
TMS320F28002x Flash API
Version 1.57.00.00

Reference Guide

Literature Number: SPNU631
March 2020

2 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Table of Contents

Contents

1 Introduction... 4
1.1 Reference Material... 4
1.2 Function Listing Format ... 4

2 TMS320F28002x Flash API Overview .. 6
2.1 Introduction.. 6
2.2 API Overview ... 6
2.3 Using API.. 7

3 API Functions .. 10
3.1 Initialization Functions ... 10
3.2 Flash State Machine Functions ... 12
3.3 Read Functions ... 27
3.4 Informational Functions .. 31
3.5 Utility Functions ... 32

4 Recommended FSM Flows .. 34
4.1 New devices from Factory ... 34
4.2 Recommended Erase Flow.. 34
4.3 Recommended Program Flow .. 36

Appendix A Flash State Machine Commands... 37
A.1 Flash State Machine Commands.. 37

Appendix B Object Library Function Information.. 38
B.1 TMS320F28002x Flash API Library... 38

Appendix C Typedefs, Defines, Enumerations and Structures ... 39
C.1 Type Definitions ... 39
C.2 Defines.. 39
C.3 Enumerations .. 39
C.4 Structures... 41

Appendix D Parallel Signature Analysis (PSA) Algorithm .. 42
D.1 Function Details ... 42

Appendix E ECC Calculation Algorithm... 43
E.1 Function Details ... 43

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com

3SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

List of Figures

List of Figures
1 Recommended Erase Flow ... 35
2 Recommended Program Flow .. 36

List of Tables
1 Summary of Initialization Functions ... 6
2 Summary of Flash State Machine (FSM) Functions .. 6
3 Summary of Read Functions ... 6
4 Summary of Information Functions .. 6
5 Summary of Utility Functions... 7
6 Uses of Different Programming Modes.. 16
7 FMSTAT Register .. 25
8 FMSTAT Register Field Descriptions .. 25
9 Flash State Machine Commands .. 37
10 C28x Function Sizes and Stack Usage ... 38

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

4 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Reference Guide
SPNU631–March 2020

1 Introduction
This reference guide provides a detailed description of Texas Instruments' TMS320F28002x Flash API
Library (FlashAPI_F28002x_FPU32.lib or FlashAPI_ROM_F28002x_FPU32.lib) functions that can be used
to erase, program and verify Flash on TMS320F28002x devices. Note that Flash API V1.57.xx.xx should
be used only with TMS320F28002x devices. The Flash API Library is provided in C2000Ware at
C2000Ware_x_xx_xx_xx\libraries\flash_api\f28002x.

1.1 Reference Material
Use this guide in conjunction with TMS320F28002x Microcontrollers Data Manual and TMS320F28002x
Microcontrollers Technical Reference Manual.

1.2 Function Listing Format
This is the general format of an entry for a function, compiler intrinsic, or macro.

A short description of what function_name() does.

Synopsis
Provides a prototype for function_name().
<return_type> function_name(

<type_1> parameter_1,
<type_2> parameter_2,

<type_n> parameter_n
)

Parameters

parameter_1 [in] Type details of parameter_1
parameter_2 [out] Type details of parameter_2
parameter_n [in/out] Type details of parameter_3

Parameter passing is categorized as follows:
• in — Indicates the function uses one or more values in the parameter that you give it without storing

any changes.
• out — Indicates the function saves one or more of the values in the parameter that you give it. You can

examine the saved values to find out useful information about your application.
• in/out — Indicates the function changes one or more of the values in the parameter that you give it and

saves the result. You can examine the saved values to find out useful information about your
application.

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631
http://www.ti.com/tool/C2000WARE
http://www.ti.com/lit/pdf/SPRSP45
http://www.ti.com/lit/pdf/SPRUIN7
http://www.ti.com/lit/pdf/SPRUIN7

www.ti.com Introduction

5SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Description
Describes the function. This section also describes any special characteristics or restrictions that might
apply:
• Function blocks or might block the requested operation under certain conditions
• Function has pre-conditions that might not be obvious
• Function has restrictions or special behavior

Restrictions
Specifies any restrictions in using this function.

Return Value
Specifies any value or values returned by the function.

See Also
Lists other functions or data types related to the function.

Sample Implementation
Provides an example (or a reference to an example) that illustrates the use of the function. Along with the
Flash API functions, these examples may use the functions from the device_support folder or driverlib
folder provided in C2000Ware, to demonstrate the usage of a given Flash API function in an application
context.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

TMS320F28002x Flash API Overview www.ti.com

6 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

2 TMS320F28002x Flash API Overview

2.1 Introduction
The Flash API is a library of routines, that when called with the proper parameters in the proper sequence,
erases, programs, or verifies Flash memory. The Flash API can be used to program and verify the OTP
memory as well.

NOTE: Please read the data manual for Flash and OTP memory map and Flash waitstate
specifications. Also, note that this reference guide assumes that the user has already read
the Flash and OTP Memory chapter in the TMS320F28002x Microcontrollers Technical
Reference Manual.

2.2 API Overview

Table 1. Summary of Initialization Functions

API Function Description
Fapi_initializeAPI() Initializes the API for first use or frequency change

Table 2. Summary of Flash State Machine (FSM) Functions

API Function Description
Fapi_setActiveFlashBank() Initializes Flash Memory Controller (FMC) and banks for an erase or program

command
Fapi_issueAsyncCommandWithAddress() Issues an erase sector command to FSM for the given address
Fapi_issueProgrammingCommand() Sets up the required registers for programming and issues the command to the

FSM
Fapi_issueProgrammingCommandForEccAddre
ss()

Remaps an ECC address to the main data space and then call
Fapi_issueProgrammingCommand() to program ECC

Fapi_issueFsmSuspendCommand() Suspends FSM commands program data and erase sector
Fapi_issueAsyncCommand() Issues a command (Clear Status, Program Resume, Erase Resume,

Clear_More) to FSM for operations that do not require an address
Fapi_checkFsmForReady() Returns whether or not the Flash state machine (FSM) is ready or busy
Fapi_getFsmStatus() Returns the FMSTAT status register value from the Flash memory controller

Table 3. Summary of Read Functions

API Function Description
Fapi_doBlankCheck() Verifies specified Flash memory range against erased state
Fapi_doVerify() Verifies specified Flash memory range against supplied values
Fapi_calculatePsa() Calculates a PSA value for the specified Flash memory range
Fapi_doPsaVerify() Verifies a specified Flash memory range against the supplied PSA value

Table 4. Summary of Information Functions

API Function Description
Fapi_getLibraryInfo() Returns the information specific to the compiled version of the API library

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631
http://www.ti.com/lit/pdf/SPRUIN7
http://www.ti.com/lit/pdf/SPRUIN7

www.ti.com TMS320F28002x Flash API Overview

7SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Table 5. Summary of Utility Functions

API Function Description
Fapi_flushPipeline() Flushes the data cache in FMC
Fapi_calculateEcc() Calculates the ECC for the supplied address and 64-bit word
Fapi_isAddressEcc() Determines if the address falls in ECC ranges
Fapi_remapEccAddress() Remaps an ECC address to corresponding main address
Fapi_calculateFletcherChecksum() Function calculates a Fletcher checksum for the memory range specified

Note that Fapi_getDeviceInfo() and Fapi_getBankSectors() are removed in TMS320F28002x Flash API
since users can obtain this information (for example, number of banks, pin count, number of sectors, and
so on) from other resources provided in the TRM.

The Fapi_UserDefinedFunctions.c file is not provided anymore since the functions in that file are now
merged in the Flash API Library. Review Key Facts For Flash API Usage for information about servicing
the watchdog function while using Flash API.

2.3 Using API
This section describes the flow for using various API functions.

2.3.1 Initialization Flow

2.3.1.1 After Device Power Up
After the device is first powered up, the Fapi_initializeAPI() function must be called before any other API
function (except for the Fapi_getLibraryInfo() function) can be used. This procedure initializes the API
internal structures.

2.3.1.2 FMC and Bank Setup
Before performing a Flash operation for the first time, the Fapi_setActiveFlashBank() function must be
called.

2.3.1.3 On System Frequency Change
If the System operating frequency is changed after the initial call to the Fapi_initializeAPI() function, this
function must be called again before any other API function (except the Fapi_getLibraryInfo() function) can
be used. This procedure will update the API internal state variables.

2.3.2 Building With the API

2.3.2.1 Object Library Files
The Flash API object file is distributed in the ARM standard EABI elf object format.

NOTE: Compilation requires the "Enable support for GCC extensions" option to be enabled.
Compiler version 6.4.0 and onwards have this option enabled by default.

2.3.2.2 Distribution Files
The following API files are distributed in the C2000Ware\libraries\flash_api\f28002x\ folder:
• Library Files

– TMS320F28002x Flash API is embedded into the Boot ROM of this device. This differs from other
C28x devices where the API is wholly software. As such, both a software library
(FlashAPI_F28002x_FPU32.lib) and a BootROM API symbols library

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

TMS320F28002x Flash API Overview www.ti.com

8 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

(FlashAPI_ROM_F28002x_FPU32.lib) are provided. In order for the application to be able to erase
or program the Flash/OTP, one of these two library files should be included in the application with
the symbol library given preference.
• FlashAPI_F28002x_FPU32.lib – This is the Flash API object file (software API library) for

TMS320F28002x devices.
• FlashAPI_ROM_F28002x_FPU32.lib – This is the Boot ROM Flash API symbols library for

TMS320F28002x devices. This contains the addresses of the various Flash API functions that
are embedded into the device Boot ROM. Since all of the functions reside in ROM, adding the
boot ROM symbols to the application takes up only a small amount of Flash and/or RAM space
when compared to that of the Software API library.

• Fixed point version of the API library is not provided.
• Include Files

– F021_F28002x_C28x.h – The master include file for TMS320F28002x devices. This file sets up
compile-specific defines and then includes the F021.h master include file

• The following include files should not be included directly by the user’s code, but are listed here for
user reference:
– F021.h – This include file lists all public API functions and includes all other include files.
– Init.h – Defines the API initialization structure.
– Registers_C28x.h – Little Endian Flash memory controller registers structure.
– Registers.h – Definitions common to all register implementations and includes the appropriate

register include file for the selected device type.
– Types.h – Contains all the enumerations and structures used by the API.
– Constants/Constants.h – Constant definitions common to some C2000 devices.
– Constants/F28002x.h – Constant definitions for F28002x devices.

2.3.3 Key Facts For Flash API Usage
Here are some important facts about API usage:
• Names of the Flash API functions start with a prefix “Fapi_”.
• Flash API does not configure PLL. The user application should configure the PLL as needed and pass

the configured CPUCLK value to Fapi_initializeAPI() function (details of this function are given later in
this document).

• Always configure waitstates as per the device data manual before calling Flash API functions. The
Flash API will issue an error if the waitstate configured by the application is not appropriate for the
operating frequency of the application. See the Fapi_Set ActiveFlashBank() function for more details.

• Flash API execution is interruptible. However, there should not be any read/fetch access from the
Flash bank on which an erase/program operation is in progress. Therefore, the Flash API functions,
the user application functions that call the Flash API functions, and any ISRs (Interrupt service
routines,) must be executed from RAM. For example, the entire code snippet shown below should be
executed from RAM and not just the Flash API functions. The reason for this is because the
Fapi_issueAsyncCommandWithAddress() function issues the erase command to the FSM, but it does
not wait until the erase operation is over. As long as the FSM is busy with the current operation, there
should not be a Flash access.
//
// Erase a Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32*)0x0080000);

//
// Wait until the erase operation is over
//
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com TMS320F28002x Flash API Overview

9SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

• Flash API does not configure (enable/disable) watchdog. The user application can configure watchdog
and service it as needed. Hence, the Fapi_ServiceWatchdogTimer() function is no longer provided.

• Flash API uses EALLOW and EDIS internally as needed to allow/disallow writes to protected registers.
• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word

may only be programmed once per write/erase cycle.
• It is permissible to program the data and ECC separately. However, each 64-bit dataword and the

corresponding ECC word may only be programmed once per write/erase cycle.
• The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word

may only be programmed once. The exceptions are:
– The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be

programmed together, and may be programmed 1 bit at a time as required by the DCSM operation.
– The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time as

required by the DCSM operation.
• There is no pump semaphore in TMS320F28002x devices.
• ECC should not be programmed for link-pointer locations. The API skips programming the ECC when

the start address provided for the program operation is any of the three link-pointer addresses. API will
use Fapi_DataOnly mode for programming these locations even if the user passes
Fapi_AutoEccGeneration or Fapi_DataAndEcc mode as the programming mode parameter. The
Fapi_EccOnly mode is not supported for programming these locations. The user application should
exercise caution here. Care should be taken to maintain a separate structure/section for link-pointer
locations in the application. Do not mix these fields with other DCSM OTP settings. If other fields are
mixed with link-pointers, API will skip programming ECC for the non-link-pointer locations as well. This
will cause ECC errors in the application.

• When using INTOSC as the clock source, a few SYSCLK frequency ranges need an extra waitstate to
perform erase and program operations. After the operation is over, that extra waitstate is not needed.
Please refer to the data manual for more details.

• In order to avoid conflict between zone1 and zone2, a semaphore (FLSEM) is provided in the DCSM
registers to configure Flash registers. The user application should configure this semaphore register
before initializing the Flash and calling the Flash API functions. Please refer to the TMS320F28002x
Microcontrollers Technical Reference Manual for more details on this register

• Note that the Flash API functions do not configure any of the DCSM registers. The user application
should be sure to configure the required DCSM settings. For example, if a zone is secured, then Flash
API should be executed from the same zone in order to be able to erase or program the Flash sectors
of that zone. Or the zone should be unlocked. If not, Flash API’s writes to Flash registers will not
succeed. Flash API does not check whether the writes to the Flash registers are going through or not.
It writes to them as required for the erase/program sequence and returns back assuming that the
writes went through. This will cause the Flash API to return false success status. For example,
Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector, Address) when called, can return the
success status but it does not mean that the sector erase is successful. Erase status should be
checked using Fapi_getFSMStatus() and Fapi_doBlankCheck().

• Flash API is embedded in ROM for this device. In order to use the Flash API in ROM, users must
embed the FlashAPI_ROM_F28002x_FPU32.lib (ROM API symbols) library provided in C2000Ware at
C2000Ware_x_xx_xx_xx\libraries\flash_api\f28002x\lib. When ROM API is used, there is no need to
embed the FlashAPI_F28002x_FPU32.lib (software API) in your application for Flash erase/program
purposes. When ROM API is used, make sure you do not allocate flash-load and RAM-run addresses
for the API library in the linker command file since it already exists in ROM. However, any application
functions that call the Flash API functions must be executed from RAM. Also note that there should not
be any access to the Flash bank/OTP on which the Flash erase/program operation is in progress.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631
http://www.ti.com/lit/pdf/SPRUIN7
http://www.ti.com/lit/pdf/SPRUIN7

API Functions www.ti.com

10 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3 API Functions

3.1 Initialization Functions

3.1.1 Fapi_initializeAPI()
Initializes the Flash API

Synopsis
Fapi_StatusType Fapi_initializeAPI(

Fapi_FmcRegistersType *poFlashControlRegister,
uint32 u32HclkFrequency)

Parameters

poFlashControlRegister [in] Pointer to the Flash Memory Controller Registers' base address. Use
F021_CPU0_BASE_ADDRESS.

u32HclkFrequency [in] System clock frequency in MHz

Description
This function is required to initialize the Flash API before any other Flash API operation is performed. This
function must also be called if the System frequency or RWAIT is changed.

NOTE: RWAIT register value must be set before calling this function.

Flash control register base address is hard coded in this function internally and does not use
the value (first parameter passed to this function) provided by the user.

Return Value
• Fapi_Status_Success (success)

Sample Implementation
#include “F021_F28002x_C28x.h”

#define CPUCLK_FREQUENCY 100 /* 100 MHz System frequency */

int main(void)
{

//
// Initialize System Control
//
Device_init();

//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
Flash_initModule(FLASH0CTRL_BASE, FLASH0ECC_BASE, DEVICE_FLASH_WAITSTATES);

//
// Jump to RAM and call the Flash API functions
//
Example_CallFlashAPI();

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

11SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;

//
// This function is required to initialize the Flash API based on
// System frequency before any other Flash API operation can be performed
// Note that the FMC register base address and system frequency are passed as the parameters
//
// This function must also be called whenever System frequency or RWAIT is changed.
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 100);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Fapi_setActiveFlashBank function initializes Flash bank
// and FMC for erase and program operations.
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Erase Program
//

/* User code for further Bank flash operations */
.
.
.
.

//
// Example is done here
//

Example_Done();

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

12 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.2 Flash State Machine Functions

3.2.1 Fapi_setActiveFlashBank()
Initializes the FMC for erase and program operations.

Synopsis
Fapi_StatusType Fapi_setActiveFlashBank(

Fapi_FlashBankType oNewFlashBank)

Parameters

oNewFlashBank [in] Bank number to set as active. Since there is only one bank in these
devices, only Fapi_FlashBank0 should be used for this parameter.

Description
This function sets the Flash Memory Controller for further operations to be performed on the banks. This
function is required to be called after the Fapi_initializeAPI() function and before any other Flash API
operation is performed.

NOTE: Flash bank number is hard coded in this function internally and does not use the value
provided by the user.

Return Value
• Fapi_Status_Success (Success)
• Fapi_Error_InvalidBank (failure: Bank specified does not exist on device)
• Fapi_Error_InvalidHclkValue (failure: System clock does not match specified wait value)
• Fapi_Error_OtpChecksumMismatch (failure: Calculated TI OTP checksum does not match value in

TI OTP)

Sample Implementation
See example provided in Section 3.1.1.

3.2.2 Fapi_issueAsyncCommandWithAddress()
Issues an erase command to the Flash State Machine along with a user-provided sector address.

Synopsis
Fapi_StatusType Fapi_issueAsyncCommandWithAddress(

Fapi_FlashStateCommandsType oCommand,
uint32 *pu32StartAddress)

Parameters

oCommand [in] Command to issue to the FSM. Use Fapi_EraseSector
pu32StartAddress [in] Flash sector address for erase operation

Description
This function issues an erase command to the Flash State Machine for the user-provided sector address.
This function does not wait until the erase operation is over; it just issues the command and returns back.
Hence, this function always returns success status when the Fapi_EraseSector command is used. The
user application must wait for the FMC to complete the erase operation before returning to any kind of
Flash accesses. The Fapi_checkFsmForReady() function can be used to monitor the status of an issued
command.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

13SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

NOTE: This function does not check FMSTAT after issuing the erase command. The user
application must check the FMSTAT value when FSM has completed the erase operation.
FMSTAT indicates if there is any failure occurrence during the erase operation. The user
application can use the Fapi_getFSMStatus function to obtain the FMSTAT value.

Also, the user application should use the Fapi_doBlankCheck() function to verify that the
Flash is erased.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_FeatureNotAvailable (failure: User requested a command that is not supported)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register write failed. The user should make sure

that the API is executing from the same zone as that of the target address for flash operation OR the
user should unlock before the flash operation)

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for
the valid address range)

Sample Implementation
#include “F021_F28002x_C28x.h”

#define CPUCLK_FREQUENCY 100 /* 100 MHz System frequency */

int main(void)
{

//
// Initialize System Control
//
Device_init();

//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
Flash_initModule(FLASH0CTRL_BASE, FLASH0ECC_BASE, DEVICE_FLASH_WAITSTATES);

//
// Jump to RAM and call the Flash API functions
//
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;

//
// This function is required to initialize the Flash API based on
// System frequency before any other Flash API operation can be performed
// Note that the FMC register base address and system frequency are passed as the parameters
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 100);

if(oReturnCheck != Fapi_Status_Success)
{

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

14 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Example_Error(oReturnCheck);
}

//
// Fapi_setActiveFlashBank function initializes Flash banks
// and FMC for erase and program operations.
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Bank0 Flash operations
//

//
// Erase Bank0 Sector4
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector, (uint32 *)0x84000);

//
// Wait until FSM is done with erase sector operation
//
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

//
// Read FMSTAT contents to know the status of FSM
// after erase command to see if there are any erase operation
// related errors
//
oFlashStatus = Fapi_getFsmStatus();
if (oFlashStatus!=0)
{

FMSTAT_Fail();
}

//
// Do blank check.
// Verify that the sector is erased.
//
oReturnCheck = Fapi_doBlankCheck((uint32 *)0x84000, 0x800,&oFlashStatusWord);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// * User code for further Bank0 flash operations *
//
.
.
.
.

//
// Example is done here
//

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

15SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Example_Done();
}

3.2.3 Fapi_issueProgrammingCommand()
Sets up data and issues program command to valid Flash or OTP memory addresses

Synopsis
Fapi_StatusType Fapi_issueProgrammingCommand(

uint32 *pu32StartAddress,
uint16 *pu16DataBuffer,
uint16 u16DataBufferSizeInWords,
uint16 *pu16EccBuffer,
uint16 u16EccBufferSizeInBytes,
Fapi_FlashProgrammingCommandType oMode)

Parameters

pu32StartAddress [in] Start address in Flash for the data and ECC to be programmed
pu16DataBuffer [in] Pointer to the Data buffer address. Data buffer should be 128-bit

aligned.
u16DataBufferSizeInWords [in] Number of 16-bit words in the Data buffer
pu16EccBuffer [in] Pointer to the ECC buffer address
u16EccBufferSizeInBytes [in] Number of 8-bit bytes in the ECC buffer
oMode [in] Indicates the programming mode to use:

Fapi_DataOnly Programs only the data buffer
Fapi_AutoEccGeneration Programs the data buffer and

auto generates and programs the
ECC.

Fapi_DataAndEcc Programs both the data and ECC
buffers

Fapi_EccOnly Programs only the ECC buffer

NOTE: The pu16EccBuffer should contain ECC corresponding to the data at the 128-bit aligned
main array/OTP address. The LSB of the pu16EccBuffer corresponds to the lower 64 bits of
the main array and the MSB of the pu16EccBuffer corresponds to the upper 64 bits of the
main array.

Description
This function sets up the programming registers of the Flash State Machine based on the supplied
parameters. It offers four different programming modes to the user for use in different scenarios as
mentioned in Table 6.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

16 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Table 6. Uses of Different Programming Modes

Programming mode
(oMode) Arguments used Usage purpose

Fapi_DataOnly
pu32StartAddress,
pu16DataBuffer,
u16DataBufferSizeInWords

Used when any custom programming utility or an user application (that
embed/use Flash API) has to program data and corresponding ECC
separately. Data is programmed using Fapi_DataOnly mode and then
the ECC is programmed using Fapi_EccOnly mode. Generally most of
the programming utilities do not calculate ECC separately and instead
use Fapi_AutoEccGeneration mode. However, some Safety
applications may require to insert intentional ECC errors in their Flash
image (which is not possible when Fapi_AutoEccGeneration mode is
used) to check the health of the SECDED (Single Error Correction and
Double Error Detection) module at run time. In such case, ECC is
calculated separately (using either the ECC calculation algorithm
provided in Appendix E or using the Fapi_calculateEcc() function as
applicable). Application may want to insert errors in either main array
data or in the ECC as needed. In such scenarios, after the error
insertion, Fapi_DataOnly mode and Fapi_EccOnly modes can be used
to program the data and ECC respectively.

Fapi_AutoEccGeneration
pu32StartAddress,
pu16DataBuffer,
u16DataBufferSizeInWords

Used when any custom programming utility or user application (that
embed/use Flash API to program Flash at run time to store data or to
do a firmware update) has to program data and ECC together without
inserting any intentional errors. This is the most prominently used
mode.

Fapi_DataAndEcc

pu32StartAddress,
pu16DataBuffer,
u16DataBufferSizeInWords,
pu16EccBuffer,
u16EccBufferSizeInBytes

Purpose of this mode is not different than that of using Fapi_DataOnly
and Fapi_EccOnly modes together. However, this mode is beneficial
when both the data and the calculated ECC can be programmed at the
same time.

Fapi_EccOnly pu16EccBuffer,
u16EccBufferSizeInBytes See the usage purpose given for Fapi_DataOnly mode.

NOTE: Users must always program ECC for their flash image since ECC check is enabled at power
up.

Programming modes:
Fapi_DataOnly – This mode will only program the data portion in Flash at the address specified. It can
program from 1-bit up to 8 16-bit words. However, review the restrictions provided for this function to know
the limitations of flash programming data size. The supplied starting address to program at plus the data
buffer length cannot cross the 128-bit aligned address boundary. Arguments 4 and 5 are ignored when
using this mode.

Fapi_AutoEccGeneration – This mode will program the supplied data in Flash along with automatically
generated ECC. The ECC is calculated for every 64-bit data aligned on a 64-bit memory boundary.
Hence, when using this mode, all the 64 bits of the data should be programmed at the same time for a
given 64-bit aligned memory address. Data not supplied is treated as all 1s (0xFFFF). Once ECC is
calculated and programmed for a 64-bit data, those 64 bits can not be reprogrammed (unless the sector is
erased) even if it is programming a bit from 1 to 0 in that 64-bit data, since the new ECC value will collide
with the previously programmed ECC value. When using this mode, if the start address is 128-bit aligned,
then either 8 or 4 16-bit words can be programmed at the same time as needed. If the start address is 64-
bit aligned but not 128-bit aligned, then only 4 16-bit words can be programmed at the same time. The
data restrictions for Fapi_DataOnly also exist for this option. Arguments 4 and 5 are ignored

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

17SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

NOTE: Fapi_AutoEccGeneration mode will program the supplied data portion in Flash along with
automatically generated ECC. The ECC is calculated for 64-bit aligned address and the
corresponding 64-bit data. Any data not supplied is treated as 0xFFFF. Note that there are
practical implications of this when writing a custom programming utility that streams in the
output file of a code project and programs the individual sections one at a time into flash. If a
64-bit word spans more than one section (that is, contains the end of one section, and the
start of another), values of 0xFFFF cannot be assumed for the missing data in the 64-bit
word when programming the first section. When you go to program the second section, you
will not be able to program the ECC for the first 64-bit word since it was already (incorrectly)
computed and programmed using assumed 0xFFFF for the missing values. One way to
avoid this problem is to align all sections linked to flash on a 64-bit boundary in the linker
command file for your code project.

Here is an example:
SECTIONS

{
.text : > FLASH, ALIGN(4)
.cinit : > FLASH, ALIGN(4)
.const : > FLASH, ALIGN(4)
.init_array : > FLASH, ALIGN(4)
.switch : > FLASH, ALIGN(4)

}

If you do not align the sections in flash, you would need to track incomplete 64-bit words in a
section and combine them with the words in other sections that complete the 64-bit word.
This will be difficult to do. So it is recommended to align your sections on 64-bit boundaries.

Some 3rd party Flash programming tools or TI Flash programming kernel examples
(C2000Ware) or any custom Flash programming solution may assume that the incoming
data stream is all 128-bit aligned and may not expect that a section might start on an
unaligned address. Thus it may try to program the maximum possible (128-bits) words at a
time assuming that the address provided is 128-bit aligned. This can result in a failure when
the address is not aligned. So, it is suggested to align all the sections (mapped to Flash) on
a 128-bit boundary.

Fapi_DataAndEcc – This mode will program both the supplied data and ECC in Flash at the address
specified. The data supplied must be aligned on a 64-bit memory boundary and the length of data must
correlate to the supplied ECC. That means, if the data buffer length is 4 16-bit words, the ECC buffer must
be 1 byte. If the data buffer length is 8 16-bit words, the ECC buffer must be 2 bytes in length. If the start
address is 128-bit aligned, then either 8 or 4 16-bit words should be programmed at the same time as
needed. If the start address is 64-bit aligned but not 128-bit aligned, then only 4 16-bit words should be
programmed at the same time.

The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array and the MSB of
pu16EccBuffer corresponds to the upper 64-bits of the main array.

The Fapi_calculateEcc() function can be used to calculate ECC for a given 64-bit aligned address and the
corresponding data.

Fapi_EccOnly – This mode will only program the ECC portion in Flash ECC memory space at the
address (Flash main array address should be provided for this function and not the corresponding ECC
address) specified. It can program either 2 bytes (both LSB and MSB at a location in ECC memory) or 1
byte (LSB at a location in ECC memory).

The LSB of pu16EccBuffer corresponds to the lower 64-bits of the main array and the MSB of
pu16EccBuffer corresponds to the upper 64-bits of the main array.

Arguments two and three are ignored when using this mode.

NOTE: The length of pu16DataBuffer and pu16EccBuffer cannot exceed 8 and 2, respectively.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631
http://www.ti.com/tool/C2000WARE

API Functions www.ti.com

18 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

NOTE: This function does not check FMSTAT after issuing the program command. The user
application must check the FMSTAT value when FSM has completed the program operation.
FMSTAT indicates if there is any failure occurrence during the program operation. The user
application can use the Fapi_getFsmStatus function to obtain the FMSTAT value.

Also, the user application should use the Fapi_doVerify() function to verify that the Flash is
programmed correctly.

This function does not wait until the program operation is over; it just issues the command and returns
back. Hence, the user application must wait for the FMC to complete the program operation before
returning to any kind of Flash accesses. The Fapi_checkFsmForReady() function should be used to
monitor the status of an issued command.

Restrictions
• As described above, this function can program only a max of 128-bits (given the address provided is

128-bit aligned) at a time. If the user wants to program more than that, this function should be called in
a loop to program 128-bits (or 64-bits as needed by application) at a time.

• The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word
may only be programmed once per write or erase cycle.

• It is alright to program the data and ECC separately. However, each 64-bit dataword and the
corresponding ECC word may only be programmed once per write or erase cycle.

• The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word
may only be programmed once. The exceptions are:
– The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be

programmed together, and may be programmed 1 bit at a time as required by the DCSM operation.
– The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time as

required by the DCSM operation.
• ECC should not be programmed for linkpointer locations. The API will issue the Fapi_DataOnly

command for these locations even if the user chooses Fapi_AutoEccGeneration mode or
Fapi_DataAndEcc mode. Fapi_EccOnly mode is not supported for linkpointer locations.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_AsyncIncorrectDataBufferLength (failure: Data buffer size specified is incorrect)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: ECC buffer size specified is incorrect)
• Fapi_Error_AsyncDataEccBufferLengthMismatch (failure: Data buffer size either is not 64-bit

aligned or data length crosses the 128-bit aligned memory boundary)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure

that the API is executing frm the same zone as that of the target address for flash operation OR the
user should unlock before the flash operation.

• Fapi_Error_FeatureNotAvailable (failure: User passed a mode that is not supported)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for

the valid address range)

Sample Implementation
This example does not show the erase operation. Note that a sector should be erased before it can be
reprogrammed.
#include “F021_F28002x_C28x.h”

#define CPUCLK_FREQUENCY 100 /* 100 MHz System frequency */

int main(void)
{

//

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

19SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

// Initialize System Control
//
Device_init();

//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
Flash_initModule(FLASH0CTRL_BASE, FLASH0ECC_BASE, DEVICE_FLASH_WAITSTATES);

//
// Jump to RAM and call the Flash API functions
//
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;
uint16 au16DataBuffer[8] = {0x0001, 0x0203, 0x0405, 0x0607, 0x0809, 0x0A0B, 0x0C0D, 0x0E0F};
uint32 *DataBuffer32 = (uint32 *)au16DataBuffer;
uint32 u32Index = 0;

EALLOW;

//
// This function is required to initialize the Flash API based on
// System frequency before any other Flash API operation can be performed
// Note that the FMC register base address and system frequency are passed as the parameters
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 100);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Fapi_setActiveFlashBank function initializes Flash banks
// and FMC for erase and program operations.
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Bank0 Program
//

//
// Program 0x200 16-bit words in Bank0 Sector 4
//

for(u32Index = 0x84000; (u32Index < 0x84200) &&
(oReturnCheck == Fapi_Status_Success); u32Index+=8)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

20 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

{
//
// Issue program command
//
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index, au16DataBuffer, 8,

0, 0, Fapi_AutoEccGeneration);

//
// Wait until the Flash program operation is over
//
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

//
// Read FMSTAT register contents to know the status of FSM after
// program command to see if there are any program operation related errors
//
oFlashStatus = Fapi_getFsmStatus();

if(oFlashStatus != 0)
{

//
//Check FMSTAT and debug accordingly
//
FMSTAT_Fail();

}

//
// Verify the programmed values
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index, 4, DataBuffer32, &oFlashStatusWord);

if(oReturnCheck != Fapi_Status_Success)
{

//
// Check Flash API documentation for possible errors
//
Example_Error(oReturnCheck);

}
}

//
// * User code for further Bank0 flash operations *
//
.
.
.
.

//
// Example is done here
//
Example_Done();

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

21SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.2.4 Fapi_issueProgrammingCommandForEccAddresses()
Remaps an ECC address to data address and calls Fapi_issueProgrammingCommand().

Synopsis
Fapi_StatusType Fapi_issueProgrammingCommandForEccAddress(

uint32 *pu32StartAddress,
uint16 *pu16EccBuffer,
uint16 u16EccBufferSizeInBytes)

Parameters

pu32StartAddress [in] ECC start address in Flash for the ECC to be programmed
pu16EccBuffer [in] pointer to the ECC buffer address
u16EccBufferSizeInBytes [in] number of bytes in the ECC buffer

If the number of bytes is 1, LSB (ECC for lower 64 bits) gets
programmed. MSB alone cannot be programmed using this
function. If the number of bytes is 2, both LSB and MSB bytes
of ECC get programmed.

Description
This function will remap an address in the ECC memory space to the corresponding data address space
and then call Fapi_issueProgrammingCommand() to program the supplied ECC data. The same
limitations for Fapi_issueProgrammingCommand() using Fapi_EccOnly mode applies to this function. The
LSB of pu16EccBuffer corresponds to the lower 64 bits of the main array and the MSB of pu16EccBuffer
corresponds to the upper 64 bits of the main array.

NOTE: The length of the pu16EccBuffer cannot exceed 2.

NOTE: This function does not check FMSTAT after issuing the program command. The user
application must check the FMSTAT value when FSM has completed the program operation.
FMSTAT indicates if there is any failure occurrence during the program operation. The user
application can use the Fapi_getFSMStatus function to obtain the FMSTAT value.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_AsyncIncorrectEccBufferLength (failure: Data buffer size specified is incorrect)
• Fapi_Error_FlashRegsNotWritable (failure: Flash register writes failed. The user should make sure

that the API is executing frm the same zone as that of the target address for flash operation OR the
user should unlock before the flash operation.

• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for
the valid address range)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

22 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.2.5 Fapi_issueFsmSuspendCommand()
Issues Flash State Machine suspend command

Synopsis
Fapi_StatusType Fapi_issueFsmSuspendCommand(void)

Parameters
None

Description
This function issues a suspend now command which will suspend the FSM commands, Program and
Erase Sector, when they are the current active command. Use Fapi_getFsmStatus() to check to see if the
operation is successful.

Return Value
• Fapi_Status_Success (success)

3.2.6 Fapi_issueAsyncCommand()
Issues a command to the Flash State Machine. See the description for the list of commands that can be
issued by this function.

Synopsis
Fapi_StatusType Fapi_issueAsyncCommand(

Fapi_FlashStateCommandsType oCommand)

Parameters

oCommand [in] Command to issue to the FSM

Description
This function issues a command to the Flash State Machine for commands not requiring any additional
information (such as address). Typical commands are Clear Status, Program Resume, Erase Resume and
Clear_More. This function does not wait until the command is over; it just issues the command and returns
back. Hence, the user application must wait for the FMC to complete the given command before returning
to any kind of Flash accesses. The Fapi_checkFsmForReady() function can be used to monitor the status
of an issued command.

Below are the details of these commands:
• Fapi_ClearStatus: Executing this command clears the ILA, PGV, EV, CSTAT, VOLTSTAT, and

INVDAT bits in the FMSTAT register. Flash API issues this command before issuing a program or an
erase command.

• Fapi_ClearMore: Executing this command clears everything the Clear Status command clears and
additionally, clears the ESUSP and PSUSP bits in the FMSTAT register.

• Fapi_ProgramResume: Executing this command will resume the previously suspended program
operation. Issuing a resume command when suspend is not active has no effect. Note that a new
program operation cannot be initiated while a previous program operation is suspended.

• Fapi_EraseResume: Executing this command will resume the previously suspended erase operation.
Issuing a resume command when suspend is not active has no effect. Note that a new erase operation
cannot be initiated while a previous erase operation is suspended.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

23SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

NOTE: This function does not check FMSTAT after issuing the command. The user application must
check the FMSTAT value when FSM has completed the operation. FMSTAT indicates if
there is any failure occurrence during the operation. The user application can use the
Fapi_getFsmStatus function to obtain the FMSTAT value.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_FeatureNotAvailable (failure: User passed a command that is not supported)

Sample Implementation
#include “F021_F28002x_C28x.h”

#define CPUCLK_FREQUENCY 100 /* 100 MHz System frequency */

int main(void)
{

//
// Initialize System Control
//
Device_init();

//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
Flash_initModule(FLASH0CTRL_BASE, FLASH0ECC_BASE, DEVICE_FLASH_WAITSTATES);

//
// Jump to RAM and call the Flash API functions
//
Example_CallFlashAPI();

}

#pragma CODE_SECTION(Example_CallFlashAPI, ramFuncSection);
void Example_CallFlashAPI(void)
{

Fapi_StatusType oReturnCheck;
Fapi_FlashStatusType oFlashStatus;
uint16 au16DataBuffer[8] = {0x0001, 0x0203, 0x0405, 0x0607, 0x0809, 0x0A0B, 0x0C0D, 0x0E0F};
uint32 *DataBuffer32 = (uint32 *)au16DataBuffer;
uint32 u32Index = 0;

//
// Bank0 operations
//
EALLOW;

//
// This function is required to initialize the Flash API based on
// System frequency before any other Flash API operation can be performed
// Note that the FMC register base address and system frequency are passed as the parameters
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 100);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

24 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

}

//
// Fapi_setActiveFlashBank function initializes Flash banks
// and FMC for erase and program operations.
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error(oReturnCheck);
}

//
// Issue an async command
//
oReturnCheck = Fapi_issueAsyncCommand(Fapi_ClearMore);

//
// Wait until the Fapi_ClearMore operation is over
//
while (Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}

if(oReturnCheck != Fapi_Status_Success)
{

Example_Error (oReturnCheck);
}

//
// Read FMSTAT register contents to know the status of FSM after
// program command to see if there are any program operation related errors
//
oFlashStatus = Fapi_getFsmStatus();

if(oFlashStatus != 0)
{

//
//Check FMSTAT and debug accordingly
//
FMSTAT_Fail();

}

//
// * User code for further Bank0 flash operations *
//
.
.
.
.

EDIS;

//
// Example is done here
//
Example_Done();

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

25SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.2.7 Fapi_checkFsmForReady()
Returns the status of the Flash State Machine

Synopsis
Fapi_StatusType Fapi_checkFsmForReady(void)

Parameters
None

Description
This function returns the status of the Flash State Machine indicating if it is ready to accept a new
command or not. The primary use is to check if an Erase or Program operation has finished.

Return Value
• Fapi_Status_FsmBusy (FSM is busy and cannot accept new command except for suspend

commands)
• Fapi_Status_FsmReady (FSM is ready to accept new command)

3.2.8 Fapi_getFsmStatus()
Returns the value of the FMSTAT register

Synopsis
Fapi_FlashStatusType Fapi_getFsmStatus(void)

Parameters
None

Description
This function returns the value of the FMSTAT register. This register allows the user application to
determine whether an erase or program operation is successfully completed or in progress or suspended
or failed. The user application should check the value of this register to determine if there is any failure
after each erase and program operation.

Return Value

Table 7. FMSTAT Register
Bits
31 ... 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd PGV Rsvd EV Rsvd Busy ERS PGM INV
DAT CSTAT Volt

Stat ESUSP PSUSP Rsvd

Table 8. FMSTAT Register Field Descriptions

Bit Field Description
31-13 RSVD Reserved

12 PGV Program verify. When set, indicates that a word is not successfully programmed after the maximum
allowed number of program pulses are given for program operation.

11 RSVD Reserved

10 EV
Erase verify. When set, indicates that a sector is not successfully erased after the maximum
allowed number of erase pulses are given for erase operation. During Erase verify command, this
flag is set immediately if a bit is found to be 0.

9 RSVD Reserved
8 Busy When set, this bit indicates that a program, erase, or suspend operation is being processed.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

26 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Table 8. FMSTAT Register Field Descriptions (continued)
Bit Field Description

7 ERS
Erase Active. When set, this bit indicates that the flash module is actively performing an erase
operation. This bit is set when erasing starts and is cleared when erasing is complete. It is also
cleared when the erase is suspended and set when the erase resumes.

6 PGM
Program Active. When set, this bit indicates that the flash module is currently performing a program
operation. This bit is set when programming starts and is cleared when programming is complete. It
is also cleared when programming is suspended and set when programming is resumes.

5 INVDAT Invalid Data. When set, this bit indicates that the user attempted to program a “1” where a “0” was
already present. This bit is cleared by the Clear Status command.

4 CSTAT

Command Status. Once the FSM starts any failure will set this bit. When set, this bit informs the
host that the program or erase command failed and the command was stopped. This bit is cleared
by the Clear Status command. For some errors, this will be the only indication of an FSM error
because the cause does not fall within the other error bit types.

3 VOLTSTAT
Core Voltage Status. When set, this bit indicates that the core voltage generator of the pump power
supply dipped below the lower limit allowable during a program or erase operation. This bit is
cleared by the Clear Status command.

2 ESUSP
Erase Suspend. When set, this bit indicates that the flash module has received and processed an
erase suspend operation. This bit remains set until the erase resume command has been issued or
until the Clear_More command is run.

1 PSUSP
Program Suspend. When set, this bit indicates that the flash module has received and processed a
program suspend operation. This bit remains set until the program resume command has been
issued or until the Clear_More command is run.

0 RSVD RSVD

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

27SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.3 Read Functions

3.3.1 Fapi_doBlankCheck()
Verifies region specified is erased value

Synopsis
Fapi_StatusType Fapi_doBlankCheck(

uint32 *pu32StartAddress,
uint32 u32Length,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to blank check
u32Length [in] length of region in 32-bit words to blank check
poFlashStatusWord [out] returns the status of the operation if result is not

Fapi_Status_Success
->au32StatusWord[0] address of first non-blank location
->au32StatusWord[1] data read at first non-blank location
->au32StatusWord[2] value of compare data (always 0xFFFFFFFF)
->au32StatusWord[3] N/A

Description
This function checks if the flash is blank (erased state) starting at the specified address for the length of
32-bit words specified. If a non-blank location is found, corresponding address and data will be returned in
the poFlashStatusWord parameter.

Restrictions
The region being blank-checked cannot cross bank address boundary.

Return Value
• Fapi_Status_Success (success) - specified Flash locations are found to be in erased state
• Fapi_Error_Fail (failure: region specified is not blank)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for

the valid address range)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

28 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.3.2 Fapi_doVerify()
Verifies region specified against supplied data

Synopsis
Fapi_StatusType Fapi_doVerify(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 *pu32CheckValueBuffer,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to verify
u32Length [in] length of region in 32-bit words to verify
pu32CheckValueBuffer
[in]

address of buffer to verify region against. Data
buffer should be 128-bit aligned.

poFlashStatusWord [out] returns the status of the operation if result is not
Fapi_Status_Success

->au32StatusWord[0] address of first verify failure location
->au32StatusWord[1] data read at first verify failure location
->au32StatusWord[2] value of compare data
->au32StatusWord[3] N/A

Description
This function verifies the device against the supplied data starting at the specified address for the length of
32-bit words specified. If a location fails to compare, these results will be returned in the
poFlashStatusWord parameter.

Restrictions
The region being verified cannot cross bank address boundary.

Return Value
• Fapi_Status_Success (success: region specified matches supplied data))
• Fapi_Error_Fail (failure: region specified does not match supplied data)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for

the valid address range)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

29SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.3.3 Fapi_calculatePsa()
Calculates the PSA for a specified region

Synopsis
uint32 Fapi_calculatePsa(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 u32PsaSeed,
Fapi_FlashReadMarginModeType oReadMode)

Parameters

pu32StartAddress [in] start address for region to calculate PSA value
u32Length [in] length of region in 32-bit words to calculate PSA value
u32PsaSeed [in] seed value for PSA calculation
oReadMode [in] only normal mode is applicable. Use Fapi_NormalRead.

Description
This function calculates the PSA value for the region specified starting at pu32StartAddress for u32Length
32-bit words using u32PsaSeed value. The PSA algorithm is given in Appendix D

Restrictions
The region that the PSA is being calculated on cannot cross bank address boundary

Return Value
• PSA value (success)
• 0xA5A5A5A5U (failure: User provided an invalid address. Please refer Data Manual for the valid

address range)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

30 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.3.4 Fapi_doPsaVerify()
Verifies region specified against specified PSA value

Synopsis
Fapi_StatusType Fapi_doPsaVerify(

uint32 *pu32StartAddress,
uint32 u32Length,
uint32 u32PsaValue,
Fapi_FlashStatusWordType *poFlashStatusWord)

Parameters

pu32StartAddress [in] start address for region to verify PSA value
u32Length [in] length of region in 32-bit words to verify PSA value
u32PsaValue [in] PSA value to compare region against
poFlashStatusWord [out] returns the status of the operation if result is not

Fapi_Status_Success
->au32StatusWord[3] Actual PSA

Description
This function verifies the device against the supplied PSA value starting at the specified address for the
length of 32-bit words specified. The calculated PSA value is returned in the poFlashStatusWord
parameter.

Restrictions
The region being verified cannot cross bank address boundary.

Return Value
• Fapi_Status_Success (success)
• Fapi_Error_Fail (failure: region specified does not match supplied data)
• Fapi_Error_InvalidAddress (failure: User provided an invalid address. Please refer Data Manual for

the valid address range)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

31SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.4 Informational Functions

3.4.1 Fapi_getLibraryInfo()
Returns information about this compile of the Flash API

Synopsis
Fapi_LibraryInfoType Fapi_getLibraryInfo(void)

Parameters
None

Description
This function returns information specific to the compile of the Flash API library. The information is
returned in a struct Fapi_LibraryInfoType. The members are as follows:
• u8ApiMajorVersion – Major version number of this compile of the API. This value is 1.
• u8ApiMinorVersion – Minor version number of this compile of the API. Minor version is 57 for F28002x

devices.
• u8ApiRevision – Revision version number of this compile of the API.
• oApiProductionStatus – Production status of this compile (Alpha_Internal, Alpha, Beta_Internal, Beta,

Production)
• u32ApiBuildNumber – Build number of this compile. Used to differentiate between different alpha and

beta builds
• u8ApiTechnologyType – Indicates the Flash technology supported by the API. This field returns a

value of 0x4.
• u8ApiTechnologyRevision – Indicates the revision of the technology supported by the API
• u8ApiEndianness – This field always returns as 1 (Little Endian) for F28002x devices.
• u32ApiCompilerVersion – Version number of the Code Composer Studio code generation tools used to

compile the API

Return Value
• Fapi_LibraryInfoType (gives the information retrieved about this compile of the API)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

API Functions www.ti.com

32 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.5 Utility Functions

3.5.1 Fapi_flushPipeline()
Flushes the FMC pipeline buffers

Synopsis
void Fapi_flushPipeline(void)

Parameters
None

Description
This function flushes the FMC data cache. The data cache must be flushed before the first non-API Flash
read after an erase or program operation.

Return Value
None

3.5.2 Fapi_calculateEcc()
Calculates the ECC for the supplied address and 64-bit value

Synopsis
uint8 Fapi_calculateEcc(

uint32 u32Address,
uint64 u64Data)

Parameters

u32Address [in] Address of the 64-bit value to calculate the ECC
u64Data [in] 64-bit value to calculate ECC on (should be in little endian

order)

Description
This function will calculate the ECC for a 64-bit aligned word including address. There is no need to
provide a left-shifted address to this function anymore. TMS320F28002x Flash API takes care of it.

Return Value
• 8-bit calculated ECC (upper 8 bits of the 16-bit return value should be ignored)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com API Functions

33SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.5.3 Fapi_isAddressEcc()
Indicates is an address is in the Flash Memory Controller ECC space

Synopsis
boolean Fapi_isAddressEcc(

uint32 u32Address)

Parameters

u32Address [in] Address to determine if it lies in ECC address space

Description
This function returns True if address is in ECC address space or False if it is not.

Return Value
• FALSE (Address is not in ECC address space)
• TRUE (Address is in ECC address space)

3.5.4 Fapi_remapEccAddress()
Takes ECC address and remaps it to main address space

Synopsis
uint32 Fapi_remapEccAddress(

uint32 u32EccAddress)

Parameters

u32EccAddress [in] ECC address to remap

Description
This function returns the main array Flash address for the given Flash ECC address. When the user wants
to program ECC data at a known ECC address, this function can be used to obtain the corresponding
main array address. Note that the Fapi_issueProgrammingCommand() function needs a main array
address and not the ECC address (even for the Fapi_EccOnly mode).

Return Value
• 32-bit Main Flash Address

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

Recommended FSM Flows www.ti.com

34 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

3.5.5 Fapi_calculateFletcherChecksum()
Calculates the Fletcher checksum from the given address and length

Synopsis
uint32 Fapi_calculateFletcherChecksum(

uint16 *pu16Data,
uint16 u16Length)

Parameters

pu16Data [in] Address to start calculating the checksum from
u16Length [in] Number of 16-bit words to use in calculation

Description
This function generates a 32-bit Fletcher checksum starting at the supplied address for the number of 16-
bit words specified.

Return Value
• 32-bit Fletcher Checksum value

4 Recommended FSM Flows

4.1 New devices from Factory
Devices are shipped erased from the Factory. It is recommended, but not required to do a blank check on
devices received to verify that they are erased.

4.2 Recommended Erase Flow
The following diagram describes the flow for erasing a sector(s) on a device. Please refer to Section 3.2.2
for further information.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

Start

Done

Yes

Yes

DUT fails Erase

No

Call

Fapi_issueAsyncCommandWithAddress()

Fapi_checkFsmForReady() ! =

Fapi_Status_FsmBusy

Fapi_getFsmStatus()

== 0

No

Call

Fapi_setActiveFlashBank()

Yes

No

Call

Fapi_initializeAPI()

Another Sector to Erase?

www.ti.com Recommended FSM Flows

35SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Figure 1. Recommended Erase Flow

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

Start

Done

Yes

Yes

DUT fails program

Call
Fapi_issueProgrammingCommand()

Supplying address, data and mode

Fapi_checkFsmForReady()

!=Fapi_Status_FsmBusy

Fapi_getFsmStatus()

== 0

No

No

Call

Fapi_setActiveFlashBank()

More data to program?

Yes

No

Call

Fapi_InitializeAPI()

Recommended FSM Flows www.ti.com

36 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

4.3 Recommended Program Flow
The following diagram describes the flow for programming a device. This flow assumes the user has
already erased all affected sectors or banks following the Recommended Erase Flow. Please refer to
Section 4.2 for further information.

Figure 2. Recommended Program Flow

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

37SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Flash State Machine Commands

Appendix A
SPNU631–March 2020

Flash State Machine Commands

A.1 Flash State Machine Commands

Table 9. Flash State Machine Commands

Command Description Enumeration Type API Call(s)
Program
Data

Used to program data to
any valid Flash address Fapi_ProgramData Fapi_issueProgrammingCommand()

Fapi_issueProgrammingCommandForEccAddress()

Erase Sector
Used to erase a Flash
sector located by the
specified address

Fapi_EraseSector Fapi_issueAsyncCommandWithAddress()

Clear Status Clears the status register Fapi_ClearStatus Fapi_issueAsyncCommand()
Program
Resume

Resumes a suspended
programming operation Fapi_ProgramResume Fapi_issueAsyncCommand()

Erase
Resume

Resumes a suspended
erase operation Fapi_EraseResume Fapi_issueAsyncCommand()

Clear More Clears the status register Fapi_ClearMore Fapi_issueAsyncCommand()

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

38 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Object Library Function Information

Appendix B
SPNU631–March 2020

Object Library Function Information

B.1 TMS320F28002x Flash API Library

Table 10. C28x Function Sizes and Stack Usage

Function Name Size In
Words

Worst
Case
Stack
Usage

Fapi_calculateEcc 31 TBD
Fapi_calculateFletcherChecksum 44 TBD
Fapi_calculatePsa
Includes references to the following functions

• Fapi_isAddressEcc

57 TBD

Fapi_checkFsmForReady 14 TBD
Fapi_doBlankCheck
Includes references to the following functions

• Fapi_flushPipeline
• Fapi_isAddressEcc

130 TBD

Fapi_doVerify
Includes references to the following functions

• Fapi_flushPipeline
• Fapi_isAddressEcc

15 TBD

Fapi_flushPipeline 21 TBD
Fapi_getFsmStatus 7 TBD
Fapi_getLibraryInfo 30 TBD
Fapi_initializeAPI 74 TBD
Fapi_isAddressEcc 34 TBD
Fapi_issueAsyncCommand 23 TBD
Fapi_issueAsyncCommandWithAddress
Includes references to the following functions

• Fapi_setupBankSectorEnable

56 TBD

Fapi_issueFsmSuspendCommand 51 TBD
Fapi_issueProgrammingCommand
Includes references to the following functions

• Fapi_calculateEcc
• Fapi_setupBankSectorEnable

427 TBD

Fapi_issueProgrammingCommandForEccAddresses
Includes references to the following functions

• Fapi_calculateEcc
• Fapi_setupBankSectorEnable
• Fapi_remapEccAddress

21 TBD

Fapi_remapEccAddress 61 TBD
Fapi_setActiveFlashBank
Includes references to the following functions

• Fapi_calculateFletcherChecksum

47 TBD

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

39SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Typedefs, Defines, Enumerations and Structures

Appendix C
SPNU631–March 2020

Typedefs, Defines, Enumerations and Structures

C.1 Type Definitions
#if defined(__TMS320C28XX__)

typedef unsigned char boolean;

typedef unsigned int uint8; /*This is 16 bits in C28x*/
typedef unsigned int uint16;
typedef unsigned long int uint32;
typedef unsigned long long int uint64;

#endif

C.2 Defines
#if (defined(__TMS320C28xx__) && __TI_COMPILER_VERSION__ < 6004000)
#if !defined(__GNUC__)
#error “F021 Flash API requires GCC language extensions. Use the –gcc option.”
#endif
#endif

#ifndef TRUE
#define TRUE 1

#endif

#ifndef FALSE
#define FALSE 0

#endif

C.3 Enumerations

C.3.1 Fapi_FlashProgrammingCommandsType
This contains all the possible modes used in the Fapi_IssueProgrammingCommand().
typedef enum
{
Fapi_AutoEccGeneration, /* This is the default mode for the command and will

auto generate the ecc for the provided data buffer */
Fapi_DataOnly, /* Command will only process the data buffer */
Fapi_EccOnly, /* Command will only process the ecc buffer */
Fapi_DataAndEcc /* Command will process data and ecc buffers */

} ATTRIBUTE_PACKED Fapi_FlashProgrammingCommandsType;

C.3.2 Fapi_FlashBankType
This is used to indicate which Flash bank is being used.
typedef enum
{

Fapi_FlashBank0
} ATTRIBUTE_PACKED Fapi_FlashBankType;

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

Enumerations www.ti.com

40 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Typedefs, Defines, Enumerations and Structures

C.3.3 Fapi_FlashStateCommandsType
This contains all the possible Flash State Machine commands.
typedef enum
{

Fapi_ProgramData = 0x0002,
Fapi_EraseSector = 0x0006,
Fapi_ClearStatus = 0x0010,
Fapi_ProgramResume = 0x0014,
Fapi_EraseResume = 0x0016,
Fapi_ClearMore = 0x0018

} ATTRIBUTE_PACKED Fapi_FlashStateCommandsType;

C.3.4 Fapi_FlashReadMarginModeType
This contains all the possible Flash State Machine commands.
typedef enum
{

Fapi_NormalRead = 0x0,
} ATTRIBUTE_PACKED Fapi_FlashReadMarginModeType;

C.3.5 Fapi_StatusType
This is the master type containing all possible returned status codes.
typedef enum
{

Fapi_Status_Success=0, /* Function completed successfully */
Fapi_Status_FsmBusy, /* FSM is Busy */
Fapi_Status_FsmReady, /* FSM is Ready */
Fapi_Status_AsyncBusy, /* Async function operation is Busy */
Fapi_Status_AsyncComplete, /* Async function operation is Complete */
Fapi_Error_Fail=500, /* Generic Function Fail code */
Fapi_Error_StateMachineTimeout, /* State machine polling never returned ready and timed out */
Fapi_Error_OtpChecksumMismatch, /* Returned if OTP checksum does not match expected value */
Fapi_Error_InvalidDelayValue, /* Returned if the Calculated RWAIT value exceeds 15 -

Legacy Error */
Fapi_Error_InvalidHclkValue, /* Returned if FClk is above max FClk value -

FClk is a calculated from SYSCLK and RWAIT */
Fapi_Error_InvalidCpu, /* Returned if the specified Cpu does not exist */
Fapi_Error_InvalidBank, /* Returned if the specified bank does not exist */
Fapi_Error_InvalidAddress, /* Returned if the specified Address does not exist in Flash

or OTP */
Fapi_Error_InvalidReadMode, /* Returned if the specified read mode does not exist */
Fapi_Error_AsyncIncorrectDataBufferLength,
Fapi_Error_AsyncIncorrectEccBufferLength,
Fapi_Error_AsyncDataEccBufferLengthMismatch,
Fapi_Error_FeatureNotAvailable, /* FMC feature is not available on this device */
Fapi_Error_FlashRegsNotWritable, /* Returned if Flash registers are not writable due to

security */
Fapi_Error_InvalidCPUID /* Returned if OTP has an invalid CPUID */

} ATTRIBUTE_PACKED Fapi_StatusType;

C.3.6 Fapi_ApiProductionStatusType
This lists the different production status values possible for the API.
typedef enum
{

Alpha_Internal, /* For internal TI use only. Not intended to be used by customers */
Alpha, /* Early Engineering release. May not be functionally complete */
Beta_Internal, /* For internal TI use only. Not intended to be used by customers */
Beta, /* Functionally complete, to be used for testing and validation */
Production /* Fully validated, functionally complete, ready for production use */

} ATTRIBUTE_PACKED Fapi_ApiProductionStatusType;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

www.ti.com Structures

41SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Typedefs, Defines, Enumerations and Structures

C.4 Structures

C.4.1 Fapi_FlashStatusWordType
This structure is used to return status values in functions that need more flexibility
typedef struct
{

uint32 au32StatusWord[4];
} ATTRIBUTE_PACKED Fapi_FlashStatusWordType;

C.4.2 Fapi_LibraryInfoType
This is the structure used to return API information
typedef struct
{

uint8 u8ApiMajorVersion;
uint8 u8ApiMinorVersion;
uint8 u8ApiRevision;
Fapi_ApiProductionStatusType oApiProductionStatus;
uint32 u32ApiBuildNumber;
uint8 u8ApiTechnologyType;
uint8 u8ApiTechnologyRevision;
uint8 u8ApiEndianness;
uint32 u32ApiCompilerVersion;

} Fapi_LibraryInfoType;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

42 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Parallel Signature Analysis (PSA) Algorithm

Appendix D
SPNU631–March 2020

Parallel Signature Analysis (PSA) Algorithm

D.1 Function Details
The functions Fapi_doPsaVerify() and Fapi_calculatePsa() make use of the Parallel Signature Analysis
(PSA) algorithm. Those functions are typically used to verify a particular pattern is programmed in the
Flash Memory without transferring the complete data pattern. The PSA signature is based on this primitive
polynomial:
f(X) = 1 + X + X^2 + X^22 + X^31

uint32 calculatePSA (uint32* pu32StartAddress,
uint32 u32Length, /* Number of 32-bit words */
uint32 u32InitialSeed)

{
uint32 u32Seed, u32SeedTemp;
u32Seed = u32InitialSeed;
while(u32Length--)
{

u32SeedTemp = (u32Seed << 1)^*(pu32StartAddress++);
if(u32Seed & 0x80000000)
{

u32SeedTemp ^= 0x00400007; /* XOR the seed value with mask */
}
u32Seed = u32SeedTemp;

}
return u32Seed;

}

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

43SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

ECC Calculation Algorithm

Appendix E
SPNU631–March 2020

ECC Calculation Algorithm

E.1 Function Details
The function below can be used to calculate ECC for a given 64-bit aligned address (no need to left-shift
the address) and the corresponding 64-bit data.
//
//Calculate the ECC for an address/data pair
//

uint16 CalcEcc(uint32 address, uint64 data)
{

const uint32 addrSyndrome[8] = {0x554ea, 0x0bad1, 0x2a9b5, 0x6a78d,
0x19f83, 0x07f80, 0x7ff80, 0x0007f};

const uint64 dataSyndrome[8] = {0xb4d1b4d14b2e4b2e, 0x1557155715571557,
0xa699a699a699a699, 0x38e338e338e338e3,
0xc0fcc0fcc0fcc0fc, 0xff00ff00ff00ff00,
0xff0000ffff0000ff, 0x00ffff00ff0000ff};

const uint16 parity = 0xfc;

uint64 xorData;
uint32 xorAddr;
uint16 bit, eccBit, eccVal;

//
//Extract bits "20:2" of the address
//
address = (address >> 2) & 0x7ffff;

//
//Compute the ECC one bit at a time.
//
eccVal = 0;
for (bit = 0; bit < 8; bit++)
{

//
//Apply the encoding masks to the address and data
//
xorAddr = address & addrSyndrome[bit];
xorData = data & dataSyndrome[bit];

//
//Fold the masked address into a single bit for parity calculation.
//The result will be in the LSB.
//
xorAddr = xorAddr ^ (xorAddr >> 16);
xorAddr = xorAddr ^ (xorAddr >> 8);
xorAddr = xorAddr ^ (xorAddr >> 4);
xorAddr = xorAddr ^ (xorAddr >> 2);
xorAddr = xorAddr ^ (xorAddr >> 1);

//
//Fold the masked data into a single bit for parity calculation.
//The result will be in the LSB.
//

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

Function Details www.ti.com

44 SPNU631–March 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

ECC Calculation Algorithm

xorData = xorData ^ (xorData >> 32);
xorData = xorData ^ (xorData >> 16);
xorData = xorData ^ (xorData >> 8);
xorData = xorData ^ (xorData >> 4);
xorData = xorData ^ (xorData >> 2);
xorData = xorData ^ (xorData >> 1);

//
//Merge the address and data, extract the ECC bit, and add it in
//
eccBit = ((uint16)xorData ^ (uint16)xorAddr) & 0x0001;
eccVal |= eccBit << bit;

}

//
//Handle the bit parity. For odd parity, XOR the bit with 1
//
eccVal ^= parity;
return eccVal;

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU631

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	TMS320F28002x Flash API
	Table of Contents
	1 Introduction
	1.1 Reference Material
	1.2 Function Listing Format

	2 TMS320F28002x Flash API Overview
	2.1 Introduction
	2.2 API Overview
	2.3 Using API
	2.3.1 Initialization Flow
	2.3.1.1 After Device Power Up
	2.3.1.2 FMC and Bank Setup
	2.3.1.3 On System Frequency Change

	2.3.2 Building With the API
	2.3.2.1 Object Library Files
	2.3.2.2 Distribution Files

	2.3.3 Key Facts For Flash API Usage

	3 API Functions
	3.1 Initialization Functions
	3.1.1 Fapi_initializeAPI()

	3.2 Flash State Machine Functions
	3.2.1 Fapi_setActiveFlashBank()
	3.2.2 Fapi_issueAsyncCommandWithAddress()
	3.2.3 Fapi_issueProgrammingCommand()
	3.2.4 Fapi_issueProgrammingCommandForEccAddresses()
	3.2.5 Fapi_issueFsmSuspendCommand()
	3.2.6 Fapi_issueAsyncCommand()
	3.2.7 Fapi_checkFsmForReady()
	3.2.8 Fapi_getFsmStatus()

	3.3 Read Functions
	3.3.1 Fapi_doBlankCheck()
	3.3.2 Fapi_doVerify()
	3.3.3 Fapi_calculatePsa()
	3.3.4 Fapi_doPsaVerify()

	3.4 Informational Functions
	3.4.1 Fapi_getLibraryInfo()

	3.5 Utility Functions
	3.5.1 Fapi_flushPipeline()
	3.5.2 Fapi_calculateEcc()
	3.5.3 Fapi_isAddressEcc()
	3.5.4 Fapi_remapEccAddress()
	3.5.5 Fapi_calculateFletcherChecksum()

	4 Recommended FSM Flows
	4.1 New devices from Factory
	4.2 Recommended Erase Flow
	4.3 Recommended Program Flow

	Appendix A Flash State Machine Commands
	A.1 Flash State Machine Commands

	Appendix B Object Library Function Information
	B.1 TMS320F28002x Flash API Library

	Appendix C Typedefs, Defines, Enumerations and Structures
	C.1 Type Definitions
	C.2 Defines
	C.3 Enumerations
	C.3.1 Fapi_FlashProgrammingCommandsType
	C.3.2 Fapi_FlashBankType
	C.3.3 Fapi_FlashStateCommandsType
	C.3.4 Fapi_FlashReadMarginModeType
	C.3.5 Fapi_StatusType
	C.3.6 Fapi_ApiProductionStatusType

	C.4 Structures
	C.4.1 Fapi_FlashStatusWordType
	C.4.2 Fapi_LibraryInfoType

	Appendix D Parallel Signature Analysis (PSA) Algorithm
	D.1 Function Details

	Appendix E ECC Calculation Algorithm
	E.1 Function Details

	Important Notice

