 4 - LMK05318 and XO Input Interfaces	25
13	Schematic 5 - Clock Input Interfaces	26
14	Schematic 6 - Clock Output Interfaces (OUT0 to OUT3)	27
15	Schematic 7 - Clock Outputs (OUT4 to OUT7)	28
16	Schematic 8 - Logic I/O Interfaces	29
17	Schematic 9 - USB MCU and I ² C/SPI Jumper Block	30
18	Schematic 10 - LMK61E2 Oscillator	31
19	Schematic 11 - DUT Test Socket	32
20	Top Composite View	33
21	Top Solder Mask	34
22	Layer 1 (Top Side) - Clock I/Os, Logic, and Power Routing, Ground Fill	35
23	Layer 2 - Ground Plane	36
24	Layer 3 - Logic Routing, Ground Fill	37
25	Layer 4 - Power Routing, Ground Fill	38
26	Layer 5 - Power and Ground Planes	39
27	Layer 6 - Logic Routing, Ground Fill	40
28	Layer 7 - Ground Plane	41
29	Layer 8 (Bottom Side, View From Top) - Logic and Power Routing, Ground Fill	
30	Bottom Solder Mask	43
31	Bottom Composite View	44

List of Tables

1	Default Jumper and DIP Switch Settings	7
2	Device Revision IDs	8
3	Default Configuration - EEPROM Start-Up Modes	9
4	Device Start-Up Modes	10
5	Key EVM Components	11
6	Suggested DUT Power Configurations	14
7	Suggested XO Power Configurations	15
8	Logic Pin Mapping Tables	15
9	Logic Pin Descriptions - EEPROM + I ² C Mode (HW_SW_CTRL = 0)	16
10	Logic Pin Descriptions - EEPROM + SPI Mode (HW_SW_CTRL = Float)	17
11	Logic Pin Descriptions - ROM + I ² C Mode (HW_SW_CTRL = 1)	18
12	Bill of Materials	45

Introduction

Overview

The LMK05318EVM is an evaluation module for the LMK05318 Network Clock Generator and Synchronizer. The EVM can be used for device evaluation, compliance testing, and system prototyping.

The LMK05318 integrates two Analog PLLs (APLL) and one Digital PLL (DPLL) with programmable loop bandwidth. The EVM includes SMA connectors for clock inputs, oscillator inputs, and clock outputs to interface the device with 50- Ω test equipment. The onboard XO allows the LMK05318 to be evaluated in free-running, locked, or holdover mode of operation. The EVM can be configured through the onboard USB microcontroller (MCU) interface using a PC with TI's TICS Pro software graphical user interface (GUI). TICS Pro can be used to program the LMK05318 registers and on-chip EEPROM, which enables a custom clock configuration on power up.

Trademarks

All trademarks are the property of their respective owners.

Features

- LMK05318 DUT:
 - DPLL with programmable loop bandwidth for input jitter and wander attenuation
 - Two Analog PLLs (APLLs) for flexible low-jitter clock generation
 - Two clock inputs supporting hitless switching and holdover
 - Eight differential clock outputs, or combination of differential and up to eight LVCMOS clocks
 - On-chip EEPROM for custom start-up clocks
- SMA ports for clock input, oscillator inputs, and clock outputs
- Onboard oscillator options: 48.0048-MHz XO and LMK61E2 (I²C-programmable)
- USB MCU interface for I²C/SPI and GPIO pin control using TICS Pro GUI
- Status LEDs for power supplies and device status indicators

What is Included

- LMK05318EVM
- Mini-USB cable

What is Needed

- Windows PC with TICS Pro Software GUI
- Test Equipment
 - DC power supply (5 V, 1 A)
 - Real-time oscilloscope
 - Source signal analyzer
 - Precision frequency counter
 - Signal generator / reference clock

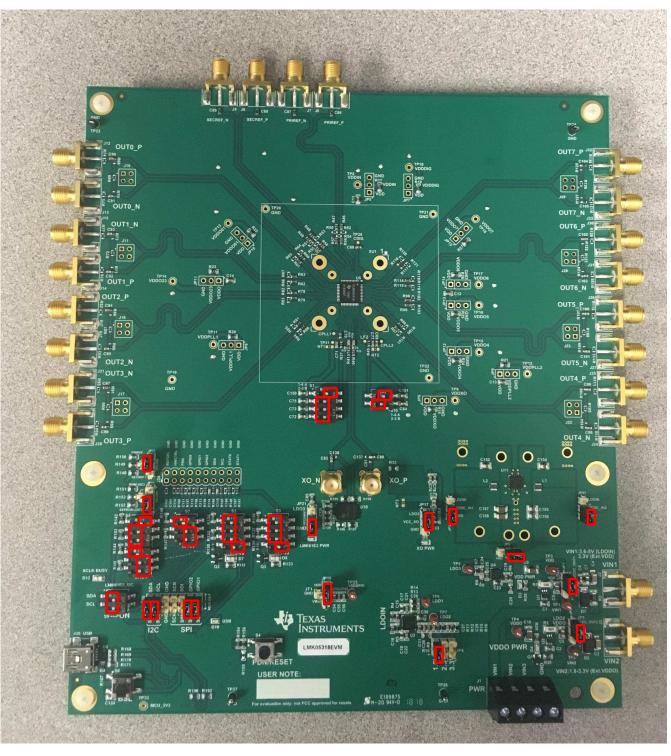


Figure 1. LMK05318EVM With Default Jumper and DIP Switch Settings

SNAU236A–June 2018–Revised December 2018

LMK05318EVM User's Guide

1 EVM Quick Start

This quick start guide can be followed to evaluate the LMK05318 DUT with the default EVM and device configurations summarized in Section 1.2 and Table 3.

1. Verify the EVM default jumper and DIP switch settings shown in Figure 1 and Table 1:

CATEGORY	REF DES	POSITION	DESCRIPTION
	JP1	Tie pins 1-2	DUT VDD = 3.3 V from LDO1
	JP2	Tie pins 1-2	DUT VDDO = 1.8 V from LDO2
	JP3	Tie pins 1-2	LDO3 IN powered from VIN1 external supply
	JP4	Tie pins 1-2	1.8 V selected as LDO2 output voltage
Power	JP16	Tie pins 1-2	VDDGPIO = 3.3 V
	JP17	Tie pins 1-2	XO VCC = 3.3 V from LDO3
	JP21	Tie pins 2-3	LMK61E2 VCC = GND (Powered off)
	JP22	Tie pins 2-3	DC-DC Regulator VIN = GND (Powered off)
	JP23	Tie pins 2-3	DC-DC Regulator VIN = GND (Fowered OII)
Communication	JP20	Tie pins 1-2, 3-4, 11-12, and 13-14	DUT I ² C connected to MCU
	S9	S9[1:2] = OFF	LMK61E2 I ² C not connected to MCU
	JP18	Tie pins 2-3	REFSEL = 0: PRIREF selected if using Manual Pin mode
	JP19	Tie pins 2-3	HW_SW_CTRL = 0: EEPROM+I ² C Start-up Mode selected
	S2	S2[1:3] = OFF S2[4] = ON	STATUS0 = Hi-Z: Output state shown on D7. Pin not connected to MCU.
DUT Control	S3	S3[1:3] = OFF S3[4] = ON	STATUS1/FDEC = Hi-Z: Output state shown on D8. Pin not connected to MCU.
Pins	S5	S5[1] = ON S5[2:3] = OFF	GPIO0/SYNCN = 1: SYNC deasserted. Pin not connected from MCU.
	S6	S6[1] = OFF S6[2:3] = ON	GPIO1/SCS = 0: I ² C slave address = 0x64. Pin connected to MCU.
	S7	S7[1] = OFF S7[2:3] = ON	GPIO2/SDO/FINC = 0: Not used by default. Pin connected to MCU.
DUT Loop Filter	S1	S1[1] = ON S1[2:4] = OFF	LF1 = 0.47 μF
Pins	S10	S10[1] = ON S10[2] = OFF	LF2 = 0.1 μF

Table 1. Default Jumper and DIP Switch Settings

- 2. Connect +5 V from an external DC power supply (1-A limit) across the VIN1 and GND terminals of header J1 (pins 1 and 4).
- 3. Toggle switch S4 (PDN/RESET) to reinitialize the DUT registers from on-chip EEPROM, if needed.
- 4. Check that the LEDs D7 and D8 are both ON if there is no valid clock input on PRIREF or SECREF. This indicates that the DPLL is not locked and that the DPLL holdover is active.
 - a. When the DPLL is not locked, the clock outputs will free-run and track the frequency stability and accuracy of the XO (Y1).
- 5. Connect an external 25-MHz single-ended clock input to either the PRIREF or SECREF SMA port to

lock the DPLL.

- 6. Check that the LEDs D7 and D8 are both OFF after a valid clock input is detected. This indicates the that DPLL is locked and that the DPLL holdover is not active.
 - a. When the DPLL is locked, the output clocks should track the frequency accuracy of the clock input.
- 7. Check for any clock outputs on the OUT[0:7] SMA ports. TI recommends the following best practices when making noise-sensitive performance measurements:
 - a. Use an appropriate balun to interface a differential output clock to the single-ended input of an RF test equipment (phase noise or spectrum analyzer).
 - b. Properly terminate any active output clock trace by placing a $0-\Omega$ load on the SMA port to minimize noise due to reflections. Otherwise, disable any unused outputs by register programming.
 - **NOTE:** OUT7_P/N traces are DC-coupled to its SMA ports to allow evaluation of low-frequency outputs (like 1 PPS) as well as LVCMOS or HCSL output types. Add an external DC blocking cap between the OUT7 port and the input of any test equipment that cannot tolerate DC bias.
- 8. Connect the USB cable from connector J35 to the PC and configure the device through the TICS Pro software to program the LMK05318 through the USB interface.

a. See Appendix A for TICS Pro installation and usage.

TICS Pro uses the "USB2ANY" API software driver to control the USB MCU interfaces (I²C/SPI and Logic pins) on the EVM. TICS Pro can be used to access the device registers and program the device EEPROM for a different start-up configuration.

1.1 Device Revision Identification

Pre-production devices may have been distributed to customers as engineering sample parts or mounted on pre-release EVMs. If a pre-production device or EVM is detected, TI recommends that the user replace the pre-production device with a production device or EVM when available. Production samples and EVMs can be ordered from product folder or requested through your local TI Field Sales representative.

The user can read the Device Revision ID (REVID) Register R3 to find the device revision in the TICS Pro GUI or other serial host interface. See Table 2.

Table 2. Device Revision IDs

REVID REGISTER R3 VALUE	DEVICE REVISION	COMMENT
0x00	Pre-production device	TI recommends to replace with a production device or EVM, or contact TI Field Sales for technical support.
0x11	Production device	Okay to use.

1.2 Default EVM Configuration

- Power Supplies:
 - VIN1: 5 V (External supply to onboard LDO regulators)
 - DUT VDD: 3.3 V from LDO1 (U3)
 - DUT VDDO: 1.8 V from LDO2 (U3)
 - XO: 3.3 V from LDO3 (U4)
 - VDDGPIO: 3.3 V from VDD
 - LMK05318 DUT (U5):
 - Clock Inputs:
 - PRIREF and SECREF: DC-coupled from SMA ports
 - Clock Outputs:
 - OUT[0:6]: AC-coupled to SMA ports
 - OUT7: DC-coupled to SMA ports

- Oscillators onboard:
 - XO (Y1), Default: 48.0048 MHz, 3.3 V, LVCMOS, low-jitter, ±25-ppm stability
 - XO (U10), Alternate: LMK61E2, 10 to 1000 MHz (I²C-programmable), 3.3 V, Differential, low-jitter, ±50-ppm stability

NOTE: The EEPROM image of the LMK05318 was custom programmed to demonstrate the default configuration in Table 3, which is different from the EEPROM image of generic factory-programmed devices.

DEVICE START-UP MODE	EEPROM + I ² C MODE (HW_SW_CTRL = 0)	EEPROM + SPI MODE (HW_SW_CTRL = Float)
HW_SW_CTRL (JP19) Jumper Setting	Tie pins 2-3	Tie pins 2-4 (open)
MCU I ² C/SPI (JP20) Jumper Settings	Tie pins 1-2, 3-4, 11-12 and 13-14 MCU I ² C interface to DUT	Tie pins 7-8, 9-10, 11-12, and 13-14 MCU SPI interface to DUT
GPIO1/SCS (S6) Jumper Settings	S6[1] = OFF, S6[2:3] = ON GPIO1 = 0: I ² C Address = 0x64h	S6[1] = OFF, S6[2:3] = ON SPI SCS input to MCU
GPIO2/SDO/FINC (S7) Jumper Settings	S7[1] = OFF, S7[2:3] = ON Not used by default	S7[1] = OFF, S7[2:3] = ON SPI SDO output to MCU
XO Input		IFF or LVCMOS nation disabled)
PRIREF and SECREF Clock Inputs	-	For LVCMOS nation disabled)
DPLL Clock Input Assignment		SECREF st priority order)
DPLL Clock Input Selection	Manual Fallback m	ode with Pin Select
PLL Mode	DPLL Mode with	APLL2 disabled
DPLL Loop Bandwidth	100	Hz
DPLL TDC Frequency	25 1	ИНz
APLL1 VCO Frequency	2500	MHz
APLL2 VCO Frequency	n/a (APLL:	2 disabled)
OUT[0:1] Output	156.25 MHz AC-LV	PECL (from APLL1)
OUT[2:3] Output	156.25 MHz AC-LV	PECL (from APLL1)
OUT[4] Output	156.25 MHz AC-LV	PECL (from APLL1)
OUT[5] Output	156.25 MHz AC-LV	PECL (from APLL1)
OUT[6] Output	156.25 MHz AC-LV	PECL (from APLL1)
OUT[7] Output		SL (from APLL1) nation disabled)
PRIREF and SECREF Frequency Detector Thresholds ⁽¹⁾	Not Er	nabled
PRIREF and SECREF Window Detector Thresholds	33.6 ns (Early) < Valid REF	Input Period < 46.4 ns (Late)
DPLL Frequency Lock Detector Thresholds	DPLL Locked < 1 ppm, E	PPLL Unlocked > 10 ppm
STATUS0 Output	DPLL Loss of Lo	ock (active high)
STATUS1 Output	DPLL Holdover A	ctive (active high)

Table 3. Default Configuration - EEPROM Start-Up Modes

⁽¹⁾ Clock input frequency thresholds (ppm) are relative to the frequency accuracy of the XO input.

2 Device Under Test

The evaluation module is shipped with the LMK05318 DUT (U5) soldered down. The pin 1 position of the 48-pin QFN package is indicated by a dot symbol in top silkscreen. Alternatively, the U5 can be unmounted and a test socket (XU1) can be populated. See for the socket part number. TI recommends populating the socket with the hinge on the left-hand side (towards OUT[0:3] ports) and the latch on the right-hand side.

2.1 Device Start-Up Modes

The LMK05318 can start-up in one of three modes depending on the 3-level input level sampled on the HW_SW_CTRL pin upon power-on reset (POR). The start-up modes are listed in Table 4 and determine the following:

- 1. The memory bank (EEPROM or ROM) used to initialize the registers upon start-up.
- 2. The serial interface (I²C or SPI) used for register access.
- 3. The logic pin definitions.

The I²C or SPI interface allows for register access to configure the device after start-up and monitor its status. The register map configurations are the same for I²C and SPI.

See Section 3.2 for detailed descriptions of the logic pins for each start-up mode.

HW_SW_CTRL ⁽¹⁾ INPUT LEVEL	START-UP MODE	MODE DESCRIPTION
0	EEPROM + I ² C (Soft pin mode)	 Registers are initialized from EEPROM, and I²C interface is enabled with slave address 11001xxb. Logic pins: SDA/SDI, SCL/SCK: I²C Data, I²C Clock GPIO0/SYNCN: Output Sync (active low) GPIO1/SCS⁽¹⁾: I²C Address LSB Select (Low = 00b, Float = 01b, High = 10b) GPIO2/SDO/FINC⁽²⁾: DPLL DCO Frequency Increment (active high) STATUS1/FDEC⁽²⁾: DPLL DCO Frequency Decrement (active high), or Status output
Float (V _{IM})	EEPROM + SPI (Soft pin mode)	 Registers are initialized from EEPROM, and SPI interface is enabled. Logic pins: SDA/SDI, SCL/SCK: SPI Data In (SDI), SPI Clock (SCK) GPIO0/SYNCN: Output Sync (active low) GPIO1/SCS: SPI Chip Select (SCS) GPIO2/SDO/FINC: SPI Data Out (SDO)
1	ROM + I ² C (Hard pin mode)	 Registers are initialized from the ROM page selected by GPIO pins, and I²C interface is enabled with the 7-bit slave address of 0x64. Logic pins: SDA/SDI, SCL/SCK: I²C Data, I²C Clock GPIO[2:0]⁽¹⁾: ROM page select at POR After POR, GPIO2/SDO/FINC and STATUS1/FDEC pins can function the same as for HW_SW_CTRL = 0 if enabled by registers.

Table 4. Device Start-Up Modes

⁽¹⁾ The input levels on these pins are sampled only during POR.

⁽²⁾ FINC and FDEC pin controls are only available when DCO mode and GPIO pin control are enabled by registers.

TI suggests to use the EEPROM mode when either of the following is true:

- A single custom start-up frequency configuration is required from a single OPN.
- A host device is able to program the registers (and EEPROM, if needed) with a new configuration after power-up through I²C or SPI. SPI is not supported by ROM mode.

NOTE: To ensure proper start-up into EEPROM + SPI Mode, the HW_SW_CTRL, STATUSO, and STATUS1/FDEC pins must all be floating or biased to V_{IM} (0.8-V typical) before the PDN pin is pulled high. These three pins momentarily operate as 3-level inputs and get sampled at the low-to-high transition of PDN to determine the device start-up mode during POR. If any of these pins are connected to a host device (MCU or FPGA), TI recommends using external biasing resistors on each pin (10-k Ω pullup to 3.3 V with 3.3-k Ω pulldown to GND) to set the inputs to VIM during POR. After power-up, the STATUS pins can operate as LVCMOS outputs and overdrive the external resistor bias for normal status operation.

3 EVM Configuration

The LMK05318 is a highly configurable clock chip with multiple power domains, PLL domains, and clock input and output domains. To support a wide range of LMK05318 use cases, the EVM was designed with more flexibility and functionality than needed to implement the chip in a customer system application.

This section describes the power, logic, and clock input and output interfaces on the EVM, as well as how to connect, set up, and operate the EVM.

An overview of some key components are shown in Table 5, Figure 2, and Figure 3.

ITEN	1 NO.	REF DES	DESCRIPTION
	1	U5	LMK05318 DUT
2	A	VIN1 (terminal) or	External Supply Input (+5 V using default configuration)
2	В	J2 (SMA)	
	А	Y1 or	Y1: 48.0048-MHz XO (Default). Located on bottom side.
3	В	J4/J5 or	J4/J5: SMA Ports for External XO_P/N input clock. Requires minor rework before first use (see Section 3.3.1).
	С	U10	U10: LMK61E2 Programmable OSC. Requires minor rework before first use (see Section 3.3.3).
	4	J6/J7 and J8/J9	SMA Ports for DUT Clock Inputs (PRIREF_P/N and SECREF_P/N)
	5	J12/J13, J14/J15, J18/J19, J20/J21, J24/25, J26/J27, J30/J31, J32/J33	SMA Ports for DUT Clock Outputs (OUT0_P/N to OUT7_P/N)
	6	S4	Toggle Switch for DUT Power-Down/Reset (PDN pin)
	7	JP18	Jumper for DUT Clock Input Selection (REFSEL)
	8	D7, D8	Status LEDs for DUT STATUS[0:1] pins
	9	JP20	Jumpers Header for I ² C/SPI interface (MCU to DUT)
1	0	J35	USB Port for MCU

Table 5. Key EVM Components

EVM Configuration

www.ti.com

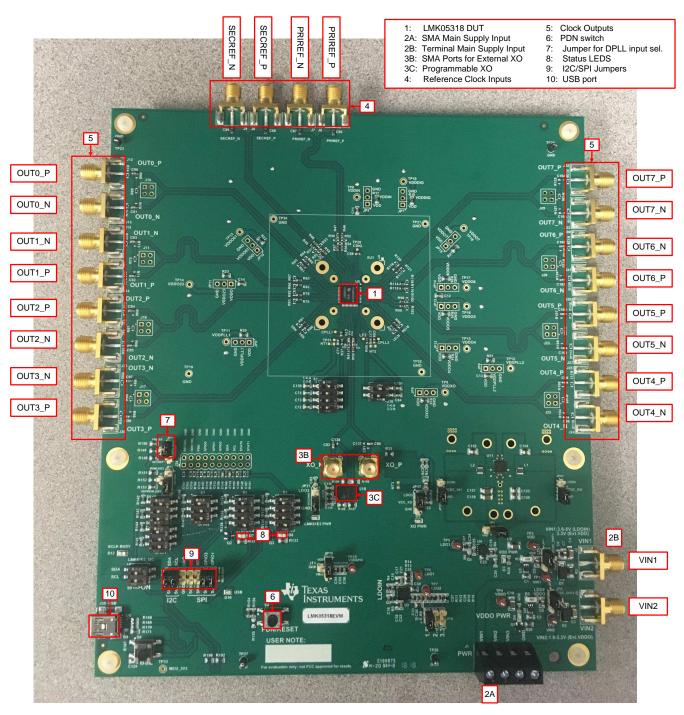


Figure 2. Key Components - EVM Top Side

EVM Configuration

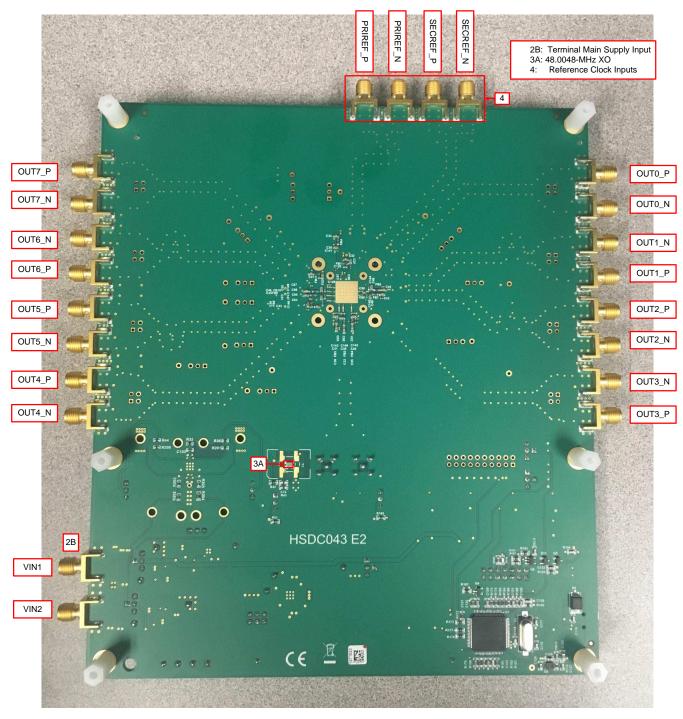


Figure 3. Key Components - EVM Bottom Side

3.1 Power Supply

The LMK05318 has five core VDD supply pins that operate from 3.3 V \pm 5% and six output VDDO supply pins that operate from 1.8 V, 2.5 V, or 3.3 V \pm 5%.

J1 is the main power terminal to the external power supply. Power SMA port VIN1 (J2) provides an alternative connector style to apply power through coax cable.

On the EVM, the default power configuration uses the onboard LDO regulators to power all VDD and VDDO pins from an external 5-V supply input VIN1 to J1 (or J2). A Dual LDO regulator (U3) is used to power the VDD and VDDO rails of the DUT and its peripheral circuitry. A separate LDO regulator (U4), also supplied from VIN1, is used to power the onboard XO circuits.

NOTE: Not every power connection is used or required to operate the EVM. Other power configurations are possible. See the power schematics in Figure 9, Figure 10, and Figure 11.

Figure 4 shows the default power jumper locations and settings.

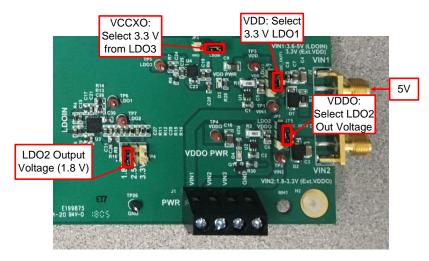


Figure 4. Default Power Jumper Configuration

Table 6 shows the suggested power configurations for the DUT.

Table 6. Suggested DUT Power Configurations

CONNECTION	NAME	ONBOARD LDO REGULATORS (DEFAULT)	DIRECT EXTERNAL SUPPLIES
CONNECTION	NAME	VDD = 3.3 V (LDO1) VDDO = 1.8 / 2.5 / 3.3 V (LDO2)	VDD = 3.3 V (EXT. VIN1) VDDO = 1.8 / 2.5 / 3.3 V (EXT. VIN2)
J1 ⁽¹⁾	PWR	Pin 1 (VIN1): Connect to external 5-V supply Pin 2 (VIN2): n/a Pin 3 (VIN3): n/a Pin 4 (GND): Connect to supply ground	Pin 1 (VIN1): Connect to external 3.3-V supply Pin 2 (VIN2): Connect to external 1.8-V, 2.5-V, or 3.3-V supply Pin 3 (VIN3): n/a Pin 4 (GND): Connect to supply ground
JP1	VDD	Tie pins 1-2: Selects 3.3 V from LDO1 to VDD Plane	Tie pins 2-3: Selects ext. 3.3V supply from VIN1 to VDD Plane
JP2	VDDO	Tie pins 1-2: Selects LDO2 output to VDDO Plane	Tie pins 2-3: Selects ext. supply from VIN2 to VDDO Plane
JP4	VOUT2	Tie pins 1-2: LDO2 out = 1.8 V (default) Tie pins 3-4: LDO2 out = 2.5 V Tie pins 5-6: LDO2 out = 3.3 V	n/a

⁽¹⁾ The SMA ports J2 or J3 can be used to power VIN1 or VIN2, respectively, through a coaxial cable instead of using power cables to J1.

Table 7 shows the suggested power configurations for the onboard XO circuits.

CONNECTION	NAME	ONBOARD LDO REGULATOR (DEFAULT)	DIRECT EXTERNAL SUPPLY
		LDO3 = 3.3 V (VIN3)	VCCXO or VCCLMK6 = 3.3 V
J1	PWR	Pin 1 (VIN1): Connect to external 5-V supply Pin 2 (VIN2): n/a Pin 3 (VIN3): n/a Pin 4 (GND): Connect to supply ground	n/a
JP3	LDO3 IN	Tie pins 1-2: Selects 5 V from VIN1 to LDO3 IN	n/a
JP17	VCCXO	Tie pins 1-2: Select 3.3 V from LDO3	Pin 1 (LDO3): Open Pin 2 (VCCXO): Connect to external 3.3-V supply Pin 3 (GND): Connect to external supply ground
JP21	VCCLMK6	Tie pins 1-2: Selects 3.3 V from LDO3	Pin 1 (LDO3): Open Pin 2 (VCCLMK6): Connect to external 3.3-V supply Pin 3 (GND): Connect to external supply ground

Table 7. Suggested XO Power Configurations

NOTE: Disconnect the power and signal paths from any XO circuit that is not used for a given configuration to avoid unwanted noise coupling.

3.2 Logic Inputs and Outputs

The logic I/O pins of the DUT support different functions depending on the device start-up mode chosen by the HW_SW_CTRL input level upon POR. The STATUS[0:1] pins are programmable and can be used to monitor a variety of different device statuses.

The default logic input pin states are determined by onboard pullup or pulldown resistors, but some input pins can be driven to high or low state by the MCU output or DIP switch control. The MCU can be controlled from a PC running TICS Pro software to program the device registers through I²C or SPI and also drive the DUT logic inputs.

See Table 8 for the logic pin mapping tables for the device start-up modes.

HW_SW_CTRL (JP19)	START-UP MODE	LOGIC PIN MAPPING TABLE
0 (Tie pins 2-3)	EEPROM + I ² C (Default)	See Table 9
Float (Tie pins 2-4)	EEPROM + SPI	See Table 10
1 (Tie pins 1-2)	ROM + I ² C	See Table 11

Table 8. Logic Pin Mapping Tables

Logic pins not listed in Table 10 or Table 11 are the same as described in Table 9.

Table 9. Logic Pin Descriptions - EEPROM + I ² C Mode (HW_SW_CTRL = 0)

PIN NAME (TYPE)	DESCRIPTION				
	Chip Power-Down/Reset (active low) When PDN rises to 1, the digital control block triggers the internal POR sequence, initializes all the registers				
PDN	and logic pins for the start-up mode selected by the HW_SW_CTRL input level, restores all the internal circuits including the serial interface to their initial state, and begins normal operation. This pin is pulled high through an external pullup resistor, but can be pulled down by pushing toggle switch				
(2-level input)	S4.				
	PDN STATE	S4	CHIP STATE		
	1 (Default)	Pushed	Power-down/reset state: Serial interface disabled Normal operation		
	I ² C Data (SDA)	Released	Normal Operation		
SDA/SDI (Open-drain input)		en the DUT and MCU conn	ects through two jumpers on JP20.		
	Tie JP20 pins 1-2 (SDA) and pins 3-4 (SCL) to connect the MCU and DUT to allow register programming through I ² C. Remove jumpers from JP20 pins 7-8 and pins 9-10 so the MCU SPI SCK and SDI pins are not connected simultaneously.				
	Also, it is possible to use the EVM to program an off-board LMK05318 DUT by removing the I ² C jumpers from JP20, and connecting the MCU side (JP20 pins 1, 3, and 5) to the SDA, SCL, and GND lines of the DUT on the target board. The MCU side of JP20 has external I ² C pullup resistors to 3.3 V, which is derived a dedicated regulator powered off the USB port 5-V supply.				
SCL/SCK	I ² C Clock (SCL)				
(Open-drain input)	See SDA/SDI pin descrip	otion above. Red LED (D12	2) will turn ON during I ² C activity.		
GPIO0/SYNCN (2-level input)	Output Synchronization (active low) GPIO0 (SYNCN) can be used to mute the output clocks and trigger output divider synchronization (SYNC) if the divider SYNC bits are enabled by registers. Alternatively, SYNC can be triggered through register programming instead of using this pin.				
	This pin is set through a 3-position DIP switch (S5). When S5[2] = ON (default), the pin is connected to the MCU and can be driven 0 or 1 by software control. When S5[2] = OFF, the pullup or pulldown resistor switch determines the GPIO0 state.				
	GPIO0 STATE	S5 (0=OFF, 1=ON)	OUTPUT SYNC STATE		
	0	S5[1:3] = 001	SYNC asserted: Outputs muted and output dividers hele in reset		
	1 (Default)	S5[1:3] = 100	SYNC deasserted: Normal output operation		
	I ² C Slave Address LSB Select				
	GPIO1 is sampled on POR to configure the lower 2 bits of the 7-bit l^2C address after start-up. The upper 5 bits of the l^2C address are initialized from EEPROM (SLAVEADR[7:3] = 11001b).				
GPIO1/SCS (3-level input)	This pin is set through a 3-position DIP switch (S6). When S6[2] = ON (default), the pin is connected to the MCU and can be driven 0 or 1 by software control. When S6[2] = OFF, the pullup or pulldown resistor switch determines the GPIO1 state.				
	GPIO1 STATE	S6 (0=OFF, 1=ON)	7-BIT SLAVE ADDRESS		
	0 (Default)	S6[1:3] = 001	1100100b (0x64h)		
	Float	S6[1:3] = 000	1100101b (0x65h)		
	1	S6[1:3] = 100	1100111b (0x66h)		
	DPLL DCO Mode Frequency Increment (FINC)				
GPIO2/SDO/FINC (2-level input)	When DCO mode and GPIO pin control are enabled by registers, a high pulse on the FINC input will increment the DCO numerator by the programmable frequency deviation (FDEV) step size to adjust its frequency.				
	This pin is set through a 3-position DIP switch (S7). When S7[2] = ON (default), the pin is connected to the MCU and can be pulsed by software control. Alternatively, FINC can be triggered through register programming without using this pin. When S7[2] = OFF, the pullup or pulldown switch determines the state.				
	FINC STATE	S7 (0=OFF, 1=ON)	DPLL DCO NUMERATOR		
	0	S7[1:3] = X1X	No update		
	1 (Pulsed by MCU pin)	(MCU driven)	Incremented		

PIN NAME (TYPE)	DESCRIPTION				
	DPLL Reference Clock Input Selection				
REFSEL (2-level inputs)	The REFSEL pin selects the DPLL reference clock input when Manual Input Select mode and HW Pin Control mode are selected by register configuration. This pin is ignored when Auto Input Select mode or SW Register Control mode is selected.				
	This pin is set through a 3-way jumper (J18). When JP18 pins 2-4 are tied, the REFSEL pin is connected to the MCU and can be driven 0 or 1 by software control. Otherwise, the REFSEL state is determined by the other JP18 options below.				
	REFSEL STATE	JP18	DPLL REF INPUT		
	0 (Default)	Tie pins 2-3	PRIREF		
	Float	Open pin 2	Auto Select		
	1	Tie pins 1-2	SECREF		
STATUS0, STATUS1/FDEC (Logic outputs)	Status Outputs Each STATUS pin is a programmable status output that supports NMOS open-drain or 3.3-V LVCMOS driver type. When S2[4] and S3[4] = ON, the output states of STATUS0 and STATUS1 are shown on active-high LEDs D7 and D8, respectively. If STATUS0 or STATUS1 is configured as an open-drain driver, a 10-k Ω pullup to VDDGPIO can be connected by setting S2[1] or S3[1] = ON. DPLL DCO Mode Frequency Decrement (FDEC) When DCO mode and GPIO pin control are enabled by register. a high pulse on the EDEC input will				
	When DCO mode and GPIO pin control are enabled by registers, a high pulse on the FDEC input will decrement the DCO numerator by the programmable frequency deviation (FDEV) step size to adjust its frequency.				
	This pin is set through a 4-position DIP switch (S3). When S3[2] = ON, the pin is connected to the MCU and can be pulsed by software control. Alternatively, FDEC can be triggered through register programming without using this pin. When S3[2] = OFF, the pullup or pulldown switch determines the state.				
	FDEC STATE	S3 (0=OFF, 1=ON)	DPLL DCO NUMERATOR		
	0	S3[1:3] = X1X (MCU driven)	No update		
	1 (Pulsed by MCU pin)		Decremented		

Table 9. Logic Pin Descriptions - EEPROM + I²C Mode (HW_SW_CTRL = 0) (continued)

Table 10. Logic Pin Descriptions - EEPROM + SPI Mode (HW_SW_CTRL = Float) (1) (2)

PIN NAME (TYPE)	DESCRIPTION		
	SPI Data In (SDI / SIMO)		
SDA/SDI (2-level input)	The SPI interface between the DUT and MCU can be connected using four jumpers on JP20.		
	Tie JP20 pins 7-8 (SCL), pins 9-10 (SCL), pins 11-12 (SDO), and pins 13-14 (SCS) to connect the MCU and DUT to allow register programming through SPI. Remove jumpers from JP20 pins 1-2 and pins 3-4, so the MCU I ² C pins are not connected simultaneously.		
	Also, it is possible to use the EVM to program an off-board LMK05318 DUT by removing the SPI jumpers from JP20, and connecting the MCU side (JP20 pins 5, 7, 9, 11, and 13) to the GND, SCL, SDI, SDO, and SCS lines of the DUT on the target board.		
SCL/SCK	SPI Clock (SCK)		
(2-level input)	See SDA/SDI pin description above. Red LED (D12) will turn ON during SPI activity.		
GPIO1/SCS	SPI Chip Select (SCS)		
(2-level input)	See SDA/SDI pin description above.		
GPIO2/SDO/FINC	SPI Data Out (SDO / SOMI)		
(2-level input)	See SDA/SDI pin description above.		
	Status Outputs		
STATUS0, STATUS1 (Logic outputs)	Both STATUS pins must be allowed to float during POR to ensure proper start-up into EEPROM+SPI Mode. This means S2[1:3] and S3[1:3] must all be switched OFF during POR.		
	Each STATUS pin is a programmable status output that supports NMOS open-drain or 3.3-V LVCMOS driver type. However, the 3.3-V LVCMOS driver type is recommended because external pullup resistors must be avoided on the STATUS pins during POR when using EEPROM+SPI Mode. When S2[4] and S3[4] = ON, the output states of STATUS0 and STATUS1 are shown on active-high LEDs D7 and D8, respectively.		
	Note that DCO pin control is not supported in EEPROM+SPI mode.		

⁽¹⁾ Logic pins not listed in Table 10 are the same as described in Table 9.

⁽²⁾ When HW_SW_CTRL = Float, STATUS[1:0] pins must not be pulled high or low externally during POR to ensure proper start-up into EEPROM+SPI Mode.

TEXAS INSTRUMENTS

EVM Configuration

www.ti.com

PIN NAME (TYPE)	DESCRIPTION			
	GPIO[2:0] Function at POR: ROM Page Selection			
GPIO[2:0] (2-level inputs)	GPIO[2:0] pins are sampled on POR to select the ROM page settings used to initialize the registers.			
	The GPIO[2:0] pins are controlled by S7, S6, and S5, respectively. To configure GPIO[2:0] pins through the pullup or pulldown resistors only (disable MCU control), set S5[2], S6[2], and S7[2] to OFF. Then, GPIOx can be pulled up by setting Sy[1] = ON and Sy[3] = OFF, or else pulled down by setting Sy[1] = OFF and Sy[3] = ON. GPIO2 Function after POR: DPLL DCO Mode Frequency Increment (FINC)			
	After POR, the GPIO2 pin can be operated as an FINC input in the same way described for EEPROM + l^2C			
	mode (see the GPIO2/FINC description in Table 9).			
	GPIO[2:0] STATES	ROM PAGE SELECT		
	000b (Default)	ROM Page 0		
	001b	ROM Page 1		
	010b	ROM Page 2		
	110b	ROM Page 6		
	111b	ROM Page 7		
STATUS0, STATUS1/FDEC (Logic outputs)	Status Outputs			
	STATUS[1:0] pins are individually programmable status outputs that support NMOS open-drain (requires external pullup resistor) or 3.3-V LVCMOS driver type. The state of these pins is shown by D7 and D8 when S2[4] and S3[4] are ON, respectively.			
	DPLL DCO Mode Frequency Decrement (FDEC)			
	After POR, the STATUS1 pin can be operated as an FDEC input in the same way described for EEPROM + I ² C mode (see the STATUS1/FDEC description in Table 9).			

Table 11. Logic Pin Descriptions - ROM + I²C Mode (HW_SW_CTRL = 1)⁽¹⁾⁽²⁾

⁽¹⁾ Logic pins not listed in Table 11 are the same as described in Table 9.

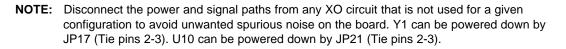
⁽²⁾ In ROM + I²C Mode, the two I²C address LSBs are forced to 00b (address = 0x64h).

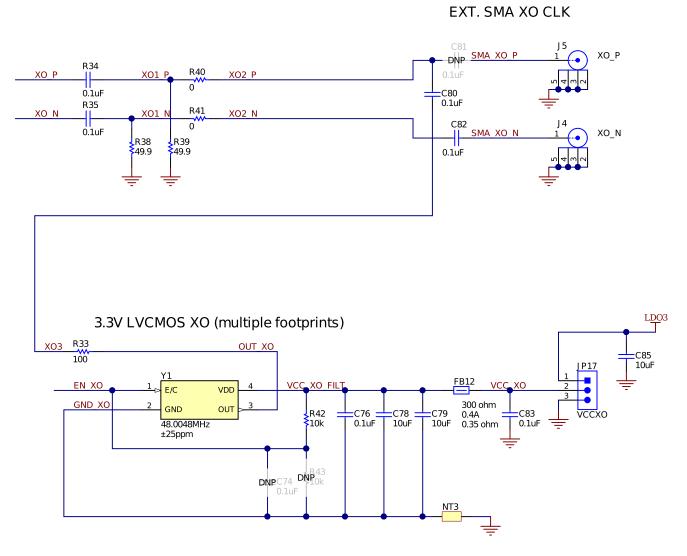
3.3 XO Input

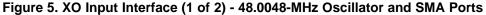
The LMK05318 has an XO input (XO_P/N pins) to accept a reference clock for the Fractional-N APLLs. The XO input determines the output frequency accuracy and stability in free-run or holdover modes. For synchronization applications like SyncE or IEEE 1588, the XO input would typically be driven by a low-frequency TCXO, OCXO, or external traceable clock that conforms to the frequency accuracy and holdover stability requirements of the application. For DPLL mode, the XO frequency must have a **non-integer** frequency relationship with the VCO1 frequency so APLL1 operates in Fractional mode. For APLL only mode (DPLL not used), the XO frequency can have an integer relationship with the VCO1 and/or VCO2 frequencies to avoid fractional spurs.

The XO input of the LMK05318 has programmable on-chip input termination and AC-coupled input biasing options to support any clock interface type.

For flexibility, the EVM provides the three XO input options (use one at a time).


3.3.1 48.0048-MHz Oscillator (Default)

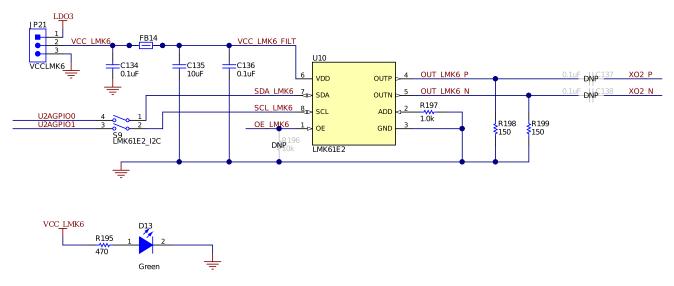

By default, the EVM is populated with a 48.0048-MHz, 3.3-V LVCMOS, low-jitter oscillator (Y1) to drive the XO_P input of the DUT with the onboard termination and AC coupling. See Figure 5. Y1 can be used to evaluate various frequency configurations. Y1 has multiple overlapped 4-pin SMD footprints (2.5×2.0, 3.2×2.5, 5×7, or 9×14-mm sizes) that allows the user to rework a different XO frequency/model after the pre-installed component is carefully removed.

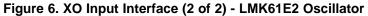

3.3.2 External Clock Input

Another option is to feed an external clock to the SMA ports (J5/J4) to drive the XO_P/N inputs (differential) or XO_P input (single-ended). See Figure 5. This path can be connected to the XO_P/N input pins by placing $0.1-\mu$ F capacitors on C81 and C82 and opening C80, C137, and C138. Y1 and U10 should be powered down when using the external XO input path.

3.3.3 LMK61E2 Programmable Oscillator

The last option is to use the other onboard LMK61E2 programmable oscillator (U10) to drive the XO_P/N inputs. See Figure 6.


The differential output clock from U10 can be routed to the XO_P/N input pins with minimal rework by placing 0.1- μ F capacitors on C137 and C138, and opening C80, C81, and C82 (note: C137 shares a pad with C80 and C81, and C138 shares a pad with C82). U10 can be powered by a clean 3.3-V supply from LDO3 by tying JP21 pins 1-2.



EVM Configuration

www.ti.com

U10 can be configured to output any other supported XO frequency by programming it through the I²C interface of the MCU. To connect U10 to the I²C bus (shared with the DUT), set switches S9[1:2] to the ON positions. The user can select the LMK61E2 device profile in TICS Pro, scan the I²C bus to detect U10 at address 0x58, configure the output to a different frequency, and store the new configuration to the LMK61E2's internal EEPROM if desired. After U10 has been programmed, set S9[1:2] to the OFF positions to disconnect it from the I²C bus.

3.4 Reference Clock Inputs

The LMK05318 has two DPLL reference clock input pairs (PRIREF_P/N and SECREF_P/N) with configurable input priority and input selection modes. The inputs have programmable input type, termination, and biasing options to support any clock interface type.

External LVCMOS or Differential reference clock inputs can be applied to the SMA ports, labeled PRIREF_P/N and SECREF_P/N. All SMA inputs are routed through 50- Ω single-ended traces and DC-coupled to the corresponding PRIREF_P/N and SECREF_P/N pins of the DUT.

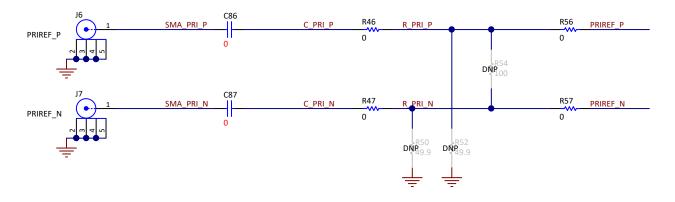


Figure 7. Clock Input Interface - PRIREF (Similar for SECREF)

3.5 Clock Outputs

The LMK05318 has eight clock output pairs (OUT[0:7]_P/N) that can be sourced from either APLL domain.

Output clocks are routed through $50-\Omega$ single-ended traces and AC-coupled to the SMA ports labeled OUT[0:6]_P/N. The OUT7_P/N is also routed through $50-\Omega$ single-ended traces, but is DC-coupled to the SMA ports to allow for evaluation of low frequency outputs (for example, 1 PPS or 1 Hz), as well as LVCMOS or HCSL output clocks. Each output pair supports AC-LVDS/CML/LVPECL and HCSL driver types. The HCSL driver has programmable on-chip termination or can used external termination. OUT[4:7] can also support 1.8-V LVCMOS driver type with one or two LVCMOS output clocks per P/N pair. Each LVCMOS driver has internal $50-\Omega$ output impedance and supports programmable polarity and tri-state options.

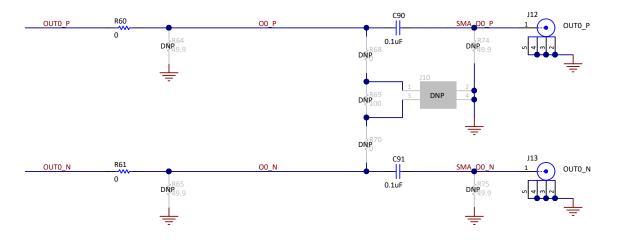
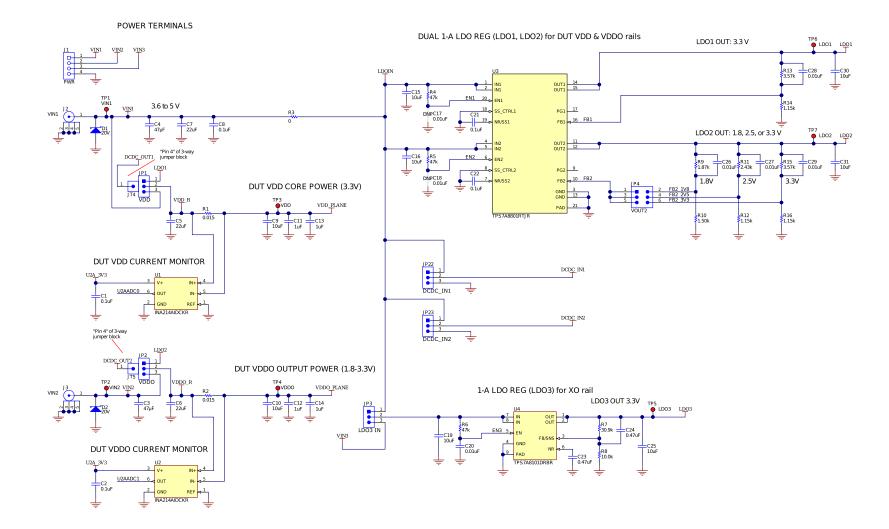


Figure 8. Clock Output Interface - OUT0 (Similar for OUT1-OUT7)

3.6 Status Outputs and LEDs

Status outputs signals can be configured on the STATUS0 and STATUS1/FDEC pins. The status output signal, output type (3.3-V LVCMOS or NMOS open-drain), and output polarity are register programmable. The output states for these pins (and other logic pins) can be probed at header J34 (not installed).


STATUS0 and STATUS1 outputs drive orange LEDs D7 and D8 for visual indication. Each LED will turn ON when the status output is 1 (active high).

EVM Schematics

www.ti.com

4 EVM Schematics

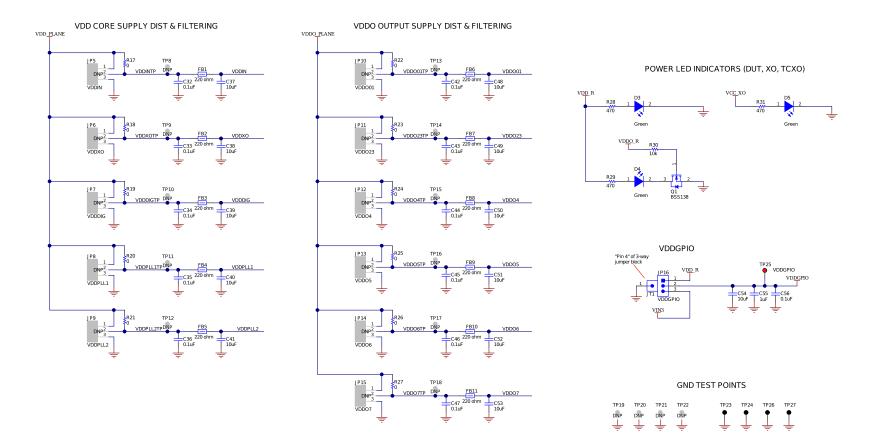
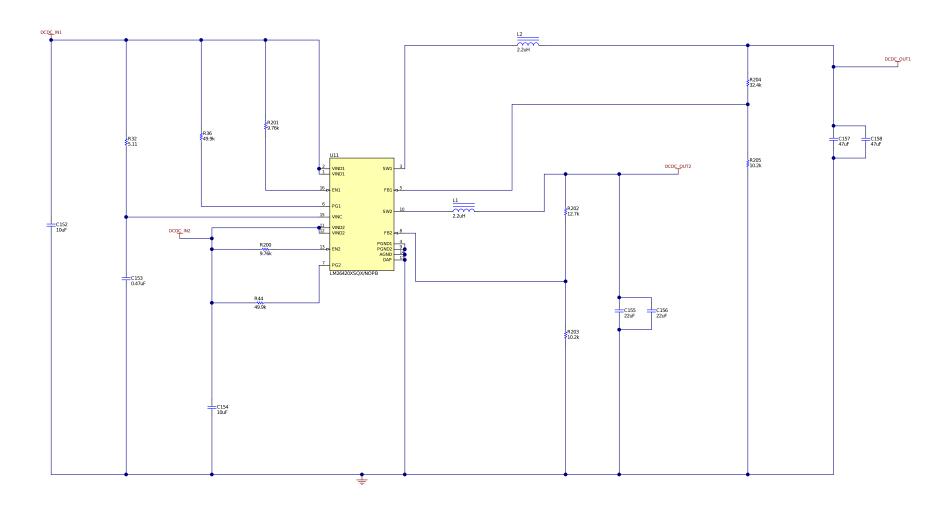
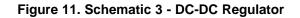
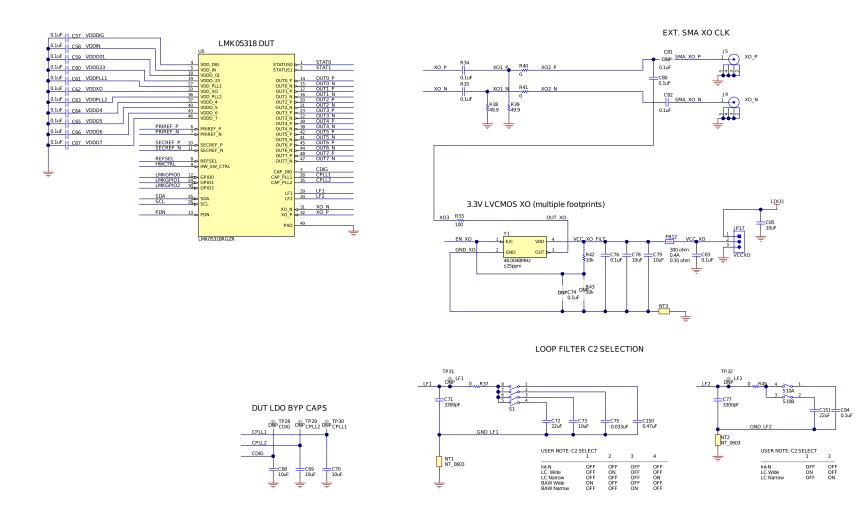
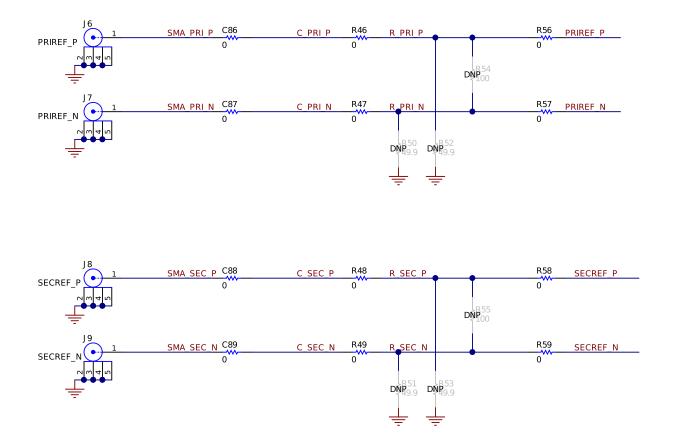
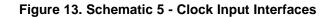
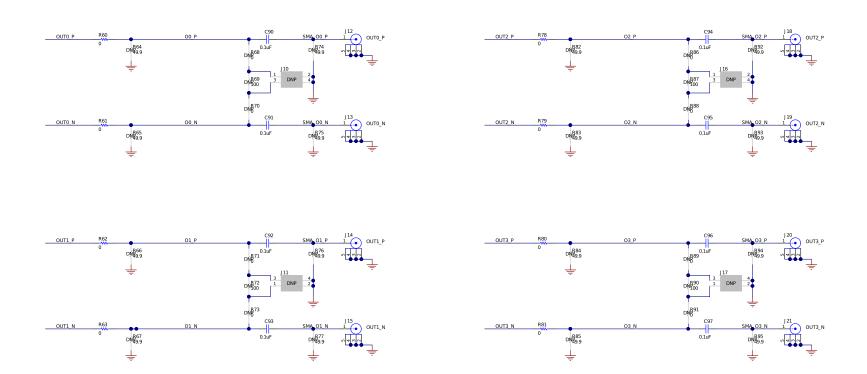
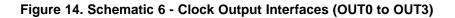





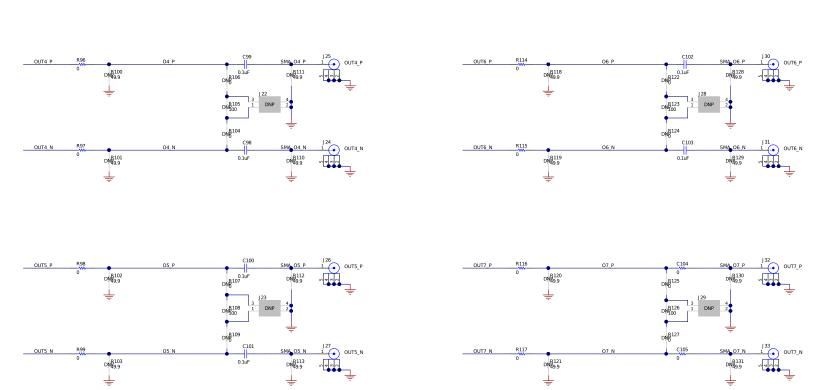
Figure 10. Schematic 2 - Power Distribution



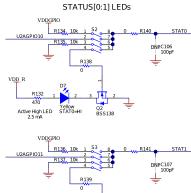


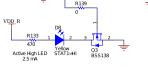






OUT0-OUT3 CLOCK OUTPUTS





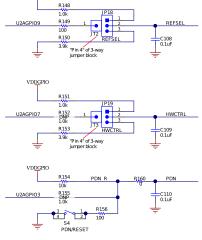
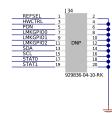
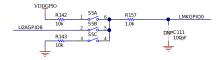
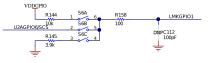

OUT4-OUT7 CLOCK OUTPUTS

Figure 15. Schematic 7 - Clock Outputs (OUT4 to OUT7)



LOGIC I/O INTERFACE


VDDGPIO


LOGIC I/O TEST POINTS

I2C/SPI INTERFACE

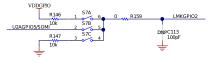
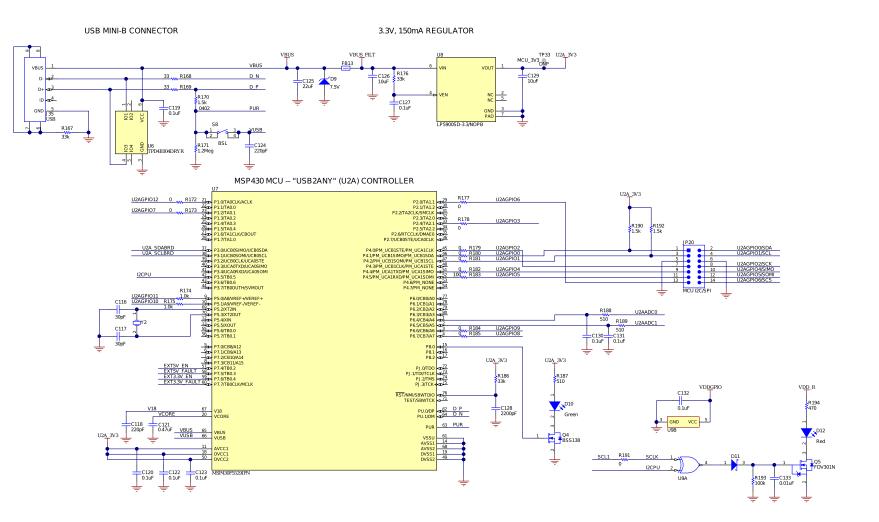
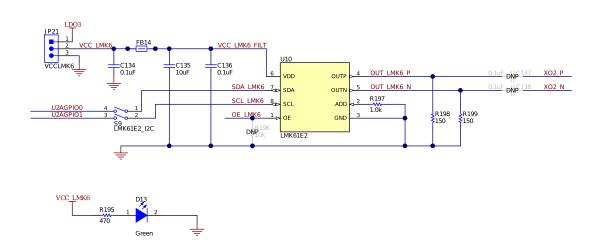



Figure 16. Schematic 8 - Logic I/O Interfaces



PROGRAMMABLE LMK61E2 DIFF. OSC

Figure 18. Schematic 10 - LMK61E2 Oscillator

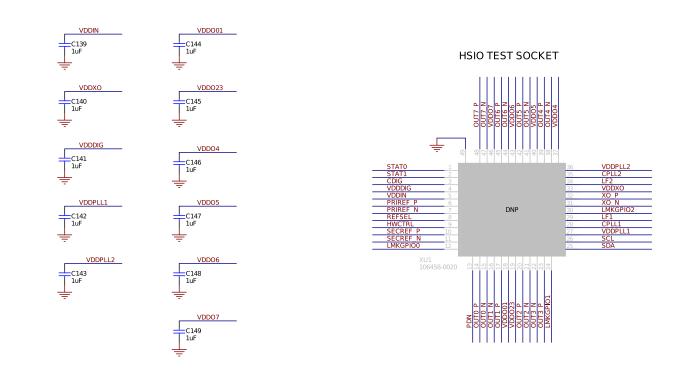


Figure 19. Schematic 11 - DUT Test Socket

EVM Layouts

5 EVM Layouts

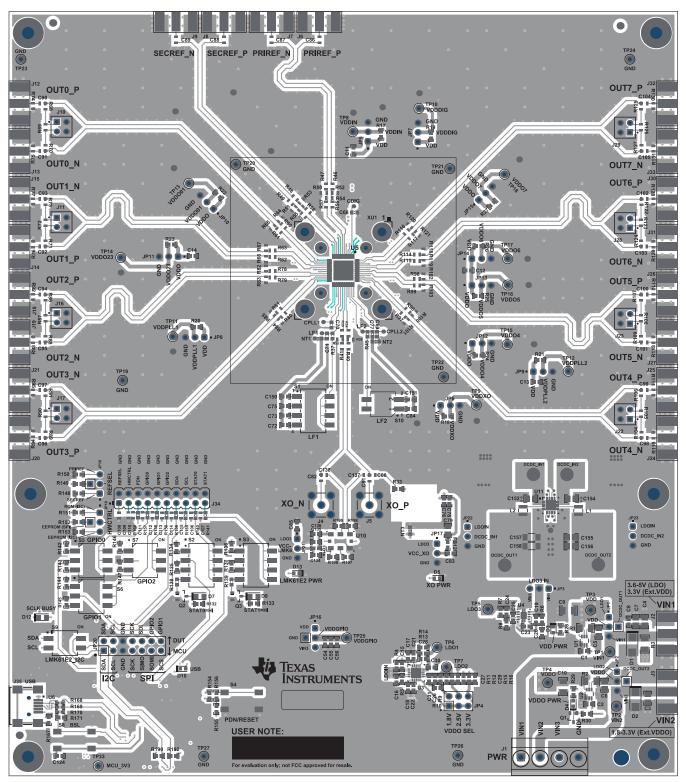
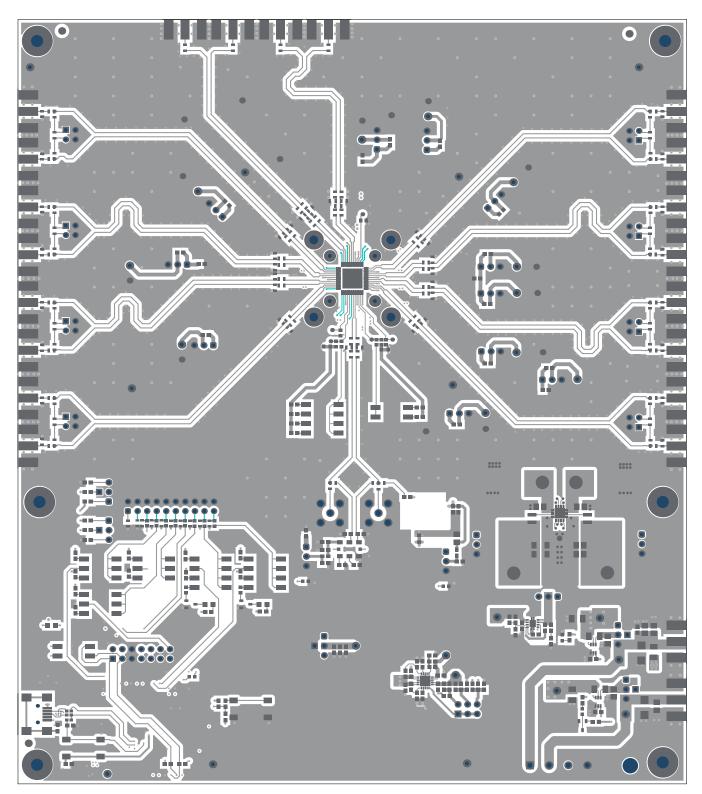



Figure 20. Top Composite View

EVM Layouts

EVM Layouts

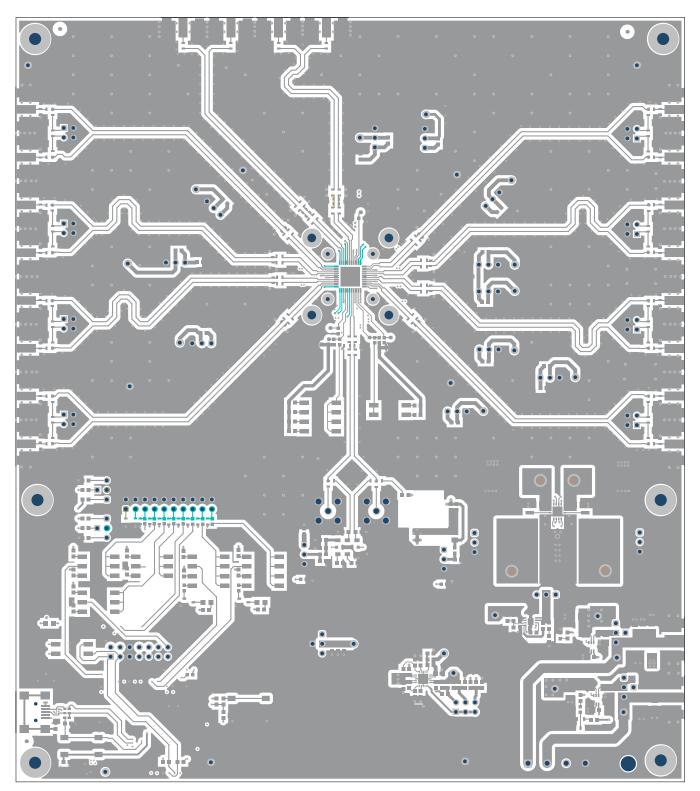


Figure 22. Layer 1 (Top Side) - Clock I/Os, Logic, and Power Routing, Ground Fill

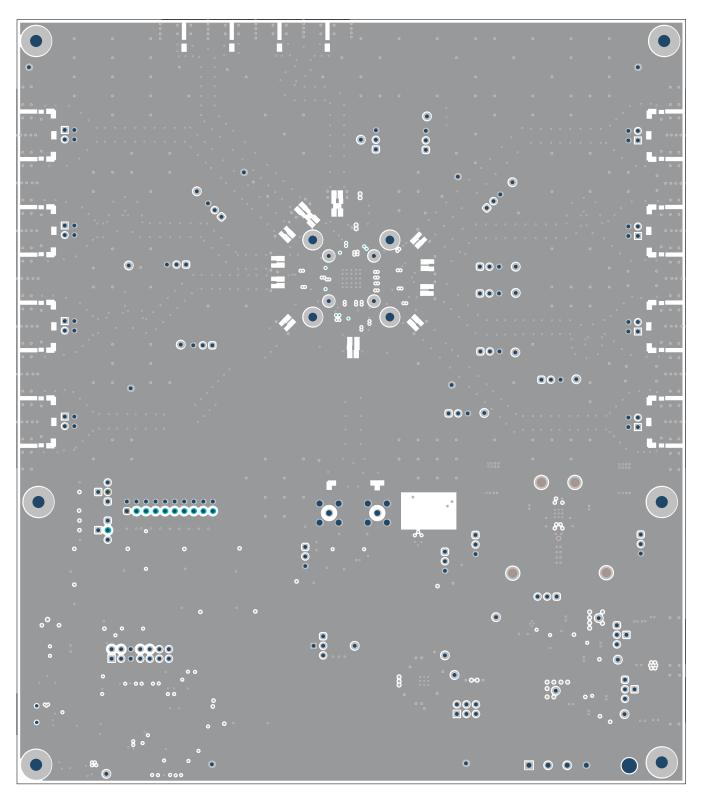


Figure 23. Layer 2 - Ground Plane

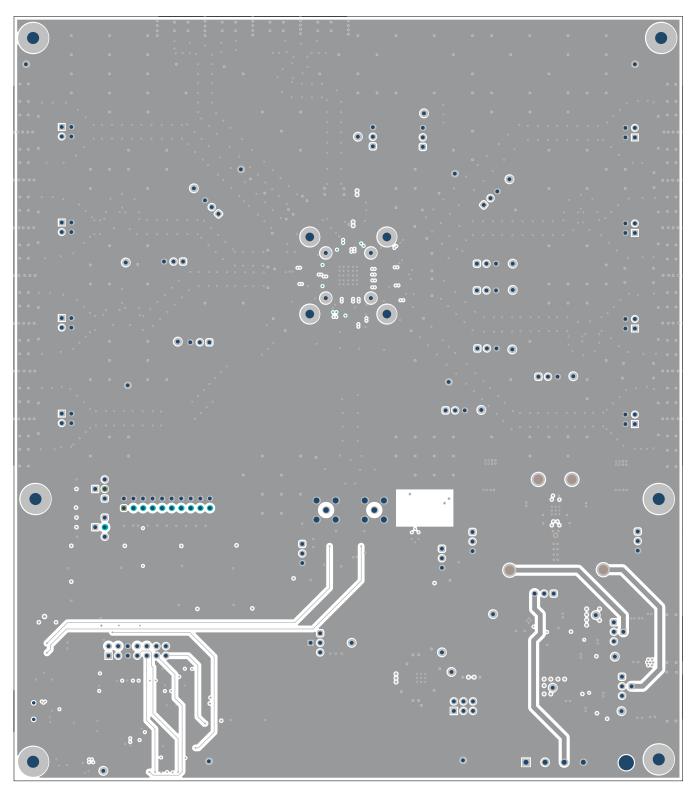


Figure 24. Layer 3 - Logic Routing, Ground Fill

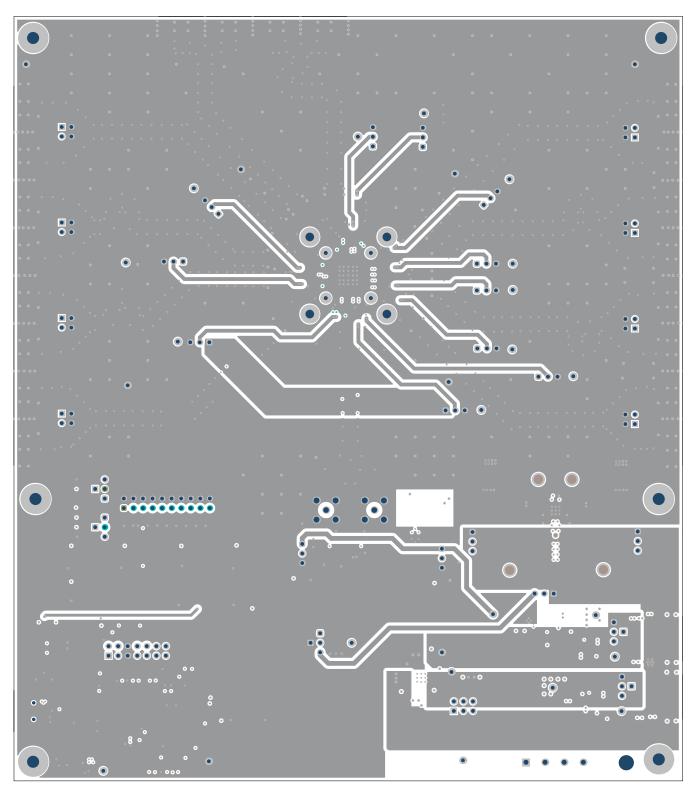


Figure 25. Layer 4 - Power Routing, Ground Fill

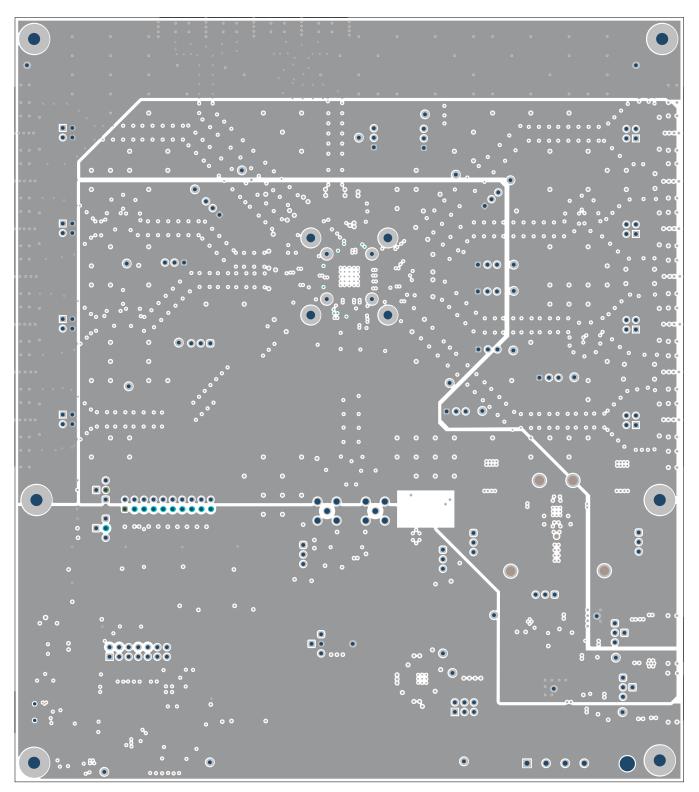


Figure 26. Layer 5 - Power and Ground Planes



Figure 27. Layer 6 - Logic Routing, Ground Fill

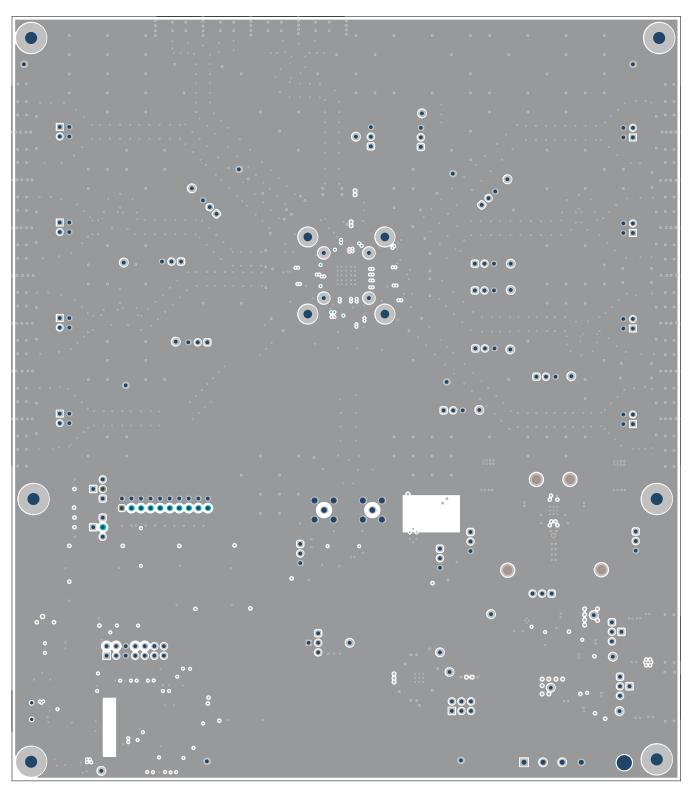


Figure 28. Layer 7 - Ground Plane

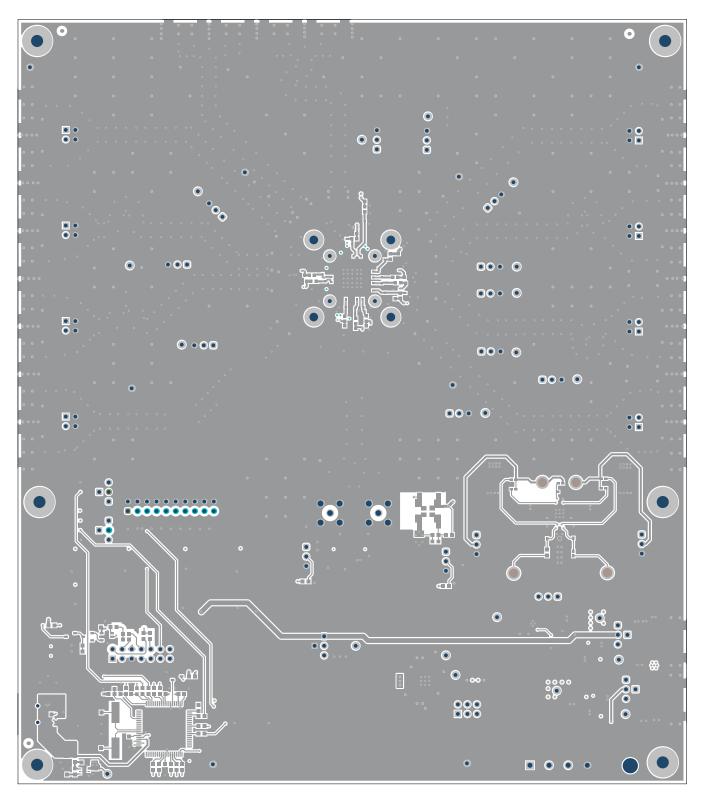


Figure 29. Layer 8 (Bottom Side, View From Top) - Logic and Power Routing, Ground Fill

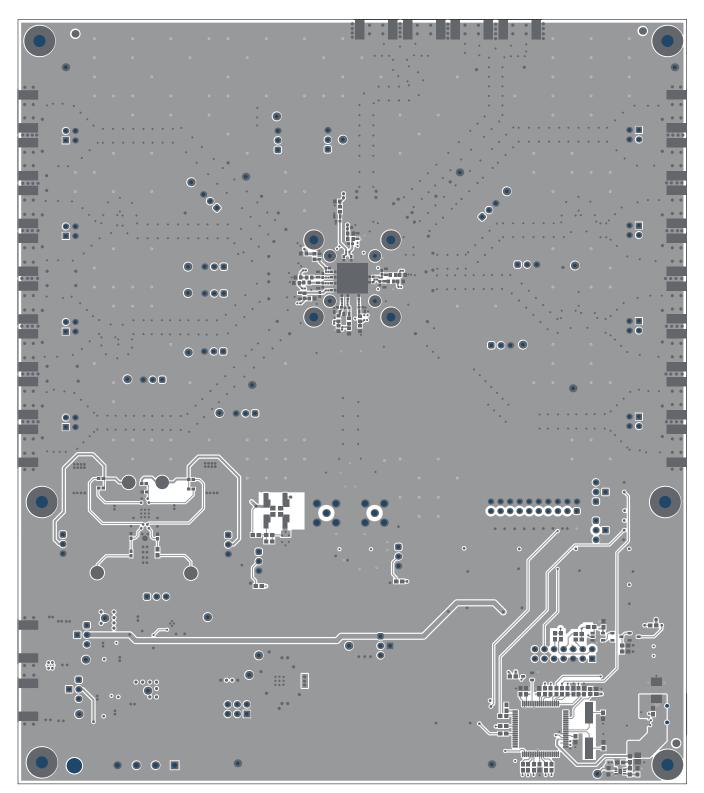


Figure 30. Bottom Solder Mask

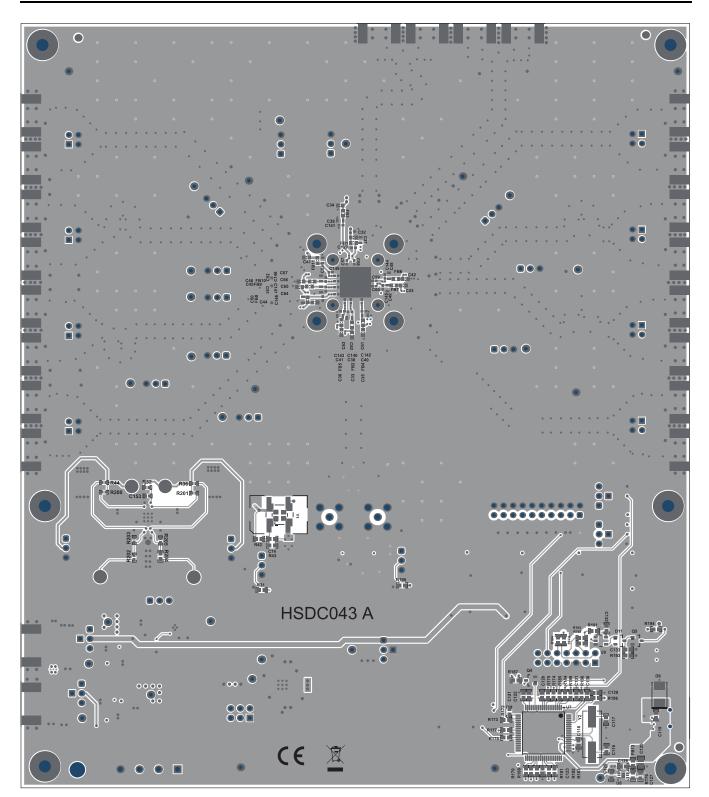


Figure 31. Bottom Composite View

6 EVM Bill of Materials

Table 12 lists the bill of materials.

Table 12. Bill of Materials

REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR
!PCB1	1		Printed Circuit Board	HSDC043	Any
C1, C2, C8, C119, C120, C122, C123, C127, C130, C131, C132	11	0.1uF	CAP, CERM, 0.1 uF, 16 V, +/- 5%, X7R, 0603	C0603C104J4RACTU	Kemet
C3, C4	2	47uF	CAP, CERM, 47 µF, 10 V,+/- 20%, X5R, 0805	GRM21BR61A476ME15L	MuRata
C5, C6, C7, C125	4	22uF	CAP, CERM, 22 uF, 10 V, +/- 20%, X5R, 0805	LMK212BJ226MG-T	Taiyo Yuden
C9, C10	2	10uF	CAP, CERM, 10 uF, 10 V, +/- 20%, X7R, 1206	C3216X7R1A106M160AC	ТДК
C11, C12, C13, C14, C55	5	1uF	CAP, CERM, 1 uF, 10 V, +/- 10%, X5R, 0603	C0603C105K8PACTU	Kemet
C15, C16, C19, C25, C30, C31, C37, C38, C39, C40, C41, C48, C49, C50, C51, C52, C53, C54, C68, C69, C70, C73, C78, C85, C126, C129, C135	27	10uF	CAP, CERM, 10 uF, 10 V, +/- 20%, X5R, 0603	C1608X5R1A106M080AC	TDK
C20, C26, C27, C28, C29, C133	6	0.01uF	CAP, CERM, 0.01 uF, 50 V, +/- 5%, X7R, 0603	C0603C103J5RACTU	Kemet
C21, C22, C32, C33, C34, C35, C36, C42, C43, C44, C45, C46, C47, C56, C76, C80, C83, C84, C90, C91, C92, C93, C94, C95, C96, C97, C98, C99, C100, C101, C102, C103, C108, C109, C110, C134, C136, R34, R35	39	0.1uF	CAP, CERM, 0.1 uF, 25 V, +/- 5%, X7R, 0603	C0603C104J3RACTU	Kemet
C23, C24	2	0.47uF	CAP, CERM, 0.47 uF, 10 V, +/- 10%, X7R, 0603	C0603C474K8RACTU	Kemet
C57, C58, C59, C60, C61, C62, C63, C64, C65, C66, C67	11	0.1uF	CAP, CERM, 0.1 uF, 10 V, +/- 10%, X5R, 0402	C1005X5R1A104K050BA	ТDК
C71, C77	2	3300pF	CAP, CERM, 3300 pF, 50 V, +/- 10%, X7R, 0603	C0603C332K5RACTU	Kemet
C72, C151	2	22uF	CAP, CERM, 22 uF, 10 V, +/- 20%, X5R, 0603	C1608X5R1A226M080AC	TDK
C75	1	0.033uF	CAP, CERM, 0.033 uF, 50 V, +/- 5%, X7R, 0603	06035C333JAT2A	AVX
C79	1	10uF	CAP, CERM, 10 uF, 10 V, +/- 10%, X5R, 0805	LMK212BJ106KG-T	Taiyo Yuden
C82	1	0.1uF	CAP, CERM, 0.1 uF, 25 V, +/- 5%, X7R, 0603S	C0603C104J3RACTU	Kemet

REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR
C86, C87, C88, C89, C104, C105, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R37, R40, R41, R45, R46, R47, R48, R49, R56, R57, R58, R59, R60, R61, R62, R63, R78, R79, R80, R81, R96, R97, R98, R99, R114, R115, R116, R117, R138, R139, R140, R141, R159, R160, R161, R162, R161, R162, R163, R164, R165, R166, R172, R173, R177, R178, R179, R180, R181, R182, R184, R185, R191	68	0	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06030000Z0EA	Vishay-Dale
C114, C115	2	33pF	CAP, CERM, 33 pF, 100 V, +/- 5%, C0G/NP0, 0603	06031A330JAT2A	AVX
C116, C117	2	30pF	CAP, CERM, 30 pF, 100 V, +/- 5%, C0G/NP0, 0603	GRM1885C2A300JA01D	MuRata
C118, C124	2	220pF	CAP, CERM, 220 pF, 50 V, +/- 1%, C0G/NP0, 0603	06035A221FAT2A	AVX
C121, C150	2	0.47uF	CAP, CERM, 0.47 uF, 10 V, +/- 10%, X7R, 0603	GRM188R71A474KA61D	MuRata
C128	1	2200pF	CAP, CERM, 2200 pF, 50 V, +/- 10%, X7R, 0603	C0603C222K5RACTU	Kemet
C139, C140, C141, C142, C143, C144, C145, C146, C147, C148, C149	11	1uF	CAP, CERM, 1 uF, 6.3 V, +/- 20%, X5R, 0402	GRM152R60J105ME15D	MuRata
C152, C154	2	10uF	CAP, CERM, 10 uF, 16 V, +/- 10%, X5R, 0805	GRM21BR61C106KE15L	MuRata
C153	1	0.47uF	CAP, CERM, 0.47 uF, 10 V, +/- 10%, X5R, 0402	GRM155R61A474KE15D	MuRata
C155, C156	2	22uF	CAP, CERM, 22 uF, 4 V, +/- 20%, X6S, 0805	GRM21BC80G226ME39L	MuRata
C157, C158	2	47uF	CAP, CERM, 47 uF, 6.3 V, +/- 10%, X6S, 1206	GRM31CC80J476KE18L	MuRata
D1, D2	2	20V	Diode, Schottky, 20 V, 2 A, SMA	B220A-13-F	Diodes Inc.
D3, D4, D5, D10, D13	5	Green	LED, Green, SMD	LTST-C190GKT	Lite-On
D7, D8	2	Yellow	LED, Yellow , SMD	LTST-C170KSKT	Lite-On
D9	1	7.5V	Diode, Zener, 7.5 V, 550 mW, SMB	1SMB5922BT3G	ON Semiconductor
D11	1	30V	Diode, Schottky, 30 V, 0.2 A, SOT-23	BAT54-7-F	Diodes Inc.
D12	1	Red	LED, Red, SMD	LTST-C170KRKT	Lite-On

REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR
FB1, FB2, FB3, FB4, FB5, FB6, FB7, FB8, FB9, FB10, FB11	11	220 ohm	Ferrite Bead, 220 ohm @ 100 MHz, 2.5 A, 0603	BLM18SG221TN1D	MuRata
FB12, FB14	2	300 ohm	Ferrite Bead, 300 ohm @ 100 MHz, 0.4 A, 1.6x0.8x0.95mm	LI0603D301R-10	Laird-Signal Integrity Products
FB13	1	60 ohm	Ferrite Bead, 60 ohm @ 100 MHz, 3.5 A, 0603	MPZ1608S600ATAH0	ТDК
H1, H2, H3, H4, H5, H6	6		Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	NY PMS 440 0025 PH	B&F Fastener Supply
HS1, HS2, HS3, HS4, HS5, HS6	6		Standoff, Hex, 0.5"L #4-40 Nylon	1902C	Keystone
J1	1		Terminal Block, 4x1, 5.08mm, TH	39544-3004	Molex
J2, J3, J6, J7, J8, J9, J12, J13, J14, J15, J18, J19, J20, J21, J24, J25, J26, J27, J30, J31, J32, J33	22		Connector, End launch SMA, 50 ohm, SMT	142-0701-851	Cinch Connectivity
J4, J5	2		SMA Straight PCB Socket Die Cast, 50 Ohm, TH	5-1814832-1	TE Connectivity
J35	1		Connector, Receptacle, Mini-USB Type B, R/A, Top Mount SMT	1734035-2	TE Connectivity
JP1, JP2, JP3, JP16, JP17, JP18, JP19, JP21, JP22, JP23	10		Header, 100mil, 3x1, Gold, TH	TSW-103-07-G-S	Samtec
JP4	1		Header, 100mil, 3x2, Gold, TH	TSW-103-07-G-D	Samtec
JP20	1		Header, 100mil, 7x2, Tin, TH	PEC07DAAN	Sullins Connector Solutions
JT1, JT2, JT3, JT4, JT5	5		Header, 100mil, 1pos, Gold, TH	TSW-101-07-G-S	Samtec
L1, L2	2	2.2uH	Inductor, Multilayer, Ferrite, 2.2 uH, 1.3 A, 0.08 ohm, SMD	LQM2HPN2R2MG0L	MuRata
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	THT-14-423-10	Brady
Q1, Q2, Q3, Q4	4	50V	MOSFET, N-CH, 50 V, 0.22 A, SOT- 23	BSS138	Fairchild Semiconductor
Q5	1	25V	MOSFET, N-CH, 25 V, 0.22 A, SOT- 23	FDV301N	Fairchild Semiconductor
R1, R2	2	0.015	RES, 0.015, 1%, 0.5 W, 1206	CSR1206FK15L0	Stackpole Electronics Inc
R3	1	0	RES, 0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	CRCW12060000Z0EA	Vishay-Dale
R4, R5, R6	3	47k	RES, 47 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060347K0JNEA	Vishay-Dale
R7	1	30.9k	RES, 30.9 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060330K9FKEA	Vishay-Dale
R8	1	10.0k	RES, 10.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0FKEA	Vishay-Dale
R9	1	1.87k	RES, 1.87 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K87FKEA	Vishay-Dale
R10	1	1.50k	RES, 1.50 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K50FKEA	Vishay-Dale
R11	1	2.43k	RES, 2.43 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06032K43FKEA	Vishay-Dale

	Table 12. Bill of Materials (continued)					
REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR	
R12, R14, R16	3	1.15k	RES, 1.15 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K15FKEA	Vishay-Dale	
R13, R15	2	3.57k	RES, 3.57 k, 1%, 0.1 W, 0603	RC0603FR-073K57L	Yageo	
R28, R29, R31, R132, R133, R194, R195	7	470	RES, 470, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603470RJNEA	Vishay-Dale	
R30, R42, R134, R135, R136, R137, R142, R143, R144, R146, R147, R154	12	10k	RES, 10 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0JNEA	Vishay-Dale	
R32	1	5.11	RES, 5.11, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04025R11FKED	Vishay-Dale	
R33, R156	2	100	RES, 100, 5%, 0.25 W, AEC-Q200 Grade 0, 0603	ESR03EZPJ101	Rohm	
R36, R44	2	49.9k	RES, 49.9 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040249K9FKED	Vishay-Dale	
R38, R39	2	49.9	RES, 49.9, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060349R9FKEA	Vishay-Dale	
R145, R150, R153	3	3.9k	RES, 3.9 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06033K90JNEA	Vishay-Dale	
R148, R151, R157, R174, R175, R197	6	1.0k	RES, 1.0 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K00JNEA	Vishay-Dale	
R149, R158, R183	3	100	RES, 100, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603100RJNEA	Vishay-Dale	
R167, R176, R186	3	33k	RES, 33 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060333K0JNEA	Vishay-Dale	
R168, R169	2	33	RES, 33, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040233R0JNED	Vishay-Dale	
R170	1	1.5k	RES, 1.5 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04021K50JNED	Vishay-Dale	
R171	1	1.2Meg	RES, 1.2 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031M20JNEA	Vishay-Dale	
R187, R188, R189	3	510	RES, 510, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603510RJNEA	Vishay-Dale	
R190, R192	2	1.5k	RES, 1.5 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K50JNEA	Vishay-Dale	
R193	1	100k	RES, 100 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603100KJNEA	Vishay-Dale	
R198, R199	2	150	RES, 150, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603150RJNEA	Vishay-Dale	
R200, R201	2	9.76k	RES, 9.76 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW04029K76FKED	Vishay-Dale	
R202	1	12.7k	RES, 12.7 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040212K7FKED	Vishay-Dale	
R203, R205	2	10.2k	RES, 10.2 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040210K2FKED	Vishay-Dale	
R204	1	32.4k	RES, 32.4 k, 1%, 0.1 W, 0603	RC0603FR-0732K4L	Yageo	
S1, S2, S3	3		Switch, SPST 4 Pos, Top Actuated, SMT	219-4LPST	CTS Electrocomponents	
S4, S8	2		Switch, Tactile, SPST-NO, 0.05A, 12V, SMT	FSM4JSMA	TE Connectivity	
S5, S6, S7	3		Switch, Slide, SPST 3 poles, SMT	219-3LPST	CTS Electrocomponents	

REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR
S9	1		Switch, SPST, Slide, Off-On, 2 Pos, 0.1A, 20V, SMD	219-2MST	CTS Electrocomponents
S10	1		Switch, Slide, SPST 2 poles, SMT	219-2LPST	CTS Electrocomponents
SH1, SH2, SH3, SH4, SH5, SH6, SH7, SH8, SH9, SH10, SH11, SH12, SH13, SH14, SH15	15	1x2	Shunt, 100mil, Gold plated, Black	SNT-100-BK-G	Samtec
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP25	8		Test Point, Miniature, Red, TH	5000	Keystone
TP23, TP24, TP26, TP27	4		Test Point, Miniature, Black, TH	5001	Keystone
U1, U2	2		26-V, Bi-Directional, Zero-Drift, High Accuracy, Low-/High-Side, Voltage Out Current Shunt Monitor, DCK0006A (SOT-SC70-6)	INA214AIDCKR	Texas Instruments
U3	1		Dual 1A Low-Noise (3.8µVRMS) LDO Voltage Regulator, RTJ0020D (WQFN-20)	TPS7A8801RTJR	Texas Instruments
U4	1		Low-Noise, High-Bandwidth PSRR, Low-Dropout 1-A Linear Regulator, DRB0008A (VSON-8)	TPS7A8101DRBR	Texas Instruments
U5	1		Ultra-Low Jitter Clock Synchronizer and Jitter Cleaner with Two Frequency Domains, Eight Differential Outputs, Two Differential Inputs, RGZ0048N (VQFN-48)	LMK05318RGZR	Texas Instruments
U6	1		4-Channel ESD Protection Array for High-Speed Data Interfaces, DRY0006A (USON-6)	TPD4E004DRYR	Texas Instruments
U7	1		25 MHz Mixed Signal Microcontroller with 128 KB Flash, 8192 B SRAM and 63 GPIOs, -40 to 85 degC, 80-pin QFP (PN), Green (RoHS and no Sb/Br)	MSP430F5529IPN	Texas Instruments
U8	1		150-mA Ultra-Low Noise LDO for RF and Analog Circuits Requires No Bypass Capacitor, NGF0006A (WSON-6)	LP5900SD-3.3/NOPB	Texas Instruments
U9	1		Single 2-Input Exclusive-OR Gate, DBV0005A (SOT-23-5)	SN74LVC1G86DBVR	Texas Instruments
U10	1		Ultra-Low Jitter Fully Programmable Oscillator, Integrated EEPROM, +/- 50ppm, SIA0008B (QFM-8)	LMK61E2-SIAR	Texas Instruments
U11	1		Dual 2.0A, High-frequency Synchronous Step-Down DC-DC Regulator, RUM0016A (WQFN-16)	LM26420XSQX/NOPB	Texas Instruments
Y1	1		OSC, 48.004800 MHz, 3.3V, SMD	8W48070002	TXC Corporation
Y2	1		Crystal, 24.000 MHz, 20pF, SMD	ECS-240-20-5PX-TR	ECS Inc.
C17, C18	0	0.01uF	CAP, CERM, 0.01 uF, 50 V, +/- 5%, X7R, 0603	C0603C103J5RACTU	Kemet
C74, C81, C137, C138	0	0.1uF	CAP, CERM, 0.1 uF, 25 V, +/- 5%, X7R, 0603	C0603C104J3RACTU	Kemet
C106, C107, C111, C112, C113	0	100pF	CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0603	06035A101JAT2A	AVX

Table 12. Bill of Materials (continued)

TP33 TP19, TP20,

XU1

TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18,

TP21, TP22

0

0

0

			Table 12. Bill of Materials (con	-	
REF DES	QTY	VALUE	DESCRIPTION	PART NUMBER	MFR
FID1, FID2, FID3, FID4, FID5, FID6	0		Fiducial mark. There is nothing to buy or mount.	N/A	N/A
J10, J11, J16, J17, J22, J23, J28, J29	0		Header, 100mil, 2x2, Tin, TH	PEC02DAAN	Sullins Connector Solutions
J34	0		Header, 2.54mm, 10x2, Tin, TH	929836-04-10-RK	3M
JP5, JP6, JP7, JP8, JP9, JP10, JP11, JP12, JP13, JP14, JP15	0		Header, 100mil, 3x1, Gold, TH	TSW-103-07-G-S	Samtec
R43, R196	0	10k	RES, 10 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0JNEA	Vishay-Dale
R50, R51, R52, R53, R64, R65, R66, R67, R74, R75, R76, R77, R82, R83, R84, R85, R92, R93, R94, R95, R100, R101, R102, R103, R110, R111, R112, R111, R112, R113, R118, R119, R120, R121, R128, R129, R130, R131	0	49.9	RES, 49.9, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060349R9FKEA	Vishay-Dale
R54, R55	0	100	RES, 100, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603100RFKEA	Vishay-Dale
R68, R70, R71, R73, R86, R88, R89, R91, R104, R106, R107, R109, R122, R124, R125, R127	0	0	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06030000Z0EA	Vishay-Dale
R69, R72, R87, R90, R105, R108, R123, R126	0	100	RES, 100, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603100RJNEA	Vishay-Dale
R152, R155	0	1.0k	RES, 1.0 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K00JNEA	Vishay-Dale
TP8, TP9, TP10,					

5000

5001

106458-0020

Table 12 Bill of Materials (continued)

Keystone

Keystone

HSIO Technologies

Test Point, Miniature, Red, TH

Test Point, Miniature, Black, TH

Socket, QFN-48, 0.5 mm, SMT

Software

A.1 Software Installation (One-Time)

- 1. Download and Install TICS Pro Software GUI v1.6.9 (or later) from here.
- 2. Download and Install MATLAB Runtime v9.0 (2015b, 64-bit).
 - a. Download the installer here
 - b. This is required to run the compiled Matlab script bundled with the device profile.
- 3. Reboot the PC for proper installation of MATLAB Runtime, if needed.
- 4. Launch TICS Pro.

A.2 TICS Pro Usage for LMK05318

- 1. Launch TICS Pro.
- 2. Connect the PC to the EVM with the USB cable.
- 3. Confirm switches S9[1:2] are OFF on the EVM so only the LMK05318 is found when the I²C bus is scanned.
- Select the LMK05318 profile, if needed: Click Select Device > Network Synchronizer Clock (Digital PLLs) > LMK05318
- 5. Click USB communication > Interface.
 - a. Under Interface, tick USB2ANY.
 - b. Select Protocol: I²C or SPI_CLKLOW.
 - c. Follow the Change Device Mode & Protocol dialog:
 - i. On the EVM, set JP19 and JP20 jumpers accordingly for I²C or SPI Mode.
 - ii. Click Yes to confirm change or No to cancel.
 - d. Press Close to apply the Mode & Protocol changes.
- 6. Follow the dialogs:
 - a. Scan I²C Bus Yes to confirm, No to skip.
 - LMK05318 should be found at 0x64, 0x65, or 0x66 depending on the GPIO1/SCS input level (set by S6 or MCU control).
 - If the scan found a device at 0x58, it is probably U7 (LMK61E2). In this case, restart from Step 3 to find the LMK05318.
 - Alternatively, in the Communication setup window (Step 5), manually enter the I²C address as 0x64, 0x65, or 0x66 and click Set I²C Address.
 - b. Write All Registers Yes to confirm, No to skip.
- 7. Follow the step-by-step procedure on the Start Page to enter the clock design parameters, run the script to generate the DPLL-specific register settings, and program the device registers.
 - a. See the *Detailed Design Procedure* section of the LMK05318 data sheet for additional help on the device configuration using TICS Pro.
 - b. After all registers are programmed, a soft reset can be triggered to restart the device (soft reset does not reset the active registers).

When the desired device functionality and performance has been confirmed, the active configuration can be programmed to the EEPROM to allow auto-startup on the next power cycle.

Revision History

•

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (June 2018) to A Revision							
•	Changed the setting descriptions in the Default Jumper and DIP Switch Settings table	7					
•	Added Device Revision Identification section	8					
•	Updated the Default Configuration - EEPROM Start-Up Modes table						
•	Added design suggestions whille using EEPROM mode in the Device Start-Up Modes section	10					
•	Updated the Key EVM Components table	11					
•	Updated the Logic Pin Mapping tables	15					
•	Updated the Bill of Materials table	45					
•	Removed steps in the Software Installation (One-Time) instructions	51					
•	Added information to the TICS Pro Usage for LMK05318 set of instructions	51					

STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

- 3.3 Japan
 - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
 - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けて いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated