

AN-1736 LM3433 HB LED Driver Evaluation Kit

1 Introduction

The LM3433 is an adaptive constant on-time DC/DC buck constant current controller designed to drive a high brightness LEDs (HB LED) at high forward currents. It is a true current source that provides a constant current with constant ripple current regardless of the LED forward voltage drop. The board can accept an input voltage ranging from -9V to -14V w.r.t. GND. The output configuration allows the anodes of multiple LEDs to be tied directly to the ground referenced chassis for maximum heat sink efficacy when a negative input voltage is used.

2 LM3433 Board Description

The evaluation board is designed to provide a constant current in the range of 2A to 9A. With some modification the board is capable of up to 20A. The LM3433 requires two input voltages for operation. A positive voltage with respect to GND is required for the bias and control circuitry and a negative voltage with respect to GND is required for the main power input. This allows for the capability of using common anode LEDs so that the anodes can be tied to the ground referenced chassis. The evaluation board only requires one input voltage of -12V with respect to GND. The positive voltage is supplied by the LM5002 circuit. The LM5002 circuit also provides a UVLO function to remove the possibility of the LM3433 from drawing high currents low input voltages during startup. Initially the output current is set at the minimum of approximately 2A with the POT P1 fully counter-clockwise. To set the desired current level a short may be connected between LED+ and LED-, then use a current probe and turn the POT clockwise until the desired current is reached. A PWM dimming FET is included on-board for testing when the LED can be connected directly next to the board. A shutdown post on J2, ENA, is included so that startup and shutdown functions can be tested using an external voltage. Included in the kit is a load board the emulates a high current LED and an LED adapter board used to place a dimming FET close to a remote LED.

3 LED Adapter Board Description

The LED adapter board is designed to allow placement of a dimming FET as close to an LED as possible. The high currents supplied by the LM3433 require that the FET be very close the LED to reduce the inductance between the two current paths. Placing the FET far from the LED could result in high voltage spikes due to the di/dt through the inductance between the FET and the LED. If the LED cannot be placed directly next to the LM3433 evaluation board then remove the dimming FET(s) from the LM3433 board (Q5 and Q6) and use this board. The LED adapter board connects to the LM3433 board with the supplied 26 pin ribbon cable.

4 Load Board Description

The load board is designed to emulate an LED load. This board provides the ability to test the LM3433 without the possibility of accidentally destroying high current LEDs. It connects to the LM3433 evaluation board with the supplied 26 pin ribbon cable. The load board has an adjustable voltage controlled with the POT R5 and it includes three small LEDs that light up when the forward voltage of each is reached. This allows for adjusting the voltage to the level desired corresponding to a red, green, or blue LED. Test points are included so that current can be measured across a low value resistor both before and after the included dimming FET.

All trademarks are the property of their respective owners.

Setting the LED Current www.ti.com

These resistors can also be removed and replaced with a short loop of wire if using a current probe is desired. If the PWM dimming function is used with the load board the dimming FET(s) (Q5 and Q6) should be removed from the LM3433 evaluation board. The load board is designed for approximately 8A maximum. It includes thermal protection and will shut down if it gets too hot. The thermal protection may trip during normal testing especially if higher voltages are used. If the thermal protection trips let the board cool down and then resume testing.

5 Setting the LED Current

The LM3433 evaluation board is designed so that the LED current can be set in multiple ways. There is a shunt on J2 initially connecting the ADJ pin to the POT allowing the current to be adjusted using the POT P1. This POT will apply a voltage to the ADJ pin between 0.3V and 1.5V w.r.t. GND to adjust the voltage across the sense resistor (R_{SENSE}) R15. The shunt may also be removed and an external voltage positive w.r.t. GND can then be applied to the ADJ test point on the board. A $10\text{m}\Omega$ resistor comes mounted on the board so using the V_{SENSE} vs. V_{ADJ} graph in the *Typical Performance Characteristics* section the current can be set using Equation 1:

$$I_{\text{LED}} = V_{\text{SENSE}} / R_{\text{SENSE}} \tag{1}$$

Alternatively the shunt can be removed and connect the ADJ test point can be connected to the VINX test point to fix V_{SENSE} at 60mV.

6 PWM Dimming

The LM3433 is capable if high speed PWM dimming in excess of 40kHz. Dimming is accomplished by shorting across the LED with a FET. A dimming FET is included on the evaluation board for testing LEDs placed close to the board and also on the load board and adapter board for remote loads. The FET on the evaluation board should be removed if using dimming with the load board or adapter board.

To use the dimming function apply square wave to the PWM test point on the board that has a positive voltage w.r.t. GND. When this pin is pulled high the dimming FET is enabled and the LED turns off. When it is pulled low the dimming FET is turned off and the LED turns on. A scope plot of PWM dimming is included in the *Typical Performance Characteristics* section showing 30kHz dimming at 50% duty cycle.

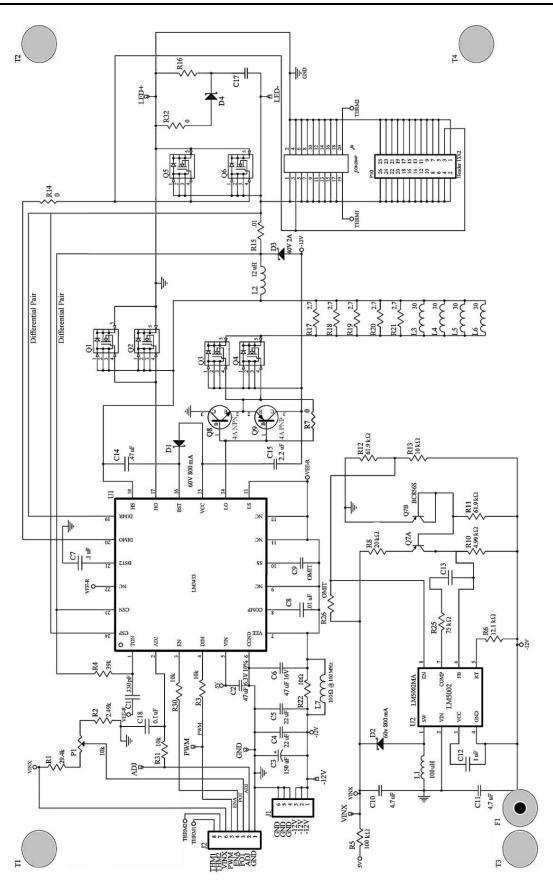


Figure 1. LM3433 Evaluation Board Schematic

PWM Dimming www.ti.com

Table 1. Bill of Materials (BOM) 1 (2A to 9A)

Qty	ID	Part Number	Туре	Size	Parameters	Vendor
1	U1	LM3433	LED Driver	WQFN-24		TI
1	U2	LM5002	Boost Regulator	SOIC-8		TI
1	C1	C0805C331J5GACTU	Capacitor	0805	330pF, 50V	Kemet
1	C2	GRM31CR61C106KC3 1L	Capacitor	1206	10µF, 16V	Murata
1	C3	16SA150M	Capacitor	MULTICAP	150µF, 16V	Sanyo
2	C4, C5	GRM32ER61C226KE2 0L	Capacitor	1210	22μF, 16V	Murata
1	C6	GRM32ER61C476ME1 5L	Capacitor	1210	47μF, 16V	Murata
1	C7	C0805C104J5RACTU	Capacitor	0805	0.1µF, 50V	Kemet
2	C8, C13	HMK212BJ103KG-T	Capacitor	0805	10nF, 100V	Taiyo Yuden
	C9	OPEN		0805		
2	C10, C11	GRM21BR61C475KA	Capacitor	0805	4.7µF, 16V	Murata
1	C12	0805YD105KAT2A	Capacitor	0805	1μF, 16V	AVX
1	C14	B37941K9474K60	Capacitor	0805	0.47µF, 16V	EPCOS Inc .
1	C15	GRM21BF51E225ZA01 L	Capacitor	0805	2.2μF, 25V	Murata
	C17	OPEN		0805		
1	C18	08055C104JAT2A	Capacitor	0805	0.1µF, 50V	AVX
2	D1, D2	MA2YD2600L	Diode	SOD-123	60V, 800mA	Panasonic
1	D3	MBRS240LT3	Diode	SMB	40V, 2A	ON Semiconductor
	D4	OPEN		SMB		
	J1, J2	OPEN				
1	J9	TFML-110-02-S-D	Connector	TFM-110-02-X-D-LC		Samtec
1	L1	LPS3008-104ML	Inductor	3008	100µH, 150mA	Coilcraft
1	L2	GA3252-AL	Inductor	GA3252-AL	12µH, 14A	Coilcraft
	L3, L5	OPEN		0805		
2	L4, L6	MPZ2012S300A	Ferrite Bead	0805	30Ω @ 100MHz	TDK
1	L7	MPZ2012S101A	Ferrite Bead	0805	100Ω @ 100MHz	TDK
1	P1	3352T-1-103LF	Potentiometer	BOURNS2	10kΩ	Bourns
1	P10	3429-6002	Connector	HDR13x2	13X2 Pin Header	3M
	Q1, Q3, Q5	OPEN		PowerPAK		
2	Q4, Q6	Si7386DP	FET	PowerPAK	30V, 9.5mΩ	Vishay- Siliconix
1	Q2	NTMFS4841NH	FET	PowerPAK	30V, 11mΩ	ON Semiconductor
1	Q7	BC856S	Dual PNP	SOT363_N		Phillips
	Q8, Q9	OPEN				
1	R1	ERJ-6ENF2942V	Resistor	0805	29.4kΩ	Panasonic
1	R2	ERJ-6ENF2491V	Resistor	0805	2.49kΩ	Panasonic
3	R3, R30, R31	ERJ-6ENF1002V	Resistor	0805	10kΩ	Panasonic
1	R4	ERJ-6GEYJ393V	Resistor	0805	39kΩ	Panasonic
1	R5	ERJ-6GEYJ101V	Resistor	0805	100Ω	Panasonic
2	R7, R14	ERJ-6GEY0R00V	Resistor	0805	0Ω	Panasonic
1	R8	ERJ-6ENF2002V	Resistor	0805	20kΩ	Panasonic
1	R10	ERJ-6ENF4991V	Resistor	0805	4.99kΩ	Panasonic
2	R11, R12	ERJ-6ENF6192V	Resistor	0805	61.9kΩ	Panasonic
1	R13	ERJ-6GEYJ103V	Resistor	0805	10kΩ	Panasonic

Table 1. Bill of Materials (BOM) 1 (2A to 9A) (continued)

Qty	ID	Part Number	Туре	Size	Parameters	Vendor
1	R15	WSL2512R0100FEA	Resistor	CR6332-2512	0.01Ω	Vishay
	R16, R18, R19	OPEN		0805		
3	R17, R20, R21	ERJ-6GEYJ2R7V	Resistor	0805	2.7Ω	Panasonic
1	R22	ERJ-6GEYJ100V	Resistor	0805	10Ω	Panasonic
1	R25	ERJ-6ENF7502V	Resistor	0805	75kΩ	Panasonic
	R26	OPEN		0805		
4	-12V, GND, LED+, LED-	1502-2	Test Post	TP 1502	0.109"	Keystone
3	ADJ, PWM, VINX	1593-2	Test Post	TP 1593	0.084"	Keystone

Table 2. Bill of Materials (BOM) 2(4A to 20A)

Qty	ID	Part Number	Туре	Size	Parameters	Vendor
1	U1	LM3433	LED Driver	WQFN-24		TI
1	U2	LM5002	Boost Regulator	SOIC-8		TI
1	C1	C0805C331J5GACTU	Capacitor	0805	330pF, 50V	Kemet
1	C2	GRM31CR61C106KC31L	Capacitor	1206	10μF, 16V	Murata
1	C3	16SA150M	Capacitor	MULTICAP	150µF, 16V	Sanyo
2	C4, C5	GRM32ER61C226KE20L	Capacitor	1210	22μF, 16V	Murata
1	C6	GRM32ER61C476ME15L	Capacitor	1210	47μF, 16V	Murata
1	C7	C0805C104J5RACTU	Capacitor	0805	0.1µF, 50V	Kemet
2	C8, C13	HMK212BJ103KG-T	Capacitor	0805	10nF, 100V	Taiyo Yuden
	C9	OPEN		0805		
2	C10, C11	GRM21BR61C475KA	Capacitor	0805	4.7μF, 16V	Murata
1	C12	0805YD105KAT2A	Capacitor	0805	1μF, 16V	AVX
1	C14	B37941K9474K60	Capacitor	0805	0.47µF, 16V	EPCOS Inc .
1	C15	GRM21BF51E225ZA01L	Capacitor	0805	2.2µF, 25V	Murata
	C17	OPEN		0805		
1	C18	08055C104JAT2A	Capacitor	0805	0.1µF, 50V	AVX
2	D1, D2	MA2YD2600L	Diode	SOD-123	60V, 800mA	Panasonic
1	D3	MBRS240LT3	Diode	SMB	40V, 2A	ON Semiconductor
	D4	OPEN		SMB		
	J1, J2	OPEN				
1	J9	TFML-110-02-S-D	Connector	TFM-110-02-X-D-LC		Samtec
1	L1	LPS3008-104ML	Inductor	3008	100µH, 150mA	Coilcraft
1	L2	GA3252-AL	Inductor	GA3252-AL	12µH, 14A	Coilcraft
4	L3, L4, L5, L6	MPZ2012S300A	Ferrite Bead	0805	30Ω @ 100MHz	TDK
1	L7	MPZ2012S101A	Ferrite Bead	0805	100Ω @ 100MHz	TDK
1	P1	3352T-1-103LF	Potentiometer	BOURNS2	10kΩ	Bourns
1	P10	3429-6002	Connector	HDR13x2	13X2 Pin Header	3M
4	Q3, Q4, Q5, Q6	Si7386DP	FET	PowerPAK	30V, 9.5mΩ	Vishay- Siliconix
2	Q1, Q2	NTMFS4841NH	FET	PowerPAK	30V, 11mΩ	ON Semiconductor
1	Q7	BC856S	Dual PNP	SOT363_N		Phillips
1	Q8	ZXTN25040DFHTA	NPN	SOT-23B		Zetex Inc.



PWM Dimming www.ti.com

Table 2. Bill of Materials (BOM) 2(4A to 20A) (continued)

Qty	ID	Part Number	Туре	Size	Parameters	Vendor
1	Q9	ZXTP25040DFHTA	PNP	SOT-23B	SOT-23B	
1	R1	ERJ-6ENF2942V	Resistor	0805	29.4kΩ	Panasonic
1	R2	ERJ-6ENF2491V	Resistor	0805	2.49kΩ	Panasonic
3	R3, R30, R31	ERJ-6ENF1002V	Resistor	0805	10kΩ	Panasonic
1	R4	ERJ-6GEYJ393V	Resistor	0805	39kΩ	Panasonic
1	R5	ERJ-6GEYJ101V	Resistor	0805	100Ω	Panasonic
	R7	OPEN				
2	R14	ERJ-6GEY0R00V	Resistor	0805	0Ω	Panasonic
1	R8	ERJ-6ENF2002V	Resistor	0805	20kΩ	Panasonic
1	R10	ERJ-6ENF4991V	Resistor	0805	4.99kΩ	Panasonic
2	R11, R12	ERJ-6ENF6192V	Resistor	0805	61.9kΩ	Panasonic
1	R13	ERJ-6GEYJ103V	Resistor	0805	10kΩ	Panasonic
1	R15	WSL25125L000FEA	Resistor	CR6332-2512	0.005Ω	Vishay
6	R16, R17, R18, R19, R20, R21	ERJ-6GEYJ2R7V	Resistor	0805	2.7Ω	Panasonic
1	R22	ERJ-6GEYJ100V	Resistor	0805	10Ω	Panasonic
1	R25	ERJ-6ENF7502V	Resistor	0805	75kΩ	Panasonic
	R26	OPEN		0805		
4	-12V, GND, LED+, LED-	1502-2	Test Post	TP 1502	0.109"	Keystone
3	ADJ, PWM, VINX	1593-2	Test Post	TP 1593	0.084"	Keystone

PWM Dimming www.ti.com

Table 3. Load Board BOM

Table 3. Load Board Bolin							
ID	Part Number	Туре	Size	Parameters	Qty	Vendor	
C1, C2	OPEN		0805				
D1	SSL-LX5063ID	Red LED	T 1 3/4		1	Lumex	
D2	BZX84C15LT1	Zener Diode	SOT-23	225mW, 15V	1	ON Semiconductor	
D3	SSL-LX5063GD	Green LED	T 1 3/4		1	Lumex	
D4	SSL-LX5093USBD	Blue LED	T 1 3/4		1	Lumex	
H1	7-339-4PP-BA	Heatsink	TO-220 Bolt On		1	IREC-CTS	
J1	S9001	Connector	1X2 Header	1X2 Pin Header	1	Sullins Electronics Corp .	
P1	3429-6002	Connector	HDR13x2	13X2 Pin Header	1	ЗМ	
Q1	Si4884DY	FET	SO-8	30V, 16mΩ	1	Vishay- Siliconix	
Q2	FZT649	NPN	SOT-223		1	Zetex Inc.	
Q3	D44H	NPN	TO-220	60V, 10A	1	ON Semiconductor	
R1, R2	WSL2010R0100FEA18	Resistor	2010	0.01Ω	2	Vishay	
R3	ERJ-6ENF20R0V	Resistor	0805	20Ω	1	Panasonic	
R4	9C08052A1004JLHFT	Resistor	0805	1ΜΩ	1	Yageo Corporation	
R5	PV36X102C01B00	Potentiometer	0805	250Ω	1	Murata	
R6, R7	ERJ-6ENF1000V	Resistor	0805	100Ω	2	Panasonic	
R8	MCR10EZHF4700	Resistor	0805	470Ω	1	Rohm	
R9	ERJ-6GEYJ391V	Resistor	0805	390Ω	1	Panasonic	
R10	ERJ-6GEYJ331V	Resistor	0805	330Ω	1	Panasonic	
SW1	F1107015ACFA06E		TO-220 w/leads	70deg. C.N.O.	1	Canthem	
+, -, ANODE, +, -, CATHODE, GATE	1502-2	Test Post	TP 1502	0.109"	7	Keystone	

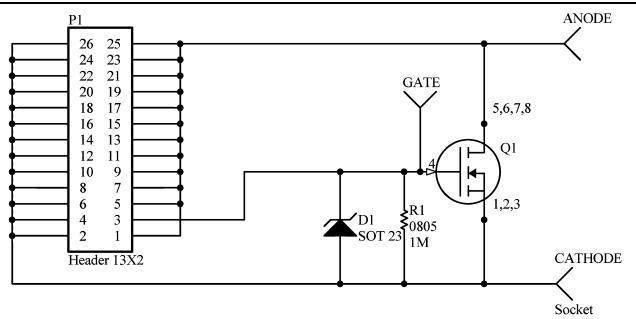


Figure 3. LED DIM Adapter Board Schematic

Table 4. Adapter Board Bill of Materials (BOM)

Qty	ID	Part Number	Туре	Size	Parameters	Vendor
	R1	OPEN		0805		
1	D1	BZX84C15LT1	Zener Diode	SOT-23	225mW, 15V	ON Semiconductor
1	P1	3429-6002	Connector	HDR13x2	13X2 Pin Header	3M
1	Q1	Si4884DY	FET	SO-8	30V, 16mΩ	Vishay- Siliconix
7	ANODE, CATHODE, GATE	1502-2	Test Post	TP 1502	0.109"	Keystone

7 Typical Performance Characteristics

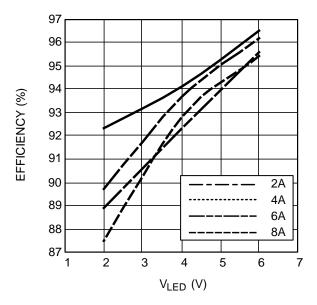


Figure 4. Efficiency vs. LED Forward Voltage $(V_{CGND} - V_{EE} = 9V)$

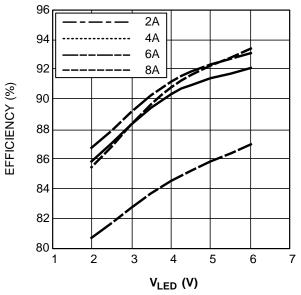


Figure 6. Efficiency vs. LED Forward Voltage $(V_{CGND} - V_{EE} = 14V)$

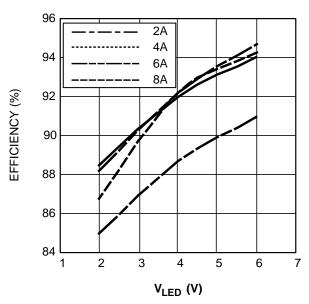


Figure 5. Efficiency vs. LED Forward Voltage (V_{CGND} - V_{EE} = 12V)

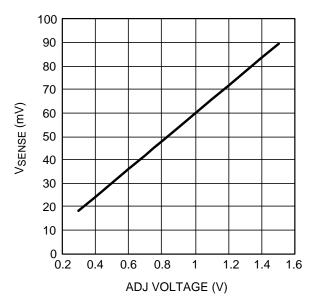
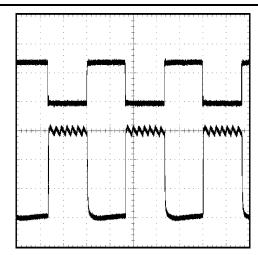



Figure 7. V_{SENSE} vs. V_{ADJ}

ILED = 6A nominal, VIN = 3.3V, VEE = -12V Top trace: DIM input, 2V/div, DC Bottom trace: ILED, 2A/div, DC T = 10μs/div Figure 8. 30kHz PWM Dimming Waveform Showing Inductor Ripple Current

Layout www.ti.com

8 Layout

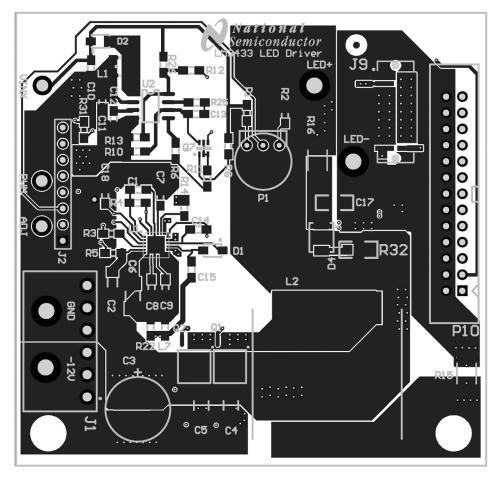


Figure 9. Top Layer and Top Overlay

www.ti.com Layout

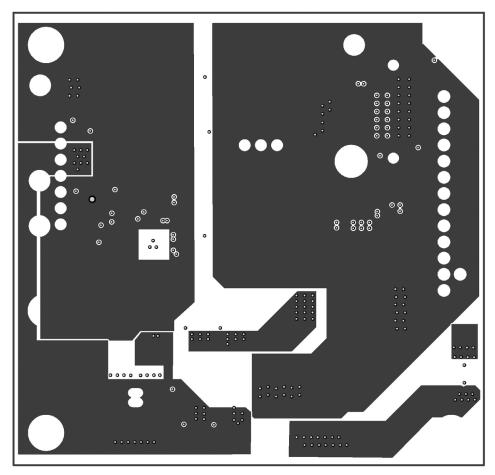


Figure 10. Upper Middle Layer

Layout www.ti.com

Figure 11. Lower Middle Layer

www.ti.com Layout

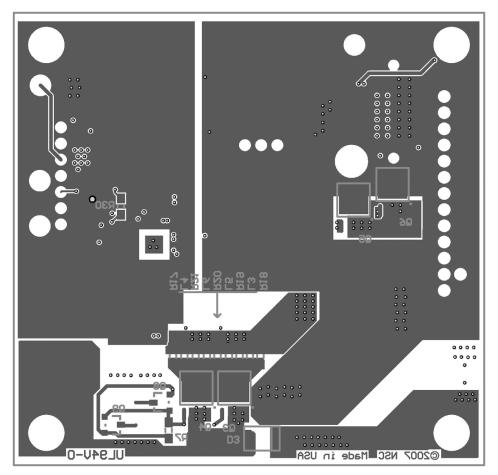


Figure 12. Bottom Layer and Bottom Overlay

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>