# Texas Instruments

# Description

The MCT8315ZEVM allows users to evaluate the performance of the MCT8315Z motor driver. The EVM includes an onboard FTDI chip to convert USB communication from the micro-USB connector into UART. An onboard MSP430FR2355 MCU translates the UART communication and onboard potentiometers into control signals and a variable duty cycle for the PWM input of the MCT8315Z. The MCU can also provide SPI communication for the SPI variant of the MCT8315Z device. There are many user-selectable jumpers, resistors, connectors, and test points to assist with evaluating the many features of the MCT8315Z device and the configurable device-specific settings.

# **Get Started**

- 1. Download the latest design files from the MCT8315ZEVM tool page on ti.com.
- 2. Download or use the cloud hosted MCT8315Z GUI on dev.ti.com.

3. Download the latest firmware for the MCT8315ZEVM on ti.com.

#### Features

- GUI software with full configuration & control capability.
- MCU-to-MCx shunt jumper header with removable shunts to disconnect main signals going to the motor driver IC from the MCU.
  - The shunts can be removed if the user wants to control the MCT8315Z IC with an external MCU or to use the EVM MCU to control an external MCT8315Z IC.

## Applications

- Brushless-DC (BLDC) Motor modules
- CPAP machines
- Printers
- Robotic vacuums
- Small home appliances
- Office automation machines
- Factory automation and robotics



MCT8315ZEVM Printed Circuit Board (PCB - Top View)

1



# 1 Evaluation Module Overview

# 1.1 Introduction

The MCT8315ZEVM comes automatically populated with and configured for the MCT8315ZH. The EVM is also compatible with the MCT8315ZR and MCT8315ZT variants, see Section 2.7.1 for MCT8315ZT compatibility and Section 2.7.2 for MCT8315ZR compatibility.

This document is provided with the MCT8315Z evaluation module (EVM) as a supplement to the MCT8315Z data sheet. This user's guide details the hardware setup instructions, GUI installation, and usage instructions.

#### CAUTION

Hot surface temperature

The EVM can have high surface temperatures marked by the FIRE triangular symbol on the EVM. Avoid touching the marked hot surface are when driving high currents to prevent potential burn damage.

## 1.2 Kit Contents

Table 1-1 lists the contents of the EVM kit. Contact the Texas Instruments Product Information Center nearest to you if any components are missing. TI highly recommends that users check the TI website at <a href="https://www.ti.com">https://www.ti.com</a> to verify that the latest version of the related software is being used.

#### Table 1-1. Kit Contents

| Item                                 | Quantity |
|--------------------------------------|----------|
| MCT8315ZEVM                          | 1        |
| USB A Male-to-USB B micro male cable | 1        |

#### 1.3 Specification

The MCT8315ZEVM is rated for operation of 35 V maximum and up to 4 A peak. To prevent damage to the MCT8315Z IC and EVM, confirm that the voltage and current specifications are not exceeded.

#### 1.4 Device Information

The MCT8315Z is a 4.5 V to 35 V, 4 A peak three-phase gate driver IC with sensored trapezoidal control for motor drive applications. The MCT8315Z provides three integrated half-bridges and a sensored trapezoidal control in a fixed-function state machine capable of directly driving a 3-phase brushless-DC motor without a microcontroller.

The MCT8315Z integrates a current sensing feature, which eliminates the need for external sense resistors, an LDO for powering external circuits, three analog hall comparators, and many protection features. The MCT8315ZH and MCT8315ZR variants include an integrated output adjustable buck for powering external circuits.

| Device Name | Variant                     |  |  |  |  |  |  |
|-------------|-----------------------------|--|--|--|--|--|--|
| MCT8315ZH   | Buck regulator and Hardware |  |  |  |  |  |  |
| MCT8315ZR   | Buck regulator and SPI      |  |  |  |  |  |  |
| MCT8315ZT   | Hardware                    |  |  |  |  |  |  |

#### Table 1-2. MCT8315Z Variants



# 2 Hardware

## 2.1 Quick Startup Guide

The MCT8315ZEVM requires a power supply source, which has a recommended operating range from 4.5 V to 35 V. To setup and power the EVM, follow the sequence below:

- 1. Connect motor phases to A, B, and C on connector J8.
- 2. Connect Hall sensors to J12 and select Hall power supply to come from VBK or an external Hall supply using J13.
  - a. If using digital Hall inputs, then populate J9–J11 with shunt jumpers to enable pullups. Connect the single-ended inputs to only the HPx pins on connector J12. This is the default configuration of the MCT8315ZEVM.
  - b. If using analog Hall inputs, then remove J9-J11 and connect differential Hall inputs to HPx and HNx on connector J12.
- 3. If using the MCT8315ZH or MCT8315ZT, then make sure resistors are populated in HW variant resistors for desired device settings as described in Section 2.7.1.
- 4. Do not turn on the power supply yet. Connect the motor supply to VBAT or VM and PGND on connector J7.
  a. To enable the reverse polarity protection and Pi filter, connect to VBAT. Note that when connecting to VBAT, VM is VM 0.7 V less due to a diode drop in the reverse-polarity protection circuit.
  - b. To disable the reverse-polarity protection and the Pi filter, connect to VM.
- 5. Select J3 to 5V\_USB and J5 to 3V3COM to power MSP430 from USB power supply.
- 6. Connect the micro-USB cable into the computer.
- 7. Turn the R5 potentiometer fully clockwise to set the motor to zero speed upon power up.
- 8. Flip the switch S1 to the right to configure BRAKE = RUN, switch S2 to the left to configure DIR = ABC, switch S3 to the right to configure DRVOFF = ON.
- 9. Turn on the motor power supply.
- 10. Use the R5 potentiometer to control the speed of the motor, the R18 potentiometer to control the cycle-bycycle current limit, and the switches to disable the motor driver, change the motor's direction, or brake the motor. Optionally, use the MCF8315Z GUI, refer to Section 3.1, to monitor the real-time speed of the motor, put the MCT8315Z into a low-power sleep mode, and read status of the EVMs LEDs.

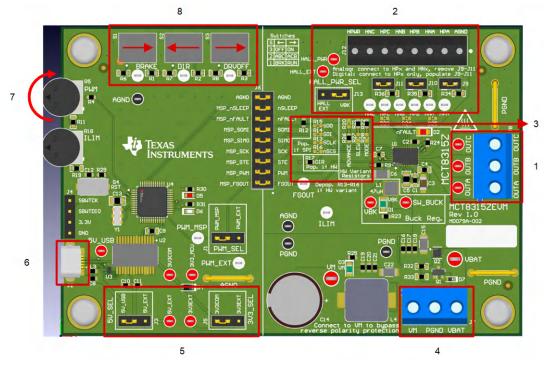



Figure 2-1. Reference for Quick Start Guide



# 2.2 Hardware Setup

The hardware required to run a motor is the MCT8315ZEVM, a micro-USB cable, and a power supply with a DC output from 4.5 V to 35 V. Follow these steps to start up the MCT8315ZEVM:

- 1. Connect the DC power supply to header J7. Connect to VBAT and PGND to apply reverse polarity protection and the Pi filter to the EVM. Otherwise, connect to VM and PGND to bypass the reverse polarity protection and Pi filter.
- If using the MCT8315ZH or MCT8315ZT, populate the desired resistor settings in the "HW Variant Resistors" silk screen box, see Table 2-3. If using the MCT8315ZR populate the resistors R13-R16 in the "Pop. If SPI" silk screen box.
- 3. Apply user-configurable jumper settings. See the Section 2.7 section for more information.
- 4. Flash the program into the MCU as described in Section 3.1. Launch the GUI in GUI Composer and disconnect the 4-pin JTAG connections.
- 5. Connect a micro-USB cable to the MCT8315ZEVM and computer.
- 6. Turn on the power supply and power up the PCB.

If using the MCT8315ZEVM with an external microcontroller, remove all shunt jumpers from jumper bridge J6. Connect with external jumpers to the left side of the jumper bridge from the external MCU.

#### 2.3 Hardware Connections Overview

Figure 2-2 shows the major blocks of the MCT8315ZEVM. The MCT8315ZEVM is designed for an input supply from 4.5 V to 35 V and offers reverse-polarity protection and a Pi filter. The MCT8315ZEVM can support all variants of the MCT8315Z device with locations for Hardware resistors, SPI resistors, and buck components. Through the use of configurable shunts the MCT8315ZEVM can support many types of Hall sensor configurations. For interfacing with the MCT8315Z GUI the MCT8315ZEVM has a FTDI chip to support USB-to-UART and a MSP430.

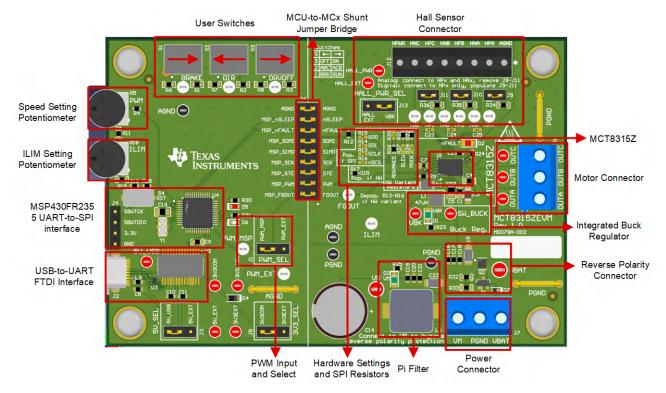



Figure 2-2. MCT8315ZEVM Major Hardware Blocks



# 2.4 Connection Details

Figure 2-3 shows the connections made to the MCT8315ZEVM to spin a 3-phase sensored brushless-DC motor.

A 4.5-V to 35-V power supply or battery is connected to VBAT or VM and PGND terminals on connector J7. There is a reverse-polarity protection and Pi filter implemented on the VBAT and PGND terminals, resulting in a 0.7-V diode voltage supply drop to VM. To bypass the reverse-polarity protection and Pi filter, connect the power supply directly to the VM terminal or VM test point on the board and PGND.

The three phases of the BLDC motor connect directly to the A, B, and C terminals of the screw terminal connector J8 on the MCT8315ZEVM.

Use connector J12 on the MCT8315ZEVM to connect single-ended digital or analog differential Hall inputs. Use HPWR for Hall power and AGND for Hall ground. If connecting analog inputs from a Hall element, connect to the HPx and HNx pins for each respective phase and remove jumpers J9-11. Otherwise, if using single-ended input from a Hall sensor, connect to only the HPx pins for each phase and populate jumpers J9-J11.

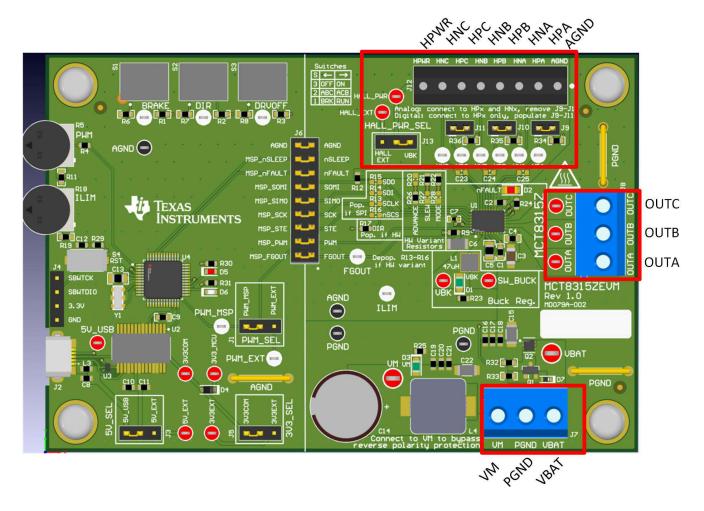



Figure 2-3. Connections from Motor to MCT8315ZEVM

Figure 2-4 shows where the micro-USB cable is plugged into the MCT8315ZEVM to provide communication between evaluation module and GUI. The USB data and 5-V power from the USB is converted, by the FTDI chip, into UART data and 3.3-V power, which is used to power the MSP430FR2355 microcontroller. The 5 V from the USB power is limited to 500 mA and the 3.3 V from the FTDI chip is limited to 30 mA. If the user wishes to supply more current to these rails, then the user can use the 5V\_SEL jumper J3 and 3V3\_SEL jumper J5 to connect external power rails.



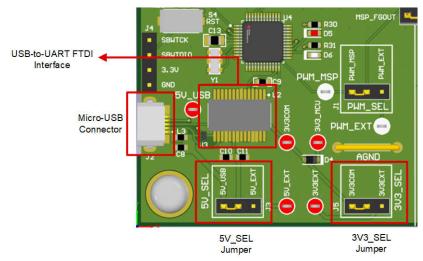



Figure 2-4. Micro-USB Connector and UART for MCT8315ZEVM

#### 2.5 MSP430FR2355 Microcontroller

The MCT8315ZEVM includes a MSP430FR2355 low-power MCU, shown in Figure 2-5, to provide the pulsewidth modulation (PWM) signal required to commutate the motor. The MCU outputs a 20-kHz PWM signal (PWM\_MSP), and the duty cycle (ranging from 0–100%) is controlled by the potentiometer R5. The motor speed increases the more the potentiometer is turned counterclockwise, and decreases when turned clockwise. To select whether the PWM signal from the MSP or an external PWM is sourced to the MCT8315Z, use the PWM\_SEL jumper J1.

To program the MSP430FR2355, an external MSP430 FET programmer must be connected to the Spy-Bi-Wire (SBW) interface connector J4. Many MSP430 LaunchPads<sup>™</sup> provide an onboard eZ-FET Debug Probe that can be jumper-wired to the MCT8315ZEVM to flash the firmware into the MSP430FR2355 microcontroller.

The user can use the Reset (RST) button at any time to restart the MCU program. Two active-low LEDs, D5 and D6, can be used for debug purposes as well.

The 18-pin shunt jumper bridge J6 ties all signals between the microcontroller and the MCT8315Z device. These jumpers can be inserted or removed as needed to isolate the microcontroller from the gate driver. This allows for microcontroller signal debugging or using the MCT8315ZEVM as a standalone gate driver with an external microcontroller.

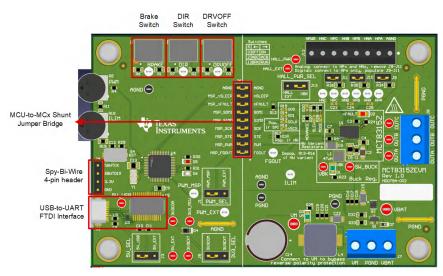



Figure 2-5. MSP430FR2355 MCU on MCT8315ZEVM

# 2.6 LED Lights

The MCT8315ZEVM has five status LEDs that provide the status of power supplies and functions of the evaluation module. By default, the VM LED and VBK LED lights up when the board is powered and the firmware has been flashed onto the microcontroller. Table 2-1 shows LED descriptions including those that are on during power up in bold and Figure 2-6 shows the locations of the LEDs.

| Tab        | Table 2-1. Description of MCT8315ZEVM LEDs (Default in Bold After Power Up) |       |                                                         |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------|-------|---------------------------------------------------------|--|--|--|--|--|--|
| Designator | Name                                                                        | Color | Description                                             |  |  |  |  |  |  |
| D1         | VBK                                                                         | Green | Internal buck regulator is outputting                   |  |  |  |  |  |  |
| D2         | nFAULT                                                                      | Red   | Lights up when fault condition has occurred on MCT8315Z |  |  |  |  |  |  |
| D3         | VM                                                                          | Green | Motor power is supplied to the board                    |  |  |  |  |  |  |
| D5         | MSP_LED0                                                                    | Red   | Used for UART or debugging                              |  |  |  |  |  |  |
| D6         | MSP_LED1                                                                    | Green | Used for UART or debugging                              |  |  |  |  |  |  |

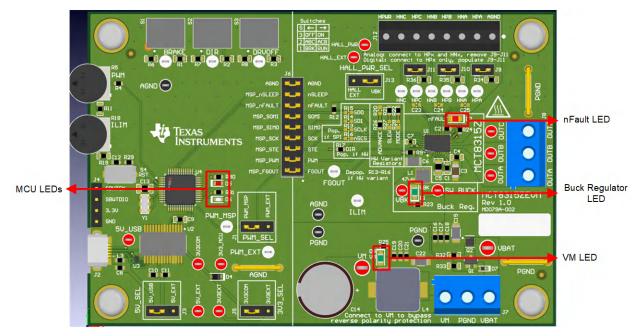



Figure 2-6. MCT8315ZEVM LEDs

7



# 2.7 User-Configurable Settings

The MCT8315ZEVM includes a variety of user-selectable jumpers, switches, and resistors on the entirety of the evaluation board to configure settings. Table 2-2 summarizes the configurable settings on the MCT8315ZEVM.

| Designator | Setting Name        | Description                                   | Layer    | Position            | Function                                |
|------------|---------------------|-----------------------------------------------|----------|---------------------|-----------------------------------------|
|            | 3.3-V Buck Inductor | User populates L1, L2, or R1 to               | Тор      | L1 = 47 µH Inductor | Inductor Mode                           |
| L1, L2, R1 |                     | choose switching component for buck regulator | Bottom   | L2 = 22 µH          | Inductor Mode                           |
|            |                     |                                               | Bottom   | R1 = 22 Ω           | Resistor Mode                           |
| 15         | 3V3_SEL             | Select 3.3 V for MCU power                    | Tara     | J5 = 3V3EXT         | External                                |
| J5         |                     |                                               | Тор      | J5 = 3V3COM         | From FTDI (30 mA)                       |
|            | 5V_SEL              | Select 5 V for FTDI power                     |          | J3 = 5V_EXT         | External                                |
| J3         |                     |                                               | Тор      | J3 = 5V_USB         | From USB power<br>(500 mA)              |
| 14         | PWM_SEL             | Selects PWM source                            | Tan      | J1 = PWM_EXT        | External PWM                            |
| J1         |                     |                                               | Тор      | J1 = PWM_MSP        | PWM from MSP430                         |
|            | HALL_PWR_SEL        | Selects Hall power source                     |          | J13 = HALL_EXT      | External Hall power                     |
| J13        |                     |                                               | Тор      | J13 = VBK           | Hall power from<br>VBK                  |
| 10         | HPA pullup          | Enables pullup on Hall positive A (HPA)       | Tan      | J9 is inserted      | Pullup, use for<br>Digital Hall inputs  |
| J9         |                     |                                               | Тор      | J9 is removed       | Floating, use for<br>Analog Hall inputs |
| J10        | HPB pullup          | Enables pullup on Hall positive B<br>(HPA)    | Тор      | J10 is inserted     | Pullup, use for<br>Digital Hall inputs  |
| 310        |                     |                                               | юр       | J10 is removed      | Floating, use for<br>Analog Hall inputs |
| J11        | HPC pullup          | Enables pullup on Hall positive C<br>(HPC)    | Тор      | J11 is inserted     | Pullup, use for<br>Digital Hall inputs  |
| JII        |                     |                                               | юр       | J11 is removed      | Floating, use for<br>Analog Hall inputs |
|            | MSP to MCT Shunt    | Connects signals from MCU to                  |          | FGOUT               | MSP_FGOUT                               |
|            | jumper bridge       | MCT8315Z when jumpers are<br>inserted         |          | PWM                 | MSP_PWM                                 |
|            |                     |                                               |          | STE                 | MSP_STE                                 |
|            |                     |                                               |          | SCK                 | MSP_SCK                                 |
| J6         |                     |                                               | Тор      | PICO                | MSP_PICO                                |
|            |                     |                                               |          | POCI                | MSP_POCI                                |
|            |                     |                                               |          | nFAULT              | MSP_nFAULT                              |
|            |                     |                                               |          | nSLEEP              | MSP_nSLEEP                              |
|            |                     |                                               |          | AGND                | AGND                                    |
| 64         | BRAKE               | Turns on all low-side MOSFETs                 | <b>T</b> | Left                | Brake enabled                           |
| S1         |                     |                                               | Тор      | Right               | Brake disabled                          |
|            | DIR                 | Controls direction of motor                   |          | Left                | Clockwise                               |
| S2         |                     |                                               | Тор      | Right               | Counterclockwise                        |
|            | DRVOFF              | Disables gate drivers                         |          | Left                | MCT8315Z disabled                       |
| S3         |                     | _                                             | Тор      |                     | MCT8315Z enabled                        |

#### 2.7.1 Hardware Variant Resistor Settings

The MCT8315ZH and MCT8315ZT devices uses configurable resistor dividers to control the MODE, SLEW, and ADVANCE settings. When using the MCT8315ZH or MCT8315ZT:

- SPI enable resistors in the Pop. if SPI silkscreen box needs to be depopulated (R13–R16).
- DIR resistor R17 in the *Pop. if HW* silkscreen box needs to be populated.
- The resistor dividers in the HW Variant Resistors silkscreen box needs to be populated according to the desired settings (R20–R22 and R26–R28).

This setup is shown in Figure 2-7.

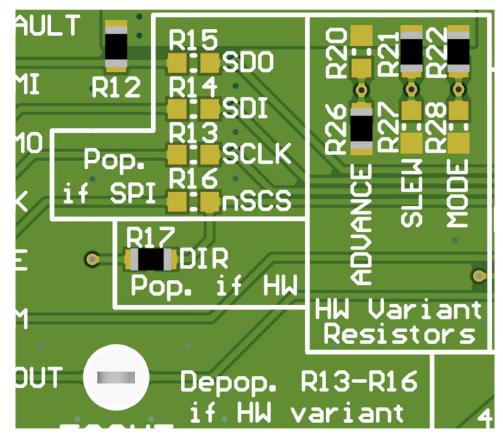



Figure 2-7. Resistor Divider Settings for MCT8315ZH or MCT8315ZT (Hardware Variants)

Table 2-3 shows the user-adjustable resistor divider settings when using the MCT8315ZH or MCT8315ZT. R20–R22 resistors connect to AVDD and R26–R28 resistors connect to AGND. The default resistor divider configurations are in bold.

| Setting | Name             | Description                                                                       | Resistors<br>(AVDD and<br>AGND) | Configuration   | Setting                                                                 |
|---------|------------------|-----------------------------------------------------------------------------------|---------------------------------|-----------------|-------------------------------------------------------------------------|
|         |                  |                                                                                   |                                 | R28 = 0 Ω       | Analog Hall Input, Asynchronous<br>modulation, ASR and AAR<br>Disabled  |
|         |                  |                                                                                   |                                 | R28 = 22 kΩ     | Digital Hall Input, Asynchronous<br>modulation, ASR and AAR<br>Disabled |
|         |                  | Selects the<br>Hall configuration,                                                |                                 | R28 = 100 kΩ    | Analog Hall Input, Synchronous<br>modulation, ASR and AAR<br>Disabled   |
| MODE    | PWM Control Mode | modulation,<br>Asynchronous<br>Rectification (ASR), and<br>Automatic Asynchronous | R22 and R28                     | R22 = R28 = DNP | Digital Hall Input, Synchronous<br>modulation, ASR and AAR<br>Disabled  |
|         |                  | Rectification (AAR)<br>settings                                                   | -                               | R22 = 100 kΩ    | Analog Hall Input, Synchronous<br>modulation, ASR and AAR<br>Enabled    |
|         |                  |                                                                                   |                                 | R22 = 22 kΩ     | Digital Hall Input, Synchronous<br>modulation, ASR and AAR<br>Enabled   |
|         |                  |                                                                                   |                                 | R22 = 0 Ω       | Digital Hall Input, Asynchronous<br>modulation, ASR and AAR<br>Enabled  |
|         |                  | Phase pin slew rate                                                               |                                 | R27 = 0 Ω       | 25 V/µs                                                                 |
| SLEW    | Slew Rate        | switching low to high                                                             | R21 and R27                     | R21 = R27 = DNP | 50 V/µs                                                                 |
| 3LL W   |                  | (10-90%) and high to low<br>(90-10%)                                              |                                 | R21 = 47 kΩ     | 125 V/µs                                                                |
|         |                  |                                                                                   |                                 | R21 = 0 Ω       | 200 V/µs                                                                |
|         |                  |                                                                                   |                                 | R26 = 0 Ω       | 0°                                                                      |
|         |                  |                                                                                   |                                 | R26 = 22 kΩ     | 4°                                                                      |
|         |                  | Advances the lead angle                                                           |                                 | R26 = 100 kΩ    | 11°                                                                     |
| ADVANCE | Advance          | by a selectable value (in                                                         | R20 and R26                     | R20 = R26 = DNP | 15°                                                                     |
|         |                  | electrical degrees)                                                               |                                 | R20 = 100 kΩ    | 20°                                                                     |
|         |                  |                                                                                   |                                 | R20 = 22 kΩ     | 25°                                                                     |
|         |                  |                                                                                   |                                 | R20 = 0 Ω       | 30°                                                                     |

# Table 2-3. User-Adjustable Resistor Divider Settings for MCT8315ZH or MCT8315ZT (Defaults in Bold)

#### 2.7.2 SPI Variant Resistor Settings

The MCT8315ZR replaces the MODE, ADVANCE, and SLEW pins with SPI pins (SDI, SDO, SCLK, nSCS) to configure control registers and read status registers. When using the MCT8315ZR:

- SPI enable resistors in the *Pop. if SPI* silkscreen box needs to be populated (R13-R16)
- The resistor in the *Pop. if HW* silkscreen box (R17) needs to be depopulated
- Resistor dividers in the *Hardware Variant Resistors* silkscreen box needs to be depopulated (R20-R22, R26-R28).

This setup is shown in Figure 2-8.

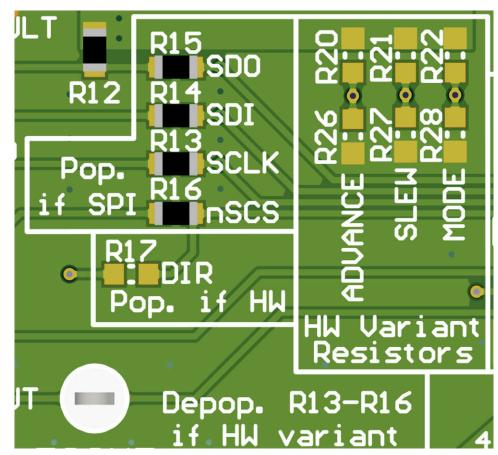



Figure 2-8. Resistors for MCT8315ZR (SPI variant)

#### Table 2-4 shows the recommended resistor values to use when using a MCT8314ZR.

|         | Table 2-4. Recommended SPI Resistor values for MC185142R (Defaults in Bold) |                                               |          |               |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------|-----------------------------------------------|----------|---------------|--|--|--|--|--|
| Setting | Name                                                                        | Description                                   | Resistor | Configuration |  |  |  |  |  |
| SDO     | Serial Data Out                                                             | Serial out of the MCT8315Z                    | R15      | R15 = 0 Ω     |  |  |  |  |  |
| SDI     | Serial Data In                                                              | Serial input of the MCT8315Z                  | R14      | R14 = 0 Ω     |  |  |  |  |  |
| SCLK    | Serial Clock                                                                | Clock generated by the MCU                    | R13      | R13 = 0 Ω     |  |  |  |  |  |
| nSCS    | Chip Select                                                                 | Pulled low by the MCU to enable communication | R16      | R16 = 0 Ω     |  |  |  |  |  |

#### Table 2-4. Recommended SPI Resistor Values for MCT8314ZR (Defaults in Bold)

Table 2-5 show the status of populated and DNP resistors for the MCT8315Z variants.

#### Table 2-5. Status of Resistors for MCT8315Z Variants

| Device                 | R13-R16 Status | R17 Status | HW Variant Resistors<br>Status |  |
|------------------------|----------------|------------|--------------------------------|--|
| MCT8315ZH or MCT8315ZT | DNP            | Populated  | User adjustable                |  |
| MCT8315ZR              | Populated      | DNP        | DNP                            |  |



# 3 Software

#### 3.1 Firmware and GUI Application

The MCT8315ZEVM includes a USB-to-UART interface, using a MSP4302355 microcontroller, that serves as a communication bridge between a host PC and the MCT8315Z device for configuring various device settings and reading fault diagnostic information. The MCT8315Z GUI is available to monitor the motor the MCT8315Z device and in the case of the MCT8315ZR configure the device.

The MCT8315Z GUI is available on the dev.ti.com/gallery. The MCT8315Z GUI supports all variants of the MCT8315Z. The MCT8315Z GUI is able to measure the speed of the motor by monitoring the duty cycle of the 20-kHz PWM waveform and the frequency of the FGOUT output. Providing the number of poles the motor has to the GUI, the GUI calculates the speed of the motor in revolutions per minute (RPM). The GUI also allows for the ability to control the nSLEEP signal to put the MCT8315Z into a low power sleep mode. For the MCT8315ZR the GUI also includes a register map and the ability to read and write over SPI to configure the devices registers.

By default, the MSP430 already contains the firmware required for the EVM to be able to connect and communicate with the MCT8315Z GUI. If there is a FW update or the GUI does not connect to the EVM, then the user must flash the code onto the MSP430.

Flashing the firmware onto the EVM requires an external MSP430 LaunchPad<sup>™</sup> that includes the eZ-FET Debug Probe and Code Composer Studio<sup>™</sup> (CCS). The example in Section 3.4 uses the MSP-EXP430FR2355 LaunchPad Development Kit to provide the eZ-FET Debug Probe.

#### 3.2 MCT8315Z GUI

The following features are enabled in the MCT8315Z GUI:

#### **PWM or Duty Cycle Settings**

• Use the R5 potentiometer on the MCT8315ZEVM to control the duty cycle of the 20-kHz PWM waveform from the MSP430FR2355. The slider and gauge updates real-time with the duty cycle from 0–100%.

#### **Motor Settings and Calculations**

- Update the number of motor poles in the motor using the *Motor Poles* drop-down box.
- The FGOUT frequency is measured and updated real time in the FGOUT Freq (Hz) box.
- The value in the *FGOUT freq. (Hz)* and *Motor poles* boxes are used to calculate and update the value in the *Motor Speed (RPM)* box. The value for the RPM speed is calculated by the formula in Equation 1. Note that the FGOUT frequency is multiplied by 120 to achieve the frequency of one electrical cycle, in Hz.

1 Motor Speed (RPM) =  $\frac{120 \times FGOUT}{\# Motor Poles}$ 

(1)

#### Status LEDs and nSLEEP Control

- The status of the programmable MCU LEDs are shown by LED1 and LED2.
- To place the MCT8315Z into a low-power sleep mode, click the *nSLEEP* button into the right position. This causes the MSP430 to send an active-low signal to nSLEEP on the device.



# 3.3 Running the GUI

ľ

The MCT8315Z GUI can be run directly inside a web browser (supported in Google Chrome<sup>®</sup> and Firefox<sup>®</sup>). To run the GUI inside of a web browser, follow the steps below:

- 1. Connect the MCT8315ZEVM, as described in Section 2.2.
- 2. Access the latest version of the MCT8315Z GUI through the Gallery
- 3. The GUI launches a screen similar to the one shown in Figure 3-1.

|   | Options Too | ols Help           |                |                      |                          |                    |           |                       |                  |                      |
|---|-------------|--------------------|----------------|----------------------|--------------------------|--------------------|-----------|-----------------------|------------------|----------------------|
| M | nu          |                    |                |                      |                          |                    |           |                       |                  |                      |
| l | 🔧 МСТ83     | 15Z GUI            |                |                      |                          |                    |           |                       |                  |                      |
| l |             |                    |                |                      |                          | 4-L                | evel Inpu | t Settings            |                  |                      |
|   | PV          | VM / Duty Cycle Se | ettings        |                      |                          | H/W Confi          | guration  | SLEW pin<br>(R21/R27) |                  |                      |
|   | Duty Cy     | cle Control        | Duty Cycle (%) |                      |                          | Tied to A          | AGND      | 25 V/μs               |                  |                      |
|   | 0 25        |                    |                |                      |                          | Hi –               | z         | 50 V/µs               |                  |                      |
|   |             |                    | 0 100          |                      |                          | 47kΩ to<br>Tied to |           | 125 V/μs<br>200 V/μs  |                  |                      |
|   |             |                    |                |                      |                          |                    |           | t Settings            |                  |                      |
|   | 8 8         | ✓ Motor Po         |                | H/W Configuration    | Advance pin<br>(R20/R26) |                    |           |                       | de Pin<br>2/R28) |                      |
|   | 0           | FGOUT F            | req. (Hz)      |                      |                          | Mode               | Hall C    | Configuration         | Modulation       | ASR and AAR Mode     |
|   | 0           | Motor Sp           | eed (RPM)      | Tied to AGND         | 0°                       | Mode 1             | Anal      | og Hall Input         | Asynchronous     | ASR and AAR Disabled |
|   |             | Status LEDs        |                | 22kΩ to AGND         | 4*                       | Mode 2             | Digit     | al Hall Input         | Asynchronous     | ASR and AAR Disabled |
|   | LED1        | LED2               | nFAULT         | $100k\Omega$ to AGND | 11*                      | Mode 3             | Anal      | og Hall Input         | Synchronous      | ASR and AAR Disabled |
|   | •           | •                  | •              | Hi –Z                | 15*                      | Mode 4             | Digit     | al Hall Input         | Synchronous      | ASR and AAR Disabled |
|   | 0N          | OFF                | OFF            | 100kΩ to AVDD        | 20*                      | Mode 5             | Anal      | og Hall Input         | Synchronous      | ASR and AAR Enabled  |
|   | nSL         | EEP Control (Activ | ve Low)        | 22kΩ to AVDD         | 25*                      | Mode 6             | Digit     | al Hall Input         | Synchronous      | ASR and AAR Enabled  |
|   |             | UN INSLEEP         |                | Tied to AVDD         | 30*                      | Mode 7             | Digit     | al Hall Input         | Synchronous      | ASR and AAR Enabled  |

Figure 3-1. MCT8315Z GUI

Alternatively, the MCT8315Z GUI can be downloaded and installed for offline use using the download feature in the TI Cloud Gallery.





Figure 3-2. MCT8315Z GUI Download Feature



## 3.4 Downloading Code Composer Studio and Importing GUI Firmware

- 1. Download and extract the MCT8315ZEVM firmware to a location on the computer.
- 2. Download the latest version of Code Composer Studio. This sets up a folder at the directory C:\ti.
  - a. Accept all agreements, default install locations, and select Next to proceed through menus.
  - b. In the Select Components window, make sure to check MSP430 Low-Power MCUs to install the required packages for the MSP430 LaunchPad Evaluation Kits.
- After installing, run CCS and select a folder or the default to use as the workspace to store any new projects. The location and naming convention can be changed based on the user's preference. Click the OK button to accept.
- 4. In CCS, click on the Project tab and select *Import CCS Projects*. Click on *Browse*. Select the folder created in step 1 by extracting the MCT8315Z firmware.
- 5. Import the project into the workspace as shown in Figure 3-3.

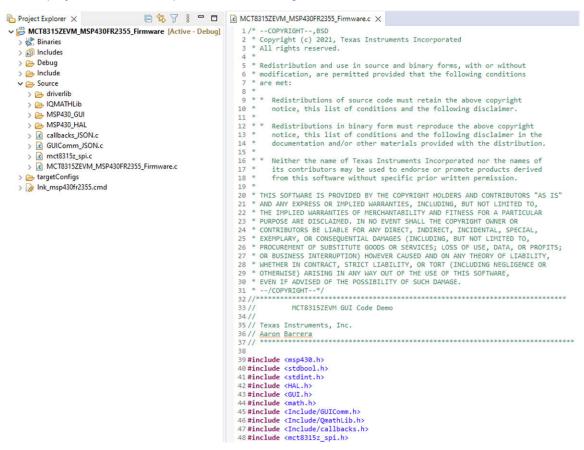



Figure 3-3. MSP430FR2355 Interface Firmware Code in Code Composer Studio



## 3.5 Using the eZ-FET to Program the MSP430FR2355

The eZ-FET Debug Probe on the MSP430FR2355 LaunchPad uses a Spy-Bi-Wire JTAG interface to program the MSP430FR2355 MCU on the MCT8315ZEVM. Consult the MSP430 LaunchPad Development Kits for MSP430 LaunchPads that include an onboard eZ-FET Debug Probe.

- 1. Remove the GND, 3V3, SBWTDIO, and SBWTCK jumpers from the MSP430 LaunchPad.
- 2. Connect the top pins on the eZ-FET side of the LaunchPad of the GND, 3V3, SBWTCK, and SBWTDIO signals to their respective pins on J4 of the MCT8315ZEVM as shown in Table 3-1 and Figure 3-4.
- 3. Connect a micro-USB cable to the MSP430 LaunchPad and the PC.
- 4. Click on the Build Project icon or CTRL + B to make sure the project builds successfully. Accept any updates if needed from the console.
- 5. Click on *Debug Project* to set up a debug session and press the Play button to run the code.
- 6. Stop the debug session, close Code Composer Studio, disconnect the Spy-Bi-Wire jumpers, and unplug the micro-USB cable from the MSP430 LaunchPad.

| MSP430 LaunchPad <sup>™</sup> (eZ-FET Debug Probe Side) (J101) | MCT8315ZEVM 4-pin Spy-Bi-Wire Header (J4) |  |  |  |
|----------------------------------------------------------------|-------------------------------------------|--|--|--|
| GND                                                            | GND                                       |  |  |  |
| 3V3                                                            | 3.3V                                      |  |  |  |
| SBWTDIO                                                        | SBWTDIO                                   |  |  |  |
| SBWTCK                                                         | SBWTCK                                    |  |  |  |

Table 3-1. Spy-Bi-Wire Connections Needed to Program MSP430FR2355

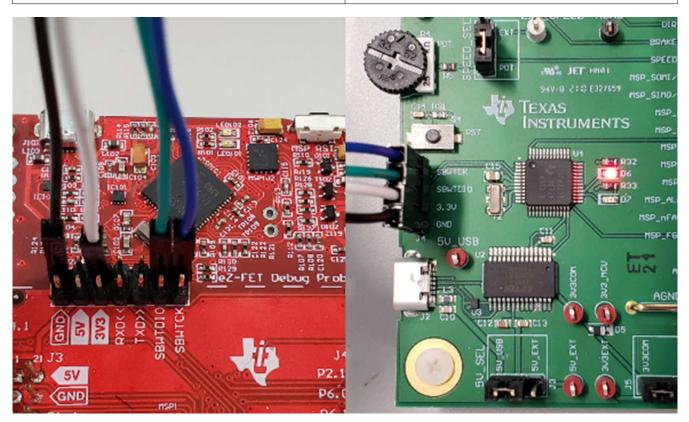



Figure 3-4. MSP430 LaunchPad<sup>™</sup> eZ-FET Probe Connected to MCT8315ZEVM

# 4 Hardware Design Files

#### 4.1 Schematics

#### 4.1.1 MCT8315Z 3-Phase Sensored Trapezoidal Motor Driver

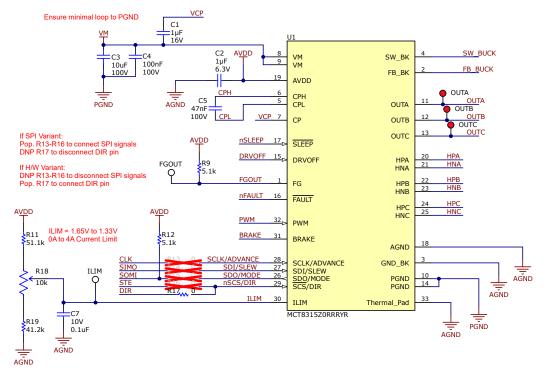



Figure 4-1. MCT8315Z 3-Phase Sensored Trapezoidal Motor Driver Schematic



#### 4.1.2 Power Supplies

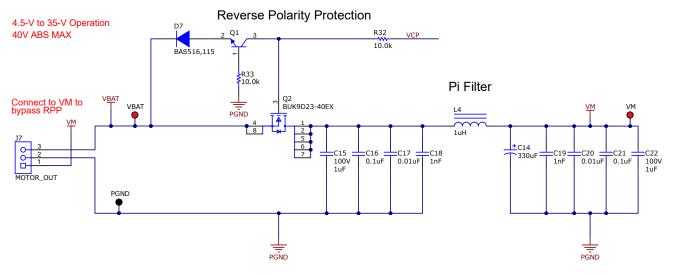
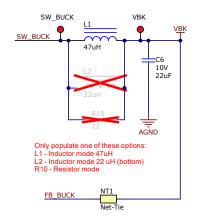
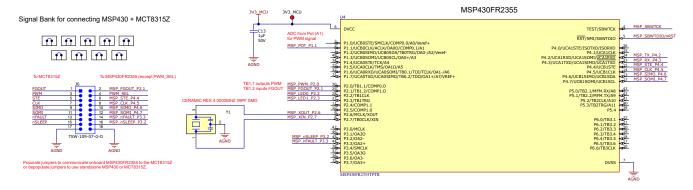
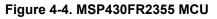
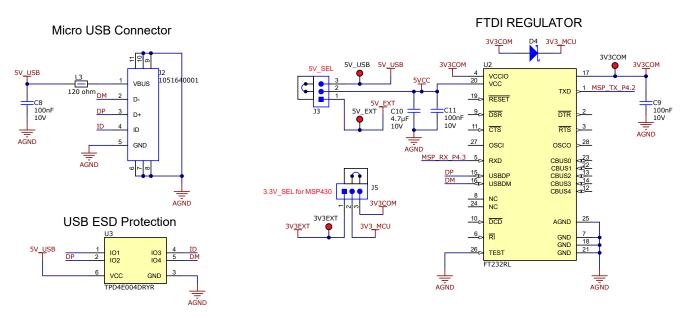
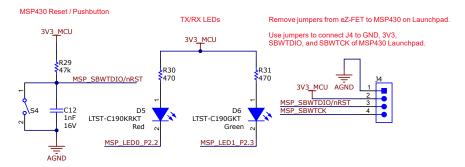



Figure 4-2. Main Supply



Figure 4-3. Buck Regulator Schematic




## 4.1.3 MCU Interface







#### Figure 4-5. USB to UART Schematic







#### 4.1.4 User Interface

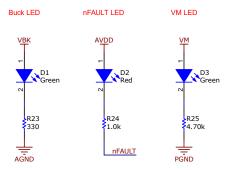
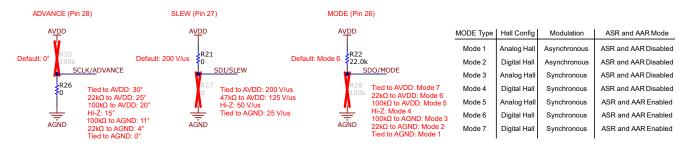
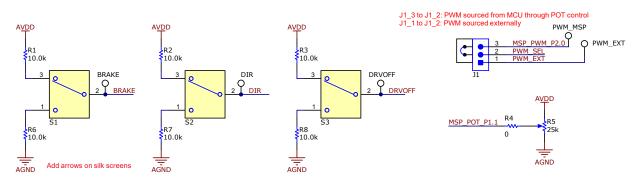





Figure 4-7. Status LEDs Schematic

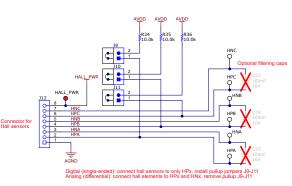
Hardware Variant Resistors (use with MCT8315ZT/H only)










Hall Connections

DR\_OUT

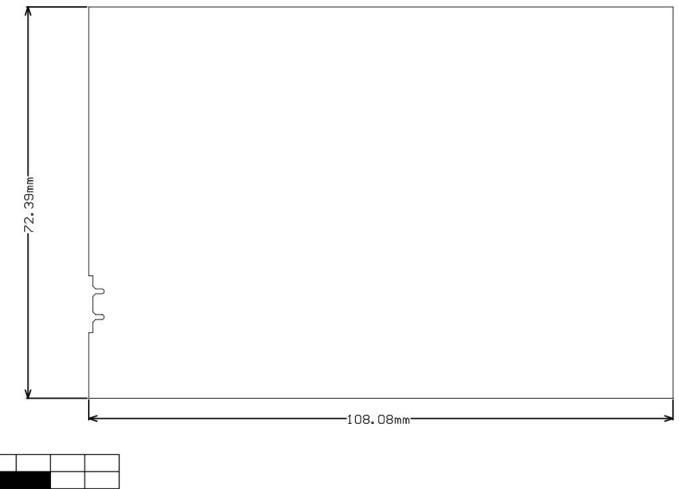
Hall Power Select

EXT

HALL\_PWR\_SEL



Grounding




Hall powered from Buck on MCT8315Z

J9-1 to J9-2



# 4.2 PCB Layouts



←1000.00mil→



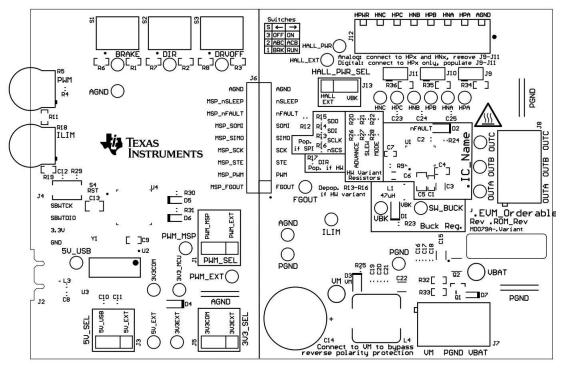



Figure 4-12. EVM Top Overlay

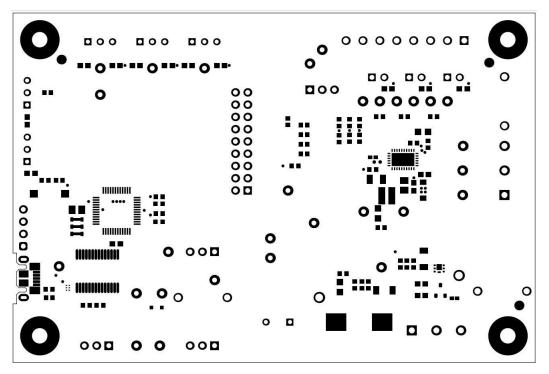



Figure 4-13. EVM Top Solder Mask



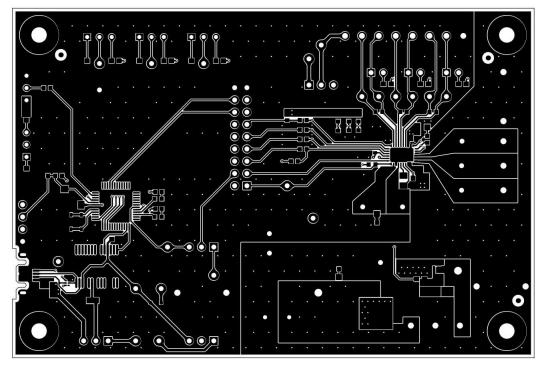



Figure 4-14. EVM Top Layer

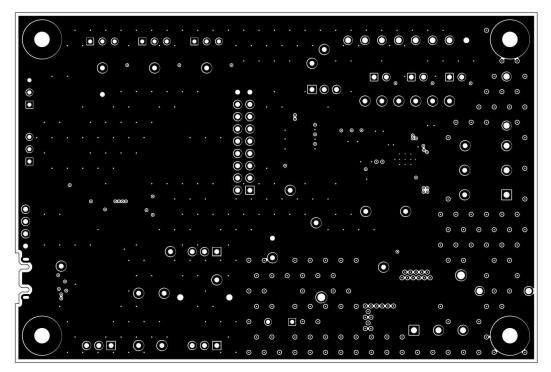



Figure 4-15. EVM Signal Layer 1



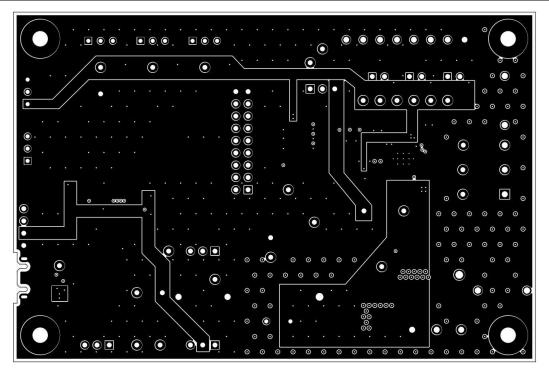



Figure 4-16. EVM Signal Layer 2

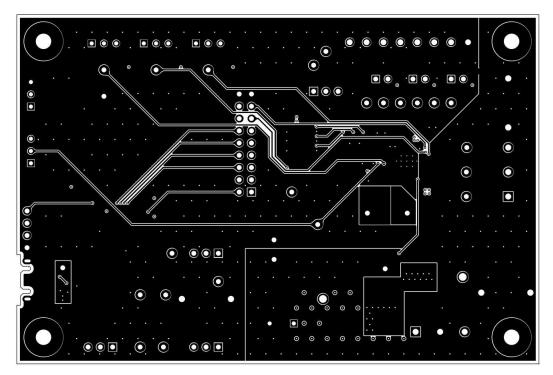



Figure 4-17. EVM Bottom Layer

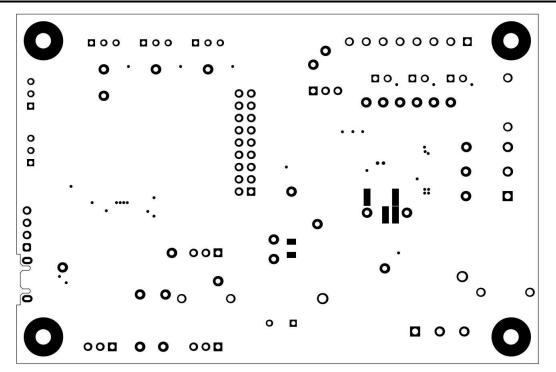
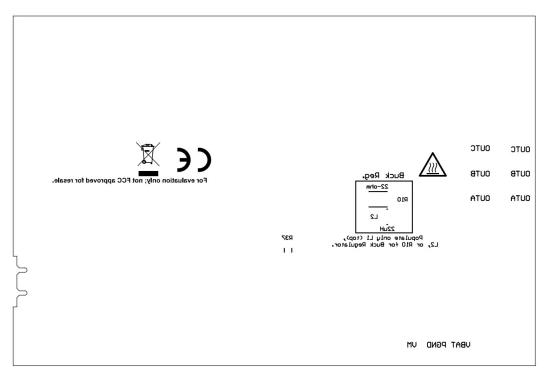




Figure 4-18. EVM Bottom Solder Mask





Texas Instruments

www.ti.com



# 4.3 Bill of Materials (BOM)

| Designator  | Quantity | Value   | Description                                                        | Package Reference      | Part Number          | Manufacturer          |
|-------------|----------|---------|--------------------------------------------------------------------|------------------------|----------------------|-----------------------|
| C1          | 1        | 1uF     | CAP, CERM, 1 µF, 16 V,+/- 10%, X5R, 0603                           | 603                    | 0603YD105KAT2A       | AVX                   |
| C2          | 1        | 1uF     | CAP, CERM, 1 μF, 6.3 V,+/- 10%, X7R, AEC-<br>Q200 Grade 1, 0603    | 603                    | C0603C105K9RACAUTO   | Kemet                 |
| C3          | 1        | 10 µF   | 10 μF ±10% 100 V Ceramic Capacitor X6S<br>1206 (3216 Metric)       | 1206                   | C3216X6S2A106K160AC  | ток                   |
| C4          | 1        | 0.1uF   | CAP, CERM, 0.1 uF, 100 V,+/- 10%, X7R, AEC-<br>Q200 Grade 1, 0603  | 603                    | GCJ188R72A104KA01D   | MuRata                |
| C5          | 1        | 0.047uF | CAP, CERM, 0.047 uF, 100 V, +/- 10%, X7R, 0805                     | 805                    | C2012X7R2A473K125AA  | ток                   |
| C6          | 1        | 22uF    | CAP, CERM, 22 uF, 10 V, +/- 10%, X7R, 1206                         | 1206                   | GRM31CR71A226KE15L   | MuRata                |
| C7          | 1        | 0.1uF   | CAP, CERM, 0.1 uF, 10 V, +/- 10%, X5R, 0402                        | 402                    | C1005X5R1A104K050BA  | ТDК                   |
| C8, C9, C11 | 3        | 0.1uF   | CAP, CERM, 0.1 uF, 10 V, +/- 10%, X7R, 0603                        | 603                    | C0603C104K8RACTU     | Kemet                 |
| C10         | 1        | 4.7uF   | CAP, CERM, 4.7 uF, 10 V, +/- 20%, X7R, 0603                        | 603                    | GRM188Z71A475ME15D   | MuRata                |
| C12         | 1        | 1000 pF | CAP, CERM, 1000 pF, 16 V, +/- 10%, X7R, 0603                       | 603                    | 8.85012E+11          | Wurth Elektronik      |
| C13         | 1        | 1uF     | CAP, CERM, 1 uF, 50 V, +/- 10%, X7R, 0805                          | 805                    | C0805C105K5RACTU     | Kemet                 |
| C14         | 1        | 330uF   | CAP, AL, 330 uF, 63 V, +/- 20%, AEC-Q200<br>Grade 2, TH            | D12.5xL20mm            | ELXZ630ELL331MK20S   | Chemi-Con             |
| C15, C22    | 2        | 1uF     | CAP, CERM, 1 uF, 100 V, +/- 10%, X7R, 1206                         | 1206                   | GRM31CR72A105KA01L   | MuRata                |
| C16, C21    | 2        | 0.1uF   | CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7S,<br>AEC-Q200 Grade 1, 0603  | 603                    | CGA3E3X7S2A104K080AB | ток                   |
| C17, C20    | 2        | 0.01uF  | CAP, CERM, 0.01 uF, 100 V, +/- 10%, X7R,<br>AEC-Q200 Grade 1, 0603 | 603                    | CGA3E2X7R2A103K080AA | ток                   |
| C18, C19    | 2        | 1000 pF | CAP, CERM, 1000 pF, 100 V, +/- 5%, X7R, 0603                       | 603                    | 06031C102JAT2A       | AVX                   |
| D1, D3      | 2        | Green   | LED, Green, SMD                                                    | LED_0805               | LTST-C170KGKT        | Lite-On               |
| D2          | 1        | Red     | LED, Red, SMD                                                      | Red 0805 LED           | LTST-C170KRKT        | Lite-On               |
| D4          | 1        | 40 V    | Diode, Schottky, 40 V, 0.75 A, AEC-Q101,<br>SOD-323                | SOD-323                | BAT165E6327HTSA1     | Infineon Technologies |
| D5          | 1        | Red     | LED, Red, SMD                                                      | Red LED, 1.6x0.8x0.8mm | LTST-C190KRKT        | Lite-On               |
| D6          | 1        | Green   | LED, Green, SMD                                                    | 1.6x0.8x0.8mm          | LTST-C190GKT         | Lite-On               |



| Designator                                            | Quantity | Value | Description                                                                         | Package Reference                                                 | Part Number        | Manufacturer                   |
|-------------------------------------------------------|----------|-------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|--------------------------------|
| D7                                                    | 1        | 100 V | Diode, Switching, 100 V, 0.25 A, SOD-523                                            | SOD-523                                                           | BAS516,115         | Nexperia                       |
| FID1, FID2, FID3                                      | 3        |       | Fiducial mark. There is nothing to buy or mount.                                    | N/A N/A                                                           |                    | N/A                            |
| H1, H2, H3, H4                                        | 4        |       | Machine Screw, Round, #4-40 x 1/4, Nylon,<br>Philips panhead                        | Screw                                                             | NY PMS 440 0025 PH | B&F Fastener Supply            |
| H5, H6, H7, H8                                        | 4        |       | Standoff, Hex, 0.5"L #4-40 Nylon                                                    | Standoff                                                          | 1902C              | Keystone                       |
| J1, J3, J5, J13                                       | 4        |       | Header, 100mil, 3x1, Gold, TH                                                       | PBC03SAAN                                                         | PBC03SAAN          | Sullins Connector<br>Solutions |
| J2                                                    | 1        |       | Receptacle, USB 2.0, Micro B, 5 Position, R/A, SMT                                  | Receptacle, USB 2.0,<br>Micro B, 5 Pos, 0.65mm<br>Pitch, R/A, SMT | 1051640001         | Molex                          |
| J4                                                    | 1        |       | Header, 100mil, 4x1, Gold, TH                                                       | 4x1 Header                                                        | TSW-104-07-G-S     | Samtec                         |
| J6                                                    | 1        |       | Header, 100mil, 9x2, Gold, TH                                                       | 9x2 Header                                                        | TSW-109-07-G-D     | Samtec                         |
| J7, J8                                                | 2        |       | Terminal Block, 5.08 mm, 3x1, Brass, TH                                             | 3x1 5.08 mm Terminal<br>Block                                     | ED120/3DS          | On-Shore Technology            |
| J9, J10, J11                                          | 3        |       | Header, 100mil, 2x1, Tin, TH                                                        | Header, 2 PIN, 100mil,<br>Tin                                     | PEC02SAAN          | Sullins Connector<br>Solutions |
| J12                                                   | 1        |       | Terminal Block, 8x1, 3.5mm, TH                                                      | 8x1 Terminal Block                                                | OSTTE080161        | On-Shore Technology            |
| L1                                                    | 1        | 47uH  | Inductor, Shielded, Powdered Iron, 47 uH, 0.39<br>A, 2.3 ohm, AEC-Q200 Grade 1, SMD | SMD, 2-Leads, Body<br>3x3mm                                       | 78438335470        | Wurth Elektronik               |
| L3                                                    | 1        |       | Inductor, Ferrite Bead, Ferrite, 3 A, 120 ohm,<br>AEC-Q200 Grade 1, SMD             | 603                                                               | BLM18SG121TZ1D     | MuRata                         |
| L4                                                    | 1        | 1uH   | Inductor, Shielded, Powdered Iron, 1 uH, 18 A, 0.003 ohm, AEC-Q200 Grade 1, SMD     | 11x10mm                                                           | SRP1038A-1R0M      | Bourns                         |
| LBL1                                                  | 1        |       |                                                                                     | PCB Label 0.650 x 0.200 inch                                      | THT-14-423-10      | Brady                          |
| Q1                                                    | 1        | 80 V  | Transistor, NPN, 80 V, 1.5 A, AEC-Q101,<br>SOT-23                                   | SOT-23                                                            | FMMT620TA          | Diodes Inc.                    |
| Q2                                                    | 1        |       | N-Channel 40 V 8 A (Ta) 15W (Tc) Surface<br>Mount DFN2020MD-6                       | SOT1220                                                           | BUK9D23-40EX       | Nexperia                       |
| R1, R2, R3, R6, R7,<br>R8, R32, R33, R34,<br>R35, R36 | 11       | 10.0k | RES, 10.0 k, 1%, 0.1 W, 0603                                                        | 603                                                               | RC0603FR-0710KL    | Yageo                          |



| Designator                                                                                                                                  | Quantity | Value | Description                                                                 | Package Reference         | Part Number      | Manufacturer         |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------------------------------------------------------------------------|---------------------------|------------------|----------------------|
| R4, R17, R21, R26                                                                                                                           | 4        | 0     | RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603                                   | 603                       | ERJ-3GEY0R00V    | Panasonic            |
| R5                                                                                                                                          | 1        | 25k   | Trimmer Potentiometer, 25kohm, 0.5W, TH                                     | 9.53x8.89mm               | 3352T-1-253LF    | Bourns               |
| R9, R12                                                                                                                                     | 2        | 5.1k  | RES, 5.1 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603                               | 603                       | CRCW06035K10JNEA | Vishay-Dale          |
| R11                                                                                                                                         | 1        | 51.1k | RES, 51.1 k, 1%, 0.1 W, 0603                                                | 603                       | RC0603FR-0751K1L | Yageo                |
| R18                                                                                                                                         | 1        | 10k   | 10 kOhms 0.5W, 1/2W Through Hole<br>Thumbwheel Potentiometer Top Adjustment | PTM_PTH_8MM9_9MM5<br>3    | 3352T-1-103LF    | Bourns               |
| R19                                                                                                                                         | 1        | 41.2k | RES, 41.2 k, 1%, 0.1 W, 0603                                                | 603                       | RC0603FR-0741K2L | Yageo                |
| R22                                                                                                                                         | 1        | 22.0k | RES, 22.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603                              | 603                       | ERJ-3EKF2202V    | Panasonic            |
| R23                                                                                                                                         | 1        | 330   | RES, 330, 1%, 0.1 W, 0603                                                   | 603                       | RC0603FR-07330RL | Yageo                |
| R24                                                                                                                                         | 1        | 1.0k  | RES, 1.0 k, 5%, 0.1 W, 0603                                                 | 603                       | RC0603JR-071KL   | Yageo                |
| R25                                                                                                                                         | 1        | 4.70k | RES, 4.70 k, 0.1%, 0.1 W, 0603                                              | 603                       | RT0603BRD074K7L  | Yageo America        |
| R29                                                                                                                                         | 1        | 47k   | RES, 47 k, 5%, 0.1 W, 0603                                                  | 603                       | RC0603JR-0747KL  | Yageo                |
| R30, R31                                                                                                                                    | 2        | 470   | RES, 470, 5%, 0.1 W, 0603                                                   | 603                       | RC0603JR-07470RL | Yageo                |
| R37                                                                                                                                         | 1        | 0     | RES, 0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206                                  | 1206                      | RCA12060000ZSEA  | Vishay-Dale          |
| S1, S2, S3                                                                                                                                  | 3        |       | SWITCH TOGGLE SPDT 0.4VA 28 V                                               | 6.8x23.1x8.8mm            | B12AP            | NKK Switches         |
| S4                                                                                                                                          | 1        |       | Switch, Tactile, SPST, 12 V, SMD                                            | SMD, 6x3.9mm              | 4.34121E+11      | Wurth Elektronik     |
| SH-J1, SH-J2, SH-<br>J3, SH-J4, SH-J5,<br>SH-J6, SH-J7, SH-<br>J8, SH-J9, SH-J10,<br>SH-J11, SH-J12, SH-<br>J13, SH-J14, SH-<br>J15, SH-J16 | 16       | 1x2   | Shunt, 100mil, Gold plated, Black                                           | Shunt                     | SNT-100-BK-G     | Samtec               |
| TP1, TP2, TP3, TP4,<br>TP5, TP11, TP12,<br>TP21, TP22, TP28,<br>TP29, TP30, TP31                                                            | 13       |       | Test Point, Miniature, White, TH                                            | White Miniature Testpoint | 5002             | Keystone Electronics |
| TP6, TP7, TP8, TP9,<br>TP10, TP13, TP14,<br>TP23, TP27, TP32,<br>TP33, TP34                                                                 | 12       |       | Test Point, Miniature, Red, TH                                              | Red Miniature Testpoint   | 5000             | Keystone Electronics |



| Designator                | Quantity | Value | Description                                                                                               | Package Reference                     | Part Number      | Manufacturer         |
|---------------------------|----------|-------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|----------------------|
| TP15, TP16                | 2        |       | Test Point, Compact, Red, TH                                                                              | Red Compact Testpoint                 | 5005             | Keystone Electronics |
| TP17, TP24, TP25,<br>TP26 | 4        |       | Test Point, Miniature, Black, TH                                                                          | Black Miniature Testpoint             | 5001             | Keystone Electronics |
| TP18, TP19, TP20          | 3        |       | 1 mm Uninsulated Shorting Plug, 10.16mm spacing, TH                                                       | Shorting Plug, 10.16mm<br>spacing, TH | D3082-05         | Harwin               |
| U1                        | 1        |       | MCT8315Z0HRRYR                                                                                            | WQFN32                                | MCT8315Z0HRRYR   | Texas Instruments    |
| U2                        | 1        |       | USB to Serial UART, SSOP28                                                                                | SSOP28                                | FT232RL          | FTDI                 |
| U3                        | 1        |       | 4-Channel ESD Protection Array for High-<br>Speed Data Interfaces, DRY0006A (USON-6)                      | DRY0006A                              | TPD4E004DRYR     | Texas Instruments    |
| U4                        | 1        |       | CPU16 MSP430 <sup>™</sup> FRAM Microcontroller IC<br>16-Bit 24 MHz 32 KB (32K x 8) FRAM 48-<br>LQFP (7x7) | LQFP48                                | MSP430FR2355TPTR | Texas Instruments    |
| Y1                        | 1        |       | Resonator, 4 MHz, 39 pF, AEC-Q200 Grade 1, SMD                                                            | 4.5x1.2x2 mm                          | CSTCR4M00G55B-R0 | MuRata               |



# **5** Additional Information

#### Trademarks

LaunchPads<sup>™</sup>, LaunchPad<sup>™</sup>, Code Composer Studio<sup>™</sup>, and MSP430<sup>™</sup> are trademarks of Texas Instruments. Google Chrome<sup>®</sup> is a registered trademark of Google LLC.

Firefox<sup>®</sup> is a registered trademark of Mozilla Foundation.

All trademarks are the property of their respective owners.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated