1 Introduction
This evaluation board shows a bidirectional high-side current sense made using LMP8640 (LMP8645) and optional differential amplifier in order to have a single output.

2 Connectors

2.1 Power Supply
There are two banana plugs labeled GND and V_{CC} to power the evaluation board. Moreover, a banana plug labeled V_{CC_Amp} is used to power an optional operational amplifier that makes the difference between the outputs of the two LMP8640 (LMP8645).

2.2 Signal Connectors
There are five connectors for signals.

<table>
<thead>
<tr>
<th>Table 1. Input signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
</tr>
<tr>
<td>LOAD</td>
</tr>
</tbody>
</table>

The device U1 is able to sense the current when it flows in the shunt resistor from the LOAD pin to the IN pin. The device U2 is able to sense the current when it flows in the shunt resistor from IN pin to LOAD pin.

<table>
<thead>
<tr>
<th>Table 2. Output signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT+</td>
</tr>
<tr>
<td>OUT-</td>
</tr>
<tr>
<td>OUT</td>
</tr>
</tbody>
</table>

3 Hardware Setup

3.1 Power Supply Setup
- High side current sense LMP8640 (LMP8645)
 - Connect a supply voltage in the range between 2.7 V and 12 V to the V_{CC} and GND turrets.
- Optional difference amplifier
 - Connect a supply according to the specs of the amplifier to the V_{CC_Amp} and GND turrets.
3.2 Source and Load Setup

First case: Current flows from IN to LOAD plugs.

A voltage supply can be connected between the IN and the GND banana plugs, while a load is connected between the LOAD and the GND banana plugs. The voltage applied at the IN pin should not exceed the maximum common mode voltage allowed by the LMP8640/HV (LMP8645/HV). The maximum allowed common mode voltages are listed in Table 3.

Second case: Current flows from LOAD to IN plugs.

In this case, the voltage supply is connected between the LOAD and the GND banana plugs, while the load is connected between the IN and GND banana plugs. The voltage applied at LOAD pin should not exceed the maximum common mode voltage allowed by the LMP8640/HV (LMP8645/HV). The maximum allowed common mode voltages are listed in Table 3.

Table 3. Max Common Mode Voltage

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>MAX VCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP8640</td>
<td>42V</td>
</tr>
<tr>
<td>LMP8645</td>
<td>42V</td>
</tr>
<tr>
<td>LMP8640HV</td>
<td>76V</td>
</tr>
<tr>
<td>LMP8645HV</td>
<td>76V</td>
</tr>
</tbody>
</table>

According to the shunt resistor (Rsns), to the gain of LMP8640 (LMP8645) and to the supply voltage different ranges of currents can be sensed with this evaluation board.

3.3 Components

On the evaluation board, there are already the circuit and the footprint of a standard dual op amp (U3) to implement a differential op amp (U3.B) with reference (U3.A) in order to provide a single ended output of the bidirectional current.

Table 4. Optional Differential Circuit

<table>
<thead>
<tr>
<th>U3</th>
<th>Standard Dual Op Amp 8 pin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U3.1</td>
<td>OUT A</td>
</tr>
<tr>
<td>U3.2</td>
<td>-IN A</td>
</tr>
<tr>
<td>U3.3</td>
<td>+IN A</td>
</tr>
<tr>
<td>U3.4</td>
<td>V</td>
</tr>
<tr>
<td>U3.5</td>
<td>+IN B</td>
</tr>
<tr>
<td>U3.6</td>
<td>-IN B</td>
</tr>
<tr>
<td>U3.7</td>
<td>OUT B</td>
</tr>
<tr>
<td>U3.8</td>
<td>V</td>
</tr>
</tbody>
</table>

R1, R2, R3, R4 | resistors that implement the differential circuit according to Equation 1:

\[
OUT = \frac{R4}{R1} \times \text{OUT} + \left(1 + \frac{R4}{R1}\right) \times \left(\frac{R2}{R2 + R3} \times \frac{\text{Vref} + \frac{R3}{R2 + R3} \times \text{OUT}}{\frac{R5}{R5 + R6} \times \text{VCC}_\text{Amp}}\right)
\]

(1)

R5, R6, C5 | components for voltage reference and its filter. The voltage reference is calculating according to Equation 2:

\[
\text{Vref} = \frac{R5}{R5 + R6} \times \text{VCC}_\text{Amp}
\]

(2)
4 Using the Evaluation Board

4.1 Input and Output Signals

The evaluation board allows you to measure a bidirectional current, so the IN and LOAD banana connectors can act either as the Source or LOAD pin. If the current flows from the IN pin to the LOAD pin, a simple way to test the performance of the LMP8640 (LMP8645) is shown in Figure 1.

The DMM1 is configured as a voltmeter, which measures the output of the LMP8640 (LMP8645), while the DMM2 is configured as an Ammeter, which measures the current that flows in the LOAD. The source is a voltage supply that makes sure to set a voltage in the range of -2 V to +46 V for LMP8640 (LMP8645) or -2 V to +76 V for LMP8640HV (LMP8645HV).

4.2 Gain Selection of LMP8645

The evaluation board is provided with a shunt resistor Rsns (10 mΩ, @ 1%, 1W), while two gain resistors Rg1 and Rg2 (10 kΩ, @1%) ensure a gain of 2 V/V for each current sense. The Gain is evaluated according to formula in Equation 3:

\[
\text{Gain} = \frac{R_g}{5k\Omega}
\]

The gain resistor must be chosen such that the max output voltage does not exceed the LMP8645 max output voltage rating for a given common mode voltage (further details in the Datasheet).

4.3 Single Output

In the applications where a single measurement of a bidirectional current sense is needed is possible to populate the evaluation board with two amplifiers and some resistors (see Section 3.3).

For instance, in the following configuration:

- \(R_1 = R_2 = R_3 = R_4 = 10 \, \text{kΩ} \),
- \(R_5 = R_6 = 10 \, \text{kΩ} \),
- \(\text{OUT} = V_{\text{REF}} + (\text{OUT}^+ - \text{OUT}^-) \),
- \(V_{\text{REF}} = 0.5 \times V_{\text{cc Amp}}. \)
The V_{REF} level represents the zero level; the voltages greater than V_{REF} are related to a current that flows from IN pin to the LOAD pin while the voltages less than V_{REF} are related to a current that flows from the LOAD pin to the IN pin. To ensure good results in the measurements, the resistors R4 and R3 and the resistors R1 and R2 need to be well matched.

5 Bill Of Materials (BOM)

<table>
<thead>
<tr>
<th>Designator</th>
<th>Component</th>
<th>Value</th>
<th>Tolerance</th>
<th>Package Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3</td>
<td>Capacitor</td>
<td>0.01 μF</td>
<td>5%</td>
<td>0603</td>
</tr>
<tr>
<td>C2, C6*</td>
<td>Capacitor</td>
<td>1 μF</td>
<td>10%</td>
<td>3216–18</td>
</tr>
<tr>
<td>C4</td>
<td>Capacitor</td>
<td>0.1 μF</td>
<td>10%</td>
<td>0805</td>
</tr>
<tr>
<td>C5*, C7</td>
<td>Capacitor</td>
<td>0.1 μF</td>
<td>10%</td>
<td>0603</td>
</tr>
<tr>
<td>C_Filt1*, C_Filt2*</td>
<td>Capacitor</td>
<td>0.1 μF</td>
<td>10%</td>
<td>0605</td>
</tr>
<tr>
<td>CG1*, CG2*</td>
<td>Capacitor</td>
<td></td>
<td></td>
<td>0805</td>
</tr>
<tr>
<td>R1*, R2*, R3*, R4*, R5*, R6*</td>
<td>Resistor</td>
<td>min 10 kΩ</td>
<td>1%</td>
<td>0603</td>
</tr>
<tr>
<td>RG1**, RG2**</td>
<td>Resistor</td>
<td>10.0 kΩ</td>
<td>1%</td>
<td>0603</td>
</tr>
<tr>
<td>Rsns**</td>
<td>Resistor</td>
<td>0.01 Ω</td>
<td>1%, 1W</td>
<td>2010</td>
</tr>
<tr>
<td>Rsns</td>
<td>Resistor</td>
<td>0.01 Ω</td>
<td>0.1%, 1W</td>
<td>2512</td>
</tr>
<tr>
<td>R_Filt_1, R_Filt2</td>
<td>Resistor</td>
<td></td>
<td>5%</td>
<td>0805</td>
</tr>
<tr>
<td>U3*</td>
<td>Dual Op Amp</td>
<td></td>
<td></td>
<td>SOT-8</td>
</tr>
</tbody>
</table>

(1) Components Marked With (*) are not soldered on the board.
(2) Components marked with (**) are soldered only on LMP8645 board.
Appendix A Schematic

This schematic shows the evaluation board with a LMP8645 mounted on the PCB. The only difference for the version of the PCB stuffed with LMP8640 will be the gain resistors RG1, RG2. The LMP8640 is a current sense with fixed gain, so it doesn’t require any external gain resistor.

Figure 2. Schematic Diagram
Figure 3. Top Layer
Figure 4. Bottom Layer PCB Layout
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio: www.ti.com/audio
Amplifiers: amplifier.ti.com
Data Converters: dataconverter.ti.com
DLP® Products: www.dlp.com
DSP: dsp.ti.com
Clocks and Timers: www.ti.com/clocks
Interface: interface.ti.com
Logic: logic.ti.com
Power Mgmt: power.ti.com
Microcontrollers: microcontroller.ti.com
RFID: www.ti-rfid.com
OMAP Applications Processors: www.ti.com/omap
Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation: www.ti.com/automotive
Communications and Telecom: www.ti.com/communications
Computers and Peripherals: www.ti.com/computers
Consumer Electronics: www.ti.com/consumer-apps
Energy and Lighting: www.ti.com/energy
Industrial: www.ti.com/industrial
Medical: www.ti.com/medical
Security: www.ti.com/security
Space, Avionics and Defense: www.ti.com/space-avionics-defense
Video and Imaging: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated