With an input operating voltage as low as 3.5 V and up to 100 V as specified in Table 1, the LM5140/1/3/6-Q1 family of automotive synchronous buck controllers from TI provides flexibility, scalability, and optimized solution size for a range of applications. These controllers enable DC/DC solutions with high density, low EMI, and increased flexibility. All controllers are rated for a maximum operating junction temperature of 150°C and have AEC-Q100 grade 1 qualification.

Table 1. Automotive Synchronous Buck DC/DC Controller Family

<table>
<thead>
<tr>
<th>DC/DC CONTROLLER</th>
<th>SINGLE or DUAL</th>
<th>V_{IN} RANGE</th>
<th>CONTROL METHOD</th>
<th>GATE DRIVE VOLTAGE</th>
<th>SYNC OUTPUT</th>
<th>PROGRAMMABLE DITHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5140-Q1</td>
<td>Dual</td>
<td>3.8 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
<tr>
<td>LM5141-Q1</td>
<td>Single</td>
<td>3.8 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>LM25141-Q1</td>
<td>Single</td>
<td>3.8 V to 42 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>LM5143-Q1</td>
<td>Dual</td>
<td>3.5 V to 65 V</td>
<td>Peak current mode</td>
<td>5 V</td>
<td>90° phase shift</td>
<td>Yes</td>
</tr>
<tr>
<td>LM5146-Q1</td>
<td>Single</td>
<td>5.5 V to 100 V</td>
<td>Voltage mode</td>
<td>7.5 V</td>
<td>180° phase shift</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The LM5143-Q1EVM-2100 evaluation module (EVM) is a dual-channel synchronous buck DC/DC regulator that employs synchronous rectification to achieve high conversion efficiency in a small footprint. It operates over a wide input voltage range of 5.5 V to 36 V, providing regulated outputs of 5 V and 3.3 V. The output voltages have better than 1% setpoint accuracy and are adjustable by modifying the feedback resistor values, permitting the user to customize the output voltage from 2.5 V to 8 V as needed.

The module design uses the LM5143-Q1 synchronous buck controller with the following features:

- Wide input voltage (wide \(V_{IN} \)) range of 3.5 V to 65 V
- Wide duty cycle range with low \(t_{ON(min)} \) and \(t_{OFF(min)} \)
- Ultra-low shutdown and no-load standby quiescent currents
- Multi-phase capability
- Peak current-mode control loop architecture
- Integrated, high-current MOSFET gate drivers
- Cycle-by-cycle overcurrent protection with programmable hiccup
- Optional spread spectrum modulation for lower EMI
- Functional-safety capable

The free-running switching frequency of the EVM is 2.1 MHz and is synchronizable to a higher or lower frequency if required. Moreover, a synchronization output signal (SYNCOUT) 90° phase-shifted relative to the internal clock is available for master-slave configurations. VCC and gate drive UVLO protects the regulator at low input voltage conditions, and EN pins for each channel support application-specific power-up and power-down requirements.

The LM5143-Q1 is available in a 40-pin VQFNP package with 6-mm \(\times \) 6-mm footprint to enable DC/DC solutions with high density and low component count. See the LM5143-Q1 3.5-V to 65-V Dual Synchronous Buck DC/DC Controller data sheet for more information. Use the LM5143-Q1 with WEBENCH® Power Designer to create a custom regulator design. To optimize component selection and examine predicted efficiency performance across line and load ranges, download the LM5143-Q1 Quickstart Calculator.
25 CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, $V_{IN} = 13.5$ V, $I_{OUT1} = I_{OUT2} = 7$ A
Resistive, (a) 150 kHz to 30 MHz, (b) 30 MHz to 108 MHz .. 20
26 EVM Schematic .. 21
27 Top Copper (Top View) ... 24
28 Layer 2 Copper (Top View) ... 24
29 Layer 3 Copper (Top View) ... 25
30 Layer 4 Copper (Top View) ... 25
31 Layer 5 Copper (Top View) ... 26
32 Bottom Copper (Top View) ... 26
33 Top Component Drawing ... 27
34 Bottom Component Drawing ... 27

List of Tables

1 Automotive Synchronous Buck DC/DC Controller Family .. 1
2 Electrical Performance Characteristics ... 5
3 EVM Power Connections ... 8
4 EVM Signal Connections .. 9
5 Bill of Materials .. 22

Trademarks

WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
1 High Density EVM Description

The LM5143-Q1EVM-2100 high-density EVM is designed to use a regulated or non-regulated high-voltage input rail ranging from 5.5 V to 36 V to produce tightly-regulated output voltages of 5 V and 3.3 V at load currents up to 7 A. Alternatively, as shown in Figure 2, a two-phase, 15-A single-output regulator is configured by changing the MODE, SS1/2, and COMP1/2 switch configurations, and tying the outputs together. This wide V_{IN} range DC/DC solution offers outsized voltage rating and operating margin to withstand supply rail voltage transients.

The free-running switching frequency is 2.1 MHz and is synchronizable to an external clock signal at a higher or lower frequency. The power-train passive components selected for this EVM, including buck inductors and ceramic input and output capacitors, are automotive AEC-Q200 rated and are available from multiple component vendors.

1.1 Typical Applications

- High-current automotive electronic systems using 2-, 3-, and 4-phase implementations
- Dual outputs for ADAS and body electronics
- Infotainment systems and instrument clusters
- Automotive HEV/EV powertrain systems

1.2 Features and Electrical Performance

- Tightly-regulated output voltages of 5 V and 3.3 V with better than ±1% setpoint accuracy
- Wide input voltage operating range of 5.5 V to 36 V
- Single- and dual-output configurations
 - Dual outputs of 3.3 V and 5 V rated at 7 A each
 - Single output, two-phase solution provides 15 A
- Switching frequency of 2.1 MHz externally synchronizable up or down by 20%
- Ultra-high power conversion efficiency across wide load current ranges
 - Full-load efficiency of 90.25% at $V_{IN} = 12$ V (dual outputs of 5 V and 3.3 V at 7 A)
 - Full-load efficiency of 91.5% at $V_{IN} = 12$ V (single output of 5 V at 15 A)
- 25-µA controller standby current at $V_{IN} = 12$ V with channel 2 disabled
- Input π-stage EMI filter with electrolytic capacitor for parallel damping
 - Differential-mode and common-mode filter stages
 - Meets CISPR 25 and UNECE Reg 10 EMI standards
- Peak current-mode control architecture provides fast line and load transient response
 - Integrated slope compensation adaptive with switching frequency
 - Forced PWM (FPWM) or diode emulation mode (DEM) operation
- Integrated high-side and low-side power MOSFET gate drivers
 - 3.25-A and 4.25-A sink/source gate drive current capability
 - Independent source and sink gate driver pins for adjustable switch (SW) voltage slew rate
 - 14-ns adaptive dead-time control reduces power dissipation and MOSFET temperature rise
- Overcurrent protection (OCP) with shunt or inductor DCR current sensing
- Monotonic prebias output voltage start-up
- User-adjustable soft-start time set to 3 ms by 100-nF capacitors connected between SS1/SS2 and AGND
 - Option for output voltage tracking using master track signal connected to SS1 or SS2
- SYNCOUT signal 90° out-of-phase with internal clock
- Power Good indicators for each channel with 100-kΩ pullup resistors to VCC
- Selectable forced-PWM (FPWM) or diode emulation (DEM) modes using the MODE pin
- Fully assembled, tested, and proven PCB layout with 100-mm × 75-mm total footprint
EVM Characteristics

Table 2. Electrical Performance Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage range, V_{IN}</td>
<td>Operating</td>
<td>5.5</td>
<td>12</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Input current, no load, $I_{IN\text{-NL}}$</td>
<td>$I_{OUT1} = I_{OUT2} = 0$ A, MODE tied to AGND</td>
<td>$V_{IN} = 12$ V</td>
<td>50</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 24$ V</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 36$ V</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current, disabled, $I_{IN\text{-OFF}}$</td>
<td>$V_{EN1} = V_{EN2} = 0$ V</td>
<td>$V_{IN} = 12$ V</td>
<td>4</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage, V_{OUT1}</td>
<td>$FB1$ tied to VDDA</td>
<td>3.27</td>
<td>3.3</td>
<td>3.33</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage, V_{OUT2}</td>
<td>$FB2$ tied to AGND</td>
<td>4.95</td>
<td>5.0</td>
<td>5.05</td>
<td></td>
</tr>
<tr>
<td>Output current, $I_{OUT1/2}$</td>
<td>$V_{IN} = 5.5$ V to 36 V, Airflow = 100 LFM</td>
<td>0</td>
<td>7</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Output voltage regulation, $\Delta V_{OUT1/2}$</td>
<td>$I_{OUT1/2} = 0$ A to 7 A</td>
<td>Line regulation</td>
<td>$V_{IN} = 5.5$ V to 36 V</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Output voltage ripple, $V_{OUT1/2-AC}$</td>
<td>$V_{IN} = 12$ V, $I_{OUT1} = I_{OUT2} = 7$ A</td>
<td>10</td>
<td>mVrms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output overcurrent protection, I_{OCP}</td>
<td>$V_{IN} = 12$ V</td>
<td>9</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-start time, t_{SS}</td>
<td>$C_{SS1} = C_{SS2} = 100$ nF</td>
<td>3</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiccup time, t_{RES}</td>
<td>$C_{RES} = 220$ nF</td>
<td>13</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency, F_{SW-nom}</td>
<td>$V_{IN} = 12$ V</td>
<td>2.1</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half-load efficiency, η_{HALF}</td>
<td>$I_{OUT1} = I_{OUT2} = 3.5$ A</td>
<td>$V_{IN} = 8$ V</td>
<td>91.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 12$ V</td>
<td>90.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 18$ V</td>
<td>87%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load efficiency, η_{FULL}</td>
<td>$I_{OUT1} = I_{OUT2} = 7$ A</td>
<td>$V_{IN} = 8$ V</td>
<td>89.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 12$ V</td>
<td>90.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 18$ V</td>
<td>88.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM5143-Q1 junction temperature, T_J</td>
<td></td>
<td>-40</td>
<td>150</td>
<td>ºC</td>
<td></td>
</tr>
</tbody>
</table>

(1) The default output voltages of this EVM are 3.3 V and 5 V. Efficiency and other performance metrics can change based on operating input voltage, load currents, externally-connected output capacitors, and other parameters.

(2) The recommended airflow when operating at input voltages greater than 18 V is 100 LFM.
3 Application Circuit Diagram

Figure 1 shows the schematic of an LM5143-Q1-based synchronous buck regulator (EMI filter stage not shown). Soft start (SS), restart (RES), and dither (DITH) components are shown that are configurable as required by the specific application.

As shown in Figure 2, a two-phase, single-output regulator is implemented by tying the outputs together, connecting COMP1 to COMP2, SS1 to SS2, MODE to VDDA, and FB2 to AGND.
Figure 3. LM5143-Q1 EVM, 100 mm × 75 mm

CAUTION
Caution Hot surface.
Contact may cause burns.
Do not touch.
Test Setup and Procedure

5.1 EVM Connections

Referencing the EVM connections described in Table 3, the recommended test setup to evaluate the LM5143-Q1EVM-2100 is shown in Figure 4. Working at an ESD-protected workstation, make sure that any wrist straps, boot straps, or mats are connected and referencing the user to earth ground before handling the EVM.

![Figure 4. EVM Test Setup](image)

CAUTION

Refer to the LM5143-Q1 data sheet, LM5143-Q1 Quickstart Calculator and WEBENCH® Power Designer for additional guidance pertaining to component selection and controller operation.

Table 3. EVM Power Connections

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN+</td>
<td>Positive input voltage power and sense connection</td>
</tr>
<tr>
<td>VIN-</td>
<td>Negative input voltage and output voltage power and sense connection</td>
</tr>
<tr>
<td>VOUT1</td>
<td>Channel 1 positive output voltage power and sense connection</td>
</tr>
<tr>
<td>VOUT2</td>
<td>Channel 2 positive output voltage power and sense connection</td>
</tr>
<tr>
<td>GND</td>
<td>Negative output voltage power and sense connection</td>
</tr>
</tbody>
</table>
Table 4. EVM Signal Connections

<table>
<thead>
<tr>
<th>LABEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Bias supply connection for the gate drivers</td>
</tr>
<tr>
<td>VDDA</td>
<td>Bias supply connection for the analog circuits</td>
</tr>
<tr>
<td>DEMB/SYNCIN</td>
<td>Synchronization input</td>
</tr>
<tr>
<td>SYNCOUT</td>
<td>Synchronization output</td>
</tr>
<tr>
<td>PG1, PG2</td>
<td>Power Good indicators</td>
</tr>
<tr>
<td>SS1, SS2</td>
<td>Soft-start/tracking signal inputs</td>
</tr>
<tr>
<td>EN1, EN2</td>
<td>ENABLE inputs – tie to GND to disable the respective channel</td>
</tr>
<tr>
<td>PGN1</td>
<td>Power GND connection</td>
</tr>
<tr>
<td>AGND</td>
<td>Analog GND connection</td>
</tr>
</tbody>
</table>

5.2 Test Equipment

Voltage Source: Use an input voltage source capable of supplying 0–36-V and 12 A.

Multimeters:
- **Voltmeter 1**: Input voltage at VIN+ to VIN–. Set voltmeter to an input impedance of 100 MΩ.
- **Voltmeter 2**: Output voltage at VOUT1 to GND. Set voltmeter to an input impedance of 100 MΩ.
- **Voltmeter 3**: Output voltage at VOUT2 to GND. Set voltmeter to an input impedance of 100 MΩ.
- **Ammeter 1**: Input current. Set ammeter to 1-second aperture time.
- **Ammeter 2**: Output current for channel 1. Set ammeter to 1-second aperture time.
- **Ammeter 3**: Output current for channel 2. Set ammeter to 1-second aperture time.

Electronic Load: The load must be an electronic constant-resistance (CR) or constant-current (CC) mode load capable of 0 Adc to 10 Adc at 12 V. For a no-load input current measurement, disconnect the electronic load as it may draw a small residual current.

Oscilloscope: With the scope set to 20-MHz bandwidth and AC coupling, measure the output voltage ripple directly across an output capacitor with a short ground lead normally provided with the scope probe. Place the oscilloscope probe tip on the positive terminal of the output capacitor, holding the ground barrel of the probe through the ground lead to the negative terminal of the capacitor. TI does not recommend using a long-leaded ground connection because this can induce additional noise given a large ground loop. To measure other waveforms, adjust the oscilloscope as needed.

Safety: Always use caution when touching any circuits that may be live or energized.

5.3 Recommended Test Setup

5.3.1 Input Connections
- Prior to connecting the DC input source, set the current limit of the input supply to 0.1 A maximum. Ensure the input source is initially set to 0 V and connected to the VIN+ and VIN– connection points as shown in Figure 4. An additional input bulk capacitor is recommended to provide damping if long input lines are used.
- Connect voltmeter 1 at VIN+ and VIN– connection points to measure the input voltage.
- Connect ammeter 1 to measure the input current and set to at least 1-second aperture time.

5.3.2 Output Connections
- Connect electronic loads to VOUT1 and VOUT2 connections. Set the loads to constant-resistance mode or constant-current mode at 0 A before applying input voltage.
- Connect voltmeter 2 at VOUT1 and GND connections to measure the output voltage of channel 1.
- Connect voltmeter 3 at VOUT2 and GND connections to measure the output voltage of channel 2.
- Connect ammeter 2 and ammeter 3 to measure the output currents.
5.4 Test Procedure

5.4.1 Line and Load Regulation, Efficiency
- Set up the EVM as described above.
- Set load to constant resistance or constant current mode and to sink 0 A.
- Increase input source from 0 V to 12 V; use voltmeter 1 to measure the input voltage.
- Increase the current limit of the input supply to 12 A.
- Using voltmeter 2 to measure the output voltage, \(V_{\text{OUT1}} \), vary the load current from 0 A to 7 A DC; \(V_{\text{OUT1}} \) must remain within the load regulation specification.
- Using voltmeter 3 to measure the output voltage, \(V_{\text{OUT2}} \), vary the load current from 0 A to 7 A DC; \(V_{\text{OUT2}} \) should remain within the load regulation specification.
- Set the load currents to 3.5 A (50% rated load) and vary the input source voltage from 5.5 V to 36 V; \(V_{\text{OUT1}} \) and \(V_{\text{OUT2}} \) must remain within the line regulation specification.
- Decrease load to 0 A. Decrease input source voltage to 0 V.

6 Test Data and Performance Curves

Figure 5 through Figure 24 present typical performance curves for the LM5143-Q1EVM-2100. Because actual performance data can be affected by measurement techniques and environmental variables, these curves are presented for reference and can differ from actual field measurements.

6.1 Conversion Efficiency

![Conversion Efficiency Graph]

The curves with higher efficiency at light load correspond to when diode emulation is enabled (DEMB tied to AGND).

Figure 5. Dual-Channel Efficiency, \(V_{\text{IN}} = 12 \) V, \(V_{\text{OUT1}} = 3.3 \) V, \(V_{\text{OUT2}} = 5 \) V
Figure 6. Ch1 Efficiency, \(V_{IN} = 12 \text{ V} \), \(V_{OUT1} = 3.3 \text{ V} \), FPWM, Channel 2 OFF

Figure 7. Ch1 Efficiency, \(V_{IN} = 12 \text{ V} \), \(V_{OUT1} = 3.3 \text{ V} \), Diode Emulation, Channel 2 OFF (Log Scale)
Figure 8. Ch2 Efficiency, $V_{\text{IN}} = 12$ V, $V_{\text{OUT2}} = 5$ V, FPWM, Channel 1 OFF

Figure 9. Ch2 Efficiency, $V_{\text{IN}} = 12$ V, $V_{\text{OUT2}} = 5$ V, Diode Emulation, Channel 1 OFF (Log Scale)
Implement a two-phase circuit by connecting the outputs together and changing the switch positions to connect SS1 to SS2, COMP1 to COMP2, and MODE to VDDA. Also tie FB2 to AGND.

Figure 10. Two-Phase Regulator Efficiency, \(V_{\text{OUT}} = 5 \text{ V} \), FPWM

Figure 11. Two-Phase Regulator Efficiency, \(V_{\text{OUT}} = 3.3 \text{ V} \), FPWM
6.2 Operating Waveforms

6.2.1 Switching

Figure 12. SW Node Voltages, $V_{IN} = 12$ V, $I_{OUT1} = I_{OUT2} = 7$ A

Figure 13. SW Node Voltages, $V_{IN} = 8$ V, $I_{OUT1} = I_{OUT2} = 7$ A
6.2.2 Load Transient Response

Figure 14. Ch1 (3.3 V) Load Transient Response, $V_{IN} = 12 \text{ V}$, FPWM, 0 A to 7 A at 1 A/µs

Figure 15. Ch1 (3.3 V) Load Transient Response, $V_{IN} = 12 \text{ V}$, FPWM, 3.5 A to 7 A at 1 A/µs
Figure 16. Ch2 (5 V) Load Transient Response, $V_{\text{IN}} = 12$ V, FPWM, 0 A to 7 A at 1 A/µs

Figure 17. Ch2 (5 V) Load Transient Response, $V_{\text{IN}} = 12$ V, FPWM, 3.5 A to 7 A at 1 A/µs
6.2.3 Line Transient Response

Figure 18. Cold-crank Response to $V_{IN} = 3.8\,\text{V}$, $I_{OUT1} = I_{OUT2} = 1\,\text{A}$

6.2.4 Startup/Shutdown With ENABLE ON/OFF

Figure 19. ENABLE ON and OFF, $V_{IN} = 12\,\text{V}$, $I_{OUT1} = I_{OUT2} = 7\,\text{A}$ Resistive, $C_{SS1} = C_{SS2} = 68\,\text{nF}$
6.2.5 Startup/Shutdown with EN1 and EN2 Tied to VIN

Figure 20. Startup, $V_{IN} = 12$ V, $I_{OUT1} = I_{OUT2} = 7$ A Resistive, $C_{SS1} = C_{SS2} = 68$ nF

Figure 21. Shutdown, $V_{IN} = 12$ V, $I_{OUT1} = I_{OUT2} = 7$ A Resistive
6.3 Bode Plots

Figure 22. Bode Plot, V\textsubscript{IN} = 12 V, V\textsubscript{OUT1} = 3.3 V, I\textsubscript{OUT1} = 7 A Resistive

Figure 23. Bode Plot, V\textsubscript{IN} = 12 V, V\textsubscript{OUT2} = 5 V, I\textsubscript{OUT2} = 7 A Resistive
6.4 Thermal Performance

Figure 24. Thermal Performance, $V_{\text{IN}} = 12\, \text{V}$, $I_{\text{OUT1}} = I_{\text{OUT2}} = 7\, \text{A}$, Free Convection Airflow

6.5 CISPR 25 EMI Performance

Figure 25 presents the EMI performance of the LM5143-Q1 EVM at 13.5-V input and shields installed. Conducted emissions are measured over a frequency range of 150 kHz to 108 MHz using a 5-µH LISN according to the CISPR 25 specification. CISPR 25 class 5 peak and average limit lines are denoted in red. The yellow and blue spectra are measured using peak and average detection, respectively.

Figure 25. CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, $V_{\text{IN}} = 13.5\, \text{V}$, $I_{\text{OUT1}} = I_{\text{OUT2}} = 7\, \text{A}$ Resistive, (a) 150 kHz to 30 MHz, (b) 30 MHz to 108 MHz
7 EVM Documentation

7.1 Schematic

Figure 26. EVM Schematic
7.2 Bill of Materials

Table 5. Bill of Materials

<table>
<thead>
<tr>
<th>COUNT</th>
<th>REF DES</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>Capacitor, Aluminum, 47 μF, 50 V</td>
<td>EEE-FC1H470P</td>
<td>Panasonic</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>Capacitor, Ceramic, 0.1 μF, 100 V, X7R, 1206</td>
<td>YFF31A2H105M</td>
<td>TDK</td>
</tr>
<tr>
<td>2</td>
<td>C3, C4</td>
<td>Capacitor, Ceramic, 0.1 μF, 100 V, X7R, 0603</td>
<td>C0805C104K1RACTU</td>
<td>Kemet</td>
</tr>
<tr>
<td>9</td>
<td>C5, C6, C7, C13, C14, C15, C24, C25, C26</td>
<td>Capacitor, Ceramic, 10 μF, 50 V, X7R, 1210, AEC-Q200</td>
<td>UMJ325KB7106KMHT</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>1</td>
<td>C8</td>
<td>Capacitor, Ceramic, 0.47 μF, 100 V, X7R, 0805</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>C9</td>
<td>Capacitor, Ceramic, 0.47 μF, 16 V, X7R, 0805</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>3</td>
<td>C10, C11, C12</td>
<td>Capacitor, Ceramic, 0.1 μF, 25 V, X7R, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>9</td>
<td>C16, C17, C18, C19, C20, C21, C22, C23, C50</td>
<td>Capacitor, Ceramic, 10 nF, 100 V, X7R, 0603</td>
<td>GRM188R72A103KA01D</td>
<td>Murata</td>
</tr>
<tr>
<td>2</td>
<td>C43, C44</td>
<td>Capacitor, Ceramic, 33 pF, 100 V, C0G, 5%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>C47, C52</td>
<td>Capacitor, Ceramic, 15 pF, 50 V, C0G, 5%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>C48, C51</td>
<td>Capacitor, Ceramic, 150 nF, 100 V, X7R, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>10</td>
<td>C31, C32, C33, C34, C35, C37, C38, C39, C40, C41</td>
<td>Capacitor, Ceramic, 47 μF, 6.3 V, X7R, 1210, AEC-Q200</td>
<td>CNA6P1X7S0J476M250AC</td>
<td>TDK</td>
</tr>
<tr>
<td>1</td>
<td>C36</td>
<td>Capacitor, Ceramic, 2.2 μF, 16 V, X7R, 0603</td>
<td>EMK107BB7225MA-T</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td>2</td>
<td>C43, C44</td>
<td>Capacitor, Ceramic, 33 pF, 100 V, C0G, 5%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>C47, C52</td>
<td>Capacitor, Ceramic, 15 pF, 50 V, C0G, 5%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>C48, C51</td>
<td>Capacitor, Ceramic, 150 nF, 100 V, X7R, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>C49</td>
<td>Capacitor, Ceramic, 1 nF, 50 V, X7R, 10%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>C45, C46</td>
<td>Capacitor, Tant Polymer, 220 μF, 16 V, X7R, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>Schottky Diode, 60 V, 1 A, SOD-323</td>
<td>PMEG6010CEJ</td>
<td>Nexperia</td>
</tr>
<tr>
<td>0</td>
<td>H1, H2</td>
<td>Surface Mount Shield, 38.1 x 25.4 mm, Height 6 mm</td>
<td>BMI-S-205-C</td>
<td>Laird</td>
</tr>
<tr>
<td>0</td>
<td>H7, H8</td>
<td>Shield Cover, 38.56 x 25.86 mm</td>
<td>BMI-S-205-C</td>
<td>Laird</td>
</tr>
<tr>
<td>1</td>
<td>J1</td>
<td>Test Point Slotted, 0.118", TH</td>
<td>1040</td>
<td>Keystone</td>
</tr>
<tr>
<td>1</td>
<td>J2</td>
<td>Header, 2.54 mm, 12+1, Au, TH</td>
<td>PBC125ABN</td>
<td>Sullins</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>Inductor, 4.2 μH, 7.1 mΩ typ, 14A Isat, 4.7 mm typ, AEC-Q200</td>
<td>744325420</td>
<td>Würth Electronik</td>
</tr>
<tr>
<td>2</td>
<td>L2, L3</td>
<td>Ferrite Bead, 800 Ohm at 100 MHz, 8 A, 2220</td>
<td>HR2220V801R-10</td>
<td>Laird</td>
</tr>
<tr>
<td>2</td>
<td>L4, L5</td>
<td>Inductor, 0.68 μH, 4.8 mΩ typ, 25 A, 2.8 mm typ, AEC-Q200</td>
<td>744373460068</td>
<td>Würth Electronik</td>
</tr>
<tr>
<td>4</td>
<td>Q1, Q2, Q3, Q4</td>
<td>MOSFET, N-Channel, 40 V, 5.7 mΩ, AEC-Q101</td>
<td>IPCS0N04SSL5R5</td>
<td>Infineon</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>Resistor, Chip, 1 Ω, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>Resistor, Chip, 1 Ω, 1/4W, 5%, 1206</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>10</td>
<td>R3, R4, R5, R6, R11, R13, R14, R16, R22, R23, R24</td>
<td>Resistor, Chip, 200 kΩ, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>2</td>
<td>R7, R8</td>
<td>Resistor, Chip, 7 mΩ, 1W, 1%, 0508, AEC-Q200</td>
<td>KRL2012M-R007-F-T1</td>
<td>Susumu</td>
</tr>
<tr>
<td>2</td>
<td>R12, R15</td>
<td>Resistor, Chip, 49.9 Ω, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>4</td>
<td>R25, R26, R27, R28</td>
<td>Resistor, Chip, 100 kΩ, 1/16W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R29</td>
<td>Resistor, Chip, 20 kΩ, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R31</td>
<td>Resistor, Chip, 10 kΩ, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R32</td>
<td>Resistor, Chip, 13.7 kΩ, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>1</td>
<td>R33</td>
<td>Resistor, Chip, 24.9 kΩ, 1/10W, 1%, 0603</td>
<td>Std</td>
<td>Std</td>
</tr>
<tr>
<td>0</td>
<td>R34</td>
<td>Resistor, Chip, 0 Ω, 2 W, 1%, 1225</td>
<td>RCL12250000Z0EG</td>
<td>Vishay</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>Dip Switch, SPST, 2Pos, Slide, 5MT</td>
<td>CVS-02TB</td>
<td>Copal Electronics</td>
</tr>
<tr>
<td>1</td>
<td>S2</td>
<td>Slide SW, SPDT 0.1 A 50VDC</td>
<td>CJS-1201TA</td>
<td>Copal Electronics</td>
</tr>
</tbody>
</table>
Table 5. Bill of Materials (continued)

<table>
<thead>
<tr>
<th>COUNT</th>
<th>REF DES</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
<th>MFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1</td>
<td>Common-mode Choke, 700 Ω at 100 MHz, 6 mΩ, 8 A, AEC-Q200</td>
<td>ACM12V-701-2PL-TL00</td>
<td>TDK</td>
</tr>
<tr>
<td>6</td>
<td>TP1, TP2, TP5, TP6, TP7, TP8</td>
<td>Terminal, Turret, TH, Triple</td>
<td>1596-2</td>
<td>Keystone</td>
</tr>
<tr>
<td>4</td>
<td>TP3, TP4, TP9, TP10</td>
<td>Test Point, Miniature, SMT</td>
<td>5015</td>
<td>Keystone</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>IC, LM5143-Q1, 65-V Dual Synchronous Buck Controller, VQFN-40</td>
<td>LM5143QRGWRQ1</td>
<td>TI</td>
</tr>
<tr>
<td>1</td>
<td>PCB1</td>
<td>PCB, FR4, 6 layer, 2 oz, 100 mm x 75 mm</td>
<td>PCB</td>
<td>–</td>
</tr>
</tbody>
</table>
7.3 **PCB Layout**

Figure 27 through Figure 34 show the design of the LM5143-Q1 EVM using a 6-layer PCB with 2-oz copper thickness. The EVM is essentially a single-sided design except for certain input filtering and small-signal components located on the bottom side.

Figure 27. Top Copper (Top View)

Figure 28. Layer 2 Copper (Top View)
Figure 29. Layer 3 Copper (Top View)

Figure 30. Layer 4 Copper (Top View)
Figure 31. Layer 5 Copper (Top View)

Figure 32. Bottom Copper (Top View)
7.4 Component Drawings

Figure 33. Top Component Drawing

Figure 34. Bottom Component Drawing
8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Support
For development support see the following:
- For TI's reference design library, visit TI Designs
- For TI's WEBENCH Design Environments, visit the WEBENCH® Design Center
- LM5143-Q1 DC/DC Controller Quickstart Calculator and PSPICE simulation models

8.2 Documentation Support

8.2.1 Related Documentation
For related documentation see the following:
- LM5143-Q1 Data Sheet (SNVSB29)
- LM5143-Q1 4-Phase Buck Regulator Design (SNVA870)
- Improve High-current DC/DC Regulator Performance for Free with Optimized Power Stage Layout (SNVA803)
- Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics (SLYT682)
- AN-2162 Simple Success with Conducted EMI from DC-DC Converters (SNVA489)
- White Papers:
 - Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications (SLYY104)
 - An Overview of Conducted EMI Specifications for Power Supplies (SLYY136)
 - An Overview of Radiated EMI Specifications for Power Supplies (SLYY142)

8.2.1.1 PCB Layout Resources
- AN-1149 Layout Guidelines for Switching Power Supplies (SNVA021)
- AN-1229 Simple Switcher PCB Layout Guidelines (SNVA054)
- Constructing Your Power Supply – Layout Considerations (SLUP230)
- Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x (SNVA721)
- Power House Blogs:
 - High-Density PCB Layout of DC-DC Converters

8.2.1.2 Thermal Design Resources
- AN-2020 Thermal Design by Insight, Not Hindsight (SNVA419)
- AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages (SNVA183)
- Semiconductor and IC Package Thermal Metrics (SPRA953)
- Thermal Design Made Simple with LM43603 and LM43602 (SNVA719)
- PowerPAD Thermally Enhanced Package (SLMA002)
- PowerPAD Made Easy (SLMA004)
- Using New Thermal Metrics (SBVA025)
Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (April 2019) to B Revision

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added Table 1</td>
<td>1</td>
</tr>
<tr>
<td>Added low I_q and multi-phase capability feature bullets in the Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Updated Section 8</td>
<td>28</td>
</tr>
</tbody>
</table>

Changes from Original (October 2018) to A Revision

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added SW node voltage waveform</td>
<td>14</td>
</tr>
<tr>
<td>Added EMI results</td>
<td>20</td>
</tr>
<tr>
<td>Changed input capacitor C2 in schematic and BOM</td>
<td>21</td>
</tr>
</tbody>
</table>
STANDARD TERMS FOR EVALUATION MODULES

1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software.

 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.

2 Limited Warranty and Related Remedies/Disclaimers:

 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.

 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI’s recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI’s recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI’s instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:
EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGRADATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.
Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou intéérieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radiélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

3.3 Japan

3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page

3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。技術基準適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項の1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

3.4 European Union

3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
4. EVM Use Restrictions and Warnings:

4.1 EVMs are not for use in functional safety and/or safety critical evaluations, including but not limited to evaluations of life support applications.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 Safety-Related Warnings and Restrictions:

4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

6.1 Except as set forth above, EVMs and any materials provided with the EVM (including, but not limited to, reference designs and the design of the EVM itself) are provided “as is” and “with all faults.” TI disclaims all other warranties, express or implied, regarding such items, including but not limited to any epidemic failure warranty or implied warranties of merchantability or fitness for a particular purpose or non-infringement of any third party patents, copyrights, trade secrets or other intellectual property rights.

6.2 Except for the limited right to use the EVM set forth herein, nothing in these terms shall be construed as granting or conferring any rights by license, patent, or any other industrial or intellectual property right of TI, its suppliers/licensors or any other third party, to use the EVM in any finished end-user or ready-to-use final product, or for any invention, discovery or improvement, regardless of when made, conceived or acquired.

7. User’s Indemnity Obligations and Representations. User will defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any handling or use of the EVM that is not in accordance with these terms. This obligation shall apply whether Claims arise under statute, regulation, or the law of tort, contract or any other legal theory, and even if the EVM fails to perform as described or expected.
8. Limitations on Damages and Liability:

8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVM'S, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated