User’s Guide
LMK6x6EVM Evaluation Instructions

ABSTRACT
This user's guide applies to both LMK6E6EVM-1 and LMK6F6EVM-1 EVM modules.
The LMK6x is a lower-power clock oscillator using TI's BAW technology.

Table of Contents
1 Introduction..2
 1.1 Evaluation Module Contents..2
 1.2 Evaluation Setup Requirement..2
 1.3 Resources..2
2 Setup..3
 2.1 Connection Diagram..3
 2.2 Power Supply...3
 2.3 Clock Output...3
 2.4 EVM Strap Options..3
3 Typical Measurement..4
 3.1 Phase Noise...4
4 Schematic..5
5 PCB Layout and Layer Stack-Up...5
 5.1 PCB Layer Stack-Up..5
 5.2 PCB Layout...6
1 Introduction

1.1 Evaluation Module Contents

The box contains:

- One LMK6E6EVM-1 board (HSDC103A), or
- One LMK6F6EVM-1 board (HSDC104A)

1.2 Evaluation Setup Requirement

The evaluation requires the following hardware:

- A DC power supply
- An oscilloscope
- A signal analyzer (optional)

1.3 Resources

See the LMK6x High-Performance BAW Oscillator data sheet for more information about the LMK6x devices.
2 Setup

2.1 Connection Diagram

Figure 2-1 shows the LMK6E6EVM (HSDC103A) connection diagram. The same connection diagram applies to LMK6F6EVM (HSDC104A).

2.2 Power Supply

Apply 4 V to the VDDin SMA connector. The maximum current consumption must not exceed 60 mA.

2.3 Clock Output

Connect P1 SMA connector to an oscilloscope. Output frequency is 24 MHz and the amplitude is about 3.3 V.

2.4 EVM Strap Options

2.4.1 J1 Header

Pin 2 of J1 is connected to the OE pin of the LMK6x device. Put the short across pin 1 and pin 2 of J1 to pull the OE pin to VDD through a resistor and enable the LMK6x device.

2.4.2 J3 Header

To use the onboard voltage regulator for the LMK6x device, put the short across pin 2 and pin 3 of J3 header. Otherwise, put the short across pin 1 and pin 2 of J3 header to use external power supply.

2.4.3 J4 Header

J4 is used to select the output voltage of the onboard voltage regulator.
3 Typical Measurement

3.1 Phase Noise

Figure 3-1 shows the phase noise for the LMK6E6EVM (HSDC103A). Similar phase noise can be obtained from LMK6F6EVM (HSDC104A).
4 Schematic

![Schematic Diagram](image)

Figure 4-1. Schematic

5 PCB Layout and Layer Stack-Up

5.1 PCB Layer Stack-Up

![Layer Stack-Up Diagram](image)

Figure 5-1. PCB Layer Stack-Up
5.2 PCB Layout

Figure 5-2. Top Layer

Figure 5-3. GND Layer

Figure 5-4. GND Layer

Figure 5-5. Bottom Layer
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated