

LM5170-Q1 EVM User Guide

The LM5170EVM-BIDIR Evaluation Module (EVM) is designed to showcase the LM5170-Q1 high performance dual-channel bidirectional controller suitable for, but not limited to, the automotive 48-V to 12-V dual battery system applications.

The EVM can be configured to achieve a bidirectional power converter in the form of either the current source or voltage source. The direction of power flow can be controlled either by an external command signal or by the on-board jumper. Through the onboard interface headers, the EVM can be operated by a DSP, an FPGA, an MCU, or other digital controllers. Two EVMs can be paralleled to make a 3 or 4 phases interleaved converter for higher power. More EVMs can be paralleled for greater number of phases. Many convenient jumper headers are also included for versatile configurations of the EVM.

Refer to the *LM5170-Q1 Multiphase Bidirectional Current Controller Datasheet* (SNVSAQ6) for detailed technical information of the LM5170-Q1 device.

Contents

1	Features and Electrical Performance	3
2	Setup	4
3	Test Procedure	12
4	Test Data	14
5	Design Files	19

List of Figures

1	Simplified EVM Schematic	5
2	EVM Board Top View and Layout Partitions	. <mark>6</mark>
3	Bidirectional Converter Bench Setup	11
4	Buck Mode Efficiency vs Input Voltage and Load Current: V _{OUT} = 14.5 V	14
5	Boost Mode Efficiency vs Input Voltage and Load Current: $V_{OUT} = 50.5 V$	14
6	Channel DC Current Regulation vs ISETA: Buck Mode	14
7	Channel DC Current Regulation vs ISETA: Boost Mode	14
8	ISETD to ISETA Conversion	14
9	Current Sharing Between Two Channels	14
10	EVM Enable Power-Up Sequence	15
11	EVM Shutdown by nFAULT	15
12	Buck Mode Enable	15
13	Boost Mode Enable	15
14	Dual-Channel Interleaving Operation in Buck Mode: 20 A Per Channel	15
15	Dual-Channel Interleaving Operation in Boost Mode: 20 A Per Channel	15
16	Inductor Current Tracking: Buck Mode	16
17	Inductor Current Tracking: Boost Mode	16
18	Diode Emulation During Start-Up	16
19	Diode Emulation During Shutdown	16
20	Diode Emulation in DCM	16
21	Response to Dynamic DIR Change	17
22	Step Load Response: Buck Mode; 20-A to 50-A Load Step 1A/µs	17
23	Step Load Response: Boost Mode, 5-A to 10-A Load Step 1A/µs	17

1

24	OVP in Buck Mode	17
25	OVP in Boost Mode	17
26	Output Short Circuit: Buck Mode	18
27	EVM Schematic Part 1: Power Circuit	19
28	EVM Schematic Part 2: Control Circuit	20
29	EVM Schematic Part 3: Bias Supplies	21
30	EVM Schematic Part 4: Optional Outer Voltage Loop Control Circuit	22
31	EVM Schematic Part 5: Interface Connectors and Configuration Headers	23
32	EVM Top Layer Silkscreen	27
33	EVM Top Layer Copper	28
34	EVM Middle Layer 1	29
35	EVM Middle Layer 2	30
36	EVM Middle Layer 3	31
37	EVM Middle Layer 4	32
38	EVM Middle Layer 5	33
39	EVM Middle Layer 6	34
40	EVM Bottom Layer Copper	35
41	EVM Bottom Layer Silkscreen	36

List of Tables

1	Electrical Performance	4
2	Three-Pin Header Settings	7
3	Two-Pin Header Settings	8
4	J17 60-Pin Header Description	9
5	J18 60-Pin Header Description	10
6	Bill of Materials	24

Trademarks

1 Features and Electrical Performance

The EVM supports the following features and performance capabilities:

- Input Operating Voltage Ranges
 - The 48VDC-Port 6 V to 75 V, in the Buck Mode
 - The 12VDC-Port 3 V to 48 V, in the Boost Mode
- Output Voltage Regulation (With the Onboard Outer Voltage Loop Control Activated)
 - 14.5-V Output Voltage at the 12VDC-Port, in the Buck Mode
 - 50.5-V Output Voltage at the 48VDC-Port, in the Boost Mode
- Operating Current
 - 60-Adc Maximum from or into the 12VDC-Port
 - Typical 1% Current Regulation Accuracy
 - Typical 1% Current Monitor Accuracy
- Switching Frequency:
 - Standalone Fsw = 100 kHz
 - Able to Synchronize to an External Clock from 80 kHz to 120 kHz.
- Maximum Efficiency: >97%
- OVP Threshold
 - 75 V at the 48VDC-Port
 - 22 V at the 12VDC-Port
 - Synchronous Rectifier Diode Emulation Function Preventing Negative Current
- Other Convenient Features
 - Optional Onboard Wide-VIN™ LM5118-Q1 Buck-Boost Converter as the +10-V Supply
 - Onboard Ultra Low IQ TPS709-Q1 LDOs for +3.3-V and +5.0-V Bias Voltages for Convenient EVM Configurations and for Biasing the External MCU through Headers.
 - Onboard LM26LV Temperature Sensors Monitoring Local Temperatures of Power MOSFETs, With Optional Overtemperature Shutdown and LED Indicator.
 - LED indicators of Buck and Boost Operating Modes.
 - Optional Channel Current Shunt AC Filters for Accurate DVM Reading (Unpopulated).

The electrical performance of the EVM is show in Table 1. Figure 1 shows the simplified EVM schematic.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS	5			I	
48VDC-Port	Buck mode operation (DIR > 2 V)	6	48	70	V
12VDC-Port	Boost mode operation (DIR < 1 V)	3	12	48	V
OUTPUT CHARACTERISTI	CS				
Current delivery	12VDC-Port input or output current (dual-channel enabled)	0		60	А
Current regulation accuracy	12VDC-Port current vs ISETA command voltage		1%		
Channel current monitor accuracy	When onboard IOUT1 and IOUT2 termination filter activated		1%		
48VDC-Port	Boost mode operation (DIR < 1 V, onboard analog output voltage loop closed) 50.5				V
12VDC-Port Buck mode operation (DIR > 2 V, onboard analog output voltage loop closed)			14.5		V
SYSTEM CHARACTERISTI	CS				
Switching frequency			100		kHz
External clock synchronization		80		120	kHz
Full load efficiency			97%		
Junction temperature, T		-40		150	°C

Table 1. Electrical Performance

2 Setup

Setup

2.1 EVM Configurations

Figure 2 shows the EVM board top view and circuit layout partitions. The EVM has the following ports:

- 48VDC-Port: Connected to 48-V battery rail
- 12VDC-Port: Connected to 12-V battery rail
- J17 (60-Pin Header): Interfacing the external control commands or MCU
- J18 (60-Pin Header): Interfacing the slave EVM's J17 in a 4-phase system consisting of two EVMs
- Master Enable Using J17-pin 5: Providing a voltage of 2.5 V to 6 V to operate the EVM.
- Channel Current Setting: Analog programming at J17-pin 11, and digital programming at J17-pin 13.

 Table 2 through Table 5 list the functions of the EVM jumpers and headers. They offer flexible

 configurability and programmability of the EVM for various use cases including but not limited to the

 following:

- A unidirectional or bidirectional current source
- A unidirectional or bidirectional voltage source
- · Dynamic phase adding and shedding in a 4-phase system consisting of two EVMs
- Dynamic MOSFETs dead time adjustment
- Individual channel current monitoring or total current monitoring
- Programmable undervoltage lockout (unpopulated)
- Synchronization to external clock
- External shutdown command through nFAULT pin (J17-pin45)

4

Figure 1. Simplified EVM Schematic

5

Figure 2. EVM Board Top View and Layout Partitions

Table 2. Three-Pin Header Settings

HEADER	SIGNAL	PINS	FUNCTION DESCRIPTION	DEFAULT
		(1)	No UVLO Programming	Y
J1	_	(1,2) ⁽²⁾	48VDC-Port UVLO Control	
		(2,3) ⁽³⁾	12VDC-Port UVLO Control	
			External interleaving control through J17	
J5	OPT	(1,2)	CH-2 240 degree delay from CH-1	
		(2,3)	CH-2 180 degree delay from CH-1	Y
			Onboard Overtemperature protection disabled	Y
J7	OTEMP	(1,2)	Overtemperature protection in hiccup mode	
		(2,3)	Overtemperature protection in latched shutdown	
			Slave EVM not sync to master EVM	Y
J13	SYNC	(1,2)	Slave EVM sync to master via J18	
		(2,3)	Slave EVM sync to external Clock	
			Use external 10V supply	
J21	BIAS	(1,2)	Onboard +10V produced from the 12VDC-Port	
		(2,3)	Onboard +10V produced from the 48VDC-Port	Y
			External DIR control through J17	
J28	DIR	(1,2)	Onboard DIR command for buck operation	Y
		(2,3)	Onboard DIR command for boost operation	
			External CH-1 enable control through J17	
J29	9 EN1	(1,2)	Onboard CH-1 enable	Y
		(2,3)	Onboard CH-1 disable	
			External CH-1 enable control through J17, overridden by J25.	Y
J30	EN2	(1,2)	Onboard CH-2 enable	
		(2,3)	Onboard CH-2 disable	
			External EVM enable through J17	Y
J31	UVLO	(1,2)	Onboard EVM enable, if external 3.3V is supplied to J17- pin23.	
		(2,3)	EVM disable	

(1) -= All jumper pins open.

(2) (1,2) = Pins 1 and 2 closed.

⁽³⁾ (2,3) = Pins 2 and 3 closed.

DEFAULT

Υ Υ

Υ

Υ

Υ Υ

Υ

Υ

Υ

Υ

Y

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

Υ

	Table 3. Two-Pin Header Settings						
Γ	HEADER	SIGNAL	PINS	FUNCTION DESCRIPTION			
	10	101174	O ⁽¹⁾	External IOUT1 termination			
	J2	10011	C ⁽²⁾	Onboard IOUT1 termination			
	10	SYNCOUT	0	Enable the fault detection			
	J3	STNCOUT	С	Disable the fault detection disabled			
	14	VCC	0	An external 10-V supply as VCC supply			
	J4	VCC	С	The onboard 10-V regulator as VCC supply			
Ī	IC		0	ISETD input disabled			
	Jo	ISETD	С	ISETD input is enabled			
	10		0	External IOUT2 signal termination			
	Jo	10012	С	Onboard IOUT2 signal termination			
	14.4	2.2.1/	0	Onboard 3.3-V bias voltage disconnected from the slave EVM			
	J14	3.3 V	С	Onboard 3.3-V bias voltage feeding the slave EVM			
	14.5	E \/	0	Onboard 5-V bias voltage disconnected from the slave EVM			
	J15	5 V	С	Onboard 5-V bias voltage feeding the slave EVM			
			0	Independent channel monitor			
	J16	IOUT_AII	С	Combined total monitor in master/slave configuration. Requiring J25 to be closed too.			
	14.0	10.1/	0	10-V bias voltage disconnected from the slave EVM			
	219	10 V	С	10-V bias voltage feeding the slave EVM			
	100	~ F 4111 T	0	Independent master/slave nFAULT signal			
	J20	NFAULT	С	Combined master/slave nFAULT signal			
Γ	122	EN	0	Independent enable control of the master and slave EVMs			
	JZZ	EIN	С	Combined enable control of the master and slave EVMs			
Γ	123	CH1S	0	Independent slave EVM CH-1 enable			
	J20	0115	С	Combined master/slave channel enable			
ſ	124		0	Independent channel current monitors			
	047	10011-2					

С

0

С

0

С

0

С

0

С

0

0

С

0

С

0

С

0

С

EN1-2

DTS

DT

OPT/ EN2_slave

ILIM

48VDC Sense

12VDC Sense

ISETA

5 V

Combined dual-channel current monitor

Independent DT adjustment input for the slave EVM

External programmable DT adjustment input

Boost analog outer voltage loop control disabled

Boost analog outer voltage loop control enabled

Buck analog outer voltage loop control disabled

Buck analog outer voltage loop control enabled

Analog outer voltage loop control disabled

Analog outer voltage loop control enabled

Analog outer voltage loop control disabled

Analog outer voltage loop control enabled

Combined DT adjustment for both the master and slave EVMs

Independent channel enable

Onboard DT setting

Do not close

Combined dual-channel enable

3- and 4-phase transition disabled

3- and 4-phases transition enabled

External current limit control input

(1) Jumper pins open. (2)

J25

J26

J27

J32

J33

J34

J35

J36

J37

Jumper pins closed.

Table 4. J17 60-Pin Header Description⁽¹⁾

PIN	SIGNAL	I/O	DESCRIPTION	
1	V48SN	O ⁽²⁾	48V-port voltage sense during operation	
3	V12SN	0	12V-port voltage sense during operation	
5	EN (MASTER ENABLE)	l ⁽³⁾	Master EVM enable (connect to the UVLO pin of the IC)	
7	CH1	I	CH-1 control (connect to the EN1 pin of the IC)	
9	DIR	I	Direction command	
11	ISETA	I	Channel current setting (analog voltage)	
13	ISETD	I	Channel current setting (PWM signal)	
15	SYNCIN	I	Input of the external clock to be synchronized to	
17	SYNCOUT	0	Clock output signal	
19	OPT	I	Interleave angle setting	
21	CH2	I	CH-2 control (connect to the EN2 pin of the IC)	
23	+3.3 V	0	Output of onboard +3.3-V voltage	
25	+5 V	0	Output of onboard +5-V voltage	
27	IOUT1	0	CH-1 monitor	
29	IOUT2	0	CH-2 current monitor	
31	IOUT1_S	0	Slave EVM CH-1 monitor in 3 or 4 phases	
33	IOUT2_S	0	Slave EVM CH-2 current monitor in 3 or 4 phases	
35	AGND	I/O	Reference GND for control signals	
37	PGND	0	Power ground of the DC-DC converter	
39	DT	I	Dead time adjustment pin	
41	DT_S	I	Slave dead time adjustment pin	
43	+10 V	I/O	Input of +10-V bias supply, or output of onboard +10-V bias supply	
45	nFAULT	I/O	Fault report flag, or external shutdown command pin	
47	ENABLE_S	I	Slave EVM enable (connect to the UVLO pin of the slave IC)	
49	CH1_S	I	Slave EVM CH-1 control (connect to the EN1 pin of the slave IC)	
51	CH2_S	I	Slave EVM CH-2 control (connect to the EN2 pin of the slave IC)	
53	SYNCIN_S	I	Input of the external clock for the slave to be synchronized to	
55	SYNCOUT_S	0	Slave EVM clock output signal	
57	nFAULT_S	I/O	Slave EVM fault report flag, or external shut down command input pin	
59	KEY	—	No Connect	
All even number pins	AGND	I/O	All signals' return	

⁽¹⁾ J17 is the interface connector to MCU, or external digital controller, or to the master EVM's J18 if the host EVM serves as a slave in the multiphase configuration.

(2) I = input pin

 $^{(3)}$ O = output pin

Texas Instruments

www.ti.com

Setup

Table 5. J18 60-Pin Header Description⁽¹⁾

PIN	SIGNAL	I/O	DESCRIPTION	
1	V48_X	—	No Connect	
3	V12_X	—	No Connect	
5	ENABLE_S	(2)	Slave EVM enable (connect to the UVLO pin of the slave IC)	
7	CH1_S	I	Slave EVM CH-1 control (connect to the EN1 pin of the IC)	
9	DIR	I	Direction command	
11	ISETA	I	Channel current setting (analog voltage)	
13	ISETD	Ι	Channel current setting (PWM signal)	
15	SYNCIN_S	I	The external clock input for the slave	
17	SYNCOUT_S	O ⁽³⁾	Slave EVM clock output signal	
19	OPT	I	Interleave angle setting	
21	CH2_S	I	Slave EVM CH-2 control (connect to the EN1 pin of the IC)	
23	+3.3 V	Ι	Output of onboard +3.3-V voltage	
25	+5 V	Ι	Output of onboard +5-V voltage	
27	IOUT1_S	0	Slave EVM CH-1 monitor in 3 or 4 phases	
29	IOUT2_S	0	Slave EVM CH-2 current monitor in 3 or 4 phases	
31	IOUT1_X	_	Not used	
33	IOUT2_X	_	Not used	
35	AGND	I/O	Reference GND for control signals	
37	PGND	0	Power ground of the DC-DC converter	
39	DT_S	I	Slave EVM dead time adjustment pin	
41	DT_X	_	No Connect	
43	+10 V	I	Input of +10-V bias supply, or output of onboard +10-V bias supply	
45	nFAULT_X	I/O	Slave EVM fault report flag, or external shutdown command pin	
47	UVLO_X	_	No Connect	
49	CH1_X	_	No Connect	
51	CH2_X	_	No Connect	
53	SYNCIN_X	—	No Connect	
55	SYNCOUT_X		No Connect	
57	nFAULT_X		No Connect	
59	KEY		No Connect	
All even number pins	AGND	I/O	All signals' return	

⁽¹⁾ J18 is the interface connector to the slave EVM in the multiphase configuration if the host EVM serves as the master. All control commands and control signals are sent through J18 to the slave EVM's J17.

 $^{(2)}$ I = input pin

⁽³⁾ O = output pin

2.2 Bench Setup

Figure 3 shows the typical bench setup to operate the EVM in the bidirectional power system environment. The combination of the Electronic Load (E-Load) and bench Power Supply (PS) emulates a battery capable of both sourcing and sinking current. A relatively Higher Voltage Power Supply (HV-PS) and E-Load (HV-E-Load) should be used for the 48VDC-port, and a Lower Voltage Power Supply (LV-PS) and E-Load (LV-E-Load) for the 12VDC-port. The external control signals shown as dashed lines can also be created with the onboard headers.

Figure 3. Bidirectional Converter Bench Setup

To operate the EVM to full power, the initial setup should follow the guidelines below:

- Set the LV-E-Load to Constant Current (CC) of 62 A
- Set the LV-PS voltage at 12 V, and the current limit at 63 A
- Set the HV-E-Load to CC of 14 A
- Set the HV-PS voltage at 48 V, and the current limit at 15 A

Note that in Buck Mode operation, the HV-E-load can be turned off, and in Boost Mode operation, the LV-E-load can be turned off. If the output voltage loop is closed, the LV-PS can be disconnected in Buck Mode operation. In Boost Mode operation, the HV-PS is required for Boost start-up, which is limited by the onboard circuit breaker function. If the circuit breaker MOSFETS are shorted and J3 is closed, the HV-PS is not needed for Boost Mode operation.

2.3 Test Equipment

Power Supplies: HV-PS should be capable of 80V/20A, and LV-PS 40V/80A. To operate 2 EVMs in 4 phase configuration, the HV-PS and LV-PS capabilities should be doubled. Bench power supplies to generate UVLO, ISETA, DIR, and EN1 and EN2 signals should be capable of 5V/0.1A.

Electronic Loads: The HV-E-Load should be capable of 80V/20A, and LV-E-Load 40V/80A. To operate 2 EVMs in 4 phase configuration, the E-Loads' capabilities should be doubled.

Meters: Because most current meters are rated only to 10 A, shunts are recommended to measure the current using a DVM.

Oscilloscope: An oscilloscope and 10x probes with at least 20-MHz bandwidth is required. Current probe capable of 50 A is required to monitor the inductor current via a wire loop inserted to the non-switching side of the inductor.

3 Test Procedure

Please read the LM5170-Q1 datasheet (SNVSAQ6) and this user guide before using the EVM. A typical EVM test bench setup is shown in Figure 2. The power supplies and loads should be capable of handling the input and output voltage and current rating of the board.

The EVM operation requires the four external control signals, which are UVLO, DIR, EN1/2, and ISETA or ISETD (refer to Figure 3).

- UVLO: The master enable command. Apply a voltage > 2.5 V and < 6 V between J17-pins 5 and 6 to enable the EVM. Pulling the voltage at J17-pin 5 low will keep the EVM in shutdown mode.
- DIR: the current direction command. Apply a voltage > 2 V at J17-pin 9 or J18-pin 9 to operate the EVM in Buck Mode. Apply a voltage < 1 V at the same pin to operate the EVM in Boost Mode. DIR command can also be programmed using J28. Note that DIR must be either active high or low to operate the EVM. If the DIR signal is floating, the EVM will not run.
- EN1 and EN2: The channel switching enable commands. Apply a voltage > 2 V at J17-pin 7 will turn on CH-1 converter, and at J17-pin 21 will turn on CH-2 converter. Removing the voltage at the EN1 and EN2 pins to disable each channel. The channel enable can also be controlled by J29, J30 and J25.
- ISETA or ISETD: The Channel current regulation setting. Applying an analog voltage across J17-pins 11 and 12, or J18-pins 11 and 12, or a PWM signal across J17-pins 13 and 14, or J18-pins 13 and 14, the EVM will regulate the channel DC current, which is also the power inductor dc current, to a level proportional the ISETA voltage or ISETD PWM duty ratio. ISETA is controlled by the onboard analog outer voltage control loop when it is closed. Note that, ISETA=1.5 V, or ISETD PWM duty ratio of 48%, will command the EVM to produce 60 A into or out of the 12VDC-port, depending on the operation mode.

For initial test, TI recommends using the onboard 10-V bias supply by closing the J4 and J21-pins 2 and 3. The user can also apply an external 10-V bias supply between J17-Pins 43 and 44, but remember to open J4 and J21 in order to disable the onboard 10-V bias supply.

3.1 Buck Mode Power-Up and Power-Down Sequence

- 1. Refer to Table 2 through Table 5 for proper jumper settings
- 2. Turn on the HV-PS power supply.
- 3. Turn on the LV-PS power supply and LV-E-Load.
- 4. Apply a voltage > 2.5 V and < 6 V at J17-pin 5 (Master Enable).
- 5. Apply an analog voltage gradually rising from 0V to 1.5V at J17-pin 11 or J18-pin 11 (ISETA), or a PWM signal of duty ratio of 0 to 48% at J17-pin 13 or J18-pin 13.
- 6. Perform the test.
- 7. After the tests are done, turn off the ISETA or ISETD signal, remove the voltage at J17-pin 5, and turn off the E-Load, LV-PS and HV-PS.

3.2 Boost Mode Power-Up and Power-Down Sequence

- 1. Refer to Table 2 through Table 5 for proper jumper settings.
- 2. Turn on the HV-PS power supply and HV-E-Load.
- 3. Turn on the LV-PS power supply.
- 4. Apply a voltage > 2.5 V and < 6 V at J17-pin 5 (Master Enable).
- 5. Apply an analog voltage gradually rising from 0 V to 1.5 V at J17-pin 11 or J18-pin 11 (ISETA), or a PWM signal of duty ratio of 0 to 48% at J17-pin 13 or J18-pin 13.
- 6. Perform the test.
- 7. After the tests are done, turn off the ISETA or ISETD signal, remove the voltage at J17-pin 5, and turn off the E-Load, HV-PS and LV-PS.

3.3 Bidirectional Operation Power-Up and Power-Down Sequence

- 1. Refer to Table 2 through Table 5 for proper jumper settings.
- 2. Turn on the HV-PS power supply and HV-E-Load.
- 3. Turn on the HV-PS power supply and HV-E-Load.
- 4. Apply a voltage > 2.5 V and < 6 V at J17-pin 5 (Master Enable).
- 5. Apply the direction command (DIR) at J17-pin 9 or J18-pin 9.
- 6. Apply an analog voltage gradually rising from 0 V to 1.5 V at J17-pin 11 or J18-pin 11 (ISETA), or a PWM signal of duty ratio of 0 to 48% at J17-pin 13 or J18-pin 13.
- Dynamically flip the DIR signal state between 0 (DIR < 1 V) and 1 (DIR > 2 V), the EVM will operate in dynamic bidirectional transition mode.
- 8. Perform the test.
- 9. After the tests are done, turn off the ISETA or ISETD signal, turn off the DIR signal, remove the voltage at J17-pin 5, and turn off the E-Load, HV-PS and LV-PS.

3.4 Operating the EVM With the Onboard Analog Loop Control Circuit

- 1. J34 through J37 headers must be closed to activate the onboard analog voltage loop control circuit.
- 2. To operate the EVM as a regulated voltage source, follow the power up and power down sequence for buck mode or boost mode operation whichever is appropriate.
- 3. Note that with the circuit breaker MOSFETs employed by the EVM, HVPS should be applied for boost start-up. After the start-up, it can be turned off. Only after the circuit breaker MOSFETs are replaced with a direct short across the breaker will the EVM not require the HV-PS to assist boost start-up.

3.5 Operating the EVM With External MCU or Other Digital Circuit

- 1. Onboard analog voltage loop control circuit must be disconnected.
- 2. Use J17 header to interface the external MCU or other control circuit.
- 3. Follow the power-up and power-down sequence for buck mode or boost mode operation.

Signals required from an MCU or other digital control circuit include UVLO, EN1/EN2, DIR, ISETA or ISETD. Contact TI for info on operating the EVM with the MSP431 Launchpad or C2000 MCU.

Test Data

4 Test Data

4.1 Efficiency

4.2 Current Regulation and Monitoring

4.3 Typical Master Enable Power Up and Shutdown

4.4 Channel Enable and Disable

4.5 Dual-Channel Interleaving Operation

Test Data

4.6 ISETA Tracking

4.7 Diode Emulation Preventing Negative Currents

4.8 Dynamic DIR Change

Figure 21. Response to Dynamic DIR Change

4.9 Step Load Response

4.10 OVP

Test Data

4.11 Output Short Circuit

Figure 26. Output Short Circuit: Buck Mode

5 Design Files

5.1 Schematics

To download the Schematics for the EVM board, see the design files at www.ti.com/tool.

Figure 27. EVM Schematic Part 1: Power Circuit

Figure 30. EVM Schematic Part 4: Optional Outer Voltage Loop Control Circuit

Design Files

5.2 Bill of Materials

Table 6. Bill of Materials

COUNT	DESIGNATOR	DESCRIPTION	PART NUMBER	MANUFACTURER
5	C1, C3, C5, C16, C95	CAP, CERM, 1000 pF, 100 V, ±5%, C0G/NP0, 0603	C1608C0G2A102J080AA	ток
7	C2, C14, C17, C90, C92, C96, C97	CAP, CERM, 0.01 µF, 100 V, X7R, 0603	06031C103KAT2A	AVX
2	C4, C15	CAP, CERM, 0.015 μF, 25 V, X7R, 0603	GRM188R71E153KA01D	MuRata
5	C6, C34, C35, C36, C37	CAP, CERM, 1 µF, 100 VX7S, 0805	C2012X7S2A105K125AB	ток
2	C7, C12	CAP, CERM, 0.22 μF, 50 V, X7R, 0603	C1608X7R1H224K080AB	ток
12	C8, C9, C30, C41, C44, C76, C77, C78, C84, C91, C93, C94	CAP, CERM, 0.1 µF, 100 V, X7R, 0603	GRM188R72A104KA35D	MuRata
2	C10, C43	CAP, CERM, 2.2 µF, 16 V, X7R, 0805	C2012X7R1C225K125AB	ТDК
3	C11, C47, C48	CAP, CERM, 1 µF, 25 V, X7R, 0603	GRM188R71E105KA12D	MuRata
8	C13, C72, C73, C74, C75, C79, C82, C83	CAP, CERM, 100 pF, 50 V, ±5%, C0G/NP0, 0603	C0603C101J5GACTU	Kemet
2	C18, C32	CAP, AL, 100 µF, 100 V, SMD	EMVH101GDA101MLH0S	Chemi-Con
4	C20, C21, C54, C55	CAP, AL, 180 µF, 50 V, SMD	PCR1H181MCL1GS	Nichicon
18	C22, C23, C24, C25, C26, C27, C28, C29, C62, C63, C64, C65, C66, C67, C68, C69, C70, C71	CAP, CERM, 4.7 μF, 100 V, X7R, 2220	C5750X7R2A475M230KA	ток
1	C38	CAP, AL, 22 μF, 100 V, ±20%, SMD	EMVH101ADA220MJA0G	Chemi-Con
1	C39	CAP, CERM, 10 µF, 100 V, X7S,	C5750X7S2A106M230KB	TDK
1	C40	CAP, CERM, 0.1 μF, 100 V, X7R, 0805	C2012X7R2A104K125AA	ток
1	C40	CAP, CERM, 0.1 μF, 100 V, X7R, 0805	C2012X7R2A104K125AA	ток
1	C45	CAP, CERM, 330 pF, 100 V, ±5%, C0G/NP0, 0603	C1608C0G2A331J080AA	ток
1	C46	CAP, CERM, 0.056 μF, 50 V, X7R, 0603	GRM188R71H563KA93D	MuRata
1	C49	CAP, CERM, 1500 pF, 100 V, ±5%, C0G/NP0, 0603	GRM1885C2A152JA01D	MuRata
10	C50, C51, C52, C53, C56, C57, C58, C59, C60, C61	CAP, Aluminum Polymer, 39 μF, 80 V, AEC-Q200 Grade 1, D10xL10 mm SMD	HHXA800ARA390MJA0G	Chemi-Con
2	C80, C81	CAP, CERM, 0.47 μF, 16 V, X7R, 0603	GRM188R71C474KA88D	MuRata
1	C88	CAP, CERM, 4700 pF, 50 V, X7R, 0603	C0603C472K5RACTU	Kemet
1	C89	CAP, CERM, 2200 pF, 50 V, X7R, 0603	GRM188R71H222KA01D	MuRata
2	D1, D2	Diode, Schottky, 60 V, 1 A, SOD-123F	PMEG6010CEH,115	NXP Semiconductor
1	D3	Diode, TVS, Uni, 36 V, 3600 W, DO-218	SM5S36AHE3/2D	Vishay-Semiconductor
3	D4, D8, D9	Diode, Switching, 75 V, 0.25 A, SOD-323	1N4448WX-TP	Micro Commercial Components

COUNT	DESIGNATOR	DESCRIPTION	PART NUMBER	MANUFACTURER
1	D5	LED, Super Red, SMD	150060SS75000	Wurth Elektronik
1	D6	Diode, Schottky, 30 V, 5 A, SMC	B530C-13-F	Diodes Inc.
1	D7	Diode, Schottky, 100 V, 5 A, SMC	CDBC5100-G	Comchip Technology
1	D10	Diode, Switching, 75 V, 0.3 A, SOD-523	1N4148X-TP	Micro Commercial Components
1	D11	LED, Green, SMD	150060VS75000	Wurth Elektronik
1	D12	LED, Yellow, SMD	150060YS75000	Wurth Elektronik
4	H1, H2, H3, H4	Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	NY PMS 440 0025 PH	B&F Fastener Supply
4	H5, H6, H7, H8	Standoff, Hex, 1"L #4-40 Aluminum	2205	Keystone
9	J1, J5, J7, J13, J21, J28, J29, J30, J31	Header, 100mil, 3x1, Gold, TH	HTSW-103-07-G-S	Samtec
22	J2, J3, J4, J6, J8, J14, J15, J16, J19, J20, J22, J23, J24, J25, J26, J27, J32, J33, J34, J35, J36, J37	Header, 100mil, 2x1, Gold, TH	HTSW-102-07-G-S	Samtec
4	J9, J10, J11, J12	Standard Banana Jack, Uninsulated, 15 A	108-0740-001	Emerson Network Power
2	J17, J18	Header, 100 mil, 30x2, Gold, TH	HMTSW-130-07-G-D-240	Samtec
2	L1, L2	Inductor, 4.7 µH,	SMT 74436410470	Wurth
4	L3	Inductor, 47 μ H, 2.9 A, 0.07 Ω , SMD	MSS1278-473MLB	Coilcraft
I		Inductor, 47 μH, SMD (Substitue)	784770470	Wurth
8	Q1, Q2, Q3, Q4, Q10, Q11, Q12, Q13	MOSFET N CH 100 V D2PAK	TK65G10N1,RQ	Toshiba Semiconductor and Storage
4	Q5, Q6, Q8, Q9	MOSFET N CH 60 V 240 A D2PAK	IRFS7530-7PPBF	International Rectifier
4	Q7, Q16, Q17, Q18	MOSFET, N-CH, 60 V, 0.24 A, SOT-23	2N7002E-T1-E3	Vishay-Siliconix
2	Q14, Q15	MOSFET, N-CH, 100 V, 21 A, PowerPAK SO-8	SI7454DDP-T1-GE3	Vishay-Siliconix
2	R1, R5	RES, 95.3 k, 1%, 0.1 W, 0603	CRCW060395K3FKEA	Vishay-Dale
2	R2, R19	RES, 634, 1%, 0.1 W, 0603	CRCW0603634RFKEA	Vishay-Dale
2	R3, R20	RES, 9.09 k, 1%, 0.1 W, 0603	CRCW06039K09FKEA	Vishay-Dale
6	R7, R8, R9, R11, R16, R81	RES, 10.0 k, 1%, 0.1 W, 0603	CRCW060310K0FKEA	Vishay-Dale
4	R10, R90, R91, R92	RES, 4.99 k, 1%, 0.1 W, 0603	CRCW06034K99FKEA	Vishay-Dale
3	R12, R75, R79	RES, 49.9 k, 1%, 0.1 W, 0603	CRCW060349K9FKEA	Vishay-Dale
2	R13, R15	RES, 40.2 k, 1%, 0.1 W, 0603	CRCW060340K2FKEA	Vishay-Dale
1	R14	RES, 24.9, 1%, 0.125 W, 0805	CRCW080524R9FKEA	Vishay-Dale
1	R17	RES, 51.1 k, 1%, 0.1 W, 0603	CRCW060351K1FKEA	Vishay-Dale
1	R18	RES, 54.9 k, 1%, 0.1 W, 0603	CRCW060354K9FKEA	Vishay-Dale
2	R21, R32	RES, 0.001, 1%, 3 W, 6.6x3x6.9mm	WSL27261L000FEB	Vishay-Dale
8	R22, R24, R25, R29, R33, R35, R36, R40	RES, 49.9 k, 1%, 0.125 W, 0805	CRCW080549K9FKEA	Vishay-Dale
8	R26, R27, R28, R30, R37, R38, R39, R41	RES, 1.00, 1%, 0.125 W, 0805	CRCW08051R00FKEA	Vishay-Dale
1	R31	RES, 1.00 M, 1%, 0.125 W, 0805	CRCW08051M00FKEA	Vishay-Dale

Table 6. Bill of Materials (continued)

COUNT	DESIGNATOR	DESCRIPTION	PART NUMBER	MANUFACTURER
1	R42	RES, 3.24 k, 1%, 0.1 W, 0603	CRCW06033K24FKEA	Vishay-Dale
1	R46	RES, 18.2 k, 1%, 0.1 W, 0603	CRCW060318K2FKEA	Vishay-Dale
1	R47	RES, 0.068, 1%, 1 W, 0612	PRL1632-R068-F-T1	Susumu Co Ltd
1	R48	RES, 24.0 k, 1%, 0.1 W, 0603	RC0603FR-0724KL	Yageo America
1	R49	RES, 732, 1%, 0.1 W, 0603	CRCW0603732RFKEA	Vishay-Dale
1	R50	RES, 5.23 k, 1%, 0.1 W, 0603	CRCW06035K23FKEA	Vishay-Dale
1	R51	RES, 10.0, 1%, 0.1 W, 0603	CRCW060310R0FKEA	Vishay-Dale
1	R52	RES, 100 k, 1%, 0.063 W, 0402	CRCW0402100KFKED	Vishay-Dale
4	R53, R60, R83, R84	RES, 20.0 k, 1%, 0.1 W, 0603	CRCW060320K0FKEA	Vishay-Dale
2	R54, R55	RES, 2.0, 5%, 0.125 W, 0805	CRCW08052R00JNEA	Vishay-Dale
4	R56, R57, R58, R59	RES, 1.0, 5%, 0.1 W, 0603	CRCW06031R00JNEA	Vishay-Dale
14	R61, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, R74	RES, 0, 5%, 0.1 W, 0603	CRCW06030000Z0EA	Vishay-Dale
1	R76	RES, 26.7 k, 1%, 0.1 W, 0603	CRCW060326K7FKEA	Vishay-Dale
1	R77	RES, 2.10 k, 1%, 0.1 W, 0603	CRCW06032K10FKEA	Vishay-Dale
1	R78	RES, 4.42 k, 1%, 0.1 W, 0603	CRCW06034K42FKEA	Vishay-Dale
1	R80	RES, 24.9 k, 1%, 0.1 W, 0603	CRCW060324K9FKEA	Vishay-Dale
2	R85, R88	RES, 20.0, 1%, 0.1 W, 0603	CRCW060320R0FKEA	Vishay-Dale
1	R86	RES, 6.81 k, 1%, 0.1 W, 0603	CRCW06036K81FKEA	Vishay-Dale
4	T1, T2, T3, T4	Terminal 70-A Lug	CXS70-14-C	Panduit
1	U1	Dual Channel 48-V to 12-V Bidirectional Current Controller, PHP0048D	LM5170QPHPTQ1	Texas Instruments
1	U2	17MHz Rail-to-Rail Input and Output Op Amp, D0008A	LM6142AIM/NOPB	Texas Instruments
1	U3	150-mA, 30-V, 1-µA IQ LDO with Enable, DBV0005A (SOT-5)	TPS70950DBVR	Texas Instruments
1	U4	150-mA, 30-V, 1-µA IQ LDO with Enable, DBV0005A (SOT-5)	TPS70933DBVR	Texas Instruments
1	U5	Wide VIN Buck-Boost Controller, 20-pin TSSOP-EP, Pb-Free	LM5118MH/NOPB	Texas Instruments
4	U6, U7, U8, U9	Temperature Switch and Temperature Sensor, 6-pin LLP, Pb-Free	LM26LVCISD-145/NOPB	Texas Instruments
1	U10	Single Inverter Gate, DBV0005A	SN74LVC1G04QDBVRQ1	Texas Instruments
1	U11	Single NAND Gate CMOS Logic Level Shifter, DBV0005A	SN74LV1T00DBVR	Texas Instruments
1	U12	Single OR Gate CMOS Logic Level Shifter, DBV0005A	SN74LV1T32DBVR	Texas Instruments
1	U13	Precision Micropower Shunt Voltage Reference, 3-pin SOT- 23, Pb-Free	LM4040AIM3-2.0/NOPB	Texas Instruments

5.3 Board Layout

The EVM includes various headers for flexible configurations suitable for different applications. Figure 32 through Figure 41 show the EVM PCB artwork.

Figure 32. EVM Top Layer Silkscreen

Design Files

Figure 33. EVM Top Layer Copper

Figure 34. EVM Middle Layer 1

Figure 35. EVM Middle Layer 2

Figure 36. EVM Middle Layer 3

Figure 37. EVM Middle Layer 4

Figure 38. EVM Middle Layer 5

Figure 39. EVM Middle Layer 6

Figure 40. EVM Bottom Layer Copper

Design Files

Figure 41. EVM Bottom Layer Silkscreen

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (November 2016) to A Revision

Page

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated