1 Introduction

This evaluation board showcases the LM3409HV PFET controller for a buck current regulator. It is designed to drive 12 LEDs (\(V_O = 42\)V) at a maximum average LED current (\(I_{LED} = 1.5\)A) from a DC input voltage (\(V = 48\)V). The switching frequency (\(f_{SW} = 400\) kHz) is targeted for the nominal operating point, however \(f_{SWIN}\) varies across the entire operating range. The circuit can accept an input voltage of 6V-75V. However, if the input voltage drops below the regulated LED string voltage, the converter goes into dropout and \(V_O = V_{IN}\) ideally.

The PCB is made using 4 layers of 2 oz. copper with FR4 dielectric. The evaluation board showcases all features of the LM3409HV including analog dimming using the IADJ pin and internal PWM dimming using the EN pin. High frequency external parallel FET shunt PWM dimming can also be evaluated. The board has a header (J1) with a removable jumper, which is used to select the PWM dimming method.

The evaluation board has a right angle connector (J2) which can mate with an external LED load board allowing for the LEDs to be mounted close to the driver. This reduces potential ringing when there is no output capacitor. Alternatively, the LED+ and LED- turrets can be used to connect the LED load.

This board can be easily modified to demonstrate other operating points as shown in Section 9. The Design Procedure section of the LM3409/3409HV/3409Q/3409QHV PFET Buck Controller for High Power LED Drivers (SNVS602) data sheet can be used to design for any set of specifications.

Since the board contains a buck regulator designed for 48V input, the efficiency is very high at input voltages near or less than 48V. The switching frequency increases as input voltage increases, yielding lower efficiency at higher input voltages. Note that increasing the off-time resistor (R6) will increase the efficiency at high input voltage.

![Figure 1. Efficiency with 12 Series LEDs AT 1.5A](image-url)
3 Pin Descriptions

<table>
<thead>
<tr>
<th>Pin(s)</th>
<th>Name</th>
<th>Description</th>
<th>Application Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UVLO</td>
<td>Input under-voltage lockout</td>
<td>Connect to a resistor divider from (V_{IN}) and GND. Turn-on threshold is 1.24V and hysteresis for turn-off is provided by a 22(\mu)A current source.</td>
</tr>
<tr>
<td>2</td>
<td>IADJ</td>
<td>Analog LED current adjust</td>
<td>Apply a voltage between 0 - 1.24V, connect a resistor to GND, or leave open to set the current sense threshold voltage.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Logic level enable / PWM dimming</td>
<td>Apply a voltage >1.74V to enable device, a PWM signal to dim, or a voltage <0.5V for low power shutdown.</td>
</tr>
<tr>
<td>4</td>
<td>COFF</td>
<td>Off-time programming</td>
<td>Connect resistor to (V_{IN}), and capacitor to GND to set the off-time.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>Connect to the system ground.</td>
</tr>
<tr>
<td>6</td>
<td>PGATE</td>
<td>Gate drive</td>
<td>Connect to the gate of the external PFET.</td>
</tr>
<tr>
<td>7</td>
<td>CSN</td>
<td>Negative current sense</td>
<td>Connect to the negative side of the sense resistor.</td>
</tr>
<tr>
<td>8</td>
<td>CSP</td>
<td>Positive current sense</td>
<td>Connect to the positive side of the sense resistor ((V_{IN})).</td>
</tr>
<tr>
<td>9</td>
<td>VCC</td>
<td>(V_{IN}) referenced linear regulator output</td>
<td>Connect at least a 1(\mu)F ceramic capacitor to (V_{IN}). The regulator provides power for the PFET drive.</td>
</tr>
<tr>
<td>10</td>
<td>VIN</td>
<td>Input voltage</td>
<td>Connect to the input voltage.</td>
</tr>
<tr>
<td>DAP</td>
<td>DAP</td>
<td>Thermal pad on bottom of IC</td>
<td>Connect to pin 5 (GND). Place 4-6 vias from DAP to bottom GND plane.</td>
</tr>
</tbody>
</table>
Bill of Materials

Table 1. Bill of Materials

<table>
<thead>
<tr>
<th>Qty</th>
<th>Part ID</th>
<th>Part Value</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>Buck controller</td>
<td>TI</td>
<td>LM3409HV</td>
</tr>
<tr>
<td>2</td>
<td>C1, C2</td>
<td>2.2µF X7R 10% 100V</td>
<td>MURATA</td>
<td>GRM43ER72A225KA01L</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
<td>0.1µF X7R 10% 100V</td>
<td>MURATA</td>
<td>GRM188R72A104KA35D</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>1.0µF X7R 10% 16V</td>
<td>TDK</td>
<td>C1608X7R1C105K</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>0.1µF X7R 10% 50V</td>
<td>MURATA</td>
<td>GRM319R71H104KA01D</td>
</tr>
<tr>
<td>1</td>
<td>C6</td>
<td>0.1µF X7R 10% 50V</td>
<td>MURATA</td>
<td>GCM188R71H104KA57D</td>
</tr>
<tr>
<td>1</td>
<td>C7</td>
<td>470pF X7R 10% 50V</td>
<td>TDK</td>
<td>C1608X7R1H471K</td>
</tr>
<tr>
<td>3</td>
<td>C8, D2, R11</td>
<td>No Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C9</td>
<td>2200pF X7R 10% 50V</td>
<td>MURATA</td>
<td>GRM188R71H222KA01D</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>PMOS 100V 3.8A</td>
<td>ZETEX</td>
<td>ZXMP10A18KTC</td>
</tr>
<tr>
<td>1</td>
<td>Q2</td>
<td>CMOS 30V 2A</td>
<td>FAIRCHILD</td>
<td>FDC6333C</td>
</tr>
<tr>
<td>1</td>
<td>Q3</td>
<td>NMOS 100V 7.5A</td>
<td>FAIRCHILD</td>
<td>FDS3672</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>Schottky 100V 3A</td>
<td>VISHAY</td>
<td>SS3H10-E3/57T</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>33 µH 20% 3.2A</td>
<td>TDK</td>
<td>SLF12575T-330M3R2</td>
</tr>
<tr>
<td>2</td>
<td>R1, R2</td>
<td>1Ω 1%</td>
<td>VISHAY</td>
<td>CRCW06031R00FNEA</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>10kΩ 1%</td>
<td>VISHAY</td>
<td>CRCW060310K0FKEA</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>100Ω 1%</td>
<td>VISHAY</td>
<td>CRCW0603100RFKEA</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>0Ω 1%</td>
<td>VISHAY</td>
<td>CRCW06030000Z0E0A</td>
</tr>
<tr>
<td>1</td>
<td>R6</td>
<td>16.5kΩ 1%</td>
<td>VISHAY</td>
<td>CRCW060316K5FKEA</td>
</tr>
<tr>
<td>1</td>
<td>R7</td>
<td>6.98kΩ 1%</td>
<td>VISHAY</td>
<td>CRCW06036K98FKEA</td>
</tr>
<tr>
<td>1</td>
<td>R8</td>
<td>49.9kΩ 1%</td>
<td>VISHAY</td>
<td>CRCW060349K9FKEA</td>
</tr>
<tr>
<td>1</td>
<td>R9</td>
<td>0.15Ω 1% 1W</td>
<td>VISHAY</td>
<td>WSL2512R1500FEA</td>
</tr>
<tr>
<td>1</td>
<td>R10</td>
<td>1kΩ 1%</td>
<td>VISHAY</td>
<td>CRCW06031K00FKEA</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>3 pin header</td>
<td>MOLEX</td>
<td>22-28-4033</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>2x7 pin RA shrouded</td>
<td>SAMTEC</td>
<td>TSSH-107-01-S-D-RA</td>
</tr>
<tr>
<td>2</td>
<td>VIN, GND</td>
<td>banana jack</td>
<td>KEYSTONE</td>
<td>575-8</td>
</tr>
<tr>
<td>7</td>
<td>EN, Vadj, +5V, GND2, PWM2, LED+, LED-</td>
<td>turret</td>
<td>KEYSTONE</td>
<td>1502-2</td>
</tr>
</tbody>
</table>

Copyright © 2009–2013, Texas Instruments Incorporated
PCB Layout

The two inner planes are GND and V_{IN}.

Figure 2. Top Layer

Figure 3. Bottom Layer
6 Design Procedure

6.1 Specifications

- $V_{\text{IN}} = 48V$; $V_{\text{IN-MAX}} = 75V$
- $V_O = 42V$
- $f_{SW} = 400kHz$
- $I_{LED} = 1.5A$
- $\Delta i_{LED-PP} = \Delta i_{L-PP} = 300mA$
- $\Delta v_{IN-PP} = 1.44V$
- $V_{\text{TURN-ON}} = 10V$; $V_{\text{HYS}} = 1.1V$
- $\eta = 0.97$

6.2 Nominal Switching Frequency

Assume $C7 = 470pF$ and $\eta = 0.97$. Solve for $R6$:

$$R6 = \frac{-\left(1 - \frac{V_O}{\eta \times V_{IN}}\right)}{(C7 + 20 \text{ pF}) \times f_{SW} \times \ln\left(1 - \frac{1.24V}{V_O}\right)}$$

$$R6 = \frac{-\left(1 - \frac{42V}{0.97 \times 48V}\right)}{490 \text{ pF} \times 400 \text{ kHz} \times \ln\left(1 - \frac{1.24V}{42V}\right)} = 16.7k\Omega$$

(1)

The closest 1% tolerance resistor is 16.5 kΩ therefore the actual t_{OFF} and target f_{SW} are:

$$t_{OFF} = -(C7 + 20pF) \times R6 \times \ln\left(1 - \frac{1.24V}{V_O}\right)$$

$$t_{OFF} = -490 \text{ pF} \times 16.5k\Omega \times \ln\left(1 - \frac{1.24V}{42V}\right) = 242 \text{ ns}$$

(2)

$$\frac{1}{t_{OFF}} = \frac{1}{f_{SW}} = \frac{-\left(1 - \frac{42V}{0.97 \times 48V}\right)}{242 \text{ ns}} = 404 \text{ kHz}$$

(3)

The chosen components from step 1 are:

- $C7 = 470pF$
- $R6 = 16.5 \text{ k}\Omega$

(4)
6.3 **Inductor Ripple Current**

Solve for \(L_1 \):

\[
L_1 = \frac{V_D \times t_{OFF}}{\Delta I_{PP}} = \frac{42V \times 242\text{ ns}}{300\text{ mA}} = 33.9 \mu\text{H}
\] \(\quad \) (5)

The closest standard inductor value is 33 \(\mu \text{H} \) therefore the actual \(\Delta I_{PP} \) is:

\[
\Delta I_{PP} = \frac{V_D \times t_{OFF}}{L_1} = \frac{42V \times 242\text{ ns}}{33 \mu\text{H}} = 308 \text{ mA}
\] \(\quad \) (6)

The chosen component from step 2 is:

\[
L_1 = 33 \mu\text{H}
\] \(\quad \) (7)

6.4 **Average LED Current**

Determine \(I_{\text{MAX}} \):

\[
I_{\text{MAX}} = I_{\text{LED}} + \frac{\Delta I_{PP}}{2} = 1.5A + \frac{308 \text{ mA}}{2} = 1.65A
\] \(\quad \) (8)

Assume \(V_{\text{ADJ}} = 1.24V \) and solve for \(R_9 \):

\[
R_9 = \frac{V_{\text{ADJ}}}{5 \times I_{\text{MAX}}} = \frac{1.24V}{5 \times 1.65A} = 0.15 \Omega
\] \(\quad \) (9)

The closest 1\% tolerance resistor is 0.15 \(\Omega \) therefore the \(I_{\text{LED}} \) is:

\[
I_{\text{LED}} = \frac{V_{\text{ADJ}}}{5 \times R_9} - \frac{\Delta I_{PP}}{2} = \frac{1.24V}{5 \times 0.15 \Omega} = 1.5A
\] \(\quad \) (10)

The chosen component from step 3 is:

\[
R_9 = 0.15 \Omega
\] \(\quad \) (11)

6.5 **Output Capacitance**

No output capacitance is necessary.

6.6 **Input Capacitance**

Determine \(t_{\text{ON}} \):

\[
t_{\text{ON}} = \frac{t_{\text{SW}}}{5} \cdot t_{\text{OFF}} = \frac{1}{404 \text{ kHz}} \cdot 242 \text{ ns} = 2.23 \mu\text{s}
\] \(\quad \) (12)

Solve for \(C_{\text{IN-MIN}} \):

\[
C_{\text{IN-MIN}} = \frac{I_{\text{LED}} \times t_{\text{ON}}}{\Delta I_{\text{IN-PF}}} = \frac{1.5A \times 2.23\mu\text{s}}{1.44V} = 2.32\mu\text{F}
\] \(\quad \) (13)

Choose \(C_{\text{IN}} \):

\[
C_{\text{IN}} = C_{\text{IN-MIN}} \times 1.75 = 4.07\mu\text{F}
\] \(\quad \) (14)

Determine \(I_{\text{IN-RMS}} \):

\[
I_{\text{IN-RMS}} = I_{\text{LED}} \times t_{\text{SW}} \times \sqrt{t_{\text{ON}} \times t_{\text{OFF}}}
\]

\[
I_{\text{IN-RMS}} = 1.5A \times 404 \text{ kHz} \times \sqrt{2.32\mu\text{s} \times 242 \text{ ns}} = 446 \text{ mA}
\] \(\quad \) (15)

The chosen components from step 5 are:

\[
C_1 = C_2 = 2.2 \mu\text{F}
\]

\[
C_3 = 0.1 \mu\text{F}
\] \(\quad \) (16) \(\quad \) (17)
6.7 P-Channel MOSFET

Determine minimum Q1 voltage rating and current rating:

\[V_{T,\text{MAX}} = V_{IN,\text{MAX}} = 75\text{V} \] \hspace{1cm} (18)

\[I_T = D x I_{LED} = \frac{V_D x (1.5\text{A})}{V_{IN x R}} = 1.35\text{A} \] \hspace{1cm} (19)

A 100V 3.8A PFET is chosen with \(R_{DS-ON} = 190\text{m}\Omega \) and \(Q_g = 20\text{nC} \). Determine \(I_{T,RMS} \) and \(P_T \):

\[I_{T,RMS} = I_{LED} \sqrt{D x \left(1 + \frac{1}{12} \left(\frac{\Delta I_{LED}}{I_{LED}}\right)^2\right)} \]

\[I_{T,RMS} = 1.5\text{A} \times \sqrt{1 + \frac{1}{12} \left(\frac{42\text{V}}{48\text{V} x 0.97}\right)^2} \]

\[I_{T,RMS} = 1.43\text{A} \] \hspace{1cm} (20)

\[R_T = I_{T,RMS}^2 x R_{DS-ON} = 1.43\text{A}^2 x 190\text{m}\Omega = 387\text{mW} \] \hspace{1cm} (21)

The chosen component from step 6 is:

\[Q1 \rightarrow 3.8\text{A,100V,DPAK} \] \hspace{1cm} (22)

6.8 Recirculating Diode

Determine minimum D1 voltage rating and current rating:

\[V_{D,\text{MAX}} = V_{IN,\text{MAX}} = 75\text{V} \] \hspace{1cm} (23)

\[I_D = (1-D) x I_{LED} = \left(1 - \frac{D}{V_{IN}}\right) x I_{LED} \]

\[I_D = \left(1 - \frac{42\text{V}}{48\text{V} x 0.97}\right) x 1.5\text{A} = 147\text{mA} \] \hspace{1cm} (24)

A 100V 3A diode is chosen with \(V_D = 750\text{mV} \). Determine \(P_D \):

\[R_D = I_D x V_D = 147\text{mA} x 750\text{mV} = 110\text{mW} \] \hspace{1cm} (25)

The chosen component from step 7 is:

\[D1 \rightarrow 3\text{A,100V,SMC} \] \hspace{1cm} (26)

6.9 Input Under-Voltage Lockout (UVLO)

Solve for R8:

\[R8 = \frac{V_{HYS}}{22\text{\mu A}} = \frac{1.1\text{V}}{22\text{\mu A}} = 50\text{k}\Omega \] \hspace{1cm} (27)

The closest 1% tolerance resistor is 49.9 k\Ω so \(V_{HYS} \) is:

\[V_{HYS} = R8 x 22\text{\mu A} = 49.9\text{k}\Omega x 22\text{\mu A} = 1.1\text{V} \] \hspace{1cm} (28)

Solve for R7:

\[R7 = \frac{1.24\text{V} x R8}{V_{TURN-ON} - 1.24\text{V}} = \frac{1.24\text{V} x 49.9\text{k}\Omega}{10\text{V}-1.24\text{V}} = 7.06\text{k}\Omega \] \hspace{1cm} (29)

The closest 1% tolerance resistor is 6.98 k\Ω so \(V_{TURN-ON} \) is:

\[V_{TURN-ON} = 1.24\text{V} x \left(\frac{R7 + R8}{R7}\right) \]

\[V_{TURN-ON} = 1.24\text{V} x \left(\frac{6.98\text{k}\Omega + 49.9\text{k}\Omega}{6.98\text{k}\Omega}\right) = 10.1\text{V} \] \hspace{1cm} (30)
The chosen components from step 8 are:

\[
\begin{align*}
R_7 &= 6.98 \, k\Omega \\
R_8 &= 49.9 \, k\Omega
\end{align*}
\]

(31)

6.10 IADJ Connection Method

The IADJ pin controls the high-side current sense threshold in three ways outlined in the datasheet. The LM3409HV evaluation board allows for all three methods to be evaluated using C6, R10, and the VADJ terminal.

Method #1: If the VADJ terminal is not connected to the power supply, then the internal Zener diode biases the pin to 1.24V and the current sense threshold is nominally 248mV.

Method #2: Applying an external voltage to the VADJ terminal between 0 and 1.24V linearly scales the current sense threshold between 0 and 248mV nominally. It can be necessary to have an RC filter when using an external power supply in order to remove any high frequency noise or oscillations created by the power supply and the connecting cables. The filter is chosen by assuming a standard value of \(C_6 = 0.1 \, \mu F \) and solving for a cut-off frequency \(f_c \) < 2kHz:

\[
R_{10} > \frac{1}{2\pi x f_c x C_6} = \frac{1}{2\pi x 2 \, kHz x 0.1 \, \mu F} = 796 \, \Omega
\]

(32)

Since an exact \(f_c \) is not critical, a standard value of 1k\(\Omega \) is used. Section 8 shows a typical LED current waveform when analog dimming using an external voltage source.

Method #3: (This method requires modification of the received evaluation board). The internal 5\(\mu A \) current source can be used to bias the voltage across an external resistor to ground (\(R_{EXT} \)) across C6 on the evaluation board. The resistor is sized knowing the desired average LED current \(I_{LED} \) (must be < 1.5A which is default using method #1):

\[
R_{EXT} = \frac{\left(I_{LED} + \frac{\Delta I_{PP}}{2} \right) \times R_9}{1 \, \mu A} = \frac{\left(I_{LED} + \frac{308 \, mA}{2} \right) \times 150 \, m\Omega}{1 \, \mu A}
\]

(33)
The chosen components from step 9 are:

\[
\begin{align*}
C_6 &= 0.1 \mu F \\
R_{10} &= 1k\Omega
\end{align*}
\]

(34)

6.11 PWM Dimming Method

The LM3409HV evaluation board allows for PWM dimming to be evaluated as follows:

1: No PWM, \(EN = V_{IN} \)
2: External PWM, \(EN \) coupled
3: Internal PWM, using \(EN \)

Method #1: If no PWM dimming is desired, a jumper should be placed in position 1 (shorts pins 1 and 2) on header J1. This shorts VIN and EN which ensures the controller is always enabled if an input voltage greater than 1.74V is applied.

Method #2: External parallel FET shunt dimming can be evaluated by placing the jumper in position 2 (shorts pins 2 and 3) on header J1. This connects the capacitive coupling circuit to the EN pin as suggested in the datasheet. The resistor (R4) can be solved for assuming a standard capacitor value \(C_9 = 2.2 \text{nF} \) and a desired time constant \(t_C = 220 \text{ns} < t_{\text{OFF}} \) as follows:

\[
R_4 = \frac{t_C}{C_9} = \frac{220 \text{ns}}{2.2 \text{nF}} = 100 \Omega
\]

(35)

The external shunt FET dimming circuit shown below is designed using an N-channel MosFET (Q3), a CMOS FET (Q2), two gate current limiting resistors (R1 and R2), a pull-up resistor (R3), and a bypass capacitor (C5). With an external 5V power supply attached to the 5V terminal and an external PWM signal attached to the PWM2 terminal, the shunt dimming circuit is complete. Q3 is the shunt dimFET which conducts the LED current when turned on and blocks the LED voltage when turned off. Q3 needs to be fast and rated for \(V_{O} \) and \(I_{LED} \). For design flexibility, a fast 100V, 7.5A NFET is chosen. Q2 is necessary to invert the PWM signal so it properly translates the duty cycle to the shunt dimming FET. Q2 also needs to be fast and rated for 5V and fairly small current, therefore a 30V, 2A fast CMOS FET was chosen. R1 and R2 are 1\(\Omega \) resistors to slow down the rising edge of the FETs slightly to prevent the gate from ringing. R3 is a 10k\(\Omega \) pull-up resistor to ensure the CMOS gate is pulled all the way to 5V if a sub-5V PWM signal is applied to PWM2. The bypass capacitor (C5) for the 5V power supply is chosen to be 0.1 \(\mu \text{F} \). See Section 7 for an improvement that can be made to this circuit.

Method #3: Internal PWM dimming using the EN pin can be evaluated by removing the jumper from header J1. An external PWM signal can then be applied to the EN terminal to provide PWM dimming.

Section 8 shows typical LED current waveforms during both types of PWM dimming.

The chosen components from step 10 are:

\[
\begin{align*}
C_6 &= 0.1 \mu F \\
C_9 &= 2.2 \text{nF} \\
R_1 &= R_2 = 1\Omega \\
R_3 &= 10 \text{k}\Omega \\
R_4 &= 100\Omega \\
Q_2 &\rightarrow 30V, 20A, SOT - 6, \text{CMOS} \\
Q_3 &\rightarrow 100V, 7.5A, \text{SOIC - 8, NMOS}
\end{align*}
\]

(36)

6.12 Bypass Capacitor

The internal regulator requires at least 1\(\mu \text{F} \) of ceramic capacitance with a voltage rating of 16V.

The chosen component from step 11 is:
7 Shunt FET Circuit Modification

When the shunt FET (Q3) is on, the LM3409 is driving current into a short, therefore a maximum off-time (typical 300 µs) occurs followed by a minimum on-time. Maximum off-time followed by minimum on-time continues until Q3 is turned off. At low dimming frequencies and depending on the duty cycle, the inductor current may be at a very low level when the Q3 turns off. This will eliminate the benefits of using the shunt FET over the EN pin because the inductor will have to slew the current back to the nominal value anyways.

A simple modification to the external parallel FET dimming circuit will keep the inductor current close to its nominal value when Q3 is turned off. This modification will ensure that the rise time of the LED current is only limited by the turn-off time of the shunt FET as desired. The following circuit additions allow for two different off-times to occur. When Q3 is off, the standard off-timer referenced from V\textsubscript{O} is set. However when the Q3 is on, a second off-timer referenced to the gate signal of the Q3 is enabled and a controlled (non-maximum) off-time is set.

This modification includes 2 extra diodes (i.e. BAT54H) and one resistor (R\textsubscript{OFF2}) and is only relevant when shunt FET PWM dimming below 10 kHz or so. In general, this second off-timer should be set to allow the inductor current to fall no more than 10% of its nominal value. A simple approximation can be used to find R\textsubscript{OFF2}:

\[
R_{\text{OFF2}} < \frac{0.1 \times L \times I_{\text{LED}}}{C \times V_{\text{O}}}
\]
Figure 5. Multiple off-timers for shunt FET dimming circuit
8 Typical Waveforms

\[T_A = +25 \degree C, \ V_{\text{IN}} = 48V \text{ and } V_O = 42V. \]

Figure 6. 20kHz 50% EN pin PWM dimming

Figure 7. 20kHz 50% EN pin PWM dimming (rising edge)

Figure 8. 100kHz 50% External FET PWM dimming

Figure 9. 100kHz 50% External FET PWM dimming (rising edge)
9 Alternate Designs

Alternate designs with the LM3409HV evaluation board are possible with very few changes to the existing hardware. The evaluation board FETs and diodes are already rated higher than necessary for design flexibility. The input UVLO can remain the same and the input capacitance is sufficient for most designs, though the input voltage ripple will change. Other designs can evaluated by changing R6, R9, L1, and C8.

The table below gives the main specifications for five different designs and the corresponding values for R6, R9, L1 and C8. The RMS current rating of L1 should be at least 50% higher than the specified I_{LED}.

Designs 3 and 5 are optimized for best analog dimming range, while designs 1, 2, and 4 are optimized for best PWM dimming range. These are just examples, however any combination of specifications can be achieved by following the Design Procedure in the LM3409/3409HV/3409Q/3409QHV PFET Buck Controller for High Power LED Drivers (SNVS602 data sheet).

<table>
<thead>
<tr>
<th>Specification / Component</th>
<th>Design 1</th>
<th>Design 2</th>
<th>Design 3</th>
<th>Design 4</th>
<th>Design 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimming Method</td>
<td>PWM</td>
<td>PWM</td>
<td>Analog</td>
<td>PWM</td>
<td>Analog</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>24V</td>
<td>36V</td>
<td>48V</td>
<td>65V</td>
<td>75V</td>
</tr>
<tr>
<td>V_{O}</td>
<td>14V</td>
<td>24V</td>
<td>35V</td>
<td>56V</td>
<td>42V</td>
</tr>
<tr>
<td>f_{SW}</td>
<td>500 kHz</td>
<td>450 kHz</td>
<td>300 kHz</td>
<td>350 kHz</td>
<td>300 kHz</td>
</tr>
<tr>
<td>I_{LED}</td>
<td>1A</td>
<td>700 mA</td>
<td>2A</td>
<td>3A</td>
<td>1.5A</td>
</tr>
<tr>
<td>ΔI_{LED}</td>
<td>450 mA</td>
<td>250 mA</td>
<td>70 mA</td>
<td>1A</td>
<td>80 mA</td>
</tr>
<tr>
<td>R6</td>
<td>15.4 kΩ</td>
<td>25.5 kΩ</td>
<td>46.4 kΩ</td>
<td>24.9 kΩ</td>
<td>95.3 kΩ</td>
</tr>
<tr>
<td>R9</td>
<td>0.2Ω</td>
<td>0.3Ω</td>
<td>0.12Ω</td>
<td>0.07Ω</td>
<td>0.15Ω</td>
</tr>
<tr>
<td>L1</td>
<td>22 μH</td>
<td>68 μH</td>
<td>150 μH</td>
<td>15 μH</td>
<td>330 μH</td>
</tr>
<tr>
<td>C8</td>
<td>None</td>
<td>None</td>
<td>2.2 μF</td>
<td>None</td>
<td>2.2 μF</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products
- **Audio**: www.ti.com/audio
- **Amplifiers**: amplifier.ti.com
- **Data Converters**: dataconverter.ti.com
- **DLP® Products**: www.dlp.com
- **DSP**: dsp.ti.com
- **Clocks and Timers**: www.ti.com/clocks
- **Interface**: interface.ti.com
- **Logic**: logic.ti.com
- **Power Mgmt**: power.ti.com
- **Microcontrollers**: microcontroller.ti.com
- **RFID**: www.ti-rfid.com
- **OMAP Applications Processors**: www.ti.com/omap
- **Wireless Connectivity**: www.ti.com/wirelessconnectivity

Applications
- **Audio and Video**: www.ti.com/audio
- **Automotive and Transportation**: www.ti.com/automotive
- **Communications and Telecom**: www.ti.com/communications
- **Computers and Peripherals**: www.ti.com/computers
- **Consumer Electronics**: www.ti.com/consumer-electronics
- **Energy and Lighting**: www.ti.com/energy
- **Industrial**: www.ti.com/industrial
- **Medical**: www.ti.com/medical
- **Space, Avionics and Defense**: www.ti.com/space-avionics-defense
- **Video and Imaging**: www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated