
TI Network Developer's Kit (NDK) API

Reference Guide

Literature Number: SPRU524K
May 2001–Revised October 2017

2 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

Contents

Preface .. 9
1 Introduction ... 11

1.1 What This Document Covers ... 12
1.2 Introduction.. 12
1.3 Supplemental API Information .. 13

2 Operating System Abstraction API ... 14
2.1 Operating System Configuration ... 15

2.1.1 Configuration Structure ... 15
2.2 Task Support.. 17

2.2.1 Function Overview .. 17
2.2.2 Task API Functions ... 18

2.3 Semaphore Support.. 22
2.3.1 Function Overview .. 22
2.3.2 Semaphore API Functions ... 22

2.4 Memory Allocation Support ... 25
2.4.1 Function Overview .. 25
2.4.2 Memory Allocation API Functions ... 25

2.5 Print and Debug Support .. 26
2.5.1 Standard API Functions .. 26
2.5.2 Debug API Functions ... 27

2.6 File I/O Support for Embedded Systems.. 27
2.6.1 Function Overview .. 28
2.6.2 EFS Custom API Functions.. 28
2.6.3 EFS Standard API Functions .. 32

3 Sockets and Stream IO API.. 35
3.1 File Descriptor Environment .. 36

3.1.1 Organization ... 36
3.1.2 Initializing the File System Environment ... 36

3.1.2.1 When to Initialize the File Descriptor Environment ... 36
3.1.2.2 Auto-Initializing the File Descriptor Environment ... 37

3.2 File Descriptor Programming Interface .. 38
3.2.1 Function Overview .. 38
3.2.2 File Descriptor API Functions.. 38
3.2.3 File Descriptor Set (fd_set) Macros ... 44

3.3 Sockets Programming Interface .. 46
3.3.1 Enhanced No-Copy Socket Operation ... 46
3.3.2 Function Overview .. 47
3.3.3 Sockets API Functions.. 48

3.4 Raw Ethernet Sockets Programming Interface... 66
3.4.1 Function Overview .. 66
3.4.2 Raw Ethernet Sockets API Functions .. 66

3.5 Full Duplex Pipes Programming Interface .. 74
3.5.1 Pipe API Functions.. 75

3.6 Internet Group Management Protocol (IGMP).. 75

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

3SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

4 Configuration and Initialization .. 76
4.1 Configuration Methods... 77
4.2 Configuration Manager API ... 77

4.2.1 Function Overview .. 78
4.2.2 Configuration API Functions ... 79
4.2.3 Configuration Entry API Functions .. 89

4.3 Configuration Specification.. 92
4.3.1 Organization ... 92
4.3.2 Network Service Specification (CFGTAG_SERVICE).. 92

4.3.2.1 Service Types ... 93
4.3.2.2 Common Argument Structure ... 93
4.3.2.3 Individual Configuration Entry Instance Structures ... 95
4.3.2.4 Specifying Network Services .. 96

4.3.3 IP Network Specification (CFGTAG_IPNET) .. 99
4.3.4 IP Gateway Route Specification (CFGTAG_ROUTE) .. 100
4.3.5 Client Record Specification (CFGTAG_CLIENT).. 100
4.3.6 Client User Account (CFGTAG_ACCT)... 101
4.3.7 System Information Specification (CFGTAG_SYSINFO)... 102
4.3.8 Extended System Information Tags ... 102
4.3.9 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP).......................... 103

4.4 Initialization Procedure ... 105
4.5 Network Control Initialization Procedure (NETCTRL).. 105

4.5.1 Initialization Procedure .. 106
4.5.2 Function Overview ... 107
4.5.3 Network Control API Functions .. 107

5 Network Tools Library - Support Functions ... 110
5.1 Generic Support Calls.. 111

5.1.1 Function Overview ... 111
5.1.2 Network Tools Support API Functions .. 111

5.2 DNS Support Calls.. 117
5.2.1 Function Overview ... 117
5.2.2 Standard Types and Definitions ... 117

5.2.2.1 Host Entry Structure... 117
5.2.2.2 Function Return Codes ... 118

5.2.3 DNS Support API Functions.. 118
5.3 TFTP Support ... 120

5.3.1 TFTP Support API Functions... 120
5.4 TCP/UDP Server Daemon Support .. 121

5.4.1 Server Daemon Support API Functions .. 122
5.4.2 Server Daemon Example ... 123

6 Network Tools Library - Services .. 124
6.1 Service Calling Conventions .. 125

6.1.1 Specifying Network Services Using the Configuration .. 125
6.1.1.1 Service Report Function ... 125

6.1.2 Invoking Network Services by NETTOOLS API ... 125
6.2 Telnet Server Service .. 127

6.2.1 Telnet Parameter Structure... 127
6.2.2 Invoking the Service via NETTOOLS API .. 128

6.3 DHCP Server Service .. 128
6.3.1 Operation ... 128
6.3.2 DHCP Server Parameter Structure.. 129
6.3.3 Invoking the Service via NETTOOLS API .. 129

6.4 DHCP Client Support... 130

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

4 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

6.4.1 Operation ... 130
6.4.2 DHCP Client Parameter Structure... 131
6.4.3 Invoking the Service via NETTOOLS API .. 131

6.5 HTTP Server Support .. 132
6.5.1 Operation ... 132
6.5.2 HTTP Server Parameter Structure .. 132
6.5.3 Using the HTTP Server and Adding Web Content .. 133
6.5.4 Invoking the Service via NETTOOLS API .. 133

6.6 DNS Server Service .. 133
6.6.1 Operation ... 134
6.6.2 DNS Server Parameter Structure ... 134
6.6.3 Invoking the Service via NETTOOLS API .. 134

6.7 Network Address Translation (NAT) Service.. 134
6.7.1 Operation ... 135
6.7.2 NAT Server Parameter Structure .. 135
6.7.3 Invoking the Service via NETTOOLS API .. 135

A Internal Stack Functions .. 137
A.1 Overview ... 138

A.1.1 Interrupts and Preemption .. 138
A.1.2 Proper Use of the llEnter() and llExit() Functions.. 138
A.1.3 Objects .. 138

A.2 Stack Executive (Exec) .. 139
A.2.1 API Functions .. 139

A.3 Packet Buffer Manager (PBM) Object ... 140
A.3.1 Object Type... 140
A.3.2 API Function Overview.. 140
A.3.3 API Function Description ... 141

A.4 Packet Buffer Manager Queue (PBMQ) Object .. 144
A.4.1 Object Type... 144
A.4.2 API Function Overview.. 144
A.4.3 API Function Description ... 145

A.5 Jumbo Packet Buffer Manager (Jumbo PBM) Object.. 146
A.5.1 API Function Overview.. 146
A.5.2 API Function Description ... 146

A.6 Stack Event (STKEVENT) Object .. 148
A.6.1 Object Type... 148
A.6.2 API Function Overview.. 148
A.6.3 API Function Description ... 148

A.7 Link Layer Information (LLI) Object .. 150
A.7.1 ARP Revalidation Logic ... 150
A.7.2 Object Type... 150
A.7.3 Information Structure .. 151
A.7.4 API Function Overview.. 151
A.7.5 API Functions .. 152

A.8 Binding Object... 155
A.8.1 Object Type... 155
A.8.2 BIND API Functions ... 155

A.9 Route Object .. 157
A.9.1 Object Type... 157
A.9.2 Route Entry Flags Definition.. 157
A.9.3 Route Entry Flags Guidelines .. 159
A.9.4 API Functions .. 160

A.10 Route Control Object ... 164

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

5SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

A.10.1 Route Control Messages .. 164
A.10.2 Route Control API Functions.. 167

A.11 Configuring the Stack .. 167
A.11.1 Configuration Structure .. 168

A.12 Network Address Translation.. 176
A.12.1 Operation .. 176

A.13 Network Interface Management Unit (NIMU) ... 177
A.13.1 Synopsis ... 177
A.13.2 Data Structure Definition .. 178
A.13.3 NIMU Configuration .. 182
A.13.4 API Function Overview .. 182
A.13.5 API Function Description .. 183

A.14 Virtual LAN (VLAN) Support... 186
A.14.1 Synopsis ... 186
A.14.2 User Priority Mapping Configuration ... 187

A.14.2.1 User Priority Configuration ... 187
A.14.2.2 Marking Packet Priority ... 189

A.14.3 API Function Overview .. 190
A.14.4 API Functions ... 190

A.15 Raw Ethernet Module .. 192
A.15.1 Synopsis ... 192
A.15.2 Raw Ethernet Data Prioritization - Socket Priority Use Case... 193

A.15.2.1 Socket Priority Configuration... 193
A.15.3 API Function Overview .. 194
A.15.4 API Functions ... 195

A.16 Obtaining Stack Statistics.. 196

B Network Address Translation ... 197
B.1 NAT Operation .. 198

B.1.1 Typical Configuration .. 198
B.1.2 Basic NAT .. 198
B.1.3 NAT Port Mapping ... 200
B.1.4 NAT Proxy Filters .. 203

B.1.4.1 Problem Synopsis ... 203
B.1.4.2 Problem Example - FTP Clients on the LAN... 203
B.1.4.3 NDK Support for Proxy Filters .. 205
B.1.4.4 FTP Proxy Filter Example Code ... 206

B.2 NAT Port Mapping .. 208
B.2.1 Function Overview ... 208
B.2.2 NAT Entry Information Structure... 208
B.2.3 NAT API Functions .. 209

B.3 NAT Proxy Filters ... 210
B.3.1 Function Overview ... 210
B.3.2 NAT Proxy Filter Callback Functions.. 211
B.3.3 NAT Proxy API Functions... 212

C Point-to-Point Protocol .. 214
C.1 Low Level PPP Support.. 215

C.1.1 PPP Operation ... 215
C.1.2 Function Overview ... 216
C.1.3 Supported Protocols... 216
C.1.4 SI Module Callback Function... 216

C.1.4.1 Function Declaration .. 217
C.1.4.2 SI_MSG_CALLSTATUS Message .. 217
C.1.4.3 SI_MSG_ SENDPACKET Message .. 218

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

6 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

C.1.4.4 SI_MSG_ PEERCMAP Message.. 218
C.1.4.5 Example Callback Function Implementation ... 218

C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance 219
C.1.5.1 Multiple Instances ... 219
C.1.5.2 Using the Timer Object ... 219
C.1.5.3 Registering Packet Padding Requirements .. 220

C.1.6 PPP API Functions .. 220
C.2 Serial HDLC Client and Server Support ... 223

C.2.1 Function Overview ... 223
C.2.2 HDLC API Functions .. 223

C.3 PPPoE Client and Server Support.. 227
C.3.1 Function Overview ... 227
C.3.2 PPPoE API Functions ... 227

C.4 Creating PPP Server User Accounts... 230
C.4.1 Adding and Reviewing User Accounts .. 230

C.4.1.1 Adding a PPP User Account ... 231
C.4.1.2 Searching for a PPP User Account ... 231
C.4.1.3 Removing a PPP User Account ... 232

D Hardware Adaptation Layer (HAL)... 233
D.1 Overview ... 234

D.1.1 HAL Function Types... 234
D.1.2 External Calls from HAL Functions ... 234

D.2 Low-Level LED Driver (llUserLed) .. 234
D.2.1 Function Overview ... 234
D.2.2 Low-Level LED API Functions ... 235

D.3 Low-Level Timer Driver (llTimer).. 236
D.3.1 Function Overview ... 236
D.3.2 Low-Level Timer API Functions.. 236

D.4 Low-Level Packet Driver (llPacket) ... 237
D.4.1 Function Overview ... 237
D.4.2 Low-Level Packet API Functions .. 238

D.5 Low-Level Serial Port Driver (llSerial).. 241
D.5.1 Function Overview ... 241
D.5.2 Low-Level Serial API Functions.. 241

E Web Programming with the HTTP Server... 246
E.1 Adding Web Content ... 247

E.1.1 Operation ... 247
E.1.2 Converting Standard HTML Files .. 247
E.1.3 Declaring HTML Files to EFS .. 247
E.1.4 Cleaning up HTML Files .. 248

E.2 Writing CGI Functions.. 248
E.2.1 Adding Functions to the EFS... 248
E.2.2 CGI Function Declaration ... 248
E.2.3 Parsing CGI Form Data ... 249
E.2.4 Parsing CGI Multi-Part Form Data... 249
E.2.5 Sending HTTP/HTML Replies.. 250
E.2.6 HTML Error Response .. 251

E.3 HTTP Authentication ... 252
E.3.1 Authorization Realms.. 252
E.3.2 User Accounts.. 253
E.3.3 Designating Protected Files .. 253

E.4 CGI Function Example ... 254
E.4.1 Create the HTML Page ... 254

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

7SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Contents

E.4.2 Create the Base WEBPAGE Source File... 254
E.5 HTTP Server Exported Functions .. 256

E.5.1 Commonly Used Strings .. 256
E.5.2 Function Overview ... 257
E.5.3 HTTP Server Exported API Functions .. 257

F BSD Sockets Support.. 260
F.1 Using BSD Sockets Provided by SlNetSock .. 261
F.2 Things to Remember About BSD Compatibility .. 261

G IP Version 6 (IPv6) Stack API.. 262
G.1 Synopsis ... 263
G.2 API Functions and Data Structures .. 264

G.2.1 Socket Support for IPv6 .. 264
G.2.2 Architecture... 265
G.2.3 Socket Options... 265
G.2.4 Daemon6 ... 265
G.2.5 Nettools Applications .. 266

G.2.5.1 Telnet ... 266
G.2.5.2 Web Server... 267
G.2.5.3 TFTP .. 267
G.2.5.4 DNS Client.. 267

G.2.6 Configuring the IPv6 Stack ... 271

H Revision History ... 272
H.1 Revision List ... 272

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com

8 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

List of Figures

List of Figures
1-1. Components of a NDK-Enabled Application.. 12
3-1. Raw Ethernet Buffer Format .. 70
3-2. Raw Ethernet Buffer Format .. 72
A-1. NIMU Architecture .. 177
A-2. VLAN Module Placement in NIMU Enabled NDK Stack... 186
A-3. VLAN Example .. 188
A-4. Raw Ethernet Channel Manager Module in NDK .. 192
B-1. Basic Home Network Configuration .. 198
B-2. Public Servers on the Home Network.. 202
C-1. Standard PPP Frame Over Serial Line .. 215
C-2. PPP Frame Processed by PPP API.. 215
C-3. Serial Interface (SI) Abstraction... 215
G-1. NDK IPv6 Architectural Block Diagram .. 263
G-2. Internal Architecture Block Diagram for Socket Layer ... 265
G-3. IPv6 Stack Instantiation Placement .. 271

List of Tables
A-1. timer_tick... 181
A-2. IOCTL Commands.. 185
A-3. Special Case cmd .. 185
A-4. User Priorities for Traffic Agreement ... 188
H-1. Document Revision History.. 272

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

9SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Read This First

Preface
SPRU524K–May 2001–Revised October 2017

Read This First

About This Manual
This programmer's reference guide describes the various API functions provided by the NDK libraries, and
is intended to aid the development of network applications. It is the central reference document used when
programming the stack. See the TI Network Developer's Kit (NDK) User's Guide (SPRU523) to familiarize
yourself with the stack libraries, NDK configuration, and using the stack.

How to Use This Manual
This document contains the following chapters:
• Chapter 1: Introduction summarizes the various API sets described in the NDK documentation.
• Chapter 2: Operating System Abstraction API describes the API used by the adaptation layer to

access the operating system.
• Chapter 3: Sockets and Stream IO API describes the file and sockets API functions.
• Chapter 4: Configuration and Initialization describes the Configuration Manager API, the XGCONF

configuration method, the NDK initialization sequence, and the Network Control module.
• Chapter 5: Network Tools Library - Support Functions describes the network support functions

contained in the NETTOOLS library.
• Chapter 6: Network Tools Library - Services describes the network servers and services contained

in the NETTOOLS library.
• Appendix A: Internal Stack Functions contains a partial list of internal stack functions provided to aid

in the comprehension of kernel oriented calls.
• Appendix B: Network Address Translation describes the optional Network Address Translation

component, how to set up virtual networks, and protocol proxies.
• Appendix C: Point-to-Point Protocol describes the operation of the PPP and PPPoE support API

included in the NDK, and how to interface to a serial device.
• Appendix D: Hardware Adaptation Layer (HAL) describes the operation of the HAL, and the HAL

API functions.
• Appendix E: Web Programming with the HTTP Server describes how to get information from an

embedded network device through the webserver.
• Appendix F: BSD Sockets Support provides pointers to the Berkeley Software Distribution (BSD)

API socket support layer, which is now provided by SlNetSock, which is part of the SimpleLink SDK.
• Appendix G: IP Version 6 (IPv6) Stack API describes the APIs and data structures exposed by the

IPv6 stack.
• Appendix H: Revision History describes the changes to this document since the previous release.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

Notational Conventions www.ti.com

10 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Read This First

Notational Conventions
This document uses the following conventions:
• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plain face within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of a syntax that are within parentheses describe the type of information that should be
entered.

• Macro names are written in uppercase text; function names are written in lowercase.

NOTE: The location of NDK files referenced in this document will vary depending on the type of
installation your performed to obtain the NDK component. If you installed a SimpleLink™
SDK, the files are likely to be located in your <SDK_INSTALL_DIR>/sources/ti/ndk
directory. If you installed some other type of SDK, the files are likely to be located in your
<NDK_INSTALL_DIR>/packages/ti/ndk directory. For simplicity, this document refers to
the directories beginning at the /ti/ndk level, which is common to all installations.

Related Documentation From Texas Instruments
Additional information about the NDK can be found in SPRU523 (TI Network Developer's Kit (NDK) User's
Guide.) and the NDK category of the TI Embedded Processors Wiki. If you have questions, you can ask
them on the forum for the SDK that contains your NDK in TI's E2E community.

Trademarks
SimpleLink is a trademark of Texas Instruments.
Windows is a registered trademark of Microsoft.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/

11SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Introduction

Chapter 1
SPRU524K–May 2001–Revised October 2017

Introduction

This chapter serves as an introduction to the programming API reference for the NDK software.

Topic ... Page

1.1 What This Document Covers ... 12
1.2 Introduction... 12
1.3 Supplemental API Information ... 13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

What This Document Covers www.ti.com

12 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Introduction

1.1 What This Document Covers
This Reference Guide for the NDK is mainly a programming API reference guide. It is intended to aid in
the development of network applications and describes the various API functions provided by the stack
libraries.

Although this Programmer's Reference Guide will be the central reference document used when
programming the stack, you should first see the TI Network Developer's Kit (NDK) User's Guide
(SPRU523) to familiarize yourself with the stack libraries and with using the stack.

1.2 Introduction
The Network Developer's Kit (NDK) is a platform for development and demonstration of network enabled
applications on TI embedded processors. The code included in this NDK release is generic C code, which
runs on a variety of TI devices.

Within the SimpleLink SDK, the Network Services SlNetSock module configures the NDK as the network
stack for wired Ethernet communications.

The NDK stack serves as a rapid prototyping platform for the development of network and packet
processing applications. It can be used to add network connectivity to existing applications for
communications, configuration, and control. Using the components provided in the NDK, developers can
quickly move from development concepts to working implementations attached to the network.

Figure 1-1. Components of a NDK-Enabled Application

In Figure 1-1, the user application can make calls using the standard BSD sockets APIs, or it can directly
call into the SlNetSock layer to communicate with a network connection. The SlNetSock layer is a stack-
independent layer between the user application and the service-specific stacks.

Within the SimpleLink SDK, the Network Services SlNetSock module configures the NDK as the network
stack for wired Ethernet communications. The "SlNetIfNDK" is the implementation of the SlNetSock
interface for the NDK.

The NDK stack's settings may be configured at run time by making calls to the NDK's Cfg*() functions.

The NDK is designed to provide a platform-independent, device-independent, and RTOS-independent API
interface for use by the application. Many of the API modules described in this document and in the TI
Network Developer's Kit (NDK) API Reference Guide (SPRU524) are rarely used by applications. Instead
they are available to those who are writing device drivers and network stacks.

A user application typically uses the following APIs provided by the NDK:
• Cfg*() functions add settings to the configuration database that determine which network services will

be available to the application. For more information, see Section 4.2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524

www.ti.com Supplemental API Information

13SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Introduction

• NC_*() functions cause the network services system to be initialized, started, and stopped. For more
information, see Section 4.4.

• TaskCreate() or pthread*() functions to handle application threading using POSIX. Internally, POSIX
can use any RTOS supported for the target device by the SimpleLink SDK. For most targets, this
includes TI-RTOS Kernel and FreeRTOS. For details, see the TI Network Developer's Kit (NDK) User's
Guide (SPRU523).

• NDK socket APIs to perform socket actions such as accept, send, and receive. For a pure NDK
application, these are the BSD-like NDK_*() functions described in Section 3.3. For SimpleLink SDK
applications, you can use the standard BSD APIs provided via SlNetSock, which are described in
Appendix F.

NOTE: With the exception of calling TaskCreate() to create a new sockets thread, NDK applications
should no longer make calls to the Task*() functions that directly access the Task threads
provided by the TI-RTOS Kernel. This is because the NDK itself uses POSIX pthread calls.
While internally the POSIX threading APIs may be using TI-RTOS Kernel, calls to pthread
are not compatible with calls to the TI-RTOS Kernel's Task module.

1.3 Supplemental API Information
The following information appears as appendices to this document. These sections contain optional
information that may be useful in understanding the low-level application interface, but is not required
when developing traditional network applications.
• Appendix A Internal Stack Functions

The stack library internal function specification describes a subset of the low-level programming
interface to the stack. These functions allow the application writer to make use of kernel level function
APIs. As a general rule, it is not necessary to use this API for application development, although some
of the sample applications included in the NDK make use of these function calls.

• Appendix B Network Address Translation (NAT)
The stack library includes Network Address Translation module. This appendix describes the
operational theory of NAT, and how to use the NAT functions included in the library.

• Appendix C Point-to-Point Protocol (PPP)
The stack library has internal device sections for both traditional Ethernet, and PPP. The PPP module
can act as PPP client, server, or both (assuming multiple interfaces). This appendix describes the
operation of the PPP module, the PPP over Ethernet (PPPoE) module, and how to interface an HDLC
based serial device.

• Appendix D Hardware Adaptation Layer (HAL)
This appendix describes the hardware and operating system interfaces used by the stack. The
information allows application programmers to call device drivers directly when needed. This appendix
does not supply information about porting the HAL to a new platform.

• Appendix E Web Programming with the HTTP Server
This appendix describes how to make use of the HTTP server included in the NDK. The main topics
covered are adding Web content and writing CGI functions. There is also a description of the HTTP
API used by CGI functions, and some CGI example applications.

• Appendix F BSD Sockets Support
This appendix provides pointers to the Berkeley Software Distribution (BSD) API socket support layer,
which is now provided by SlNetSock, which is part of the SimpleLink SDK.

• Appendix G IPv6 Stack API
This appendix contains the data structure and API definitions exported by the IPv6 stack in the NDK.
All IPv6 socket level APIs are also documented so that the application can use them for
communication over IPv6 networks.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/SPRU523

14 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

Chapter 2
SPRU524K–May 2001–Revised October 2017

Operating System Abstraction API

The NDK OS Abstraction Layer (OSAL) uses a combination of POSIX pthread APIs and DPL HwiP and
SemaphoreP APIs as a means of OS abstraction. In general, application writers should not need to use
the OSAL APIs. However, the one exception is the TaskCreate() function, which may be used as a
convenience function for creating an NDK user thread that will make socket calls.

To keep the stack system portable, it was coded to a very compact operating system abstraction. The
stack can execute in any operating environment by porting the functions described here. Most of these
functions will map directly to their native OS counterpart.

If you program to this API, your applications will execute on any system to which this abstraction is ported,
but more importantly, because all the NDK functions are written to this layer, the behavior of the NDK can
be altered by altering the implementation of this layer. This allows the stack to be tuned in how it
interfaces to the native operating system.

Topic ... Page

2.1 Operating System Configuration .. 15
2.2 Task Support ... 17
2.3 Semaphore Support.. 22
2.4 Memory Allocation Support ... 25
2.5 Print and Debug Support... 26
2.6 File I/O Support for Embedded Systems ... 27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Operating System Configuration

15SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.1 Operating System Configuration
If you are using the Configuration Manager API to configure your application, the configuration options that
regulate OS behavior are stored in a data structure. The types of properties defined in the structure are
those that would typically be macros, but using a data structure allows the values to be changed without
rebuilding the libraries. The structure is described here for completeness, but applications should use the
configuration system to make alterations to these values.

If you are using XGCONF to configure your application, you can configure several aspects of the OS
behavior in the Scheduling tab of the Global NDK module property page. When you build the *.cfg
configuration file, the data structure described in the following section is generated internally and linked
into your application. See the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the
context-sensitive help for details.

Configuration methods are described in Chapter 4.

2.1.1 Configuration Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here. If you are using the
Configuration Manager API to configure your application, you will use this structure.

The stack internal configuration structure is _oscfg. Any element in this structure may be modified before
the system is booted. System initialization is covered later in this document.

The _oscfg structure is of type OSENVCFG, which is defined as follows:
// Configuration Structure
typedef struct _osenvcfg {

uint32_t DbgPrintLevel; // Debug message print threshold
uint32_t DbgAbortLevel; // Debug message sys abort threshold
int TaskPriLow; // Lowest priority for stack task
int TaskPriNorm; // Normal priority for stack task
int TaskPriHigh; // High priority for stack task
int TaskPriKern; // Kernel-level priority (highest)
int TaskStkLow; // Minimum stack size
int TaskStkNorm; // Normal stack size
int TaskStkHigh; // Stack size for high volume tasks
int TaskStkBoot; // Stack size for NS_BootTask

} OSENVCFG;

The structure entries are defined as follows:

_oscfg.DbgPrintLevel Debug message print threshold

Default Value DBG_INFO

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)
that will be recorded into the debug log. The threshold may be raised. The legal values
for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR, and DBG_None.

_oscfg.DbgAbortLevel Debug message abort threshold

Default Value DBG_ERROR

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)
that will result in a system shutdown (call to NC_NetStop()). The threshold may be
raised. The legal values for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR,
and DBG_None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

_oscfg.TaskPriLow — Priority Level for Low Priority Stack Task www.ti.com

16 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

_oscfg.TaskPriLow Priority Level for Low Priority Stack Task

Default Value 3

Description This is the priority at which low priority stack task threads are set. Setting a thread to a
lower priority than this will not disrupt the system, but no system or service supplied in
this package will attempt it.

_oscfg.TaskPriNorm Priority Level for Normal Priority for Stack Task

Default Value 5

Description This is the priority at which most stack task threads are set. Task threads that are
created by the system or services will usually run at this level.

_oscfg.TaskPriHigh Priority Level for High Priority for Stack Task

Default Value 7

Description This is the priority at which high priority stack task threads are set. Setting a thread at a
higher priority than this may disrupt the system and cause unpredictable behavior if the
thread calls any stack related functions. High priority tasks (like interrupts) can execute
at higher priority levels, but should signal lower priority tasks to perform any required
stack functions.

_oscfg.TaskPriKern Priority Level of High Priority Kernel Tasks

Default Value 9

Description This is the priority that task threads execute at when they are inside the kernel. Setting
tasks to this priority level ensures that they will not be disrupted by another task calling
stack functions. Note that this priority should be 2 higher than _oscfg.TaskPriHigh, to
allow the scheduler thread to occupy a priority in between. The proper method of
entering the kernel is to call llEnter() and llExit(). These functions are discussed in the
appendices, as they are not required for applications programming.

_oscfg.TaskStkLow Minimum Task Stack Size

Default Value 3072

Description This is the stack size used for network task that do very little network processing, or do
not use TCP.

_oscfg.TaskStkNorm Normal Task Stack Size

Default Value 4096

Description This is the stack size used for a network task with an average network bandwidth using
TCP. It is used for the majority of network tasks in the network tools library that use
TCP.

_oscfg.TaskStkHigh High Volume Task Stack Size

Default Value 5120

Description This is the stack size used to network tasks that require a high network bandwidth using
TCP. It is also used for tasks calling HTTP CGI functions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com _oscfg.TaskStkBoot — Boot Task Stack Size

17SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

_oscfg.TaskStkBoot Boot Task Stack Size

Default Value 2048

Description This is the stack size used for the boot task (NS_BootTask).

2.2 Task Support
The task object provides a method of manipulating task threads using a generic task handle.

Internally, task threads are implemented using POSIX pthreads. The rules governing pthread scheduling
and stacks are determined by the underlying RTOS. The documentation for the RTOS being used should
be consulted for more info.

2.2.1 Function Overview
The Task Object access functions (in functional order) are as follows:

TaskCreate() Create new task thread
TaskDestroy() Destroy a task thread
TaskSelf() Get handle to current task thread
TaskExit() Exit (terminate) current task thread
TaskYield() Yield to another task thread at the same priority
TaskSleep() Block a task thread for a period of time
TaskSetPri() Set task thread priority level
TaskGetPri() Get task thread priority level
TaskSetEnv() Assign one of three private environment handles to task thread
TaskGetEnv() Retrieve one of three private environment handles

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Task Support www.ti.com

18 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.2.2 Task API Functions

TaskCreate Create a Task Thread

Syntax void *TaskCreate(void(*pFun)(), char *Name, int Priority, uint32_t StackSize, uint32_t
Arg1, uint32_t Arg2, uint32_t Arg3);

Parameters

pFun Pointer to task entry-point function
Name NULL terminated task name (truncated after 11 characters)
Priority Task priority level (0-15)
StackSize Task stack size
Arg1 Optional task function argument 1
Arg2 Optional task function argument 2
Arg3 Optional task function argument 3

Return Value Returns a Task Handle on success or NULL on memory failure.

Description This function creates a task thread and automatically initializes and closes the NDK file
descriptor table for this thread. If successful, TaskCreate() returns a handle to the newly
created task.

This API automatically calls the NDK APIs fdOpenSession() and fdCloseSession() to
initialize and close the file descriptor table, respectively, for this thread. When using
TaskCreate() to create a thread for sockets programming, it is not necessary to call
fdOpenSession() and fdCloseSession() in the function pFun, as this will be done
automatically.

The task name supplied in Name is used for informational purposes only, and does not
need to be unique.

The task priority specified in Priority determines the task thread's priority relative to other
tasks in the system. The priority should not be higher than the configured value for the
NDK's Global.highTaskPriLevel property (the priority for high priority NDK tasks), which
is 7 by default. 0 is the lowest priority and should be reserved for an idle task. If the
specified priority is negative, the task is blocked.

The task stack size specified by StackSize is not examined or adjusted by the create
function. The size should be made compatible with the native environment (a multiple of
4 bytes should be sufficient).

Arg1 through Arg3 are optional arguments that can be passed to the calling function
(they are always pushed onto the stack, but the task function need not reference them).

There is no limit to the number of tasks that can be installed in the system.

If the priority level of the new task is higher than the priority level of the current task, the
entry-point function pFun is executed immediately (before TaskCreate() returns to the
caller).

Calling this function may cause a task switch.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com TaskDestroy — Destroy a Task Thread

19SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

TaskDestroy Destroy a Task Thread

Syntax void TaskDestroy(void *hTask);

Parameters

hTask Handle to target task

Return Value None.

Description Terminates execution of the task object specified by the supplied handle hTask, and
frees task object from system memory. Note that memory allocated by the task thread is
not associated with the task thread and must be freed manually.

TaskExit Exit a Task Thread

Syntax void TaskExit();

Parameters None.

Return Value Does not return.

Description This function exits a task thread. It should always be called immediately before the task
entry-point function is about to return, but it may be called from anywhere.

TaskGetEnv Get Task Environment Handle

Syntax void *TaskGetEnv(void *hTask, int Slot);

Parameters

hTask Handle to target task
Slot Environment slot to use (1-3)

Return Value Private environment handle or NULL.

Description Returns a private environment handle for the supplied task handle hTask that was
previously stored with the TaskSetEnv() function. The slot specified in Slot specifies the
address (1-3) of the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

TI-RTOS Kernel Users Note: The OS adaptation layer (OS.LIB) implements this
function for slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1
to 3 are not implemented. You should use the standard TI-RTOS Kernel functions
Task_setEnv() and Task_getEnv() for private environment pointer storage and retrieval.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

TaskGetPri — Get Task Priority www.ti.com

20 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

TaskGetPri Get Task Priority

Syntax int TaskGetPri(void *hTask);

Parameters

hTask Handle to target task

Return Value Task priority level.

Description Returns the priority of the target task. See TaskSetPri() for more information on priority.

TaskSelf Get the Handle to the Currently Executing Task Thread

Syntax void *TaskSelf();

Parameters None.

Return Value Handle to currently executing thread, or NULL on error.

Description Returns the task handle of the currently executing task thread. This function is used
mainly in other task object calls where the caller wishes to operate on the current thread,
but does not know the current thread's handle.

If called on an illegal (system) thread, this function returns NULL. Only certain
implementations of the OS even have a system thread, and no user code should ever be
executed on it. A NULL may also result if Task functions are called before the operating
system is initialized.

TaskSetEnv Set Task Environment Handle

Syntax void TaskSetEnv(void *hTask, int Slot, void *hEnv);

Parameters

hTask Handle to target task
Slot Environment slot to use (1-3)
hEnv Private environment handle

Return Value None.

Description Sets and stores a private environment handle for the supplied task handle hTask. This
handle can be later retrieved by TaskGetEnv(). The slot specified in Slot assigns an
address (1-3) to the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

TI-RTOS Kernel Users Note: The OS adaptation layer (OS.LIB) implements this
function for slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1
to 3 are not implemented. Application programmers should use the standard TI-RTOS
Kernel functions Task_setEnv() and Task_getEnv() for private environment pointer
storage and retrieval.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com TaskSetPri — Set Task Priority

21SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

TaskSetPri Set Task Priority

Syntax int TaskSetPri(void *hTask, int Priority);

Parameters

hTask Handle to target task
Priority Task priority level

Return Value Previous task priority level.

Description Sets the priority of the target task to the specified value. The priority should not be higher
than the configured value for the NDK's Global.highTaskPriLevel property (the priority for
high priority NDK tasks), which is 7 by default. 0 is the lowest priority and should be
reserved for an idle task. If the specified priority is negative, the task is blocked.

Calling this function may cause a task switch.

TaskSleep Sleep Task for Period of Time

Syntax void TaskSleep(uint32_t Delay);

Parameters

Delay Time (in milliseconds) of sleep

Return Value None.

Description Sleeps the calling task for a period of time as supplied in Delay. The sleep time cannot
be zero.

Calling this function may cause a task switch.

TaskYield Yield Execution to Another Task Thread

Syntax void TaskYield();

Parameters None.

Return Value None.

Description This function yields execution to another thread by causing a round-robin task switch
among ready task threads executing at the same priority level.

This function always causes a task switch; however, the original calling task may be the
next to execute.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Semaphore Support www.ti.com

22 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.3 Semaphore Support
The semaphore object provides a method of manipulating counting semaphores using a generic handle.
Semaphores can be used for both task synchronization and mutual exclusion.

2.3.1 Function Overview
The Semaphore Object access functions (in functional order) are as follows:

SemCreate() Create new semaphore
SemDelete() Delete semaphore
SemPend() Wait on semaphore, optionally for a period of time
SemCount() Get the current semaphore count
SemPost() Release semaphore - increment count
SemReset() Reset semaphore and set new count

2.3.2 Semaphore API Functions

SemCreate Create New Semaphore

Syntax void *SemCreate(int Count);

Parameters

Count Initial semaphore count

Return Value Handle to semaphore or NULL on error.

Description Creates a new semaphore object with an initial count.

SemCount Get Current Semaphore Count

Syntax int SemCount(void *hSem);

Parameters

hSem Handle to Semaphore

Return Value Current semaphore count

Description Returns the current count of the semaphore object.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com SemDelete — Delete Semaphore

23SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

SemDelete Delete Semaphore

Syntax void SemDelete(void *hSem);

Parameters

hSem Handle to Semaphore

Return Value None.

Description Deletes the semaphore object and frees related memory.

Any task currently waiting on this semaphore is blocked forever - even if it originally
specified a timeout to SemPend(). With a little care in programming, this will not occur.

SemPend Wait for a Semaphore

Syntax int SemPend(void *hSem, uint32_t Timeout);

Parameters

hSem Handle to Semaphore
Timeout Maximum time to wait (in milliseconds)

Return Value The function returns 1 if the semaphore was obtained, and 0 if not.

Description This function waits on a semaphore.

If the semaphore count is greater than 0, the semaphore count is decrement and this
function immediately returns.

If the semaphore count is zero, the task is placed on a waiting list for the semaphore and
blocked. If the semaphore becomes available in the time period specified in Timeout, the
function returns. However, the function returns regardless once the timeout has expired.
A timeout value of 0 always returns without blocking or yielding. A timeout value of
SemaphoreP_WAIT_FOREVER causes the caller to wait on the semaphore without time
out.

The waiting list is first in, first out, without regard to priority. Thus, semaphores can be
used to round-robin task threads at different priority levels.

Calling this function may cause a task switch (unless called with Timeout set to 0).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

SemPost — Signal a Semaphore www.ti.com

24 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

SemPost Signal a Semaphore

Syntax void SemPost(void *hSem);

Parameters

hSem Handle to Semaphore

Return Value None.

Description If the semaphore count is greater than 0 (or is equal to 0, but without any pending task
threads), the semaphore count is incremented and this function immediately returns.

If the semaphore count is zero and there are tasks threads pending on it, the count
remains at zero, and the first thread in the pending list is unblocked.

Calling this function may cause a task switch.

SemReset Reset Semaphore

Syntax void SemReset(void *hSem, int Count);

Parameters

hSem Handle to Semaphore
Count Initial semaphore count

Return Value None.

Description This function resets the semaphore, first setting an initial semaphore count, and then
unblocking all tasks that are pending on the semaphore.

This function should be used with care. Tasks that are pending on the semaphore may
exhibit unexpected behavior because all tasks pending on the semaphore will return
from their respective SemPend() calls regardless of requested timeout. The return value
for the respective SemPend() calls will always be correct because one or more tasks
may get the semaphore (depending on the value of Count), but tasks that called
SemPend() without a timeout may assume they have obtained the semaphore without
checking the SemPend() return value.

Calling this function may cause a task switch.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Memory Allocation Support

25SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.4 Memory Allocation Support
As part of normal stack operation, memory will be allocated and freed on a regular basis. It is therefore
recommended that a memory support system have the ability to allocate and free small memory blocks in
a variety of sizes, without memory fragmentation. The functions described here work on a memory bucket
system of predefined fixed sizes. Although it allocates more memory than requested, when the memory is
released, it can be reused without fragmentation.

2.4.1 Function Overview
The Memory Allocation access functions (in functional order) are as follows:

mmAlloc() Allocate Small Memory Block
mmFree() Free mmAlloc() Memory Block
mmBulkAlloc() Allocate Unrestricted Memory Block
mmBulkFree() Free mmBulkAlloc() Memory Block
mmCopy() Copy a Memory Block
mmZeroInit() Initialize a Memory Block to Zero

2.4.2 Memory Allocation API Functions

mmAlloc Allocate Memory Block

Syntax void *mmAlloc(uint32_t size);

Return Value Pointer to allocated memory or NULL on error.

Description Allocates a memory block of at least size bytes in length. The function should return a
pointer to the new memory block, or NULL if memory is not available. The size of the
allocation cannot be more than 3068 bytes.

mmFree Free Memory Block

Syntax int mmFree(void *pv);

Return Value If a memory tracking error occurs, this function returns 0; otherwise, it returns 1.

Description Frees a previously allocated memory block by supplying the pointer that mmAlloc()
originally returned.

mmBulkAlloc Allocate Bulk Memory Block

Syntax void *mmBulkAlloc(int32_t Size);

Return Value Pointer to allocated memory or NULL on error.

Description Allocates a memory block of at least size bytes in length. The function returns a pointer
to the new memory block, or NULL if memory is not available. The size of the allocation
is not restricted.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

mmBulkFree — Free Bulk Memory Block www.ti.com

26 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

mmBulkFree Free Bulk Memory Block

Syntax void mmBulkFree(void *pv);

Return Value None.

Description Frees a previously allocated memory block by supplying the pointer that mmBulkAlloc()
originally returned.

mmCopy Copy Memory

Syntax void mmCopy(void *pDst, void *pSrc, uint32_t size);

Return Value None.

Description Called to copy size bytes of data memory from the data buffer pSrc to the data buffer
pDst.

mmZeroInit Zero Memory

Syntax void mmZeroInit(void *pDst, uint32_t size);

Return Value None.

Description Called to initialize size bytes of data memory in the data buffer pDst to NULL.

2.5 Print and Debug Support
The stack provides an output function called DbgPrintf(). This function prints debug messages to a global
debug log. The severity threshold at which the debug message is recorded can be adjusted, as well as at
what point the error causes a system shutdown.

FreeRTOS Users Note: DbgPrint() output is not supported for FreeRTOS (it is only supported for TI-
RTOS Kernel applications). The severity threshold, which may cause the stack to shut down in the most
extreme cases, is supported for FreeRTOS but no output message is provided.

TI-RTOS Kernel Users Note: Under TI-RTOS Kernel, there is a minor incompatibility between the
compact printf() function provided here and the one supplied in the RTS library. Other than not supporting
floating point, this version of printf() treats long values (e.g., %ld) as 32 bit quantities, not 40 bits. Thus,
when using TI-RTOS Kernel, it is best to avoid the use of %ld.

2.5.1 Standard API Functions
A set of printf-like functions is supported:
int NDK_sprintf(char *s, const char *format, ...);
int NDK_vprintf(const char *format, va_list arg);
int NDK_vsprintf(char *s, const char *format, va_list arg);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Print and Debug Support

27SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.5.2 Debug API Functions

DbgPrintf Print a Debug Message to the Debug Log

Syntax void DbgPrintf(int ErrLevel, char *Format, ?);

Parameters

ErrLevel Severity level of the error
Format Standard printf format string

Return Value None.

Description This function prints a debug message to the global debug log buffer. The log buffer is
defined as follows:
#define LL_DEBUG_LOG_MAX 1024
extern char DebugLog[LL_DEBUG_LOG_MAX]; // DebugLog Buffer
extern int DebugLogSize; // Bytes of data currently in DebugLog

The buffer behaves like one large NULL terminated string. The contents are cleared by
setting DebugLogSize to 0.

The value of ErrLevel determines if the message is printed and additionally, if the
message results in a system shutdown. Both of these thresholds (printing and shutdown)
are set through the OS configuration. The definition of the severity levels are as follows:
#define DBG_INFO 1
#define DBG_WARN 2
#define DBG_ERROR 3
#define DBG_None 4

NOTE: The DbgPrintf() function is not supported for applications that use
FreeRTOS.

2.6 File I/O Support for Embedded Systems
The next section of this document discusses the support for stream IO that is built into the stack library.
The support documented in that section is intended to augment the basic functions provided by the native
operating system (in the case where the stack is ported to a new environment).

This section details functionality required by the Network Tools services interfacing with File IO. The
functionality described here is more likely to have a local counterpart. The API described in this section
must be ported to allow the network services that use it to operate.

The API described here was taken from the Unix standard. The names of the functions have been
prefixed with the designation efs_ ,which stands for embedded file system. This was done so that the
functions would not conflict with any existing file system. The EFS API is a very simple RAM based file
system. A couple of new functions are included that allow the creation of RAM files by supplying pointers
to static data buffers. For systems with existing file structures, most of the functions in this API become
secondary to their standard IO counterparts.

NOTE: This API is unrelated to the stream API provided for Sockets. If the services that need this
API are not required, then this module can be discarded from the OS abstraction. Only the
HTTP Server service uses this API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

File I/O Support for Embedded Systems www.ti.com

28 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.6.1 Function Overview
The following functions are custom to this implementation, but can be ported:

efs_createfile() Create (declare) RAM based file
efs_createfilecb() Create (declare) RAM based file (with callback function)
efs_destroyfile() Destroy RAM based file
efs_getfilesize() Get the length of file data
efs_filecheck() Check the file type and authorization
efs_filesend() Send file contents directly to a socket
efs_loadfunction() Load executable file and return entry-point function

As previously mentioned, most of the API closely matches its standard C counterpart:

efs_fclose() Close file
efs_feof() Check for end of file
efs_fopen() Open file
efs_fread() Read from file
efs_fseek() Set file position
efs_ftell() Get file position
efs_fwrite() Write to file
efs_rewind() Reset file position to start of file

2.6.2 EFS Custom API Functions

efs_createfile Create (declare) a RAM Based File

Syntax void efs_createfile(char *name, int32_t length, unsigned char *pData);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)
length Length of file data
pData Pointer to file data

Return Value None.

Description This function creates an internal record of the RAM based file with the indicated
filename, file length, and data pointer. The file data is not copied, so the buffer must be
statically allocated. The filename is copied, so it does not need to be static.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com efs_createfilecb — Create (declare) a RAM Based File with Callback

29SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

efs_createfilecb Create (declare) a RAM Based File with Callback

Syntax void efs_createfilecb(char *name, int32_t length, unsigned char *pData, EFSFUN
pcbFreeFun, uint32_t FreeArg);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)
length Length of file data
pData Pointer to file data
pcbFreeFun Pointer to file data
FreeArg Pointer to file data

Return Value None.

Description This is identical to efs_createfile(), except that is takes two additional arguments, a
pointer to a file free function, and a 32 bit argument. It is designed to be used in system
where the memory used for the file is allocated, and not static.

The EFS file system tracks the numbers of references to a particular file. When the
efs_destroyfile() function is called to destroy a file, the file is marked so that it can no
longer be opened, but open handles to the file remain valid until closed by their
respective application. The free function callback calls back to the file creator when the
last file handle to the file has been closed, allowing the creator to safely reclaim any
memory associated with the file. The argument FreeArg is used as a calling parameter
to the callback.

efs_destroyfile Destroy (remove declaration from) a RAM Based File

Syntax void efs_destroyfile(char *name);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

Return Value None.

Description This function deletes the internal file record associating the filename with the static data
pointer as originally passed to efs_createfile().

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

efs_getfilesize — Get the Length of a File www.ti.com

30 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

efs_getfilesize Get the Length of a File

Syntax int32_t efs_getfilesize(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value File size in bytes.

Description This function returns the length in bytes of the indicated file. The file must already have
been opened via a call to efs_fopen().

efs_filecheck Check the file type and authorization

Syntax int efs_filecheck(char *name, char *user, char *password, int *prealm);

Parameters

name Filename (NULL terminated string)
user Username (NULL terminated string)
password Password (NULL terminated string)
prealm Pointer to receive realm Index (if authentication fails)

Return Value An integer consisting of one or more of the following flags:

EFS_FC_NOTFOUND File not found
EFS_FC_NOTALLOWED File cannot be accessed
EFS_FC_EXECUTE Filename represents a function call (CGI)
EFS_FC_AUTHFAILED File authentication failed (failing realm Index supplied)

Description This function is called by a file server (e.g., HTTP) on a particular filename (provided in
name), to retrieve the file type, and authenticate user access. The user credentials are
supplied in the user and password calling parameters.

The user and password arguments must always be valid pointers, but can be NULL
strings.

When user authentication fails, the Index of the failing authentication realm (1 to 4) is
written to the address supplied in prealm.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com efs_filesend — Send file contents directly to a socket

31SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

efs_filesend Send file contents directly to a socket

Syntax size_t efs_filesend(EFS_FILE *stream, size_t size, SOCKET s);

Parameters

stream Pointer to open stream (file)
size Number of bytes to transfer from the file
s Socket onto which to send the file data

Return Value Returns the number of bytes transferred, NULL on an error.

Description This function is called by a file server (e.g., HTTP) on a particular file stream (provided in
stream), to read data from the file and send it to socket s. Because EFS file systems are
typically RAM based, this custom function can send the file to socket s more efficiently
than an application that has to call efs_read() and then NDK_send().

The number of bytes to transfer is given by size. Transfer begins and the current file
pointer location, and the file pointer is advanced by this call.

efs_loadfunction Load Executable File and Return Entry-point

Syntax EFSFUN efs_loadfunction(char *name);

Parameters

name Filename (maximum length of EFS_FILENAME_MAX)

Return Value Pointer to executable function.

Description This function loads an executable file and returns a pointer to the entry-point function.
The type EFSFUN is declared as:
typedef void (*EFSFUN)();

The application is really free to treat this function in whatever manner is required. This
executable file is created with a call to efs_createfile() where the pData parameter points
to a function that is already loaded in memory. This allows the HTTP server to call
services contained in CGI files.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the HTTP can be made to work with
physical CGI files by porting this function to load CGI.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

File I/O Support for Embedded Systems www.ti.com

32 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

2.6.3 EFS Standard API Functions

efs_fclose Close File

Syntax int efs_fclose(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns EOF if any errors occurred, and zero otherwise.

Description This function performs a logical close on an open file. It is functionally equivalent to
fclose().

efs_feof Test for End of File

Syntax int efs_feof(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns non-zero if EOF has been reached, and zero otherwise.

Description This function tests to see is the file position has reached the end of the file. It is
functionally equivalent to feof().

efs_fopen Open File

Syntax EFS_FILE *efs_fopen(char *name, char *mode);

Parameters

name Name of file to open
mode Desired mode of open file

Return Value Returns a stream pointer or NULL on error.

Description This function performs a logical open on the named file and returns a stream or NULL if
the attempt fails. It is functionally equivalent to fopen().

The mode parameter determines the mode for which the file is opened. In the embedded
file system version of this function, the list of supported modes is quite simple:

rb - open binary file for reading

The flags are still passed through to ensure compatibility with a full file system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com efs_fread — Read from a File

33SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

efs_fread Read from a File

Syntax size_t efs_fread(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters

ptr Pointer to data buffer to receive data
size Size in bytes of a read object
nobj Number of objects to read
stream Pointer to open stream (file)

Return Value Returns the number of objects read.

Description This function reads from the indicated stream in the array ptr at most nobj objects of a
length specified by size. It returns the number of objects read; this may be less than the
number of objects requested. It is functionally equivalent to f read().

efs_feof() can be used to detect end of file.

efs_fseek Set File Position

Syntax int32_t efs_fseek(EFS_FILE *stream, int32_t offset, int origin);

Parameters

stream Pointer to open stream (file)
offset Offset of desired new position
origin Base reference point for offset

Return Value Returns non-zero on error.

Description This function sets the file position of the indicated stream to that specified by offset from
a base reference point specified by origin. It is functionally equivalent to fseek().

The origin parameter can be set to one of the following:
• EFS_SEEK_SET - Position by offset from the beginning of the file
• EFS_SEEK_CUR - Position by offset from the current position
• EFS_SEEK_END - Position by offset from the end of the file

efs_ftell Get File Position

Syntax int32_t efs_ftell(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value Returns file position or -1 on error.

Description This function returns the current file position of the indicated stream. It is functionally
equivalent to ftell().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

efs_fwrite — Write to a File www.ti.com

34 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Operating System Abstraction API

efs_fwrite Write to a File

Syntax size_t efs_fwrite(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters

ptr Pointer to data buffer to receive data
size Size in bytes of a read object
nobj Number of objects to read
stream Pointer to open stream (file)

Return Value Returns the number of objects written (0).

Description This function writes to the indicated stream from the array ptr, up to nobj objects of a
length specified by size. It returns the number of objects written; this may be less than
the number of objects requested on an error. It is functionally equivalent to fwrite().

Nothing in the stack package requires write capability, thus this function always returns
zero.

efs_rewind Reset File Position to Start of File

Syntax void efs_rewind(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value None.

Description This sets the position of the indicated stream to zero, and clears any current error.
(Errors are not tracked in this implementation.)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

35SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

Chapter 3
SPRU524K–May 2001–Revised October 2017

Sockets and Stream IO API

This chapter describes the socket and file API functions.

Topic ... Page

3.1 File Descriptor Environment .. 36
3.2 File Descriptor Programming Interface ... 38
3.3 Sockets Programming Interface ... 46
3.4 Raw Ethernet Sockets Programming Interface ... 66
3.5 Full Duplex Pipes Programming Interface ... 74
3.6 Internet Group Management Protocol (IGMP)... 75

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

File Descriptor Environment www.ti.com

36 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.1 File Descriptor Environment
In most embedded operating system environments, support for file descriptors varies greatly. In most
cases, only the bare minimum functionality is provided, and trimmed down support functions are provided
using the common reserved names (read(), write(), close(), etc.).

As this stack supports the standard sockets interface functions, and these functions require file descriptor
support, the stack provides its own small file system. This section describes the basic mechanics of the
file system.

3.1.1 Organization
The basic building block of the stack code internally is an object handle. Internally to the stack, both
sockets and pipes are addressed by object handles. However, at the application level, sockets and pipes
are treated as file descriptors. The file descriptor contains additional state information allowing tasks to be
blocked and unblocked based on socket activity.

The stack API supports the use of file descriptors by adding a file descriptor layer of abstraction to the
native operating environment. This layer implements the standard sockets and file IO functions. The stack
works by associating a file descriptor session with each caller's thread (or in this terminology, task). In this
system, each task has its own file descriptor session. The file descriptor session is used when the task
needs to block pending network activity.

Note that although file descriptors can be used in classic functions like select(), in this implementation,
they are still handles, not integers. For compatibility, network applications must use the NDK header files,
and use INVALID_SOCKET for an error condition (not -1), and refrain from comparing sockets as <0 when
checking for validity.

3.1.2 Initializing the File System Environment
To use the file system and socket functions provided by the stack, a task must first allocate a file
descriptor table (called a file descriptor session). This is accomplished at the application layer by calling
the file descriptor function fdOpenSession().

When the task is finished using the file descriptor API, or when it is about to terminate, the function
fdCloseSession() is called.

3.1.2.1 When to Initialize the File Descriptor Environment
For correct stack operation, a task thread must open a file descriptor session before calling any file
descriptor related functions, and then close it when it is done.

The simplest way to handle the file descriptor session is to call TaskCreate(), which handles opening and
closing the file descriptor session internally.

Another way to handle the file descriptor session is for the task to open a file session when it starts, and
close the session when it completes. For example:

Socket Task:
void socket_task(int IPAddr, int TcpPort)
{

SOCKET s;

// Open the file session
fdOpenSession(TaskSelf());

< socket application code >

// Close the file session
fdCloseSession(TaskSelf());

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com File Descriptor Environment

37SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

Another method is for the task that creates the socket task thread to open the file descriptor session for
the child thread. Note that the parent task must guarantee that the child task's file session is open before
the child task executes. This is done via task priority or semaphore, but can complicate task creation.
Therefore, it is not the ideal approach.

It is also possible to allow a child task to open its own file session, but allow the parent task to monitor its
children and eventually destroy them. Here, the parent task must close the file session of the child task
threads it destroys. The child task then blocks when finished instead of terminating its own thread. The
following example illustrates this concept:

Child Socket Task:
void child_socket_task(int IPAddr, int TcpPort)
{

SOCKET s;

// Open the file session
fdOpenSession(TaskSelf());

< socket application code >

// We are done, but our parent thread will close
// our file session and destroy this task, so here
// we just yield.
TaskYield();

}

The parent task functions would look as follows:

Parent Task Functions:
void create_child_task()
{

// Create System Tasks

// Create a child task
hChildTask = TaskCreate(&child_socket_task, ?);

}

void destroy_child_task()
{

// First close the child's file session
// (This will close all open files)
fdSessionClose(hChildTask);

// Then destroy the task
TaskDestroy(hChildTask);

}

3.1.2.2 Auto-Initializing the File Descriptor Environment
For TI-RTOS Kernel users who configure their application using XGCONF or a *.cfg configuration file, the
calls to fdOpenSession and fdCloseSession can be configured to be called automatically. This is achieved
by setting the following configuration parameter:
var Global = xdc.useModule('ti.ndk.config.Global.xdc');
Global.autoOpenCloseFD = true;

Setting this parameter to true causes calls to fdOpenSession and fdCloseSession to be made
automatically in the TI-RTOS Kernel Task module's create hook function and exit hook function,
respectively.

Note that the Global.autoOpenCloseFD parameter is only supported for dynamically-created Tasks
created from within a Task context (that is, from within another running Task function). Tasks created
statically in the configuration or dynamically in main() or a Hwi or Swi thread do not support this feature.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

File Descriptor Programming Interface www.ti.com

38 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.2 File Descriptor Programming Interface
The purpose of supporting a file system is to support the sockets API. Unfortunately, the sockets API is
not a complete IO API, as it was originally designed to integrate into the Unix file system. Thus, several
file descriptor functions that are important for application programming are not really socket calls at all.
The stack library supports a handful of what are normally considered file functions, so that sockets
applications can be programmed in a more traditional sense. So that these functions will not conflict with
any other file functions in the system, their names have been altered slightly from the standard definitions.

3.2.1 Function Overview
The stream IO object can take two forms. In the vast majority of cases, it will be in the form of a local file
descriptor. The following functions can operate on file descriptors:

fdOpenSession() Open file descriptor support session
fdCloseSession() Close file descriptor support session
fdClose() Flush stream and close file descriptor (same as standard close())
fdError() Return last error value (same as standard error)
fdPoll() Wait on a list of file descriptor events (same as standard poll())
fdSelect() Wait on one or more file events (same as standard select())
fdSelectAbort() Aborts calls to fdSelect() and fdPoll() with forced timeout condition
fdStatus() Get the current status of a file descriptor (similar to ioctl/FIONREAD)
fdShare() Add a reference count to a file descriptor

The fdSelect() function uses file descriptor sets to specify which file descriptors are being checked for
activity and which have activity detected. There is a small set of MACRO functions for manipulating file
descriptor sets. These include the following:

FD_SET() Add a file descriptor to a file descriptor set.
FD_CLR() Remove a file descriptor from a file descriptor set.
FD_ISSET() Test to see if a file descriptor is included in a file descriptor set.
FD_COPY() Copy a file descriptor set.
FD_ZERO() Clear (initialize) a file descriptor set.

3.2.2 File Descriptor API Functions

fdOpenSession Open File Descriptor Session

Syntax int fdOpenSession(void *hTask);

Parameters

hTask Task Thread Handle

Return Value 1 on success or 0 on error. An error return indicates that a session is already open for
the specified task, or that a memory allocation error has occurred.

Description This function opens a file descriptor session on a task thread so that the task can begin
using file descriptor and other stream IO functions.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com fdCloseSession — Close File Descriptor Session

39SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdCloseSession Close File Descriptor Session

Syntax void fdCloseSession(void *hTask);

Parameters

hTask Task Thread Handle

Return Value None.

Description This function closes a file descriptor session that was previously opened with
fdOpenSession(). When called, any remaining open file descriptors are closed.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

fdClose Close File Descriptor

Syntax int fdClose(void *fd);

Parameters

fd File Descriptor to close (compatible with type SOCKET)

Return Value 0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (error is also equal to this function).

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The descriptor does not reference a socket.
EINVAL NDK_listen() has not been called on the socket or name arguments are

invalid.

Description This function closes the indicated file descriptor.

fdError Get the Last File Error

Syntax int fdError();

Description This function returns the last file error that occurred on the current task. In the
SERRNO.H header file, error is equal to this function.

NOTE: The error code returned via fdError() is stored in the file descriptor
session associated with a task. If a task calls a file or socket function
before it opens a file descriptor session, an error condition results.
However, no error code can be stored for retrieval by fdError() because
the file descriptor session does not exist to hold it.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

fdPoll — Wait on a List of File Descriptor Events www.ti.com

40 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdPoll Wait on a List of File Descriptor Events

Syntax int fdPoll(FDPOLLITEM items, uint32_t itemcnt, int32_t timeout);

Parameters

items Pointer to a list of descriptor events of type FDPOLLITEM
itemcnt Number of entries in items list
timeout Function timeout in milliseconds

Return Value Returns the number of file descriptors in the items list for which the eventsDetected field
is non-zero.

Returns SOCKET_ERROR if the caller has not opened a file descriptor session (with
fdOpenSession()).

Returns zero (0) under any of the following conditions:
• No detected flags and time out has occurred
• No detected flags and a fdSelectAbort() was issued
• No detected flags and an internal resource allocation failed

Description The fdPoll() function is a more efficient alternative to the fdSelect() function. It polls the
supplied list of sockets, with a timeout specified in milliseconds (or POLLINFTIM for
infinite timeout). It has the advantage over fdSelect() because the original list of file
descriptors (or sockets) to be examined is not overwritten by the results, and thus can be
used multiple times without reconstruction.

The list of file descriptors to check is provided in the items array. The array is of type
FDPOLLITEM, which is defined as follows:
typedef struct _fdpollitem {

void *fd;
uint16_t eventsRequested;
uint16_t eventsDetected;

} FDPOLLITEM;

The FDPOLLITEM entry contains a file descriptor (or socket) to check, a set of flags for
requested events that is initialized by the application, and a set of resulting flags for a
detected event that is initialized by the fdPoll() function.

The entry fd is the file descriptor to check. If fd is set to INVALID_SOCKET, or the
eventsRequested field is NULL, the item entry is ignored. However, the eventsDetected
field is still reset to zero.

The same file descriptor should not appear twice in the list, instead the event flags
should be combined on a single entry. (Duplicate descriptors will not cause an error, but
will increase system load.)

Valid flags for eventsRequested are one or more of the following:
• POLLIN - Socket readable (or read error pending)
• POLLOUT - Socket writable (or send error pending)
• POLLPRI - Socket OOB readable (or error pending)
• POLLNVAL - Socket or request type invalid

Valid flags for eventsDetected are the same as above, where all detected conditions are
indicated. (Note that POLLNVAL can be set whether or not it was requested in
eventsRequested.)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com fdSelect — Wait on one or multiple File Events

41SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdSelect Wait on one or multiple File Events

Syntax int fdSelect(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, struct timeval
*timeout);

Parameters

maxfd Ignored
readset Set of file descriptors to check for reading
writeset Set of file descriptors to check for writing
exceptset Set of file descriptors to check for exceptional conditions (OOB data)
timeout Pointer to timeval structure of time to wait (or NULL)

Return Value Returns a positive count of ready descriptors (combined from all three possible sets), 0
on timeout, or -1 on error. When an error occurs, the error type can be obtained by
calling fdError().

EBADF The file descriptor (socket) is invalid.
ENOMEM Memory allocation error.
EINVAL NDK_listen() has not been called on the socket or name arguments are

invalid.

Description This function allows the task to instruct the stack to wait for any one of multiple events to
occur and to wake up the process only when one of more of these events occurs or
when a specified amount of time has passed.

The definition of the timeval structure is:
struct timeval {

int32_t tv_sec;
int32_t tv_usec;

};

Passing in a NULL pointer for timeout specifies an infinite wait period. Passing a valid
pointer to a timeval structure with both tv_sec and tv_usec set to zero specifies that the
function should not block.

NOTE: This function is less efficient than fpPoll(). In fact, the fdSelect() function
calls fdPoll() after rearranging the descriptor sets into a fdPoll() descriptor
list.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

fdSelectAbort — Terminate a Previous Call to fdSelect() or fdPoll() www.ti.com

42 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdSelectAbort Terminate a Previous Call to fdSelect() or fdPoll()

Syntax void fdSelectAbort(void *hTask);

Parameters

hTask Handle to the task thread that is blocked in fdSelect() or fdPoll()

Return Value None.

Description This function aborts a call to fdSelect() or fdPoll() on the specified target thread by
simulating a timeout condition (even when no timeout was originally specified). It can be
used to wake a thread using a different method than socket or pipe activity. It is useful in
callback functions where the handle to the target task thread is known, but where socket
calls cannot be easily used.

The return value from the fdSelect() or fdPoll() function called on the target thread is still
valid. In other words, if there is pending file descriptor activity, it will still be returned to
the caller. However, if the target task thread is blocked in fdSelect() or fdPoll() at the time
of the call, the most likely return value is zero for no activity.

If the target thread is not currently pending on a call to fdSelect() or fdPoll(), any
subsequent call will be affected. Thus, the target thread is guaranteed to see the abort
(although it may be accompanied by actual socket activity). So there is no race condition
on calling fdSelectAbort() immediately prior to the target task thread calling fdSelect() or
fdPoll().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com fdStatus — Get the Current Status of a File Descriptor

43SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdStatus Get the Current Status of a File Descriptor

Syntax int fdStatus(void *fd, int request, int *results);

Parameters

fd File descriptor (socket or pipe) to check
request Status request type.
hTask Pointer to where status results are written

Return Value 0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (errno is also equal to this function).

Description This function reads current status information about the file descriptor. The descriptor
can be either a socket or a pipe object. The following describes the value written to
results for the various request types and descriptor types:
• request = FDSTATUS_TYPE;

The results pointer is written with the file descriptor type. It will be one of the following
values:
– FDSTATUS_TYPE_SOCKET - The file descriptor is a socket.
– FDSTATUS_TYPE_PIPE - The file descriptor is a pipe.

• request = FDSTATUS_RECV;
On listening sockets, the results pointer is written with:
– -1 - There is an error pending on the socket.
– 0 - There are no connections ready to be accepted.
– 1 - There is at least one connection ready to be accepted.
On data sockets, the results pointer is written with:
– -1 - There is an error pending, or a call to NDK_recv() will result in an error.

NOTE: On a TCP socket, this return value can also indicate that the peer
connection has been closed and all available data has been read. In
this case, a subsequent call to NDK_recv() will return NULL, not
error.

– <0 to n> - The number of bytes that can be read using NDK_recv() without
blocking.

• request = FDSTATUS_SEND;
On listening sockets, the results pointer is written with:
– -1 - A listening socket can never be written.
On TCP (non-ATOMIC) data sockets, the results pointer is written with:
– -1 - There is an error pending, or a call to NDK_send() will result in an error.
– <0 to n> - The number of bytes that can be written using NDK_send() without

blocking.
On UDP/RAW (ATOMIC) data sockets, the results pointer is written with:
– -1 - There is an error pending, or a call to NDK_send() will result in an error.
– <0 to n> - The maximum number of bytes that can be written using a single

NDK_send() call.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

fdShare — Add a Reference Count to a File Descriptor www.ti.com

44 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

fdShare Add a Reference Count to a File Descriptor

Syntax int fdShare(void *fd);

Parameters

fd File descriptor to share (compatible with type SOCKET)

Return Value Returns zero on success or -1 on error.

Description This is an optional function for applications that use descriptor sharing. It increments a
reference count on the target descriptor, which is then decremented when the
application calls fdClose(). It allows the descriptor to be shared among multiple tasks,
each calling fdClose() when they are done, and the file descriptor is only closed by the
final call. (Note that file descriptors are created with a reference call of 1, meaning that
the first call to fdClose() will close the descriptor.)

For example, fdShare() is useful in a case where Task A opens a session and calls
NDK_recv() in a loop on a socket. Task B has a loop that calls NDK_send() on the same
socket. The call to NDK_send() from Task B will fail and then fdError() will return -1 if
you do not call fdOpenSession() and then fdShare() from the second Task after the first
Task has opened the socket.
For an example that calls fdShare(), see the contest.c file in
the/ti/ndk/tools/console directory.

3.2.3 File Descriptor Set (fd_set) Macros

FD_SET Add a File Descriptor to a File Descriptor Set

Syntax void FD_SET(void *fd, fd_set *pFdSet);

Parameters

fd File descriptor to add (compatible with type SOCKET)
pFdSet Pointer to fd_set data type

Return Value Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function adds a file descriptor to a file descriptor set, typically before using the set in
a call to fdSelect(). Note that after declaring a fd_set data type, it should be initialized
using FD_ZERO() before attempting to set individual file descriptors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com FD_CLR — Remove a File Descriptor From a File Descriptor Set

45SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

FD_CLR Remove a File Descriptor From a File Descriptor Set

Syntax void FD_CLR(void *fd, fd_set *pFdSet);

Parameters

fd File descriptor to remove
pFdSet Pointer to fd_set data type

Return Value Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function removes a file descriptor from a file descriptor set, typically after the file
descriptor has been processed in a loop that continuously checks a file descriptor set.

FD_ISSET Test to See if a File Descriptor is Included in a File Descriptor Set

Syntax int FD_ISSET(void *fd, fd_set *pFdSet);

Parameters

fd File descriptor to check (compatible with type SOCKET)
pFdSet Pointer to fd_set data type

Return Value Returns an int value that should be treated as a TRUE/FALSE condition.

Description This function returns TRUE if the supplied file descriptor is contained in the indicated file
descriptor set. This function is typically called after a call to fdSelect() to determine on
what file descriptors select has detected activity.

FD_COPY Copy a File Descriptor Set

Syntax void FD_COPY(fd_set *pFdSetSRC, fd_set *pFdSetDST);

Parameters

pFdSetSRC Pointer to fd_set to copy
pFdSetDST Pointer to fd_set to write copied data

Return Value None.

Description This function is called to make a copy of a file descriptor set. This is typically done if a
set needs to be modified, but this original information needs to be maintained.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

FD_ZERO — Clear (Initialize) a File Descriptor Set www.ti.com

46 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

FD_ZERO Clear (Initialize) a File Descriptor Set

Syntax void FD_ZERO(fd_set *pFdSet);

Parameters

pFdSet Pointer to fd_set to initialize

Return Value None.

Description This function is called to clear all bits in a file descriptor set. This should be the first call
made on a newly declared fd_set variable.

3.3 Sockets Programming Interface
The socket function API supported by the stack library is not consistent with the standard Berkeley
sockets API. For the BSD-compliant socket interface, see Appendix F and the SlNetSock documentation,
which is provided with the SimpleLink SDK installation.

This section covers only the IPv4 (AF_INET) family Sockets. For details on IPv6 sockets, see Appendix G
of this document. Similarly, for details on Raw Ethernet Sockets, see Section 3.4 of this document.

3.3.1 Enhanced No-Copy Socket Operation
Any performance of any data stream operation suffers when data copies are performed. Although the
stack software is designed to use a minimum number of data copies, memory efficiency and API
compatibility sometimes require the use of data copy operations.

By default, neither UDP nor RAW sockets use send or receive buffers. However, the sockets API
functions NDK_recv() and NDK_recvfrom() require a data buffer copy because of how the calling
parameters to the functions are defined. In the stack library, two alternative functions (NDK_recvnc()and
NDK_recvncfrom()) are provided to allow an application to get received data buffers directly without a
copy operation. When the application is finished with these buffers, it returns them to the system via a call
to NDK_recvncfree().

By default, TCP uses both a send and receive buffer. The send buffer is used because the TCP protocol
can require reshaping or retransmission of data due to window sizes, lost packets, etc. On receive, the
standard TCP socket also has a receive buffer. This coalesces TCP data received from packet buffers.
Coalescing data is important for protocols that transmit data in very small bursts (like a telnet session).

For TCP applications that get data in large bursts (and tend not to use flags like MSG_WAITALL on
receive), the receive buffer can be eliminated by specifying an alternate TCP stream type of
SOCK_STREAMNC (see NDK_socket()). Without the receive buffer, there is at least one less data copy
because TCP will queue up the actual network packets containing receive data instead of copying it into a
receive buffer.

Care needs to be taken when eliminating the TCP receive buffer. Here large amounts of packet buffers
can be tied up for a small amount of data. Also, because packet buffers come from the HAL, there may be
a limited supply available. If the MSG_WAITALL flag is used on a NDK_recv() or NDK_recvfrom() call, it is
possible for all packet buffers to be consumed before the specified amount of payload data is received.
This would cause a deadlock situation if no socket timeout is specified.

Although TCP sockets that use the SOCK_STREAMNC stream type are 100% compatible with the
standard TCP socket type, they can also be used with the NDK_recvnc() and NDK_recvncfrom() functions
that UDP and RAW sockets use to eliminate the final data copy from the stack to the sockets application.
Using the no copy functions with SOCK_STREAMNC eliminates two data copies from the standard TCP
socket. Note that when NDK_recvnc() and NDK_recvncfrom() are used with TCP, out of band data is not
supported. If the SO_OOBINLINE socket option is set, the out of band data is retained, but the out of band
data mark is discarded. If not using the inline socket option, the out of band data is discarded.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Sockets Programming Interface

47SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.3.2 Function Overview
The standard socket access functions are as follows:

NDK_accept() Accept a connection on a socket
NDK_bind() Bind a name to a socket
NDK_connect() Initiate a connection on a socket
NDK_getpeername() Return name (address) of connected peer
NDK_getsockname() Return the local name (address) of the socket
NDK_getsockopt() Get the value of a socket option
NDK_listen() Listen for connection requests on a socket
NDK_recv() Receive data from a socket
NDK_recvfrom() Receive data from a socket with the senders name (address)
NDK_send() Send data to a connected socket
NDK_sendto() Send data to a specified destination on an unconnected socket
NDK_setsockopt() Set the value of a socket option
NDK_shutdown() Close one half of a socket connection
NDK_socket() Create a socket
NDK_socketpair() Create socket pair. Redundant; see Section 3.5, Full Duplex Pipes

Programming Interface.

The enhanced socket functions are as follows:

NDK_recvnc() Receive no-copy data from a socket
NDK_recvncfree() Free buffer obtained from NDK_recvnc() or NDK_recvncfrom()
NDK_recvncfrom() Receive no-copy data from a socket with the senders name (address)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Sockets Programming Interface www.ti.com

48 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.3.3 Sockets API Functions

NDK_accept Accept a Connection on a Socket

Syntax SOCKET NDK_accept(SOCKET s, struct sockaddr *pName, int *plen);

Parameters

s Socket
pName Name (address) of connected peer
plen Pointer to size of pName

Return Value If it succeeds, the function returns a non-negative integer that is a descriptor for the
accepted socket. Otherwise, a value of INVALID_SOCKET is returned and the function
fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ECONNABORTED Listening socket has been shut down for read operations.
EMFILE The file descriptor table is full.
ENOMEM Memory allocation error.
ENOTSOCK The descriptor does not reference a socket.
EINVAL NDK_listen() has not been called on the socket or name arguments are

invalid.
EWOULDBLOCK Socket is marked non-blocking and no connections are ready

Description The argument s is a socket that has been created with the NDK_socket() function,
bound to an address with NDK_bind(), and is listening for connections after
NDK_listen(). The NDK_accept() function extracts the first connection request on the
queue of pending connections, creates a new socket with the same properties of socket
s and allocates a new file descriptor for the socket. If no pending connections are
present on the queue, and the socket is not marked as non-blocking, NDK_accept()
blocks the caller until a connection is present. If the socket is marked non-blocking and
no pending connections are present on the queue, NDK_accept() returns an error as
described above.

The accepted socket may not be used to accept more connections. The original socket s
remains open.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (fdSelect()) a socket for the purposes of doing an accept by
selecting it for read.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_bind — Bind a Name (Address) to a Socket

49SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_bind Bind a Name (Address) to a Socket

Syntax int NDK_bind(SOCKET s, struct sockaddr *pName, int len);

Parameters

s Socket
pName Name (address) of desired local address
len Size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The descriptor does not reference a socket.
EINVAL Name arguments are invalid.
EADDRNOTAVAIL The specified address is not available from the local machine.
EADDRINUSE The specified address is already in use.

Description The NDK_bind() function assigns a name to an unnamed socket. When a socket is
created with NDK_socket() it exists in a name space (address family) but has no name
assigned. The NDK_bind() function requests that name be assigned to the socket.

The argument s is a socket that has been created with the NDK_socket() function. The
argument pName is a structure of type sockaddr that contains the desired local address.
The len parameter contains the size of pName, which is sizeof(struct sockaddr).

NDK_connect Initiate a Connection on a Socket

Syntax int NDK_connect(SOCKET s, struct sockaddr *pName, int len);

Parameters

s Socket
pName Name (address) of desired peer
len Size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EADDRINUSE The specified address is already in use.
EADDRNOTAVAIL The specified address is not available from the local machine.
EALREADY A connection request is already pending on this socket.
EBADF The file descriptor (socket) is invalid.
ECONNREFUSED The attempt to connect was forcefully rejected.
EHOSTUNREACH The host is not reachable.
EINPROGRESS The request was accepted and is pending (non-blocking sockets).
EINVAL Name arguments are invalid.
EISCONN The socket is already connected.
ENOTSOCK The file descriptor does not reference a socket.
ENOTSUPP Socket is in the listening state and cannot be connected.
ETIMEDOUT Connection establishment timed out without establishing a connection.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_getpeername — Get Name (Address) of Connected Peer www.ti.com

50 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

Description The NDK_connect() function establishes a logical (and potentially physical) connection
from the socket specified by s to the foreign name (address) specified by pName.

If sock is of type SOCK_DGRAM, this call specifies the peer address with which the
socket is to be associated; this address is that to which datagrams are to be sent, and
the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, the function attempts to make a connection to another socket.

The argument s is a socket that has been created with the NDK_socket() function. The
argument pName is a structure of type sockaddr that contains the desired foreign
address. The len parameter contains the size of pName, which is sizeof(struct
sockaddr).

Stream sockets may connect only once; while datagram sockets may re-connect multiple
times to change their association. The connection may be dissolved by attempting to
connect to an illegal address (for example, NULL IP address and Port). Datagram
sockets that require multiple connections may consider using the NDK_recvfrom() and
NDK_sendto() functions instead of NDK_connect().

It is possible to select (fdSelect()) a socket for the purposes of doing an NDK_connect()
by selecting it for writing.

NDK_getpeername Get Name (Address) of Connected Peer

Syntax int NDK_getpeername(SOCKET s, struct sockaddr *pName, int *plen);

Parameters

s Socket
pName Name (address) of connected peer
plen Pointer to size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Name arguments are invalid.
ENOTCONN The socket is not connected.

Description The NDK_getpeername() function returns the name (address) of the connected peer.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_getsockname — Get the Local Name (Address) of the Socket

51SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_getsockname Get the Local Name (Address) of the Socket

Syntax int NDK_getsockname(SOCKET s, struct sockaddr *pName, int *plen);

Parameters

s Socket
pName Name (address) of connected peer
plen Pointer to size of pName

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Name arguments are invalid.

Description The NDK_getsockname() function returns the local name (address) of the socket.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_getsockopt — Get the Value of a Socket Option Parameter www.ti.com

52 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_getsockopt Get the Value of a Socket Option Parameter

Syntax int NDK_getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);

Parameters

s Socket
level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)
op Socket option to get
pbuf Pointer to memory buffer
pbufsize Pointer to size of memory buffer

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Buffer arguments are invalid.

Description The NDK_getsockopt() function returns the options associated with a socket. Options
may exist at multiple protocol levels; they are always present at the uppermost socket
level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPPROTO_TCP are supported.

The parameters pbuf and pbufsize identify a buffer in which the value for the requested
option(s) are to be returned. pbufsize is a value-result parameter, initially containing the
size of the buffer pointed to by pbuf, and modified on return to indicate the actual size of
the value returned.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, which specifies the desired state of the option and the linger interval
(see below). SO_SNDTIMEO and SO_RCVTIMEO use a struct timeval parameter.

The following options are recognized at the socket level:

SO_REUSEADDR Specifies that the rules used in validating addresses supplied in an
NDK_bind() call should allow reuse of local addresses.

SO_REUSEPORT Allows completely duplicate bindings by multiple processes if they all set
SO_REUSEPORT before binding the port. This option permits multiple
instances of a program to each receive UDP/IP multicast or broadcast
datagrams destined for the bound port.

SO_KEEPALIVE Enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are
notified when attempting to send data.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing
facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_getsockopt — Get the Value of a Socket Option Parameter

53SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

SO_LINGER Controls the action taken when unsent messages are queued on socket
and a close is performed. If the socket promises reliable delivery of data
and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is
specified in seconds in the NDK_setsockopt() call when SO_LINGER is
requested). If SO_LINGER is disabled and a close is issued, the system
will process the close in a manner that allows the process to continue as
quickly as possible.

SO_BROADCAST Requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the system.

SO_OOBINLINE With protocols that support out-of-band data, this option requests that
out-of-band data be placed in the normal data input queue as received; it
will then be accessible with NDK_recv or read calls without the
MSG_OOB flag. Some protocols always behave as if this option is set.

SO_SNDBUF Buffer size for output.
SO_RCVBUF Buffer size for input.
SO_SNDLOWAT Is an option to set the minimum count for output operations. Most output

operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control.
Non-blocking output operations will process as much data as permitted
subject to flow control without blocking, but will process no data if flow
control does not allow the smaller of the low water mark value or the
entire request to be processed. A select operation testing the ability to
write to a socket will return true only if the low water mark amount could
be processed. The default value for SO_SNDLOWAT is set to a
convenient size for network efficiency, often 1024.

SO_RCVLOWAT Is an option to set the minimum count for input operations. In general,
receive calls will block until any (non-zero) amount of data is received,
then return with the smaller of the amount specified by SO_RCVLOWAT
or the amount requested. The default value for SO_RCVLOWAT is 1.
Receive calls may still return less than the amount specified by
SO_RCVLOWAT or the amount requested if an error occurs, or the type
of data next in the receive queue is different from that which was
returned.

SO_SNDTIMEO Is an option to set a timeout value for output operations. It accepts a
struct timeval parameter with the number of seconds and microseconds
used to limit waits for output operations to complete. If a send operation
has blocked for this much time, it returns with a partial count or with the
error EWOULDBLOCK if no data were sent. This timer is restarted each
time additional data are delivered to the protocol, implying that the limit
applies to output portions ranging in size from the low water mark to the
high water mark for output.

SO_RCVTIMEO Is an option to set a timeout value for input operations. It accepts a struct
timeval parameter with the number of seconds and microseconds used
to limit waits for input operations to complete. This timer is restarted
each time additional data are received by the protocol, and thus, the limit
is in effect an inactivity timer. If a receive operation has been blocked for
this much time without receiving additional data, it returns with a short
count or with the error EWOULDBLOCK if no data were received.

SO_TYPE SO_TYPE returns the type of the socket, such as SOCK_STREAM.
SO_ERROR Returns any pending error on the socket and clears the error status. It

may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_getsockopt — Get the Value of a Socket Option Parameter www.ti.com

54 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

SO_PRIORITY Is an option to set the VLAN user priority bit mapping for a given socket.
It accepts only unsigned integer values. The valid values that can be
configured for this option are 0-7. When a value of 0xFFFF is set to this
option, it resets the priority back to its default value.

Options that are not Berkeley standard:

SO_IFDEVICE Specifies a uint32_t index (1 to n) of the designated interface for sending
and receiving IP broadcast packets. When set, this interface is selected
on a IP broadcast send operation if the socket's local (bound) IP address
is NULL (INADDR_ANY). Also, when set, the socket will only accept
incoming broadcast packets if they have been received on this interface.

SO_BLOCKING Specifies a int flag (1 or 0) indicating if the socket is in blocking or non-
blocking mode. Sockets default to blocking mode when created, but can
be set to non-blocking by using NDK_setsockopt(). This option provides
the same functionality as calling the Unix function Fcntl() with the
O_NONBLOCK flag.

SO_TXTIMESTAMP Specifies a call-out function to allow timestamping of transmitted UDP
datagrams per socket basis. The NDK calls this function before adding
the datagram into the driver's transmit queue. The function prototype of
the call-out is "typedef void (*TimestampFxn)(unsigned char *pIpHdr)".
This call-out function is responsible for updating the UDP checksum
accordingly.

The following options are recognized at the IPPROTO_IP level:

IP_OPTIONS Specifies the IP options to be included in any outgoing IP packet sent via
this socket (maximum length is 20 bytes).

IP_HDRINCL Indicates to IP that the socket application is supplying the IP header as
well as the rest of the packet payload. This is for use with RAW sockets
only.

IP_TOS Specifies the TOS value to place in the IP header.
IP_TTL Specifies the TTLvalue to place in the IP header.
IP_ADD_MEMBERSHIP Specifies the multicast group to join. It accepts a struct ip_mreq

parameter (as defined in RFC 3678) which specifies multicast group
address that the application wants to join and the interface IP address to
use for joining the multicast group.

IP_DROP_MEMBERSHIP Is an option used to leave a multicast group for a specified interface. It
accepts a struct ip_mreq parameter (as defined in RFC 3678) which
specifies the IP address of the multicast group to leave and the interface
IP address on our device to use to leave the group.

The following options are recognized at the IPPROTO_TCP level:

TCP_MAXSEG Set the maximum TCP segment size.
TCP_NODELAY Disables TCP send delay/coalesce algorithm.
TCP_NOPUSH Do not send data just to finish a data block (attempt to coalesce).
TCP_NOOPT Do not use TCP options.
TCP_SACKPERMITTED Permit RFC-2018 Selective Acknowledgment(SACK) conformant

connection. The SACK permitted option is exchanged at socket
connection time. Hence; on server side, the setting must be done before
calling NDK_accept(), and on clint side before calling NDK_connect().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_listen — Listen for Connection Requests on Socket

55SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

TCP_MAXRTT The maximum TCP Round Trip Time value allowed in the determination
of the estimated TCP RTT. TCP packets containing RTT values greater
than the value specified will not be used in the TCP RTT calculation
(however, the packets are still processed by the stack). Units are in
milliseconds. Values are rounded up to the next internal clock tick (100
millisecond). The minimum value is 100 milliseconds. The default value
is 1 hour.

NDK_listen Listen for Connection Requests on Socket

Syntax int NDK_listen(SOCKET s, int maxcon);

Parameters

s Socket
maxcon Maximum number of connects to queue

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.
EISCONN The socket is already connected

Description The NDK_listen() function listens for connection requests on a socket.

To accept connections, a socket is first created with NDK_socket(). The NDK_listen()
function is called to specify a willingness to accept incoming connections and a queue
limit for incoming connections. New connections are accepted by calling the
NDK_accept() function. The NDK_listen() function applies only to sockets of type
SOCK_STREAM.

The maxcon parameter defines the maximum length to which the queue of pending
connections may grow. If a connection request arrives with the queue full, the client
receives an error with an indication of ECONNREFUSED.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_recv — Receive Data from a Socket www.ti.com

56 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_recv Receive Data from a Socket

Syntax int NDK_recv(SOCKET s, void *pbuf, int size, int flags);

Parameters

s Socket
pbuf Data buffer to place received data
size Size of desired data
flags Option flags

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTCONN The socket is connection oriented and not connected
ENOTSOCK The file descriptor does not reference a socket.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The NDK_recv() function attempts to receive data from a socket. It is normally used on a
connected socket (see NDK_connect()). The data is placed into the buffer specified by
pbuf, up to a maximum length specified by size. The options in flags can be used to
change the default behavior of the operation.

The function returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in NDK_getsockopt() .

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a NDK_recv() call is formed by combining one or more of the
following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_OOB Requests receipt of out-of-band data that would not be received in the normal

data stream. Some protocols place expedited data at the head of the normal
data queue, and thus, this flag cannot be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning of the receive
queue without removing that data from the queue. Thus, a subsequent receive
call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is satisfied. However,
the call may still return less data than requested if an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_recvfrom — Receive Data from a Socket with the Sender's Name (Address)

57SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_recvfrom Receive Data from a Socket with the Sender's Name (Address)

Syntax int NDK_recvfrom(SOCKET s, void *pbuf, int size, int flags, struct sockaddr *pName, int
*plen);

Parameters

s Socket
pbuf Data buffer to place received data
size Size of desired data
flags Option flags
pName Pointer to place name (address) of sender
plen Pointer to size of pName

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTCONN The socket is connection oriented and not connected.
ENOTSOCK The file descriptor does not reference a socket.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The NDK_recvfrom() function attempts to receive data from a socket. It is normally called
with unconnected, non-connection oriented sockets. The data is placed into the buffer
specified by pbuf, up to a maximum length specified by size. The options in flags can be
used to change the default behavior of the operation. The name (address) of the sender
is written to pName.

The argument pName is a result parameter that is filled in with the address of the
sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The function returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in NDK_getsockopt() .

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a NDK_recv() call is formed by combining one or more of the
following flags:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_recvnc — Receive Data from a Socket without Buffer Copy www.ti.com

58 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_OOB Requests receipt of out-of-band data that would not be received in the normal

data stream. Some protocols place expedited data at the head of the normal
data queue, and thus, this flag cannot be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning of the receive
queue without removing that data from the queue. Thus, a subsequent receive
call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is satisfied. However,
the call may still return less data than requested if an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

NDK_recvnc Receive Data from a Socket without Buffer Copy

Syntax int NDK_recvnc(SOCKET s, void **ppbuf, int flags, void **phBuffer);

Parameters

s Socket
ppbuf Pointer to receive data buffer pointer
flags Option flags
phBuffer Pointer to receive buffer handle

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The socket is connection oriented and not connected.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The NDK_recvnc() function attempts to receive a data buffer from a socket. It is normally
used on a connected socket (see NDK_connect()). A pointer to the data buffer is
returned in ppbuf. A system handle used to free the buffer is returned in phBuffer. Both
of these pointers must be valid. The options in flags can be used to change the default
behavior of the operation.

The function returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
NDK_recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_recvncfree — Return a Data Buffer Obtained from a No-Copy Receive Operation

59SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

The flags argument to a NDK_recv() call can be one of the following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_WAITALL Requests that the operation block until data is available. Because blocking is

the default behavior of a standard socket, this flag only alters the behavior of a
non-blocking socket for this call.

NDK_recvncfree Return a Data Buffer Obtained from a No-Copy Receive Operation

Syntax void NDK_recvncfree(void *hBuffer);

Parameters

hBuffer Handle to receive buffer to free

Return Value None.

Description The NDK_recvncfree() function frees a data buffer obtained from calling either
NDK_recvnc() or NDK_recvncfrom(). The calling parameter hBuffer is the handle of the
buffer to free (not the pointer to the buffer).

NDK_recvncfrom Receive Data and the Sender's Name From a Socket Without Buffer Copy

Syntax int NDK_recvncfrom(SOCKET s, void **ppbuf, int flags, struct sockaddr *pName, int
*plen, void **phBuffer);

Parameters

s Socket
ppbuf Pointer to receive data buffer pointer
flags Option flags
pName Pointer to place name (address) of sender
plen Pointer to size of pName
phBuffer Pointer to receive buffer handle

Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The socket is connection oriented and not connected.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The NDK_recvncfrom() function attempts to receive a data buffer from a socket. It is
normally called with unconnected, non-connection oriented sockets. A pointer to the data
buffer is returned in ppbuf. A system handle used to free the buffer is returned in
phBuffer. Both of these pointers must be valid. The options in flags can be used to
change the default behavior of the operation. The name (address) of the sender is
written to pName.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_send — Transmit Data to a Socket www.ti.com

60 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

The argument pName is a result parameter that is filled in with the address of the
sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The function returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
NDK_recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a NDK_recv() call can be one of the following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_WAITALL Requests that the operation block until data is available. Because blocking is

the default behavior of a standard socket, this flag only alters the behavior of a
non-blocking socket for this call.

NDK_send Transmit Data to a Socket

Syntax int NDK_send(SOCKET s, void *pbuf, int size, int flags);

Parameters

s Socket
pbuf Data buffer holding data to transmit
size Size of data
flags Option flags

Return Value If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EHOSTUNREACH The remote host was unreachable.
EMSGSIZE The specified size exceeds the limit of the underlying protocol.
ENOBUFS Memory allocation failure while attempting to send data.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The socket is connection oriented and not connected.
ESHUTDOWN The socket has been shut down for writes.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_sendto — Transmit Data on a Socket to Designated Destination

61SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

Description The NDK_send() function attempts to send data on a socket. It is used on connected
sockets only (see NDK_connect()). The data to send is contained in the buffer specified
by pbuf, with a length specified by size. The options in flags can be used to change the
default behavior of the operation.

The function returns the length of the data transmitted on successful completion.

If a thread does not contain calls to fdOpenSession() and fdCloseSession(), the
NDK_send() function returns a value of -1.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

If there is not transmit buffer space available on a stream type socket, the function waits
for space to become available, unless the socket is non-blocking. The function normally
transmits all the specified data.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a NDK_send() call is formed by combining one or more of the
following flags:

MSG_OOB sends out-of-band data on sockets that support this notion (e.g.
SOCK_STREAM); the underlying protocol must also support out-of-band data.

MSG_EOR indicates a record mark for protocols that support the concept.
MSG_EOF Requests that the sender side of a socket be shut down, and that an

appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK_STREAM sockets in the AF_INET protocol family, and
implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only using the
Address Resolution Protocol (ARP) table entries.

NDK_sendto Transmit Data on a Socket to Designated Destination

Syntax int NDK_sendto(SOCKET s, void *pbuf, int size, int flags, struct sockaddr *pName, int
len);

Parameters

s Socket
pbuf Data buffer holding data to transmit
size Size of data
flags Option flags
pName Pointer to name (address) of destination
len Size of data pointed to by pName

Return Value If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EHOSTUNREACH The remote host was unreachable.
EMSGSIZE The specified size exceeds the limit of the underlying protocol.
ENOBUFS Memory allocation failure while attempting to send data.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The socket is connection oriented and not connected.
ESHUTDOWN The socket has been shut down for writes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_setsockopt — Set the Value of a Socket Option Parameter www.ti.com

62 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The NDK_sendto() function attempts to send data on a socket to a specified destination.
It is used on unconnected, non-connection oriented sockets only (see NDK_connect()).
The data to send is contained in the buffer specified by pbuf, with a length specified by
size. The options in flags can be used to change the default behavior of the operation.

The argument pName is a pointer to the address of the destination entity as known to
the communications layer. The domain in which the communication is occurring
determines the exact format of the pName parameter. The len parameter should contain
the size of name, which is sizeof(struct sockaddr).

The function returns the length of the data transmitted on successful completion.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a NDK_sendto() call is formed by combining one or more of the
following flags:

MSG_OOB sends out-of-band data on sockets that support this notion (e.g.,
SOCK_STREAM); the underlying protocol must also support out-of-band data.

MSG_EOR indicates a record mark for protocols that support the concept.
MSG_EOF Requests that the sender side of a socket be shut down, and that an

appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK_STREAM sockets in the AF_INET protocol family, and
implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only using the ARP
table entries.

NOTE: The native operation of the socket NDK_sendto operation is to connect,
sendto, and disconnect. Sockets that are not bound to a local IP or local
port would have an ephemeral port selected every time in order to
override this behavior and to ensure that the ephemeral port is not
selected every time it is recommended that customers do an NDK_bind()
to port 0. This selects the first free port not in use and all subsequent
communication uses the same port.

NDK_setsockopt Set the Value of a Socket Option Parameter

Syntax int NDK_setsockopt(SOCKET s, int level, int op, void *pbuf, int bufsize);

Parameters

s Socket
level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)
op Socket option to set
pbuf Pointer to memory buffer
bufsize Size of memory buffer pointed to by pbuf

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_setsockopt — Set the Value of a Socket Option Parameter

63SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Buffer arguments are invalid.

Description The NDK_setsockopt() function sets option values associated with a socket. Options
may exist at multiple protocol levels; they are always present at the uppermost socket
level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPPROTO_TCP are supported.

The parameters pbuf and bufsize identify a buffer that holds the value for the specified
option.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, which specifies the desired state of the option and the linger interval;
see the example provided for NDK_getsockopt(). SO_SNDTIMEO and SO_RCVTIMEO
use a struct timeval parameter. The IP-level options IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP accept a struct ip_mreq parameter.

The socket options supported for NDK_setsockopt() are the same as defined for
NDK_getsockopt(), with the exception of SO_TYPE and SO_ERROR, which cannot be
set.

Please see the description of NDK_getsockopt() for a list of socket options.

NOTE: The SO_SNDBUFand SO_RCVBUFoptions can only be set if there is no
transmit or receive data pending at the socket. In general, the buffer
sizes should only be configured before the socket is bound or connected.
Buffer sizes set on listen sockets will propagate to spawned accept
sockets.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_shutdown — Close One Half of a Connected Socket www.ti.com

64 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_shutdown Close One Half of a Connected Socket

Syntax int NDK_shutdown(SOCKET s, int how);

Parameters

s Socket
how Manner of shut down

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The specified socket is not connected.

Description The NDK_shutdown() function causes all or part of a full-duplex connection on the
socket associated with a socket to be shut down. If how is SHUT_RD (0), further
receives will be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If
how is SHUT_RDWR (2), further sends and receives will be disallowed.

NDK_socket Create a Socket

Syntax SOCKET NDK_socket(int domain, int type, int protocol);

Parameters

domain Socket domain (AF_INET or AF_INET6)
type Socket type (SOCK_DGRAM, SOCK_STREAM, SOCK_RAW)
protocol Socket protocol (Normally IPPROTO_TCP or IPPROTO_UDP, but can be anything

when type is set to SOCK_RAW)

Return Value If it succeeds, the function returns a file descriptor representing the socket. Otherwise, a
value of INVALID_SOCKET is returned and the function fdError() can be called to
determine the error:

EPFNOSUPPORT The specified domain was not AF_INET or AF_INET6.
EPROTOTYPE The type parameter does not support the protocol parameter.
ESOCKTNOSUPPORT The specified socket type is not supported.
ENOMEM Memory allocation error allocating socket buffers.
EMFILE The descriptor table is full.

Description The NDK_socket() function creates a socket, an endpoint for communication and returns
the socket in the form of a file descriptor.

The domain parameter specifies a communications domain within which communication
will take place; this selects the protocol/address family that should be used. This will
always be AF_INET or AF_INET6 in this implementation.

The socket type parameter specifies the semantics of communication. The defined types
are:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_socket — Create a Socket

65SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

SOCK_STREAM Provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism is supported.

SOCK_STREAMNC Identical to SOCK_STREAM except that received data is not coalesced into a
receive holding buffer. This eliminates one or two receive data copies
(depending on which NDK_recv() socket function is used), but has the
potential of tying up multiple data packets. It should only be used when the
socket is to receive data in large bursts. Out-of-band data is supported, but
only when the traditional NDK_recv() socket calls are used.

SOCK_DGRAM Supports datagrams - connectionless, unreliable messages of a fixed (typically
small) maximum length.

SOCK_RAW Similar to SOCK_DGRAM, only allows the use of any protocol that must be
manually constructed in each datagram by the programmer.

The protocol parameter specifies a particular protocol to be used with the socket. In this
implementation of the stack, SOCK_STREAM must use IPPROTO_TCP,
SOCK_DGRAM must use IPPROTO_UDP, and SOCK_RAW is unrestricted. To remain
compatible with the industry, this parameter can be set to NULL on SOCK_STREAM or
SOCK_DGRAM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Raw Ethernet Sockets Programming Interface www.ti.com

66 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.4 Raw Ethernet Sockets Programming Interface
Raw Ethernet sockets are a special type of sockets that allow an application to send and receive entire
Ethernet packets without any intermediate processing by the stack, like stripping off headers, checksum
calculations, etc., that are typically done for IPv4, IPv6 sockets. These sockets are expected to be used by
applications that have very definite performance requirements and need ultimate control over packet
processing. The Raw Ethernet sockets have both no-copy send and receive APIs. This facilitates the
application's performance requirements even further by reducing any overhead on the send or receive
data paths due to memory allocation and copying. A corresponding Raw Ethernet Module has also been
added to the core NDK stack that interfaces with the NIMU layer to send/receive data. For more details on
the Raw Ethernet module, see Section A.15 of this document.

3.4.1 Function Overview
The following is a complete list of socket APIs implemented for the Raw Ethernet socket family
(AF_RAWETH).

NDK_socket() Creates a raw Ethernet socket
NDK_shutdown() Close one half of the socket
NDK_getsockopt() Gets the value of a socket option
NDK_setsockopt() Sets the value of a socket option
NDK_send() Sends raw Ethernet data using a previously opened raw Ethernet socket
NDK_getsendncbuff() Allocate space for a raw Ethernet packet and retrieve handle for the data

buffer. This is used in conjunction with NDK_sendnc API for no-copy send.
NDK_sendnc() Send out raw Ethernet data without making a copy of it during the Tx path
NDK_sendncfree() Free buffer obtained from NDK_getsendncbuff() API
NDK_recvnc() Free buffer obtained from NDK_recvnc() API
NDK_recvncfree() Return a data buffer obtained from a no-copy receive operation

3.4.2 Raw Ethernet Sockets API Functions
This section describes the socket APIs listed before in detail and in particular when used with
AF_RAWETH family sockets.

NDK_socket Create a raw Ethernet socket.

Syntax SOCKET NDK_socket(int domain, int type, int protocol);

Parameters

domain Socket domain (AF_RAWETH)
type Socket type (SOCK_RAWETH)
protocol Socket protocol (can be set to any custom value other than the well-known types:

IP (0x800), IPv6 (0x86DD), VLAN (0x8100), PPPoE Control (0x8863), PPPoE Data
(0x8864) is acceptable)

Return Value If it succeeds, the function returns a file descriptor representing the socket. Otherwise, a
value of INVALID_SOCKET is returned and the function fdError() can be called to
determine the error:

EPFNOSUPPORT The specified domain was none of the supported families, i.e.,
AF_INET, AF_INET6, AF_RAWETH.

EINVAL The protocol parameter supplied is not valid. IP (0x800), IPv6
(0x86DD), VLAN (0x8100), PPPoE Control (0x8863), PPPoE Data
(0x8864) are not valid values for the protocol argument.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_shutdown — Close one half of a connected socket.

67SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

ESOCKTNOSUPPORT The specified socket type is not supported for this protocol.
ENOMEM Memory allocation error allocating socket buffers.
EMFILE The descriptor table is full.

Description The NDK_socket() function creates a socket, an endpoint for communication and returns
the socket in the form of a file descriptor. The domain parameter specifies a
communications domain within which communication will take place; this selects the
protocol/address family that should be used. To create a raw Ethernet socket, the
domain must be specified as AF_RAWETH. The socket type parameter specifies the
semantics of communication. For raw Ethernet sockets, this parameter must be set to
SOCK_RAWETH. The protocol parameter specifies the protocol to be used for the
socket. This can be set to any custom protocol type for a raw Ethernet socket. Standard
protocol types like IP (0x800), IPv6 (0x86DD), VLAN (0x8100), PPPoE Control (0x8863),
PPPoE Data (0x8864) must not be used here for protocol parameter.

NDK_shutdown Close one half of a connected socket.

Syntax int NDK_shutdown(SOCKET s, int how);

Parameters

s Socket
how Manner of shut down

Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.

Description The NDK_shutdown() function causes all or part of a full-duplex connection on the
socket associated with a socket to be shut down. If how is SHUT_RD (0), further
receives will be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If
how is SHUT_RDWR (2), further sends and receives will be disallowed.

NDK_getsockopt Get the value of a socket option.

Syntax int NDK_getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);

Parameters

s Socket
level Option level (SOL_SOCKET only for AF_RAWETH sockets)
op Socket option to get
pbuf Pointer to memory buffer
pbufsize Pointer to size of memory buffer

Return Value If it succeeds, the function returns 0. Otherwise, a value of –1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Buffer arguments are invalid.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_getsockopt — Get the value of a socket option. www.ti.com

68 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

Description The NDK_getsockopt() function returns the options associated with a socket. Options are
always present at the uppermost socket level (SOL_SOCKET) for raw Ethernet sockets.
When manipulating socket options, the level at which the option resides and the name of
the option must be specified. The parameters pbuf and pbufsize identify a buffer in which
the value for the requested option(s) are to be returned. pbufsize is a value-result
parameter, initially containing the size of the buffer pointed to by pbuf, and modified on
return to indicate the actual size of the value returned.

The following socket (SOL_SOCKET) level options are recognized for raw Ethernet
sockets:

SO_IFDEVICE Specifies a uint32_t index (1 to n) of the designated interface for
sending and receiving raw Ethernet packets.

NOTE: The SO_IFDEVICE option must be configured to successfully use a raw
Ethernet socket for communication.

SO_PRIORITY Specifies a unit value (0 to 7) configured as the priority to be marked on
all flowing packets using this socket. This priority can be used by the
Ethernet driver in turn to differentiate between packets and apply any
desired QoS scheme. It can be also used by a driver/application to map
the priority to certain transmission properties like the EMAC channel
number on which the packets are to be transmitted. Only unsigned
integer values between 0 to 7 are acceptable values for this field. When
a value of 0xFFF is set to this option, it resets the priority back to its
default value.

SO_RCVTIMEO Is an option to set a timeout value for input operations. It accepts a
struct timeval parameter with the number of seconds and microseconds
used to limit waits for input operations to complete.
This timer is restarted each time additional data are received by the
protocol, and therefore, the limit is in effect an inactivity timer. If a
receive operation has been blocked for this much time without receiving
additional data, it returns with a short count or with the error
EWOULDBLOCK if no data were received.

SO_SNDBUF Buffer size for output
SO_RCVBUF Buffer size for input
SO_RCVLOWAT Is an option to set the minimum size of data in bytes for input

operations. The default value for SO_RCVLOWAT is 1. Receive calls
may still return less than the amount specified by SO_RCVLOWAT or
the amount requested if an error occurs.

SO_ERROR Returns any pending error on the socket and clears the error status. It
may be used to check for any asynchronous errors.

SO_TYPE Returns the type of the socket. Always returns SOCK_RAWETH for raw
Ethernet sockets.

NOTE: Options like SO_SNDWAT, SO_SNDTIMEO, etc., are not supported for
raw Ethernet sockets, since there is no buffering on the send path and
the operation is synchronous; i.e., once NDK_send()/NDK_sendnc() APIs
are invoked for raw Ethernet sockets, these calls actually return only after
enqueuing the data in the driver queue. Hence, no buffering or timeouts
are required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_setsockopt — Set the value of a socket option.

69SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_setsockopt Set the value of a socket option.

Syntax int NDK_setsockopt(SOCKET s, int level, int op, void *pbuf, int bufsize);

Parameters

s Socket
level Option level (SOL_SOCKET only for AF_RAWETH sockets)
op Socket option to set
pbuf Pointer to memory buffer
bufsize Size of memory buffer pointed to by pbuf

Return Value If it succeeds, the function returns 0. Otherwise, a value of –1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Buffer arguments are invalid.

Description The NDK_setsockopt() function sets option values associated with a socket. Options are
always present at the uppermost socket level (SOL_SOCKET) for raw Ethernet sockets.
When manipulating socket options, the level at which the option resides and the name of
the option must be specified. The parameters pbuf and bufsize identify a buffer that
holds the value for the specified option. Most socket-level options utilize an int parameter
for pbuf.

The socket options supported for NDK_setsockopt() are the same as the ones specified
in the NDK_getsockopt() API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Destination
MAC

Address
(6 Bytes)

Source
MAC

Address
(6 Bytes)

Ethernet
Type

(2 Bytes)

Payload
(len – 14) Bytes

len Bytes

NDK_send — Transmit raw Ethernet data using a socket. www.ti.com

70 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_send Transmit raw Ethernet data using a socket.

Syntax int NDK_send(SOCKET s, void *pbuf, int size, int flags);

Parameters

s Socket
pbuf Data buffer holding data to transmit
size Size of data
flags Option flags

Return Value If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

ENOTSOCK The file descriptor does not reference a socket.
EINVAL The input is invalid.
ENOBUFS Memory allocation failure while attempting to send data.
ESHUTDOWN The socket has been shut down for writes.
EMSGSIZE The size of the data being sent exceeds the MTU of the interface or the

Maximum Transmit buffer size configured using SO_SNDBUF option,
whichever is the smaller value of the two.

ENXIO No egress interface specified for this socket to send out data. Use
SO_IFDEVICE socket option and specify an interface before retrying to
send out data using this socket.

Description The NDK_send() function attempts to send data on a socket. The data to send is
contained in the buffer specified by pbuf, with a length specified by size. The options in
flags can be used to change the default behavior of the operation. No flag options are
defined for raw Ethernet sockets. The function returns the length of the data transmitted
on successful completion.

The data buffer specified here is allocated and freed up by the application itself. The
packet buffer is copied over to the packet allocated on the transmit path by the Raw
Ethernet module and hence the application buffer (pbuf) freeing is the responsibility of
the application when this API returns. Based on the socket handle specified to this call,
the raw Ethernet module retrieves the socket priority and device on which this packet
needs to be transmitted and does the needful to transmit the data. All packets
transmitted using the specified socket would inherit their priority from the socket.

The format of the data buffer sent as input to this function is shown as follows:

Figure 3-1. Raw Ethernet Buffer Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_getsendncbuff — Retrieve handle to buffer application can fill with raw Ethernet data to send.

71SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_getsendncbuff Retrieve handle to buffer application can fill with raw Ethernet data to send.

Syntax int NDK_getsendncbuff(SOCKET s, uint32_t bufSize, void **phBuf, void **phPkt);

Parameters

s Socket
bufSize Size of data buffer to allocate
phbuf Pointer to send data buffer pointer
phPkt Pointer to packet buffer handle

Return Value If it succeeds, the function returns 0. Also, the phbuf and phPkt pointers are filled in with
valid pointers to the data and packet buffers just allocated. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

ENOBUFS Out of memory. Couldn’t allocate memory required for the packet and
data buffer.

EMSGSIZE The size of the data buffer requested exceeds the MTU of the interface
or the Maximum Transmit buffer size configured using SO_SNDBUF
option, whichever is the smaller value of the two on the specified
socket.

Description This API needs to be called by the raw Ethernet application to obtain a buffer handle to
use to transmit data without copy using the NDK_sendnc() API. This function ensures
that bufSize byte memory is allocated for the raw Ethernet data buffer. It also allocates
memory for the packet to hold this data buffer. The application can fill the required data
in the buffer just obtained and needs to send both the data buffer and the packet
pointers to NDK_sendnc() API to finally send out the packet. This packet and the data
buffer are freed by the Ethernet driver once the transmit completes successfully.
However, if the application would like to free up the buffer obtained because of some
error it encountered during send process, it would have to use the NDK_sendncfree API
and specify the packet buffer handle as a parameter and both the data buffer and packet
buffer will be freed up.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Destination
MAC

Address
(6 Bytes)

Source
MAC

Address
(6 Bytes)

Ethernet
Type

(2 Bytes)

Payload
(len – 14) Bytes

len Bytes

NDK_sendnc — Send data out on the socket without any copy on transmit path. www.ti.com

72 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_sendnc Send data out on the socket without any copy on transmit path.

Syntax int NDK_sendnc(SOCKET s, void *pbuf, int size, void *hPkt, int flags);

Parameters

s Socket
pbuf Pointer to send data buffer
hPkt Packet buffer handle obtained from the NDK_getsendncbuff() API
Flags Option flags

Return Value If it succeeds, the function returns number of bytes transmitted. Otherwise, a value of -1
is returned, and the function fdError() can be called to determine the error:

EINVAL The input is invalid
ESHUTDOWN The socket has been shut down for writes
ENOTSOCK The file descriptor does not reference a socket
ENXIO No egress interface specified for this socket to send out data. Use

SO_IFDEVICE socket option and specify an interface before retrying to
send out data using this socket.

Description The NDK_sendnc() API function attempts to send the data buffer and packet specified
using the raw Ethernet socket handle provided. It doesn’t make any copies of the data
on the transmit path and, therefore, provides a significant performance gain to the
application using it. The buffer pointer and the packet handle must be obtained using the
NDK_getsendncbuff() API before this function is called. The size of data buffer specified
as input to this function must not exceed the size of buffer allocated using the
NDK_getsendncbuff() API. No option flags are defined at this time for this API. This
packet and the data buffer are freed by the Ethernet driver once the transmit completes
successfully. However, If an error is returned from this API, the application is responsible
for freeing up the packet and data buffers obtained earlier from the NDK_getsendncbuff()
API by calling the NDK_sendncfree() API with the packet handle as input.

The format of the data buffer sent as input to this function is expected to be the
following:

Figure 3-2. Raw Ethernet Buffer Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NDK_sendncfree — Free the packet and data buffers obtained using the NDK_getsendncbuff() API.

73SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_sendncfree Free the packet and data buffers obtained using the NDK_getsendncbuff() API.

Syntax void NDK_sendncfree(void *hFrag);

Parameters

hFrag Handle to send buffer to free

Return Value None

Description The NDK_sendncfree() function frees the packet and data buffer obtained from calling
the NDK_getsendncbuff() API. The calling parameter, hFrag, is the handle of the packet
buffer to free (not the pointer to the buffer handle).

NDK_recvnc Receive data from a socket without buffer copy

Syntax int NDK_recvnc(SOCKET s, void **ppbuf, int flags, void **phBuffer);

Parameters

s Socket
ppbuf Pointer to receive data buffer pointer
flags Option flags
phBuffer Pointer to receive buffer handle

Return Value If it succeeds, the function returns the number of bytes received. Otherwise, a value of -1
is returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid
EINVAL Attempt to read (or calling arguments) invalid for this socket
ENOTSOCK The file descriptor does not reference a socket
EWOULDBLOCK The receive timeout configured on the socket has expired and no data

received so far.
ENXIO No egress interface specified for this socket to receive from. Use

SO_IFDEVICE socket option and specify an interface before retrying to
receive data using this socket.

Description The NDK_recvnc() function attempts to receive a data buffer from a socket. A pointer to
the data buffer is returned in ppbuf. A system handle used to free the buffer is returned
in phBuffer. Both of these pointers must be valid. The options in flags can be used to
change the default behavior of the operation. No flags are defined for raw Ethernet
sockets. The function returns the length of the message on successful completion. The
receive operation always returns one packet buffer. The caller has no control over the
size of the data returned in this buffer. If no messages are available at the socket, this
call waits for a message to arrive for the receive timeout specified on this socket. If no
timeout is specified this call blocks forever waiting for data to arrive on the socket. The
function returns the data buffer available. When the caller no longer needs the data
buffer, it is returned to the system by calling NDK_recvncfree(). Repeated failure to free
buffers eventually causes the stack to stop receiving data.

NOTE: Take care when using the NDK_recvnc() API, because packet buffers
come from the driver; there may be a limited supply available. The packet
buffers must be promptly freed up by the application once processing is
complete.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK_recvncfree — Return a data buffer obtained from a no-copy receive operation www.ti.com

74 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

NDK_recvncfree Return a data buffer obtained from a no-copy receive operation

Syntax void NDK_recvncfree(void *hBuffer);

Parameters

hBuffer Handle to receive buffer to free

Return Value None

Description The NDK_recvncfree() function frees a data buffer obtained from calling NDK_recvnc().
The calling parameter hBuffer is the handle of the buffer to free (not the pointer to the
buffer).

3.5 Full Duplex Pipes Programming Interface
Although sockets can be used for inter-task communications, it is not the most efficient method. The stack
provides a second data communications model called pipes, which allow for local connection oriented
communications.

A pipe is a full duplex connection oriented file descriptor. When a pipe is created, both ends of the pipe
are returned to the caller as file descriptors.

Communication is performed using the standard file and sockets API functions. All the file descriptor
functions are supported with pipes: fdSelect(), fdClose(), fdError().

Also, socket functions NDK_send() and NDK_recv() write and read data through the pipe. Both functions
also support the following standard sockets message flags when using pipes:

MSG_PEEK Examine data but do not consume it.
MSG_DONTWAIT Do not block on send/recv operation (by default, pipe operations always block).

Pipes are connection oriented, thus, when one end closes, the other end is altered by an error return from
NDK_send() or NDK_recv(). It is therefore possible to make a blocking call on NDK_recv() without concern
that the function will be deadlocked if the other end terminates the connection.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Full Duplex Pipes Programming Interface

75SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Sockets and Stream IO API

3.5.1 Pipe API Functions
Because pipes share file descriptor and IO functions with sockets, the only pipe oriented function is the
creation of the connected pair.

NDK_pipe Create a Full Duplex Pipe

Syntax int NDK_pipe(void **pfd1, void **pfd2);

Parameters

pfd1 Pointer to file descriptor to first end of pipe.
pfd2 Pointer to file descriptor to second end of pipe.

Return Value Returns zero on success or -1 on error. A more detailed error code can be found by
calling fdError().

Description Creates a pre-connected full duplex pipe. The returned file descriptors can be used with
all the fd file descriptor functions, as well as the NDK_send() and NDK_recv() socket
functions.

Pipes are connection oriented, so like TCP, a read or write call can return ENOTCONN
when the connection is broken by one side or the other.

NOTE: Both file descriptors must be closed to correctly close down (and free) a
pipe.

3.6 Internet Group Management Protocol (IGMP)
Internet Group Management Protocol (IGMP) is designed to help routers in routing IP multicast traffic.
Each router can have multiple ports, and it is inefficient for the router to replicate every IP multicast packet
out of each active port. Using the IGMP protocol, the multicast router is able to keep track of which IP
multicast addresses need to be routed to each individual port. This allows the router to limit IP multicast
transmission to only those ports that require the multicast traffic.

The IGMP protocol assumes a client/server relationship between endpoints. The IGMP server is run by
the multicast router to get IP multicast information about all the client on each of its individual ports. The
IGMP client is only concerned with communicating its own multicast requirements to the local IGMP
server, so that it will get the IP multicast packets that it requires.

The NDK does not support IP multicast routing, so there is no need to use IGMP in server mode.
However, the software does support IGMP client operation.

The IGMP client module indicates to the IGMP server which multicast IP addresses that the client needs
to receive. The IGMP API will also maintain the Ethernet multicast MAC address list at the Ethernet driver
level.

An application can join or leave a multicast group using the well-known NDK_setsockopt() API. To do this,
use the NDK_setsockopt() and NDK_getsockopt() APIs with the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP options. For more details on options for joining or leaving a multicast group,
see getsockopt() and setsockopt().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

76 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

Chapter 4
SPRU524K–May 2001–Revised October 2017

Configuration and Initialization

This chapter discusses the Configuration Manager API, which is the recommended method for configuring
your application. In addition, this chapter discusses the initialization sequence for the NDK.

Topic ... Page

4.1 Configuration Methods ... 77
4.2 Configuration Manager API ... 77
4.3 Configuration Specification ... 92
4.4 Initialization Procedure.. 105
4.5 Network Control Initialization Procedure (NETCTRL) .. 105

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Methods

77SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.1 Configuration Methods
There are two ways to configure an application's use of NDK modules:
• The Configuration Manager API is a collection of functions to help you create and manipulate a

configuration. This chapter describes the Configuration Manager API and its effects on the
configuration database.

• The XGCONF configuration tool within CCStudio can configure an application's use of NDK modules.
Graphical displays let you enable and set properties as needed, and context-sensitive help provides
information about individual fields. This configuration method cannot be used with FreeRTOS.
XGCONF is a configuration tool used to configure the TI-RTOS Kernel (previously called SYS/BIOS).
The same configuration in one project can configure both NDK and TI-RTOS modules and objects.
To open XGCONF in CCStudio, double-click the *.cfg file in your application's project. Alternatively,
you can edit the *.cfg file in your TI-RTOS project with a text editor. See the steps in the TI Network
Developer's Kit (NDK) User's Guide. (SPRU523) for using XGCONF with the NDK. For more about
using XGCONF, see Chapter 2 of the TI-RTOS Kernel User's Guide (SPRUEX3).

Internally, the XGCONF configuration tool generates C code that uses the Configuration Manager API to
update the configuration database.

NOTE: You should not mix configuration methods. If you have NDK applications that use the API-
based configuration method, you should either continue to use that method or convert the
configuration entirely to an *.cfg file configuration using XGCONF. If a project uses both
methods, there will be conflicts between the two configurations.

4.2 Configuration Manager API
The Configuration Manager is a collection of API functions to help you create and manipulate a
configuration. The manager API is independent of the configuration specification.

The configuration is arranged as a database with a master key (called Tag) that defines the class of
configuration item. A second key (called Item) determines the sub-item type in the tag class. For each tag
and item, there can be multiple instances. Items can be further distinguished by their instance value.

The configuration is based on an active database. That is, any change to the database can cause an
immediate reaction in the system. For example, if a route is added to the configuration, it is added to the
system route table. If the route is then removed from the configuration, it is removed from the system
route table.

To facilitate the active procession of configuration changes in a generic fashion, the configuration API
allows the installation of service provider callback functions that are called to handle specific tag values in
the configuration.

Configurations can be set active or inactive. When a configuration is active, any change to the
configuration results in a change in the system. When a configuration is inactive, it behaves like a
standard database. Part of the main initialization sequence is to make the system configuration active, and
then inactive when shutting down.

Both the configurations and configuration entries are referenced by a generic handle. Configuration
functions (named as CfgXxx()) take a configuration handle parameter, while configuration entry functions
(name as CfgEntryXxx()) take a configuration entry handle parameter. These handles are not
interchangeable.

Configuration entry handles are referenced. This means that each handle contains an internal reference
count so that the handle is not destroyed by one task while another task expects it to stay valid. Functions
that return a configuration entry handle supply a referenced handle in that its reference count has already
been incremented for the caller. The caller can hold this handle indefinitely, but should dereference it
when it is through. There are three calls that dereference a configuration entry handle. These are:
CfgRemoveEntry(), CfgGetNextEntry(), and most simply CfgEntryDeRef(). See individual function
descriptions for more information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spruex3

Configuration Manager API www.ti.com

78 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

The PPP module in the stack library and several modules in the NETTOOLS library make use of a default
configuration to store and search for data. The default configuration is accessed by passing in a NULL
configuration handle to any function that takes the hCfg parameter (except CfgFree()). The default
configuration is specified by calling CfgSetDefault().

4.2.1 Function Overview
The configuration access functions (in functional order) are as follows:

Configuration Functions:

CfgNew() Create a new configuration
CfgFree() Destroy a configuration
CfgSetDefault() Set default configuration
CfgGetDefault() Get default configuration
CfgLoad() Load configuration from a linear memory buffer
CfgSave() Save configuration to a linear memory buffer
CfgSetExecuteOrder() Set the tag initialization and shutdown order on execute
CfgExecute() Make the configuration active or inactive
CfgSetService() Sets service callback function for a particular tag
CfgAddEntry() Add a configuration entry to a configuration
CfgRemoveEntry() Remove entry from configuration
CfgGetEntryCnt() Get the number of item instances for a tag/item pair
CfgGetEntry() Get a referenced handle to a configuration entry
CfgGetNextEntry() Return supplied entry handle and get next entry handle
CfgGetImmediate() Get configuration entry data without getting an entry handle

Configuration Entry Functions:

CfgEntryRef() Add a reference to a configuration entry handle
CfgEntryDeRef() Remove a reference to a configuration entry handle
CfgEntryGetData() Get configuration entry data from entry handle
CfgEntrySetData() Replace data block of entry data using entry handle
CfgEntryInfo() Get information on a configuration entry handle

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Manager API

79SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.2.2 Configuration API Functions

CfgAddEntry Add Configuration Entry to Configuration

Syntax int CfgAddEntry(void *hCfg, uint32_t Tag, uint32_t Item, uint32_t Mode, uint32_t Size,
unsigned char *pData, void **phCfgEntry);

Parameters

hCfg Handle to configuration
Tag Tag value of new entry
Item Item value of new entry
Mode Mode flags for how to add entry
Size Size of entry data pointed to by pData
pData Pointer to entry data
phCfgEntry Pointer to where to write handle of new configuration entry

Return Value Returns 1 on success with successful processing by a service callback function (see
CfgSetService())

Returns 0 on success with no processing performed by a service callback function

Returns less than 0 but greater than CFGERROR_SERVICE on a configuration error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
CFGERROR_RESOURCES Memory allocation error while adding entry

Returns less than or equal to CFGERROR_SERVICE when the service callback function
returns an error. Service errors are specific to the service callback functions installed and
are thus implementation dependent. The original error return from the service callback
can be retrieved by using the CFG_GET_SERVICE_ERROR() macro:
ServiceErrorCode = CFG_GET_SERVICE_ERROR(CfgAddEntryReturnValue);

NOTE: On a service error, the configuration entry is still added to the
configuration, and an entry handle is written to phCfgEntry when the
pointer is supplied.

Description This function creates a new configuration entry and adds it to the configuration.

The phCfgEntry parameter is an optional pointer that can return a handle to the newly
added configuration entry. When the phCfgEntry parameter is valid, the function writes
the referenced handle of the new configuration entry to the location specified by this
parameter. It is then the caller's responsibility to dereference this handle when it is
finished with it. When the parameter phCfgEntry is NULL, no entry handle is returned,
but the function return value is still valid.

Configuration entry handles are dereferenced by calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgAddEntry — Add Configuration Entry to Configuration www.ti.com

80 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

If the execution state of the configuration is active (see CfgExecute()), the addition of
the configuration entry is immediately reflected in the operating state of the system.

Multiple configuration entries can exist with the same Tag and Item key values. The
system creates a third key (Instance) to track these duplicate keyed entries. However, by
default, the configuration system does not allow for fully duplicate entries. Entries are full
duplicates if there exists another entry with the same Tag and Item key values and an
exact duplicate data section (size and content). When a full duplicate entry is detected,
the new (duplicate) entry is not created.

There are some options that determine how the entry is added to the configuration by
using flags that can be set in the Mode parameter. The default behavior when adding an
object is as follows:
• Multiple instances with the same Tag and Item values are allowed.
• However, duplicate instances with the same Tag, Item, Size, and pData contents are

ignored.
• New entries are saved to the linear buffer if or when CfgSave() is used.

To modify the default behavior, one or more of the following flags can be set:

CFG_ADDMODE_UNIQUE Replace all previous entry instances with this single entry.
CFG_ADDMODE_DUPLICATE Allow full duplicate entry (duplicate Tag, Item, and entry data).

Requests to add duplicates are normally ignored.
CFG_ADDMODE_NOSAVE Do not include this entry in the linear buffer in CfgSave().

NOTE: Setting both the CFG_ADDMODE_UNIQUE and
CFG_ADDMODE_DUPLICATE flags is the same as only setting
CFG_ADDMODE_UNIQUE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgExecute — Set the Execution State (Active/Inactive) of the Configuration

81SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgExecute Set the Execution State (Active/Inactive) of the Configuration

Syntax int CfgExecute(void *hCfg, int fExecute);

Parameters

hCfg Handle to configuration
fExecute Desired execute state (1 = active)

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
CFGERROR_ALREADY Configuration is already in desired state

Description When a configuration is first created, it is in an inactive state, so changes to the
configuration are not reflected by changes to the system.

Executing the configuration (setting fExecute to 1) causes all current entries in the
configuration to be loaded, and any further changes in the configuration to be
immediately reflected in the system.

Disabling execution of the configuration (setting fExecute to 0) causes all configuration
entries to be unloaded from the system (note that they are not removed from the
configuration). Any further changes to the configuration are not reflected by changes to
the system.

CfgFree Destroy a Configuration Handle

Syntax void CfgFree(void *hCfg);

Parameters

hCfg Handle to configuration

Return Value None.

Description Destroys a configuration. Unloads and frees all configuration entries and frees the
configuration handle. After this call, the configuration handle hCfg is invalid.

CfgGetDefault Get Default Configuration Handle

Syntax void *CfgGetDefault();

Parameters None.

Return Value Returns a handle to the current default configuration, or NULL if None.

Description This function returns the current default configuration handle. The default handle is used
in any function that takes a hCfg parameter, when the specified parameter is NULL. At
initialization, there is no default configuration. It must be allocated by CfgNew() and then
specified via CfgSetDefault(). Normally, the default configuration is reserved for system
use.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgGetEntry — Get Configuration Entry from Configuration www.ti.com

82 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgGetEntry Get Configuration Entry from Configuration

Syntax int CfgGetEntry(void *hCfg, uint32_t Tag, uint32_t Item, uint32_t Index, void
**phCfgEntry);

Parameters

hCfg Handle to configuration
Tag Tag value of entry
Item Item value of entry
Index Instance index to get (1 to n)
phCfgEntry Pointer to where to write configuration entry handle

Return Value Returns 1 if a matching entry was found

Returns 0 if a matching entry was not found

Returns less than 0 on error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description This function searches the configuration for an entry matching the supplied Tag and Item
parameters and an index matching the supplied Index parameter. For example, when
Index is 1, the first instance is returned, when Index is 2, the second instance is
returned. The total number of instances can be found by calling CfgGetEntryCnt().

The phCfgEntry parameter is an optional pointer that can return the handle of the
configuration entry found by this function. When the phCfgEntry parameter is valid, the
function writes the referenced handle of the configuration entry found to this pointer. It is
the caller's responsibility to dereference the handle when it is no longer needed. When
the parameter phCfgEntry is NULL, no entry handle is returned, but the function return
value is still valid (found or not found).

Configuration entry handles are dereferenced by the calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry

NOTE: Do not attempt to use the Index value to enumerate all entry instances in
the configuration. The index of an entry handle is valid only at the time of
the call as an item can move up and down in the list as configuration
changes are made. To enumerate every entry for a Tag/Item pair, start
with Index 1, and then use CfgGetNextEntry() to get additional entries.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgGetEntryCnt — Get the Number of Entry Instances for the Supplied Tag/Item Pair

83SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgGetEntryCnt Get the Number of Entry Instances for the Supplied Tag/Item Pair

Syntax int CfgGetEntryCnt(void *hCfg, uint32_t Tag, uint32_t Item);

Parameters

hCfg Handle to configuration
Tag Tag value of query
Item Item value of query

Return Value Returns 0 or greater on success (number of instances found) or less than 0 on error.

The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description This function searches the configuration for all instances matching the supplied Tag and
Item parameters and returns the number of instances found.

CfgGetImmediate Get Configuration Entry Data Directly from Configuration

Syntax int CfgGetImmediate(void *hCfg, uint32_t Tag, uint32_t Item, uint32_t Index, int Size,
unsigned char *pData);

Parameters

hCfg Handle to configuration
Tag Tag value of entry
Item Item value of entry
Index Instance index to get (1 to n)
Size Size of buffer to receive data
pData Pointer to data buffer to receive data

Return Value Number of bytes copied

Description This function is a useful shortcut when searching the configuration for well-known
entries. It searches the configuration for entries matching the supplied Tag and Item
parameters and uses the item matching the supplied Index parameter. For example, if
Index is 1, the first instance is used, if Index is 2, the second instance is used. The total
number of instances can be found by calling CfgGetEntryCnt().

Instead of returning a referenced handle to the configuration entry (as with the more
generic CfgGetEntry() function), this function immediately gets the entry data for this
entry and copies it to the data buffer pointed to by pData.

The increased simplicity does decrease the function's flexibility. This function returns the
number of bytes copied, so it will return 0 for any of the following reasons:
• A supplied parameter is incorrect
• The item was not found
• The supplied buffer size (specified by Size) was not large enough to hold the data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgGetNextEntry — Get the Next Entry Instance Matching the Supplied Entry Handle www.ti.com

84 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgGetNextEntry Get the Next Entry Instance Matching the Supplied Entry Handle

Syntax int CfgGetNextEntry(void *hCfg, void *hCfgEntry, void **phCfgEntryNext);

Parameters

hCfg Handle to configuration
hCfgEntry Handle to last configuration entry
phCfgEntryNext Pointer to receive handle of next configuration entry

Return Value Returns 1 if a next entry was found

Returns 0 if a next entry was not found

Returns less than 0 on error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

NOTE: The handle hCfgEntry is not dereferenced on the event of an error.

Description This function serves two purposes. First, it dereferences the configuration entry handle
supplied in hCfgEntry. After this call, the handle is invalid (unless there was more than
one reference to it). Secondly, this function returns a referenced configuration entry
handle to the next instance (if any) of an entry that matches the Tag and Item values of
the supplied entry.

When the parameter phCfgEntryNext is NULL, no entry handle is returned, but the
function always returns 1 if such an entry was found and 0 when not.

When the phCfgEntryNext parameter is not NULL, the function writes a referenced
handle to the configuration entry to the location specified by this parameter. It is then the
caller's responsibility to dereference this handle when it is finished with it.

Configuration entry handles are dereferenced by the calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgLoad — Load a Configuration from a Linear Memory Block

85SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgLoad Load a Configuration from a Linear Memory Block

Syntax int CfgLoad(void *hCfg, int Size, unsigned char *pData);

Parameters

hCfg Handle to configuration
Size Size of memory block to load
pData Pointer to memory block to load

Return Value Returns the number of bytes loaded, or less than 0 on an error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description The configuration system features the ability for the manager to convert a configuration
database to a linear block of memory for storage in non-volatile memory. The
configuration can then be converted back on reboot.

This function converts a linear block of memory to a configuration by loading each
configuration entry it finds in the coded data block. Note that CfgLoad() can be used to
load entries into a configuration that already has pre-existing entries, but the method of
entry is not preserved (see Mode parameter of CfgAddEntry()). To ensure that the
resulting configuration exactly matches the one converted with CfgSave() , this function
should only be called on an empty configuration handle.

CfgNew Create a New Configuration

Syntax void *CfgNew();

Parameters None.

Return Value Returns handle to a new configuration or NULL on memory allocation error.

Description Creates a configuration handle that can be used with other configuration functions. The
new handle defaults to the inactive state (see CfgExecute()).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgRemoveEntry — Remove Configuration Entry from Configuration by Handle www.ti.com

86 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgRemoveEntry Remove Configuration Entry from Configuration by Handle

Syntax int CfgRemoveEntry(void *hCfg, void *hCfgEntry);

Parameters

hCfg Handle to configuration
hCfgEntry Configuration entry to remove

Return Value Returns 0 on success or less than 0 on error.

The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

NOTE: The handle hCfgEntry is not dereferenced on the event of an error.

Description This function removes a configuration entry from a configuration.

If the execution state of the configuration is active (see CfgExecute()), then the removal
of the configuration entry is immediately reflected in the operating state of the system.

This function also performs a single dereference operation on the configuration entry
handle, so the handle is invalid after the call (unless there was more than one reference
made). Although the entry handle is not freed until all handle references have been
removed, it is always removed from the configuration immediately.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgSave — Save a Configuration to a Linear Memory Block

87SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgSave Save a Configuration to a Linear Memory Block

Syntax int CfgSave(void *hCfg, int *pSize, unsigned char *pData);

Parameters

hCfg Handle to configuration
pSize Pointer to size of memory block
pData Pointer to memory block to load

Return Value Returns the number of bytes written, 0 on a size error (value at pSize set to required
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description One of the features of the configuration system is the ability for the manager to convert a
configuration database to a linear block of memory for storage in non-volatile memory.
The configuration can then be converted back on reboot.

This function saves the contents of the configuration specified by hCfg into the linear
block of memory pointed to by pData.

The size of the data buffer is initially pointed to by the pSize parameter. If this size value
pointed to by this pointer is zero (pSize cannot itself be NULL), the function does not
attempt to save the configuration but rather calculates the size required and writes this
value to the location specified by pSize. In fact, any time the value at pSize is less than
the size required to store the configuration, the function returns 0 and the value at pSize
is set to the size required to store the data.

The pData parameter points to the data buffer to receive the configuration information.
This pointer can be null if *pSize is zero. Note that the pointer pSize must always be
valid.

CfgSetDefault Set Default Configuration Handle

Syntax void *CfgSetDefault(void *hCfg);

Parameters

hCfg Handle to configuration to set as default, or NULL to clear default

Return Value None.

Description This function sets the current default configuration handle to that specified in hCfg. The
default handle is used in any function that takes a hCfg parameter, when the specified
parameter is NULL. At initialization, there is no default configuration. It must be allocated
by CfgNew() and then specified via CfgSetDefault(). Normally, the default configuration
is reserved for system use. The default configuration handle should not be freed until it is
cleared by calling CfgSetDefault(0).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgSetService — Set Service Callback Function for Configuration Tag www.ti.com

88 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgSetService Set Service Callback Function for Configuration Tag

Syntax int CfgSetService(void *hCfg, uint32_t Tag, int (*pCb) (void *, uint, uint, uint, void *));

Parameters

hCfg Handle to configuration
Tag Tag value to change
pCb Pointer to service callback function

Return Value Returns 0 on success, or less than 0 on error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description To give the configuration the ability to be active - i.e., to make real-time changes to the
system as the configuration changes, the configuration manager must have the ability to
make changes to the system. To enable this in a generic fashion, the configuration
manager allows for the installation of service callback functions for each configuration
tag value.

This function sets the service function for a particular configuration tag. Service function
pointers default to NULL, and when they are NULL, no service is performed for the
configuration entry (it becomes information data only).

When invoked, the service callback function is passed back information about the
affected entry. The callback function is defined as:

int CbSrv(void *hCfg, uint32_t Tag, uint32_t Item, uint32_t Op, void *hCfgEntry),

hCfg Pointer to Config
Tag Tag value of entry changed
Item Item value of entry changed
Op Operation (CFGOP_ADD or CFGOP_REMOVE)
hCfgEntry Non-Referenced pointer to entry added or removed

The callback should return 1 on success, 0 on pass, and <0 on error.

NOTE: The configuration entry handle passed to the callback function is not
referenced, as its scope expires when the callback function returns.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgSetExecuteOrder — Set the Tag Initialization and Shutdown Order on Execute

89SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgSetExecuteOrder Set the Tag Initialization and Shutdown Order on Execute

Syntax int CfgSetExecuteOrder(void *hCfg, uint32_t Tags, uint32_t *pOpenOrder, uint32_t
*pCloseOrder);

Parameters

hCfg Handle to configuration
Tags Number of tag values in pOpenOrder and pCloseOrder
pOpenOrder Pointer to array of tag values in initialization order
pCloseOrder Pointer to array of tag values in shutdown order

Return Value Returns zero on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

Description The configuration API has no knowledge of the configuration database specification.
Thus, it has no concept of a priority in loading and unloading configuration entries. The
default order for both loading and unloading is by ascending tag value.

You may require that the application specify the exact order in which entries should be
initialized (specified in pOpenOrder) and shut down (specified in pCloseOder). Both
arrays must be provided - even if they are identical pointers. The number of elements in
each array is specified by the Tags parameter. This must exactly match the maximum
number of tags in the system defined by CFGTAG_MAX. An entry of 0 in either order
array is used as a placeholder for tags that have not yet been defined.

4.2.3 Configuration Entry API Functions

CfgEntryDeRef Remove a Reference to a Configuration Entry Handle

Syntax int CfgEntryDeRef(void *hCfgEntry);

Parameters

hCfgEntry Handle to configuration entry

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function removes a reference to the configuration entry handle supplied in
hCfgEntry. It is called by an application when it wishes to discard a referenced
configuration entry handle. Once this function is called, the handle should no longer be
used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CfgEntryGetData — Get Configuration Entry Data www.ti.com

90 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgEntryGetData Get Configuration Entry Data

Syntax int CfgEntryGetData(void *hCfgEntry, int *pSize, unsigned char *pData);

Parameters

hCfgEntry Handle to configuration entry
pSize Pointer to size of data buffer
pData Pointer to data buffer

Return Value Returns the number of bytes written, 0 on a size error (value at pSize set to required
size), or less than 0 on an operation error. The possible errors are

CFGERROR_BADHANDLE Invalid hCfgEntry handle
CFGERROR_BADPARAM Invalid function parameter

Description This function acquires the entry data of the configuration entry specified by the entry
handle in hCfgEntry.

The value pointed to by pSize is set to the size of the supplied buffer, or zero to get the
required size (the pointer pSize must be valid, but the value at the pointer can be zero).
If the value at pSize is zero, or less than the number of bytes required to hold the entry
data, this function returns 0, and the number of bytes required to hold the data is stored
at pSize.

The pData parameter points to the data buffer to receive the configuration entry data.
This pointer can be null if *pSize is zero.

CfgEntryInfo Get Information on a Configuration Entry

Syntax int CfgEntryInfo(void *hCfgEntry, int *pSize, unsigned char **ppData);

Parameters

hCfgEntry Handle to configuration entry
pSize Location to receive the size of the configuration entry data buffer
ppData Location to receive the pointer to the configuration entry data buffer

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function acquires the size and pointer to a configuration entry's data buffer.

The entry handle is supplied hCfgEntry. A pointer to receive the size of the entry's data
buffer is supplied in pSize, and a pointer to receive a pointer to the entry's data buffer is
supplied in ppData. Either pointer parameter can be left NULL if the information is not
required.

This function should be used with great care. Direct manipulation of the configuration
entry data should only be attempted on informational tags, and only when the caller
holds a referenced handle to the configuration entry. This function is used in
configuration service callback functions, which are called only when the configuration is
in a protected state.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CfgEntryRef — Add a Reference to a Configuration Entry Handle

91SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CfgEntryRef Add a Reference to a Configuration Entry Handle

Syntax int CfgEntryRef(void *hCfgEntry);

Parameters

hCfgEntry Handle to configuration entry

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function adds a reference to the configuration entry handle supplied in hCfgEntry. It
is called by an application when it intends to use a configuration entry handle beyond the
scope of the function that obtained it from the configuration. This normally occurs when
one user function calls another and passes it a handle.

The handle should be dereferenced when no longer needed. Configuration entry handles
are dereferenced by calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry

CfgEntrySetData (Re)Set Configuration Entry Data

Syntax int CfgEntrySetData(void *hCfgEntry, int Size, unsigned char *pData);

Parameters

hCfgEntry Handle to configuration entry
Size Size of data buffer
pData Pointer to data buffer

Return Value Returns the number of bytes written, 0 on a size error (new size does not match old
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle
CFGERROR_BADPARAM Invalid function parameter

Description This function replaces the entry data of the configuration entry specified by the entry
handle in hCfgEntry.

The new entry data is pointed to by the pData parameter, with a size indicated by Size.
Note that the new data must be an exact replacement for the old. The size of the new
buffer must exactly match the old size.

This function should be used for configuration entries that are for information purposes
only. Note that if a service provider callback is associated with the Tag value of this
entry, the processing function is not called as a result of this data update. This function
only updates the data stored for this configuration entry.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

92 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3 Configuration Specification
Specifying all the available configuration options for the stack would require a separate document. This
section details that part of the configuration that is relied upon by the Network Control (NC) initialization
functions, or the services contained in the NETTOOLS library. The stack itself does not reference the
configuration system. It has its own simpler method that is detailed in Appendix A, but it is redundant
when using the configuration API. In fact, they conflict, as the Network Control functions assume full
control of it.

4.3.1 Organization
As already mentioned, the configuration is arranged as a database with the value Tag as a major key, and
the value Item as a minor key. Every major stack configuration component has a major key (Tag) value,
including: network services (protocol servers), connected IP networks, gateway routes, connected client
entities, global system information, and low-level stack configuration.

Most of these tags require service callback functions to implement the system functionality. For example,
when an IP network is added using the CFGTAG_IPNET tag, there must be a function that makes the
corresponding system calls that adds the network to the system route table. All these server callback
functions are contained in the NETCTRL directory. Although source code to these functions is provided,
many of the system calls they make can only be understood by reading the attached appendices.

The tag values defined are:

CFGTAG_SERVICE Network Service
CFGTAG_IPNET IP Network (Address, subnet mask, etc.)
CFGTAG_ROUTE IP Gateway Route
CFGTAG_CLIENT IP Client (Client IP, Hostname, etc)
CFGTAG_ACCT Client user account (name, password, etc.)
CFGTAG_SYSINFO Global System Information
CFGTAG_OS Operating System Configuration entry
CFGTAG_IP IP Stack Configuration entry

NOTE: Configuration support is not available for IPv6 stack management. IPv6 stack management
can be done only using the APIs and data structure exported by it. IPv6 stack APIs and data
structures are discussed in Appendix G of this document.

4.3.2 Network Service Specification (CFGTAG_SERVICE)
The network services tag is perhaps the most time saving feature of the configuration. It allows you to
instruct the system of what tasks to execute, and how they should be executed. It is also the most
complicated configuration entry.

Network services are identified by a configuration Tag parameter value of CFGTAG_SERVICE.

Note that all these services are obtained directly from the NETTOOLS services API. The configuration
system adds a level of abstraction so that a list of services can be added to a configuration, and then the
service provider callback functions contained in the Network Control initialization routines can
automatically load the services at runtime without having to call the NETTOOLS API directly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Specification

93SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.2.1 Service Types
The type of service is indicated by the value of the Item parameter supplied to the CfgAddEntry() function.
The defined service types include (by Item):

CFGITEM_SERVICE_TELNET Telnet Server
CFGITEM_SERVICE_HTTP HTTP Server
CFGITEM_SERVICE_NAT Network Address Translation System
CFGITEM_SERVICE_DHCPSERVER DHCP Server
CFGITEM_SERVICE_DHCPCLIENT DHCP Client
CFGITEM_SERVICE_DNSSERVER DNS Server

4.3.2.2 Common Argument Structure
Each individual service has its own specific configuration instance structure, but they all share a generic
argument structure. This is defined as follows:
// Common Service Arguments
typedef struct _ci_srvargs {

uint32_t Item; // Copy of Item value (init to NULL)
void *hService; // Handle to service (init to NULL)
uint32_t Mode; // Flags
uint32_t Status; // Service Status (init to NULL)
uint32_t ReportCode; // Standard NETTOOLS Report Code
uint32_t IfIdx; // If physical Index
uint32_t IPAddr; // Host IP Address
void(*pCbSrv)(uint, uint, uint, void *); // CbFun for status change

} CISARGS;

The individual fields are defined as follows:
• uint32_t Item;

This is a copy of the Item value used when the entry is added to the configuration. Its initial value
should be NULL, but it is overwritten by the service provider callback. It is used so that the status
callback function can be provided with the original Item value.

• void *hService;

This is the handle to the service as returned by the NETTOOLS function corresponding to the type of
service requested. Its initial value should be NULL, and it is initialized by the service callback function
when the service is started. The value is needed to shut down the service when the configuration is
unloaded.

• uint32_t Mode;

The mode parameter is a collection of flags representing the desired execution behavior of the service.
One or more of the following flags can be set:

CIS_FLG_IFIDXVALID Specifies the IfIdx field is valid.
CIS_FLG_RESOLVEIP Requests that IfIdx be resolved to an IP address before service

execution is initiated.
CIS_FLG_CALLBYIP Specifies that the service should be invoked by IP address. (This is the

default behavior when IFIDXVALID is not set, but this flag can be set
with IFIDXVALID when RESOLVEIP is also set. If IFIDXVALID is set and
this bit is not set, the service is invoked by physical device .)

CIS_FLG_RESTARTIPTERM A service that is dependent on a valid IP address (as determined by the
RESOLVEIP flag) is shut down if the IP address becomes invalid. When
this flag is set, the service will be restarted when a new address
becomes available. Otherwise; the service will not be restarted.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

94 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

• uint32_t Status;

The status parameter contains the service status as detected by the Net Control service callback
function that initiates the service with NETTOOLS. The value of status should be initialized to NULL. Its
defined values are:

CIS_SRV_STATUS_DISABLED Service not active (NULL state)
CIS_SRV_STATUS_WAIT Net Control is waiting on IP resolution to start service
CIS_SRV_STATUS_IPTERM Service was terminated because it lost its IP address
CIS_SRV_STATUS_FAILED Service failed to initialize via its NETTOOLS open function
CIS_SRV_STATUS_ENABLED Service enabled and initialized properly

• uint32_t ReportCode;

All the services available via the configuration can also be launched directly via a NETTOOLS API.
The NETTOOLS service API has a standard service reporting callback function that is mirrored by the
configuration system via the Net Control service provider callback. This variable holds the last report
code reported by the NETTOOLS service invoked by this configuration entry.

• uint32_t IfIdx;

This is the physical device Index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. If the field is
valid, the CIS_FLG_IFIDXVALID flag should be set in Mode.

• uint32_t IPAddr;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by an IP
address and require a device Index (supplied in IfIdx) on which to execute.

• void(*pCbSrv)(uint, uint, uint, void *);

The pCbSrv parameter contains a callback function that is called when the status of the service
changes. It can be set to NULL if a callback is not required. The specification of the callback function is
as follows:

• void StatusCallback(uint32_t Item, uint32_t Status, uint32_t Code,
void *hCfgEntry);

Item Item value of entry changed
Status New status
Code Report code (if any)
hCfgEntry Non-Referenced pointer to entry with status change

Note that the Status parameter is the same as the Status field described in the CISARGS structure.
The Code parameter is that returned by the NETTOOLS service callback, which is a lower-level status
callback function used by Net Control.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Specification

95SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.2.3 Individual Configuration Entry Instance Structures
The following code defines the instance structures used for each of the defined configuration entries using
the configuration service tag. Note that all structures contain the previously mentioned CISARGS
structure. Some services require more information and their configuration entry structure contains an
additional parameter structure as defined in the service's NETTOOLS API. Others do not require a
parameter structure.
// Telnet Entry Data
typedef struct _ci_service_telnet {

CISARGS cisargs; // Common arguments
NTPARAM_TELNET param; // Telnet parameters

} CI_SERVICE_TELNET;

// HTTP Server Entry Data
typedef struct _ci_service_http {

CISARGS cisargs; // Common arguments
NTPARAM_HTTP param; // HTTP parameters

} CI_SERVICE_HTTP;

// NAT Service Entry Data
typedef struct _ci_service_nat {

CISARGS cisargs; // Common arguments
NTPARAM_NAT param; // NAT parameters

} CI_SERVICE_NAT;

// DHCP Server Entry Data
typedef struct _ci_service_dhcps {

CISARGS cisargs; // Common arguments
NTPARAM_DHCPS param; // DHCPS parameters

} CI_SERVICE_DHCPS;

// DHCP Client Service
typedef struct _ci_service_dhcpc {

CISARGS cisargs; // Common arguments
NTPARAM_DHCP param; // DHCP parameters

} CI_SERVICE_DHCPC;

// DNS Server Service
typedef struct _ci_service_dnss {

CISARGS cisargs; // Common arguments
} CI_SERVICE_DNSSERVER;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

96 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.2.4 Specifying Network Services

4.3.2.4.1 Specifying Telnet Service Using the Configuration
The Telnet service can be specified as public because it can connect using any IP address, or an IP
address of a specific interface. When accepting connections to any system IP address, the service is
specified with the CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is
desired, the service is specified by the physical interface on which connections are allowed to occur.
Because an IP address is required to initialize the service, the RESOLVEIP flag should also be set in the
latter case. For example, the following code specifies that the telnet server should run using the IP
address INADDR_ANY.
telnet_example()
{

CI_SERVICE_TELNET telnet;

bzero(&telnet, sizeof(telnet));
telnet.cisargs.IPAddr = INADDR_ANY;
telnet.cisargs.pCbSrv = &ServiceReport;
telnet.param.MaxCon = 2;
telnet.param.Callback = &ConsoleOpen;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_TELNET,
0, sizeof(telnet), (unsigned char *)&telnet, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

4.3.2.4.2 Specifying DHCP Server Service Using the Configuration
Because the DHCP server service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
However, because an IP host address is required to initialize the service on a specific interface, the
RESOLVEIP flag should be set in cases where the IP address is not pre-assigned. For example, the
following code specifies that the DHCP server should run on the interface specified by the physical index
dhcpsIdx. Here, the home networks have already been written to the configuration, so the RESOLVEIP
flag is not necessary. The address pool being used is already stored in IPPoolBase and PoolSize. The
DHCPS is requested to report the local server address as a DNS server to DHCP clients.
dhcp_server_example()
{

CI_SERVICE_DHCPS dhcps;

bzero(&dhcps, sizeof(dhcps));
dhcps.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcps.cisargs.IfIdx = dhcpsIdx;
dhcps.cisargs.pCbSrv = &ServiceReport;

// Report our address as a DNS server to clients, and use the
// network's local domain name.
dhcps.param.Flags = DHCPS_FLG_LOCALDNS | DHCPS_FLG_LOCALDOMAIN;

// Assign the IP address pool
dhcps.param.PoolBase = IPPoolBase;
dhcps.param.PoolCount = PoolSize;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPSERVER, 0,
sizeof(dhcps), (unsigned char *)&dhcps, 0);

}

The above code is all that is required when using the configuration system to invoke this service.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Specification

97SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.2.4.3 Specifying DHCP Client Service Using the Configuration
Because the DHCP client service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
Also, because the service runs without an IP host address, the RESOLVEIP flag should never be set. For
example, the following code specifies that the DHCP client should run on the interface specified by the
physical Index dhcpIdx.
dhcp_client_example()
{

CI_SERVICE_DHCPC dhcpc;

bzero(&dhcpc, sizeof(dhcpc));
dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;
dhcpc.cisargs.IfIdx = dhcpIdx;
dhcpc.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, 0,

sizeof(dhcpc), (unsigned char *)&dhcpc, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

4.3.2.4.4 Specifying HTTP Service Using the Configuration
The service can be specified as public as it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the HTTP server should run using the IP address
INADDR_ANY.
http_example()
{

CI_SERVICE_HTTP http;

bzero(&http, sizeof(http));
http.cisargs.IPAddr = INADDR_ANY;
http.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_HTTP, 0,

sizeof(http), (unsigned char *)&http, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

4.3.2.4.5 Specifying DNS Service Using the Configuration
The service can be specified as public because it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the server should run using the IP address INADDR_ANY.
dns_server_example()
{

CI_SERVICE_DNSSERVER dnss;

bzero(&dnss, sizeof(dnss));
dnss.cisargs.IPAddr = INADDR_ANY;
dnss.cisargs.pCbSrv = &ServiceReport;
CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DNSSERVER, 0,

sizeof(dnss), (unsigned char *)&dnss, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

98 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.2.4.6 Specifying NAT Service Using the Configuration
Because the NAT service executes on a specified public interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
In addition, because the public IP host address is required to initialize the service, the RESOLVEIP flag
should be set when the IP address is not pre-assigned.

For example, the following code specifies that the NAT service should run on the interface specified by the
physical index natIdx. Here, the DHCP client service is used to obtain the public IP address (the address
assigned to natIdx), so at this point the IP address is unknown. Thus, the RESOLVEIP flag is set in the
execution mode parameter. This informs the configuration service manager not to invoke NAT until it has
resolved an IP address for the target interface. The RESTART flag is also set to tell the service to restart
NAT if a public IP address is lost and regained. In this example, it is assumed that all networks in the
192.168.x.x/255.255.0.0 subnet are part of the NAT group to be translated.

The MTU parameter to the NAT configuration allows the programmer to set a limit on the MTU negotiated
during a TCP connection. This prevents TCP packet traffic from being unnecessarily fragmented. For
example, when routing between Ethernet and PPPoE over NAT, the MTU should be set to the smaller
MTU of the two, which is PPPoE's limit of 1492. In the example below, it is assumed that the system is
Ethernet to Ethernet, and thus, it uses the full 1500.
nat_service_example()
{

CI_SERVICE_NAT nat;

bzero(&nat, sizeof(nat));

// Do not start NAT until we resolve an IP address on its IF
nat.cisargs.Mode = CIS_FLG_IFIDXVALID | CIS_FLG_RESOLVEIP |

CIS_FLG_RESTARTIPTERM;
nat.cisargs.IfIdx = natIdx;
nat.cisargs.pCbSrv = &ServiceReport;

// Include all 192.168.x.x addresses in NAT group
nat.param.IPVirt = htonl(0xc0a80000);
nat.param.IPMask = htonl(0xffff0000);
nat.param.MTU = 1500;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_NAT, 0,
sizeof(nat), (unsigned char *)&nat, 0); }

The above code is all that is required when using the configuration system to invoke this service.

To use NAT, it must be configured via the following function. Also, by default, the NAT code is not called
by the stack. This increases stack efficiency when NAT is not in use. To enable the NAT module, the
IpNatEnable element of the stack configuration structure must be set.

Note that when using the NAT service feature in NETTOOLS or when using the configuration system, this
low-level configuration is not required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NatSetConfig — Configure the Network Address Translation Module

99SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

NatSetConfig Configure the Network Address Translation Module

Syntax void NatSetConfig(uint32_t IPAddr, uint32_t IPMask, uint32_t IPServer, uint32_t MTU);

Parameters

IPAddr IP address of the Virtual Network
IPMask IP mask of the Virtual Network
IPServer Physical IP address of the server that will host the NAT translation
MTU IP Packet MTU (1500 for Ethernet, 1492 for PPPoE, etc.)

Description This function configures NAT with a virtual network and a physical server. Note that both
the virtual and physical addresses must also be contained in the stack's route table. NAT
should only be used when the stack is acting as a router, and when there are more than
one Ethernet devices present.

The MTU parameter must be in the range of 64 to 1500. When set less than 1500, TCP
connection negotiation will be altered so that TCP sessions through NAT will be limited
to the MTU specified. This prevents unnecessary fragmentation when using NAT over
dissimilar packet devices. (Note this MTU is the IP packet MTU, not the TCP MTU.)

4.3.3 IP Network Specification (CFGTAG_IPNET)
The IPNET entry specifies what IP networks are to appear on which physical interfaces. When specifying
an IPNET entry to the configuration, the Tag parameter is set to CFGTAG_IPNET, and the Item parameter
is set to the Index (1 to n) of the physical interface on which the network is to appear.

The IPNET entry instance structure is defined as follows:
// IPNet Instance
typedef struct _ci_ipnet {

uint32_t NetType; // Network address type flags
uint32_t IPAddr; // IP Address
uint32_t IPMask; // Subnet Mask
void *hBind; // Binding handle (initially NULL)
char Domain[CFG_DOMAIN_MAX]; // IPNet Domain Name

} CI_IPNET;

The individual fields are defined as follows:
• uint32_t NetType;

CFG_NETTYPE_DYNAMIC Address created by DHCP CLIENT
CFG_NETTYPE_VIRTUAL Virtual Network used by DNS resolver
CFG_NETTYPE_DHCPS Virtual Net Server reported by DHCP SERVER

This is type of network that appears on the interface. The network type determines how the network is
treated by some services like NAT, DHCP, and DNS. The value is a collection of one or more of the
following flags.

Most of the flags deal with the virtual network (or home network). If none of these flags are set, the
network is a normal physical network. Note that virtual and non-virtual networks should not appear on the
same interface. Also, only one network entry on each interface can have any of these flags set, although
more than one of these flags can be set in that one entry.
• uint32_t IPAddr;

This is the IP address of the stack on the designated interface. When the NetType flag DHCPS is set,
this address is also the gateway address reported to DHCP clients served by the DHCP server service.

• uint32_t IPMask;

This is the IP network subnet mask.
• void *hBind;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

100 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

This is the stack's internal binding handle for the network. Each connected network is represented as a
binding internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

• char Domain[CFG_DOMAIN_MAX];

This is the domain name of the network. It should be a full domain like home1.net, not just home1.

4.3.4 IP Gateway Route Specification (CFGTAG_ROUTE)
The ROUTE entry specifies a route from one network to another via a specified IP gateway. When
specifying a ROUTE entry to the configuration, the Tag parameter is set to CFGTAG_ROUTE, and the
Item parameter is not used (set to zero).

The ROUTE entry instance structure is defined as follows:
// Route Instance
typedef struct _ci_route {

uint32_t IPDestAddr; // Destination Network Address
uint32_t IPDestMask; // Subnet Mask of Destination
uint32_t IPGateAddr; // Gateway IP Address
void *hRoute; // Route handle (initially NULL)

} CI_ROUTE;

The individual fields are defined as follows:
• uint32_t IPDestAddr;

This is the IP base address of the IP network of the network that is made accessible via the IP
gateway. This value should be pre-masked with the IPDestMask so that:
(IPDestAddr & IPDestMask) = IPDestMask
This is used as a sanity check by the system. For a default route, the value is zero.

• uint32_t IPDestMask;

This is the mask of the IP network accessible by the IP gateway. For a host route, the value is
0xFFFFFFFF, while for a default route, the value is zero.

• uint32_t IPGateAddr;

This the IP address of the gateway through which the specified IP network is accessible. It must be an
IP address that is available on a locally connected network, i.e., one gateway cannot point to another.

• void *hRoute;

This is a handle to the route created by this configuration entry. All routes are represented as route
handles internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

4.3.5 Client Record Specification (CFGTAG_CLIENT)
The CLIENT entry specifies a record of a client that appears on the indicated physical interface. When
specifying a CLIENT entry to the configuration, the Tag parameter is set to CFGTAG_CLIENT, and the
Item parameter is set to the index (1 to n) of the physical interface on which the client appears.

Client records exist for two purposes:
1. They are used to resolve DNS queries on virtual networks.
2. They are used by the DHCP server service to track DHCP clients on the serviced virtual network.

Client records are created automatically in some DHCP server configurations (when using an address
pool), but they can also be added manually. This allows an application to build a pre-defined fixed list of
clients and their designated IP addresses on a virtual (home) network.

The CLIENT entry instance structure is defined as follows:
typedef struct _ci_client {

uint32_t ClientType; // Entry Status
uint32_t Status; // DHCPS Status (init to ZERO)
uint32_t IPAddr; // Client IP Address
char MacAddr[6]; // Client Physical Address
char Hostname[CFG_HOSTNAME_MAX]; // Client Hostname

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Specification

101SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

uint32_t TimeStatus; // Time of last status change
uint32_t TimeExpire; // Expiration Time from TimeStatus

} CI_CLIENT;

The individual fields are defined as follows:
• uint32_t ClientType;

This is type of client record. There are only two types - those created by DHCP server from an address
pool, and those created manually by an application.

CFG_CLIENTTYPE_DYNAMIC Entry created via DHCPS
CFG_CLIENTTYPE_STATIC Entry created manually

• uint32_t Status;

This is status of the client record. It is used by the DHCP server to track the state of the client and its
lease to its IP address. The status can also be NULL for STATIC entries.

CFG_CLIENTSTATUS_PENDING Supplied via DHCP OFFER
CFG_CLIENTSTATUS_VALID Validated by DHCP REQUEST
CFG_CLIENTSTATUS_STATIC Reported via DHCP INFORM or non-DHCP application
CFG_CLIENTSTATUS_INVALID Invalidated by DHCP DECLINE

• uint32_t IPAddr;

This is IP address of the client.
• char MacAddr[6];

This is physical Ethernet address of the client.
• char Hostname[CFG_HOSTNAME_MAX];

This is the hostname of the client. It is recorded by the DHCP server service, even if the record is
STATIC. Thus, when running DHCP server, even with a fixed client list, DHCP clients can specify their
own host names, and these names will be available to the DNS resolver, i.e., DNS server and DNS
client.

• uint32_t TimeStatus;

This is the last time that the Status parameter was validated. It is thus the start time of a DHCP client
lease.

• uint32_t TimeExpire;

This is the total time in seconds of a DHCP client lease reported by the DHCP server to its clients.
When using an address pool for the DHCP server, the server chooses this value.

4.3.6 Client User Account (CFGTAG_ACCT)
The ACCT entry specifies an account record of a client that has access to the system. When specifying an
ACCT entry to the configuration, the Tag parameter is set to CFGTAG_ACCT, and the Item parameter is
set to the account type. The NDK has only one generic account type. Both PPP authentication and EFS
authorization realms use this type. Valid types values are:

CFGITEM_ACCT_SYSTEM System user account (PPP and EFS)
CFGITEM_ACCT_PPP PPP user account (SYSTEM)
CFGITEM_ACCT_REALM EFS Authorization Realm user account (SYSTEM)

The ACCT entry instance structure is defined as follows:
typedef struct _ci_acct {

uint32_t Flags; // Account Flags
char Username[CFG_ACCTSTR_MAX]; // Username
char Password[CFG_ACCTSTR_MAX]; // Password

} CI_ACCT;

The individual fields are defined as follows:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

102 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

• uint32_t Flags;

The flags determine the access granted by channel or group. The channels or groups that any given
PPP server will allow is determined when the PPP server is invoked. The same is true of the HTTP
authentication realms. A single client account can be a member of one or more groups, therefore, one
or more of the following flags can be set:

CFG_ACCTFLG_CH1 Allow access to channel/group/realm 1
CFG_ACCTFLG_CH2 Allow access to channel/group/realm 2
CFG_ACCTFLG_CH3 Allow access to channel/group/realm 3
CFG_ACCTFLG_CH4 Allow access to channel/group/realm 4

• char Username[CFG_ACCTSTR_MAX];

This is the username of the client.
• char Password[CFG_ACCTSTR_MAX];

This is the password corresponding to the supplied client username.

4.3.7 System Information Specification (CFGTAG_SYSINFO)
The SYSINFO entry contains various types of global system information. There is no service callback
function associated with these entries, as they are static information only. When specifying a SYSINFO
entry to the configuration, the Tag parameter is set to CFGTAG_SYSINFO, and the Item parameter is set
to the system information item in question.

Note that the first 256 values for Item are reserved for items that exactly match the corresponding DHCP
protocol information tag value. For example:
#define CFGITEM_DHCP_DOMAINNAMESERVER 6 // Stack's DNS servers
#define CFGITEM_DHCP_HOSTNAME 12 // Stack's host name

These values are read by various network services, and are written in one of two ways.

First, when the standard DHCP client is executing, it will take full control over the first 256 Item values. It
fills in the entries when it obtains its address lease, and purges them when the lease expires. There is a
set of default entries that the DHCP client will always request. Additional information requests can be
made by configuring the DHCP client, and the resulting replies will be added to the configuration.

Second, when there is no DHCP client service, the network application must manually write values to the
configuration for the Item values it views as important. A minimum configuration would include hostname,
domain name, and a list of domain name servers. Note that multiple IP addresses should be stored as
multiple instances of the same Item, not concatenated together with a longer byte length.

4.3.8 Extended System Information Tags
The following tag values are reserved for NDK and services configuration (see Appendix and Section E.3
for more information on PPP and HTTP realms):

CFGITEM_SYSINFO_REALM1 Realm Name 1 (maximum 31 chars)
CFGITEM_SYSINFO_REALM2 Realm Name 2 (maximum 31 chars)
CFGITEM_SYSINFO_REALM3 Realm Name 3 (maximum 31 chars)
CFGITEM_SYSINFO_REALM4 Realm Name 4 (maximum 31 chars)
CFGITEM_SYSINFO_REALMPPP Server Name for PPP (maximum 31 chars)
CFGITEM_SYSINFO_EVALCALLBACK Callback function registered by application. It is

used by the Evaluation version of the NDK to
notify the application five minutes before the
expiration of the 24-hour evaluation period.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Configuration Specification

103SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.3.9 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)
The OS and IP tags specify entries that alter various configuration options that can be adjusted in the
operating system and low-level stack operation. When specifying an entry to the configuration, the Tag
parameter is set to CFGTAG_OS or CFGTAG_IP, and the Item parameter is set to the configuration item
to set (these are listed below).

Creating a configuration entry results in an alteration of the system's internal configuration structures, but
because these entries are also part of the configuration object (hCfg), they can be stored off and recorded
as part of the CfgSave() functionality. Thus, using the configuration API has a significant advantage over
modifying the internal structures manually.

Removing an entry restores the default value to the internal stack configuration. Entries that are not
present cannot be read, and an error return on read implies the entry is in its default state.

The following is the list of configuration items. All items are of type int or uint. They correspond exactly to
the internal system configuration structures. For more information on these fields, see the internal
configuration discussion in both the Section 2.1.1 section earlier in this document, and the Configuring the
Stack section in the attached appendix Section A.11.

When creating a configuration entry for one of these tags, the entry should be specified as unique. For
example, to enable routing in the IP stack that code would be as follows:
// Enable IP routing
uint32_t tmp = 1;
CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_IPFORWARDING,

CFG_ADDMODE_UNIQUE, sizeof(uint), (unsigned char *)&tmp, 0);

As another example, to set the size of the boot task's stack, the code would be as follows:
int rc = 4096;
CfgAddEntry(hCfg, CFGTAG_OS, CFGITEM_OS_TASKSTKBOOT,

CFG_ADDMODE_UNIQUE, sizeof(uint), (unsigned char *)&rc, 0);

The following item values correspond directly to the OS and IP Stack configuration structures _oscfg and
_ipcfg.

For more information on these structures, see Section 2.1.1 and Section A.11.1.

When Tag is CFGTAG_OS, the value of Item can be one of the following:

CFGITEM_OS_DBGPRINTLEVEL Debug message print threshold
CFGITEM_OS_DBGABORTLEVEL Debug message abort threshold
CFGITEM_OS_TASKPRILOW Lowest priority for stack task
CFGITEM_OS_TASKPRINORM Normal priority for stack task
CFGITEM_OS_TASKPRIHIGH Highest priority for stack task
CFGITEM_OS_TASKPRIKERN Kernel-level priority (highest)
CFGITEM_OS_TASKSTKBOOT Boot task's stack size
CFGITEM_OS_TASKSTKLOW Minimum stack size
CFGITEM_OS_TASKSTKNORM Normal stack size
CFGITEM_OS_TASKSTKHIGH Stack size for high volume tasks

When Tag is CFGTAG_IP, the value of Item can be one of the following:

CFGITEM_IP_ICMPDOREDIRECT Add route on ICMP redirect (1 = Yes)
CFGITEM_IP_ICMPTTL TTL for ICMP messages (RFC1700 says 64)
CFGITEM_IP_ICMPTTLECHO TTL for ICMP echo (RFC1700 says 64)
CFGITEM_IP_IPINDEXSTART IP Protocol Start Index
CFGITEM_IP_IPFORWARDING IP Forwarding Enable (1 = Yes)
CFGITEM_IP_IPNATENABLE IP NAT Translation Enable (1 = Yes)
CFGITEM_IP_IPREASMMAXTIME Maximum IP reassembly time in seconds

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuration Specification www.ti.com

104 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

CFGITEM_IP_IPREASMMAXSIZE Maximum IP reassembly packet size
CFGITEM_IP_DIRECTEDBCAST Support directed BCast IP addresses (1 = Yes)
CFGITEM_IP_TCPREASMMAXPKT Maximum out of order packets held by TCP socket
CFGITEM_IP_RTCENABLEDEBUG Enable route control dbg messages (1 = Yes)
CFGITEM_IP_RTCADVTIME Time in sec to send Router Adv. (0 = don't)
CFGITEM_IP_RTCADVLIFE Lifetime of route in RtAdv if active
CFGITEM_IP_RTCADVPREF Preference of route in RtAdv if active
CFGITEM_IP_RTARPDOWNTIME Time 5 failed ARPs keeps route down
CFGITEM_IP_RTKEEPALIVETIME Timeout of validated route in seconds
CFGITEM_IP_RTARPINACTIVITY Time in seconds beyond which an unused route is

considered inactive and is cleaned up.
CFGITEM_IP_RTCLONETIMEOUT Timeout of newly cloned route in seconds
CFGITEM_IP_RTDEFAULTMTU MTU for internal routes
CFGITEM_IP_RTGARP Set processing policy of received gratuitous ARP

packets
CFGITEM_IP_SOCKTTLDEFAULT Default IP TTL for Sockets
CFGITEM_IP_SOCKTOSDEFAULT Default IP TOS for Sockets
CFGITEM_IP_SOCKMAXCONNECT Maximum connections on listening socket
CFGITEM_IP_SOCKTIMECONNECT Maximum time for connect socket
CFGITEM_IP_SOCKTIMEIO Default Maximum time for socket send/rcv
CFGITEM_IP_SOCKTCPTXBUF TCP Transmit allocated buffer size
CFGITEM_IP_SOCKTCPRXBUF TCP Receive allocated buffer size (copy mode)
CFGITEM_IP_SOCKTCPRXLIMIT TCP Receive limit (non-copy mode)
CFGITEM_IP_SOCKUDPRXLIMIT UDP/RAW Receive limit
CFGITEM_IP_SOCKMINTX Default min Tx space for able to write
CFGITEM_IP_SOCKMINRX Default min Rx data for able to read
CFGITEM_IP_PIPETIMEIO Maximum time for pipe send/rcv call
CFGITEM_IP_PIPEBUFMAX Pipe internal buffer size
CFGITEM_IP_PIPEMINTX Pipe min Tx space for able to write
CFGITEM_IP_PIPEMINRX Pipe min Rx data for able to read
CFGITEM_IP_TCPKEEPIDLE Idle time before 1st TCP keep probe
CFGITEM_IP_TCPKEEPINTVL TCP keep probe interval
CFGITEM_IP_TCPKEEPMAXIDLE Maximum TCP keep probing time before drop
CFGITEM_IP_ICMPDONTREPLYBC Do not reply to ICMP Echo Request packets sent to

broadcast/directed broadcast IP addresses (1 =
Yes)

CFGITEM_IP_ICMPDONTREPLYMC Do not reply to ICMP Echo Request packets sent to
multicast IP addresses (1 = Yes)

CFGITEM_IP_ICMPDONTREPLYEC Do not reply to any ICMP Echo Request packet
(0=Reply)

CFGITEM_IP_UDPSENDICMPUNREACH Reply with ICMP Unreachable packet to connection
attempts to a not listened UDP port (1=Reply)

CFGITEM_IP_TCPSENDRST Reply with RST packet to connection attempts to a
not listened TCP port (1=Reply)

CFGITEM_IP_SOCKRAWETHRXLIMIT Raw Ethernet socket receive limit
CFGITEM_IP_MAX Maximum CFGTAG_STACK item

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Initialization Procedure

105SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.4 Initialization Procedure
For applications that do not use XGCONF configuration, the basic process of stack initialization is as
follows:
1. Initialize the operating system environment with the initialization function NC_SystemOpen(Priority,

OpMode). This function must always be called first - before any other NDK related function. The
calling parameters determine the priority and operating mode of the network event scheduler.

2. Create a new configuration via CfgNew().
3. Build the new configuration via configuration API calls, or load a previous configuration from non-

volatile memory using CfgLoad().
4. Boot the stack with the configuration by calling NC_NetStart(hCfg, pfnStart, pfnStop, pfnNetIP) with a

handle to the configuration, plus pointers to three user supplied callback functions for start, stop, and
IP address change operations. The NC_NetStart() function does not return until the stack session has
terminated. The configuration handle hCfg becomes the default configuration for the system.

5. After some preliminary initialization, the NC_NetStart() function creates a new thread that calls the user
supplied callback function for the start operation. At this point, the callback function creates task
threads for its networking requirements. This start function does not need to return immediately, but
should return at some point - i.e., the callback function should not take permanent control of the calling
thread. If system shutdown is initiated before the start function returns, some resources may not be
freed.

6. Under normal operation, the network does not shut down until the NC_NetStop() function is called. At
some point after a call to NC_NetStop(), the original NC_NetStart() thread calls the user supplied
callback function for the stop operation. In this callback function, the application shuts down any
operation it initiated in the start callback function and frees any allocated resources. After the stop
callback function returns, NDK functionality is no longer available.

7. The original call to NC_NetStart() returns with the return value as set by the return parameter passed
in the call to NC_NetStop(). The application can immediately reboot the NDK by calling NC_NetStart()
again, with or without reloading a new configuration. This is useful for a reboot command.

When the system is ready for a final shutdown, the following actions are performed:
1. When NC_NetStart() returns and the session is over, call the CfgFree() function to free the

configuration handle created with CfgNew().
2. After all resources have been freed, call the NC_SystemClose() function to complete the system

shutdown.

4.5 Network Control Initialization Procedure (NETCTRL)
The stack library includes code to perform system initialization based on the configuration. Initialization of
the scheduling routines is performed by a network control layer called NETCTRL.

If you use the XGCONF configuration tool to configure the NDK, the following custom C functions are
generated for you to manage NDK startup and thread scheduling. See the TI Network Developer's Kit
(NDK) User's Guide (SPRU523) for details. You should take care not to create functions in your own
application with these names.
• ti_ndk_config_Global_stackThread(): The NDK stack thread function.
• NetworkOpen(): function that is called automatically by NC_NetStart().
• NetworkClose(): function that is called automatically by NC_NetStart().
• NetworkIPAddr(): function that is called automatically by NC_NetStart().
• ti_ndk_config_Global_serviceReport(): Service report callback function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

Network Control Initialization Procedure (NETCTRL) www.ti.com

106 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.5.1 Initialization Procedure
If you use the Configuration Manager API to configure your application, see Section 4.4 for the stack
initialization process.

If you use the XGCONF configuration tool to configure the NDK, the ti_ndk_config_Global_stackThread()
function is automatically generated to handle the initialization process and to act as the NDK scheduler
thread. You can use XGCONF to configure Hook functions to be called at various point during the
initialization and thread scheduling. See the section on "Global Hook Configuration" in the TI Network
Developer's Kit (NDK) User's Guide (SPRU523).

If you use the XGCONF configuration tool to configure the NDK, the basic process of stack initialization
occurs as follows:
1. Run the Stack Thread Begin (Global.stackBeginHook) hook function if one is configured. Note that no

NDK-related code can run in this hook function because the NC_SystemOpen() function has not yet
run.

2. Initialize the operating system environment with the initialization function NC_SystemOpen(Priority,
OpMode). This function must always be called first - before any other NDK related function. The
calling parameters determine the priority and operating mode of the network event scheduler.

3. Create a new configuration via CfgNew() (which is called from generated code).
4. Run the Stack Thread Initialization (Global.stackInitHook) hook function if one is configured.
5. The generated ti_ndk_config_Global_stackThread() function builds the new configuration via code

generated from the XGCONF configuration.
6. Boot the stack with the configuration by calling NC_NetStart(hCfg, pfnStart, pfnStop, pfnNetIP) with a

handle to the configuration, plus pointers to the three generated functions for start, stop, and IP
address change operations. The NC_NetStart() function does not return until the stack session has
terminated.

7. After some preliminary initialization, the NC_NetStart() function creates a new thread that calls the
generated NetworkOpen() function.

8. Run the Network Open (Global.networkOpenHook) hook function if one is configured.
9. The NetworkOpen() function creates task threads for its networking requirements.
10. Under normal operation, the network does not shut down until the NC_NetStop() function is called.

NC_NetStop() is called by the generated NetworkClose() function.
11. Run the Network Close (Global.networkCloseHook) hook function if one is configured. In this hook

function, the application should shut down any operation it initiated in the Network Open hook function
and free any allocated resources.

12. After the NetworkClose() function returns, NDK functionality is no longer available.
13. The original call to NC_NetStart() returns with the return value as set by the return parameter passed

in the call to NC_NetStop().
14. The application can immediately reboot the NDK by calling NC_NetStart() again, with or without

reloading a new configuration. This is useful for a reboot command.

When the system is ready for a final shutdown, the following actions are performed:
1. When NC_NetStart() returns and the session is over, run the Stack Thread Delete

(Global.stackDeleteHook) hook function if one is configured.
2. Call the CfgFree() function to free the configuration handle created with CfgNew().
3. After all resources have been freed, call the NC_SystemClose() function to complete the system

shutdown.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com Network Control Initialization Procedure (NETCTRL)

107SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

4.5.2 Function Overview
The system initialization access functions (in functional order) are as follows:

NC_SystemOpen() Initiate a system session
NC_SystemClose() Full system shutdown
NC_NetStart() Start the network with a supplied configuration
NC_NetStop() Halt the network, and pass a return code the caller of the NC_NetStart()

function

4.5.3 Network Control API Functions

NC_SystemOpen Initiate a System Session

Syntax int NC_SystemOpen(int Priority, int OpMode);

Parameters

Priority Network event scheduler task priority
OpMode Network event scheduler operating mode

Return Value Returns the status of the open call, zero on success, or one of the following on error.

NC_OPEN_ILLEGAL_PRIORITY Priority is not set to NC_PRIORITY_LOW or
NC_PRIORITY_HIGH.

NC_OPEN_ILLEGAL_OPMODE OpMode is not set to NC_OPMODE_POLLING or
NC_OPMODE_INTERRUPT. Or, attempt to combine
NC_OPMODE_POLLING with NC_PRIORITY_HIGH.

NC_OPEN_MEMINIT_FAILED Memory initialization failed.
NC_OPEN_EVENTINIT_FAILED Event initialization failed.

Description This is the first function that should be called when using the stack. It initializes the
stack's memory manager, and the OS (or OS adaptation layer). It also configures the
network event scheduler's task priority and operating mode.

Priority is set to either NC_PRIORITY_LOW or NC_PRIORITY_HIGH, and determines
the scheduler task's priority relative to other networking tasks in the system.

OpMode is set to either NC_OPMODE_POLLING or NC_OPMODE_INTERRUPT, and
determines when the scheduler attempts to execute. The interrupt mode is used in the
vast majority of applications.

Note that polling operating mode attempts to run continuously, so when polling is used,
Priority must be set to NC_PRIORITY_LOW.

NC_SystemClose Shutdown the System

Syntax void NC_SystemClose();

Parameters None.

Return Value None.

Description This is the last function that should be called when using the stack. It shuts down the
memory manager and performs a final memory analysis.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NC_NetStart — Start Network www.ti.com

108 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

NC_NetStart Start Network

Syntax int NC_NetStart(void *hCfg, void (*NetStartCb)(), void (*NetStopCb)(), void
(*NetIPCb)(uint32_t,uint,uint));

Parameters

hCfg Handle to network configuration
NetStartCb Pointer to callback function called when network is started
NetStopCb Pointer to callback function called when network is stopped
NetIPCb Pointer to callback function called when an IP address is added or removed from

the system

Return Value Returns the integer value passed to NC_NetStop().

Description This function is called to boot up the network using the network configuration supplied in
hCfg. Along with the network configuration, three callback function pointers are provided.
These callback functions are called at distinct times. NetStartCb() is called when the
system is first ready for the creation of application supplied network tasks, NetStopCb()
is called when the network is about to shut down, and NetIPCb() is called when an IP
address is added or removed from the system. If any of these callback functions are not
required, the function pointers can be set to NULL.

The NC_NetStart() function will not return until the entire network session has
completed. Thus, all user supplied network code (creation of user tasks) should be
included in the NetStartCb() function.

When NetStartCb() is called, the configuration handle supplied in hCfg is the default
configuration handle for the system. The execution thread on which NetStartCb() is
called is not critical to event scheduling, but it should return eventually; i.e., the
application should not take control of the thread. If system shutdown is initiated before
this callback function returns, some resources may not be freed.

Excluding critical errors, NC_NetStart() will return only if an application calls the
NC_NetStop() function. The parameter passed to NC_NetStop() becomes the return
value returned by NC_NetStart().

Sometime after NC_NetStop() is called, but before NC_NetStart() returns, the
NC_NetStart() thread will make a call to the application's NetStopCb() callback function.
In this callback function, the application should shut down any task initiated in its
NetStartCb() callback.

When an IP addressing change is made to the system, the NetIPCb() function is called.
The callback function is declared as:
void NetIPCb(uint32_t IPAddr, uint32_t IfIndex, uint32_t
fAdd);

IPAddr IP Address being added or removed
IfIndex Index of physical interface gaining or losing the IP address
fAdd Set to 1 when adding an address, or 0 when removing an address

The NetIPCb() callback is purely informational, and no processing is necessary on the
information provided.

There is an option for immediately calling NC_NetStart() again upon return, which
provides a good stack reboot function. Optionally, the configuration can also be
reloaded, which allows the stack to be restarted after a major configuration change.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NC_NetStop — Stop Network

109SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Configuration and Initialization

NC_NetStop Stop Network

Syntax void NC_NetStop(int StopCode);

Parameters

StopCode Return code to be returned by NC_NetStart().

Return Value None.

Description This function is called to shut down a network initiated with NC_NetStart(). The return
value supplied in the StopCode parameter becomes the return value for NC_NetStart().
See the description of NC_NetStart() for more detail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

110 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

Chapter 5
SPRU524K–May 2001–Revised October 2017

Network Tools Library - Support Functions

Included with the stack package is a library of network tools. It provides auxiliary functionality to the stack
library and contains source written to the socket layer that would normally be considered application level
code. The library file is called NETTOOLS.LIB, and can be accessed by an application that includes the
file NETTOOLS.H.

The support supplied by NETTOOLS can be categorized into two classes: support functions and services.
The support functions consist of a programming API that can aid the development of network applications,
while services are servers that execute on the stack platform.

This section describes the NETTOOLS support functions. Please note that these services are all IPv4
based. Based on the IPv6 documentation, these applications can be easily re-written to use IPv6 sockets
instead for communication.

Topic ... Page

5.1 Generic Support Calls ... 111
5.2 DNS Support Calls.. 117
5.3 TFTP Support... 120
5.4 TCP/UDP Server Daemon Support .. 121

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Generic Support Calls

111SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.1 Generic Support Calls
This section contains a selection of functions that can be very useful when programming network
applications. Some are standard Berkeley Software Distribution (BSD) Socket APIs, while others are
custom to the stack--designed to save you the time and trouble of programming directly to the stack API.

5.1.1 Function Overview
The following is a summary of the support functions described in this section:

freeaddrinfo() Free the IPv4 or IPv6 address structure created by calling
getaddrinfo()

getaddrinfo() Create an IPv4 or IPv6 address structure
inet_addr() Convert a string to a 32 bit IP address in network format
inet_aton() Convert a string to an in_addr structure record
inet_ntop() Convert an IPv4 or IPv6 address structure to string format
inet_pton() Convert an IPv4 or IPv6 address in string format to an address

structure
NtAddNetwork() Add a host network to a logical interface handle
NtRemoveNetwork() Remove a network added with NtAddNetwork()
NtAddStaticGateway() Add a static gateway route to the route table
NtRemoveStaticGateway() Remove a static gateway route
NtIfIdx2Ip() Get the IP host address assigned to a physical interface Index
NtGetPublicHost() Get the system public IP address and domain name
NtIPN2Str() Convert 32 bit IP address in network format to string

5.1.2 Network Tools Support API Functions

freeaddrinfo Free the IPv4 or IPv6 Address Structure Created by Calling getaddrinfo()

Syntax void freeaddrinfo(struct addrinfo *res);

Parameters

res Pointer to addrinfo struct created by a call to getaddrinfo()

Return Value None.

Description This function frees the addrinfo struct, which is dynamically allocated by calling
getaddrinfo().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

getaddrinfo — Create an IPv4 or IPv6 Address Structure www.ti.com

112 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

getaddrinfo Create an IPv4 or IPv6 Address Structure

Syntax int getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct
addrinfo **res)

Address Structure The addrinfo struct used by this function contains the following members:
struct addrinfo {

int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

Parameters

node IP address of a network host in string format. Host names are not supported.
service Port number of a network host in string format.
hints Pointer to an addrinfo struct that specifies the preferred socket type, family, and

protocol (family can be AF_INET, AF_INET6 or AF_UNSPEC).
res Pointer to a pointer to an addrinfo struct. Used to store a dynamically-allocated IP

address structure that can be used for sockets code upon successful use of this
function.

Return Value 0 upon success. Upon failure, returns one of the following errors:

EAI_NONAME Invalid arguments passed
EAI_FAMILY Unknown family
EAI_MEMORY Memory allocation failure

Description This function creates an IPv4 or IPv6 address structure that can be used to
communicate with the network host identified by node. The address structure is created
using the information provided in the IP address stored in string format in node, the port
number stored in string format in service, and the information provided in the addrinfo
struct hints.

This limited implementation is provided for standard compatibility with existing network
code, in particular for BSD sockets code. It does not support the passing of host names;
a valid IP address must be passed in string format in the node parameter.

Upon a successful return, the addrinfo struct pointed to by res will be a single element
list. That is, it will not be the head of a linked list of addrinfo structs, and the ai_next field
will be NULL.

The application is responsible for calling freeaddrinfo() in order to properly free the
memory allocated by a call to getaddrinfo().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com inet_addr — Return 32-bit Binary Network Ordered IPv4 Address

113SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

inet_addr Return 32-bit Binary Network Ordered IPv4 Address

Syntax uint32_t inet_addr(char *strptr);

Parameters

strptr Pointer to character string

Return Value IP address or NULL.

Description This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading 0s in the address string are interpreted as
octal. The function returns NULL on failure.

This function actually calls inet_aton(), which is the better form of the function.

inet_aton Convert IP Address from String and Return in in_addr Structure

Syntax int inet_aton(char *strptr, struct in_addr *pa);

Parameters

strptr Pointer to character string
pa Pointer to address structure

Return Value 1 upon success; 0 upon failure.

Description This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading 0s in the address string are interpreted as
octal. The function return writes the IP address into the in_addr structure pointed to by
the pa parameter. The function returns 1 on success and 0 on failure.

inet_ntop Convert an IPv4 or IPv6 Address Structure to String Format

Syntax const char *inet_ntop(int af, const void *src, char *dst, int cnt);

Parameters

af Address family (AF_INET or AF_INET6)
src Pointer to an IPv4 or IPv6 address structure
dst Pointer to a character array large enough to hold an IPv4 or IPv6 address in string

format
cnt Length of the character array pointed to by dst

Return Value Non-NULL pointer to dst upon success; NULL upon failure.

Description This function converts the IP address stored in an IPv4 or IPv6 struct into a string.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

inet_pton — Convert an IPv4 or IPv6 Address in String Format to an Address Structure www.ti.com

114 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

inet_pton Convert an IPv4 or IPv6 Address in String Format to an Address Structure

Syntax int inet_pton(int af, const char *src, void *dst);

Parameters

af Address family (AF_INET or AF_INET6)
src Pointer to an IPv4 or IPv6 address in string format
dst Pointer to an IPv4 or IPv6 address structure

Return Value A positive value is returned upon success. 0 is returned if src does not contain a string
containing a valid network address. -1 is returned if af is not a valid address family and
for NULL values of src and dst.

Description This function converts the IP address stored in string format in src to an IPv4 or IPv6
structure. This implementation does not set any error that can be referenced by errno or
fdError.

NtAddNetwork Add Host Network to Interface by IF Handle

Syntax void *NtAddNetwork(void *hIF, uint32_t IPHost, uint32_t IPMask);

Parameters

hIF Handle to target interface
IPHost IP Host Address (in network format)
IPMask IP Host Subnet Mask (in network format)

Return Value Handle to network binding on success or NULL on failure.

Description This function attempts to add the specified IP host address (and mask) to the specified
logical interface handle. The function returns a handle to the binding that binds the IP
address to the interface. On an error, the function returns NULL. The most common
error would be that adding the host address caused a duplicate IP indication from
another host.

NOTE: In place of this function, consider using the configuration system with the
CFGTAG_IPNET configuration entry (see Section 4.3.3).

NtRemoveNetwork Remove Host Network from Interface

Syntax void NtRemoveNetwork(void *hBind);

Parameters

hBind Handle to network binding returned by NtAddNetwork().

Return Value None.

Description This function removes a network that was previously added with NtAddNetwork().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NtAddStaticGateway — Add Static Gateway Route to the Route Table

115SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

NtAddStaticGateway Add Static Gateway Route to the Route Table

Syntax void *NtAddStaticGateway(uint32_t IPDestAddr, uint32_t IPDestMask, uint32_t
IPGateAddr);

Parameters

IPDestAddr IP address of destination (in network format)
IPDestMask IP subnet mask of destination (in network format)
IPGateAddr IP address of next hop gateway (in network format)

Return Value Handle to newly created route or NULL on error.

Description This function adds a static gateway route to the system route table.

IPDestAddr is the IP base address of the IP network of the network that is made
accessible via the IP gateway. This value should be pre-masked with the IPDestMask so
that:

(IPDestAddr & IPDestMask) = IPDestMask

This is used as a sanity check by the system. For a default route, the value is zero.

IPDestMask is the mask of the IP network accessible by the IP gateway. For a host
route, the value is 0xFFFFFFFF, while for a default route, the value is zero.

IPGateAddr is the IP address of the gateway through which the specified IP network is
accessible. It must be an IP address that is available on a locally connected network,
i.e., one gateway cannot point to another.

The function returns a handle to the route created by this configuration entry. All routes
are represented as route handles internally to the stack. This is discussed further in the
appendices at the end of this document. Note that the handle returned here is not
referenced (see the appendix for more details). All it means for the purposes of this
function is that the handle can be discarded by the caller. It will remain valid until the
route is removed via NtRemoveStaticGateway().

NOTE: In place of this function, consider using the configuration system with the
CFGTAG_ROUTE configuration entry (see Section 4.3.4).

NtRemoveStaticGateway Remove Static Gateway Route from the Route Table

Syntax int NtRemoveStaticGateway(uint32_t IPTarget);

Parameters

IPTarget IP address of destination to remove (in network format)

Return Value Returns 1 if the route was removed, or 0 if it was not found.

Description This function removes a static gateway route from the system route table. It searches for
the route by destination IP address and will remove the first matching static route it finds.
Note that only routes with both the GATEWAY and STATIC flags set are considered for
removal.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NtIfIdx2Ip — Get the 32-bit Representation of the IP Address of an Interface Index www.ti.com

116 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

NtIfIdx2Ip Get the 32-bit Representation of the IP Address of an Interface Index

Syntax int NtIfIdx2Ip(uint32_t IfIdx, uint32_t *pIPAddr);

Parameters

IfIdx Index of physical interface
pIPAddr Pointer to receive IP address

Return Value Returns 1 if an address was found, or 0 if it was not found.

Description This function obtains the first IP host address found that is assigned to the supplied
interface Index. The host address (in network format) is written to the pointer pIPAddr.

NtGetPublicHost Get the System Public IP Address and Domain Name

Syntax int NtGetPublicHost(uint32_t *pIPAddr, uint32_t MaxSize, unsigned char *pDomain);

Parameters

pIPAddr Pointer to receive IP address
MaxSize Size of string buffer pointed to by pDomain
pDomain Pointer to string buffer to receive domain name

Return Value Returns 1 if information was found, or 0 if it was not found.

Description This function gets the best IP address and domain name to use for access to the
external network. For determining the best address and domain name, public addresses
and domain names are preferred over IP addresses and domain names of virtual
networks. The IP address (in network format) is written to pIPAddr, and the domain
name is copied to pDomain.

NtIPN2Str Convert 32-bit IP Address in Network Format to String

Syntax void NtIPN2Str(uint32_t IPAddr, char *pStrBuffer);

Parameters

IPAddr IP address in network format
pStrBuffer Pointer to receive IP address string

Return Value None.

Description This function performs a sprintf() of the IP address supplied in IPAddr to the buffer
supplied in pStrBuffer. Note that no buffer size is provided. This is because the size is
deterministic, and will not exceed 16 characters (including the NULL terminator).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com DNS Support Calls

117SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.2 DNS Support Calls
The concepts and code behind the Unix gethostbyname() and gethostbyaddr() functions is extensive, and
there are public domain versions available, which can be easily run on the IP stack library.

Although the code to support the whole name, address and server database is quite large, the basic name
resolution functions are quite useful. For this reason, the stack provides a basic form of these function
calls, without incurring the overhead associated with a full implementation. The DNS resolver used by
these client functions is the same as accessed by the DNS server. When the configuration contains client
machine records (i.e., controls local domain names), these entries are checked when the matching
domain is encountered. Otherwise (and for all other queries), the query is resolved via external DNS
servers.

In addition to providing a more compact implementation, the calls provided here are reentrant, which is not
true of the standard Unix counterparts.

5.2.1 Function Overview
The following is a summary of the support functions described in this section:

DNSGetHostname() Return the hostname of the current host
DNSGetHostByAddr() Resolve a hostname from an IP address
DNSGetHostByName() Resolve a hostname and IP address from a hostname

5.2.2 Standard Types and Definitions

5.2.2.1 Host Entry Structure
The DNS client functions all take a pointer to a buffer. They treat this buffer as a pointer to a host entry
structure. If the function takes a pointer to a scrap buffer, a host entry structure is allocated from the start
of this scrap buffer. Thus, on successful return from one of these calls, the pointer to the scrap buffer may
be treated as a pointer to a host entry structure.

The structure differs slightly from the conventional definition. It is defined as follows:
//
// Host Entry Structure
//
struct _hostent {

char *h_name; // Official name of host
int h_addrtype; // Address Type (AF_INET)
int h_length; // Address Length (4)
int h_addrcnt; // Number of IP addresses found
uint32_t h_addr[8]; // List of up to 8 IP addresses (network format)

};

typedef struct _hostent HOSTENT;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

DNS Support Calls www.ti.com

118 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.2.2.2 Function Return Codes
DNS functions that return an error code use the following definitions. Those that are obtained directly from
a DNS response packet are so noted:

NOERROR 0 (DNS Reply Code) No error
FORMERR 1 (DNS Reply Code) Format error
SERVFAIL 2 (DNS Reply Code) Server failure
NXDOMAIN 3 (DNS Reply Code) Non-existent domain
NOTIMP 4 (DNS Reply Code) Not implemented
REFUSED 5 (DNS Reply Code) Query refused
OVERFLOW 16 Scrap Buffer Overflow
MEMERROR 17 Memory Allocation Error (used for packets and temp storage)
SOCKETERROR 18 Socket Error (call fdError() for socket error number)
NODNSREPLY 19 No DNS server response

5.2.3 DNS Support API Functions

DNSGetHostname Return the Hostname of the Current Host

Syntax int DNSGetHostname(char *pNameBuf, int size);

Parameters

pNameBuf Pointer to a buffer to accept the hostname
size Size of the supplied buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostname(). It requests the hostname of the
system's public IP address (as obtained from NtGetPublicHost()). The hostname is
copied into the buffer pointed to by pNameBuf with a maximum size of size. The name is
NULL terminated when space allows.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com DNSGetHostByAddr — Resolve a Hostname from an IP Address

119SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

DNSGetHostByAddr Resolve a Hostname from an IP Address

Syntax int DNSGetHostByAddr(uint32_t IPAddr, void *pScrapBuf, int size);

Parameters

IPAddr IP address to resolve, in network format
pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be allocated
size Size of the supplied scrap buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostbyaddr(). It uses DNS to resolve a
hostname from the supplied IP address. On a successful return, pScrapBuf can be
treated as a HOSTENT structure. The size of the scrap buffer (size) must be greater
than the size of the structure as the structure will contain pointers into the scrap buffer,
and the scrap buffer is also used for temporary name storage. 512 bytes should be
sufficient for most requests.

DNSGetHostByName Resolve a Hostname/Address from a Hostname

Syntax int DNSGetHostByName(char *Name, void *pScrapBuf, int size);

Parameters

Name Null terminated Hostname to resolve (with or without trailing '.')
pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be allocated
size Size of the supplied scrap buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostbyname(). It uses DNS to resolve an official
hostname and address from the supplied hostname. On a successful return, pScrapBuf
can be treated as a HOSTENT structure. The size of the scrap buffer (size) must be
greater than the size of the structure as the structure will contain pointers into the scrap
buffer, and the scrap buffer is also used for temporary name storage. 512 bytes should
be sufficient for most requests.

If the hostname Name is terminated with a dot (.), the dot is removed prior to lookup. If a
dot appears anywhere in Name, an initial lookup on the unaltered name is attempted. If
Name does not contain a dot, or if the initial lookup fails, the default domain name (from
NtGetPublicHost()) is appended to the end of the supplied name. For example, if the
domain name obtained from NtGetPublicHost() was ti.com, then a request for host.sc
would attempt to resolve host.sc first, and then host.sc.ti.com, while a request for host
would attempt to resolve host.sc.ti.com on the initial attempt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

TFTP Support www.ti.com

120 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.3 TFTP Support
TFTP is supported via the received function. More information on TFTP can be found in RFC783, released
by the Internet Engineering Task Force (IETF) organization.

5.3.1 TFTP Support API Functions
TFTP is accessed through this API. The network tools include the file NETTOOLS.H , which is required.

NtTftpRecv Retrieve Data from a TFTP Server

Syntax int NtTftpRecv(uint32_t TftpIp, char *szFileName, char *pFileBuffer, uint32_t *pFileSize,
uint16_t *pErrorCode);

Parameters

TftpIp IP Address in network format
szFileName Pointer to null terminated filename string
pFileBuffer Pointer to buffer to receive file data
pFileSize Pointer to size of buffer on input, returns as size needed or used
pErrorCode Pointer to where to write TFTP server error code (if any)

Return Value This function returns an error code indicating the results of the operation. Negative
codes are error conditions.

In the following cases, pFileSize is set to the actual file size:

0 Successful transfer and copy
1 Successful transfer, with partial copy (file size too large)

In the following cases, pFileSize is set to the actual number of bytes copied:

TFTPERROR_ERRORREPLY Error returned by TFTP server (see below)
TFTPERROR_BADPARAM Invalid calling parameters
TFTPERROR_RESOURCES Memory allocation error during transfer
TFTPERROR_SOCKET Internal socket error during transfer
TFTPERROR_FAILED TFTP failed (e.g., server did not reply)

In the case of TFTPERROR_ERRORREPLY, the server error code written to
*pErrorCode should be one of the following standard TFTP codes, and the error
message is copied to *pFileBuffer:

0 Not defined, see error message (if any).
1 File not found.
2 Access violation.
3 Disk full or allocation exceeded.
4 Illegal TFTP operation.
5 Unknown transfer ID.
6 File already exists.
7 No such user.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com TCP/UDP Server Daemon Support

121SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

Description TFTP (Trivial File Transfer Protocol), allows files to be transferred from a remote
machine.

This function attempts to receive the file with the filename designated by szFileName
from the TFTP server with the IP address in TftpIp, and copy the data into the memory
buffer pointed to by pFileBuffer. Note that when specifying the name of the file in
szFileName, certain operating systems have case sensitive naming conventions.

On entry, the parameter pFileSize must point to the size of the buffer pointed to by
pFileBuffer. If the value at *pFileSize is null, the pFileBuffer parameter can be NULL.

This function attempts to receive the entire file, even if the buffer space is insufficient.
The return value indicates if the file was received.

A return value of 1 indicates that the file was received and copied into the buffer. A
return value of 0 indicates that the file was received, but was too large for the specified
buffer. In both these cases, the actual size of the file in bytes is written back to
*pFileSize.

A negative return value indicates that an error has occurred during transfer. In this case,
the number of bytes actually consumed in the buffer is written back to *pFileSize. An
error return of TFTPERROR_ERRORREPLY is a special return value that indicates that
an error code was returned from the TFTP server. In this case, the server's TFTP error
code is written to *pErrorCode, and the server's TFTP error message string is copied to
the data buffer pointer to by pFileBuffer.

5.4 TCP/UDP Server Daemon Support
A server daemon is a single network task that monitors the socket status of multiple network servers.
When activity is detected, the daemon creates a task thread specifically to handle the new activity. This is
more efficient than having multiple servers, each with their own listening thread.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

TCP/UDP Server Daemon Support www.ti.com

122 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.4.1 Server Daemon Support API Functions
Entries in the server daemon are created and destroyed through the following APIs. The network tools
include the file NETTOOLS.H , which is required.

DaemonNew Create a New TCP/UDP Server Entry

Syntax void *DaemonNew(uint32_t Type, uint32_t LocalAddress, uint32_t LocalPort, int
(*pCb)(SOCKET,uint32_t), uint32_t Priority, uint32_t StackSize, uint32_t Argument,
uint32_t MaxSpawn);

Parameters

Type Socket type (SOCK_STREAM, SOCK_STREAMNC, or SOCK_DGRAM)
LocalAddress Local IP address (set to NULL for wildcard)
LocalPort Local Port to serve (cannot be NULL)
pCb Pointer to callback to handle server event (connection or activity)
Priority Priority of new task to create for callback function
StackSize Stack size of new task to create for callback function
Argument Argument (besides socket) to pass to callback function
MaxSpawn Maximum number of callback function instances (must be 1 for UDP)

Return Value This function returns a handle to a daemon , or NULL on error.

Description Once a new entry is created, the daemon will create the desired TCP or UDP socket,
and start listening for activity.

In the case of TCP, when a new connection is established, a new task thread is created,
and a socket session is opened. Then the user's callback function is called on the new
task thread, being supplied with both the socket to the new connection and the caller
specified argument (as supplied to DaemonNew()). The callback function can keep the
socket and task thread for as long as necessary. It returns from the callback once it is
done with the connection. The function can choose to close the socket if desired. The
return code informs the daemon whether the socket has been closed (0) or is still open
(1).

In the case of UDP, when any data is available on the UDP socket, a new task thread is
created, and a socket session is opened. Then the user's callback function is called on
the new task thread, being supplied with both the UDP socket and the caller specified
argument (as supplied to DaemonNew()). The callback function can keep the socket and
task thread for as long as necessary. It returns from the callback only when it is done
with the data. (While the callback function holds the UDP socket, the daemon will ignore
further activity on it.) The callback should return 1, as it should not close the UDP socket.

DaemonFree Destroy a TCP/UDP Server Entry

Syntax void DaemonFree(void *hEntry);

Parameters

hEntry Handle to server entry returned from DaemonNew()

Return Value None.

Description Destroys a daemon entry, and closes the socket session of all child tasks spawned from
the entry. Closing the socket sessions will result in all socket functions returning
SOCKET_ERROR in all spawned child tasks. Thus, all spawned tasks should error out
and return to the daemon, allowing them to be freed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com TCP/UDP Server Daemon Support

123SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Support Functions

5.4.2 Server Daemon Example
The following is an example TCP echo server using the server daemon. The TCP server will use
SOCK_STREAMNC for non-copy TCP. Its only job is to read from the socket, and write back what it
reads.

To install the server on port 7, use the following code:
hEcho = DaemonNew(SOCK_STREAMNC, 0, 7, dtask_tcp_echo,

OS_TASKPRINORM, OS_TASKSTKNORM, 0, 3);

This code allows up to three echo sessions to be running simultaneously on different threads. Note the IP
specified is NULL, allowing echo connection on any local IP address assigned to the system.

To destroy the server and all its instances, the hEcho handle returned from DaemonNew() is used:
DaemonFree(hEcho);

The code for the callback function dtask_tcp_echo() is as follows:
int dtask_tcp_echo(SOCKET s, uint32_t unused)
{

struct timeval to;
int I;
char *pBuf;
void *hBuffer;

(void)unused;

// Configure our socket timeout to be 5 seconds
to.tv_sec = 5;
to.tv_usec = 0;
NDK_setsockopt(s, SOL_SOCKET, SO_SNDTIMEO, &to, sizeof(to));
NDK_setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &to, sizeof(to));

I = 1;
NDK_setsockopt(s, IPPROTO_TCP, TCP_NOPUSH, &I, 4);
for(;;)
{

I = (int)NDK_recvnc(s, (void **)&pBuf, 0, &hBuffer);

// If we read data, echo it back
if(I > 0)
{

if(send(s, pBuf, I, 0) < 0)
break;

NDK_recvncfree(hBuffer);
}
// If the connection got an error or disconnect, close
else

break;
}

fdClose(s);

// Return "0" since we closed the socket
return(0);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

124 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

Chapter 6
SPRU524K–May 2001–Revised October 2017

Network Tools Library - Services

Included with the stack package is a library of network tools. It provides auxiliary functionality to the stack
library and contains source written to the socket layer that would normally be considered application level
code. The library file is called NETTOOLS.LIB, and can be accessed by an application that includes the
file NETTOOLS.H.

The support supplied by NETTOOLS can be categorized into two classes: support functions and services.
The support functions consist of a programming API that can help develop network applications, while
services are servers that execute on the stack platform.

This section describes the NETTOOLS services. Note that these services are all IPv4 based. Based on
the IPv6 documentation, these applications can be easily re-written to use IPv6 sockets instead for
communication.

Topic ... Page

6.1 Service Calling Conventions .. 125
6.2 Telnet Server Service .. 127
6.3 DHCP Server Service .. 128
6.4 DHCP Client Support .. 130
6.5 HTTP Server Support .. 132
6.6 DNS Server Service .. 133
6.7 Network Address Translation (NAT) Service .. 134

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Service Calling Conventions

125SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.1 Service Calling Conventions

6.1.1 Specifying Network Services Using the Configuration
If you are using XGCONF to configure your application, you can configure network services to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.
If you are using XGCONF for configuration, you can ignore the APIs described in the subsections that
follow.

If you are using the Configuration Manager API to configure your application, the subsections that follow
describe the direct and configuration APIs used to add services to an application.

Although each service has its own specific API, it is usually more convenient to add services by specifying
the service in the system configuration as opposed to calling each individual Open and Close API function.
Included in the description of each network service is a description of its direct API, as well as an example
of specifying the service in the system configuration.

6.1.1.1 Service Report Function
All the configuration examples in this section use a common service report callback function. The following
is a very simple implementation of a service report function that calls printf() to print service status.

Note that this function relies on the physical value of items in the configuration specification found in the
file: /ti/ndk/inc/nettools/netcfg.h.
static char *TaskName[] = { "Telnet","HTTP","NAT","DHCPS","DHCPC","DNS" };
static char *ReportStr[] = { "","Running","Updated","Complete","Fault" };
static char *StatusStr[] = { "Disabled","Waiting","IPTerm","Failed","Enabled" };

static void ServiceReport(uint32_t Item, uint32_t Status, uint32_t Report, void *h)
{

printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status],
ReportStr[Report/256], Report&0xFF);

}

6.1.2 Invoking Network Services by NETTOOLS API
If you are using XGCONF to configure your application, you can configure network services to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.
You can ignore the APIs described in this section.

If you are using the Configuration Manager API to configure your application, this section describes the
APIs used to add services to an application. (Calls to these APIs are generated automatically by the
XGCONF configuration.)

Each service API uses a common calling format. This allows the services to be invoked by the
configuration system using callback functions provided in the Network Control software (which also
performs system initialization). It is preferable to launch services via the configuration system, instead of
manually calling each Open and Close function described in the following sections. However, because the
source to the Network Control software uses these calls, they are documented here.

The common calling interface consists of a simple Open and Close concept. The Open function initiates
the service and returns a service handle, while the Close function shuts down the service using the
service handle returned from the Open call.

Each service Open call takes at least one parameter. This parameter is a pointer to a common argument
structure called NTARGS. The specification of this structure is as follows:
typedef struct _ntargs {

int CallMode; // Determines desired calling mode
#define NT_MODE_IFIDX1 // Call by specifying IfIdx
#define NT_MODE_IPADDR2 // Call by specifying IPAddr

int IfIdx; // Physical interface Index (0-n)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru523

Service Calling Conventions www.ti.com

126 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

uint32_t IPAddr; // IP Address
void *hCallback; // Handle to pass to callback function
void(*pCb)(void *, uint); // Callback for status change

} NTARGS;

Note that this entry structure is a simplified version of that provided by the configuration system. This
structure also contains a callback function. The callback function is a subset of that in the configuration
system, and codes returned by this callback are passed through the configuration callback to the
application.

The individual fields are defined as follows:
• int CallMode;

This parameter determines how the service is launched, either by IP address or by interface index (1 to
n). Some services can be launched either on a specific interface (1 to n) or on a specific IP address,
which can also be the wildcard INADDR_ANY. Generally, any service that accepts an IP address can
also accept an interface. The service will look up the IP address for the specified interface.
Other services can only be executed by interface and are independent of IP address. These are said to
be compatible with NT_MODE_IFIDX only.
The value of CallMode can be one of the following:

NT_MODE_IFIDX Call by specifying the interface Index (1 to n)
NT_MODE_IPADDR Call by specifying IP address in network format

• int IfIdx;

This is the physical interface index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. When this
field is used, CallMode should be set to NT_MODE_IFIDX.

• uint32_t IPAddr;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by IP
address. When this field is used, CallMode should be set to NT_MODE_IPADDR.

• void *hCallback;

This is the caller supplied handle that is passed back to the caller when the status callback function is
invoked (see below).

• void (*pCb)(void *, uint);

This is a pointer to a caller supplied callback function by which the service reports status.
The specification of this callback is:
void cbFun(void *hCallback, uint32_t NtStatus);

hCallback Handle supplied to the service by the caller
NtStatus NetTools Service Status code

The NtStatus parameter consists of an upper byte that is predefined, and a lower byte that is specific
to the service. When masked with ~0xFF (NOT 0xFF), the value will be one of the following:

NETTOOLS_STAT_NONE. Nothing reported
NETTOOLS_STAT_RUNNING Service is initialized (running)
NETTOOLS_STAT_PARAMUPDATE The service parameter structure has changed (the

configuration containing this structure should be saved)
NETTOOLS_STAT_COMPLETED The service has run to completion
NETTOOLS_STAT_FAULT The service has halted due to a fault

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Telnet Server Service

127SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

Note that this callback function does not go directly to the application when using the configuration
system. These codes are supplied to the configuration service callback in the Code parameter.
An optional second parameter to each service Open function is a pointer to a private service parameter
structure. In the configuration section of this document, the individual service parameter structures
were included in the specification of the configuration entry instance structure for each service.

6.2 Telnet Server Service
If you are using XGCONF to configure your application, you can configure Telnet to be enabled in the
application by checking the box in the property sheet to add the module to your configuration. See the
SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

The Telnet Server service provides a mechanism for exposing a stream IO connection to any remote
telnet client console.

A telnet connection is basically just a TCP connection to the well-known port designated for telnet.
However, there is some data translation that occurs on the stream. Telnet has a set of commands that can
change the behavior of the terminal, and can perform some character translation. The telnet server
supplied here is designed to convert a normal TTY stream to a telnet stream and back. This allows any
application to treat a telnet session as any other TTY session (like a serial port).

Connection to an application is achieved by use of an application supplied callback function that telnet
calls when a new connection is established. This callback function returns the file descriptor of one end of
a full duplex communications pipe. By allowing multiple calls to the callback function, console applications
can be written to work with multiple IO streams.

6.2.1 Telnet Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the Telnet service. It is located in the file:
/ti/ndk/inc/nettools/inc/telnetif.h.
//
// Telnet Parameter Structure
//
typedef struct _ntparam_telnet {

int MaxCon; // Max number of telnet connections
int Port; // Port (set to NULL for telnet default)
SOCKET (*Callback)(struct sockaddr *); // Connect function returns local pipe

} NTPARAM_TELNET;

MaxCon Maximum number of simultaneous telnet sessions (1 to 24)
Port TCP port to use for Telnet (set to zero for Telnet default)
Callback Pointer to a callback function that takes a pointer to a sockaddr

structure, and returns a local file descriptor to one end of a full
duplex communications pipe

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

Telnet Server Service www.ti.com

128 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.2.2 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

TelnetOpen Create an Instance of the Telnet Server

Syntax void *TelnetOpen(NTARGS *pNTA, NTPARM_TELNET *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services
pNTP Pointer to Telnet parameter structure

Return Value Returns a handle to the new telnet server instance, or NULL if the service could not be
created. This handle is used with TelnetClose() to shut down the server when it is no
longer needed.

Description When a telnet session is established, a telnet child task is spawned that will call the
supplied callback function. This callback function should return a local file descriptor of
one end of a full duplex pipe. If the callback function returns -1, the connection is
aborted. When either the terminal or telnet connection end of the pipe is broken, the
other connection is closed and the session is ended.

TelnetClose Destroy an Instance of the Telnet Server

Syntax void TelnetClose(void *hTelnet);

Parameters

hTelnet Handle to telnet server instance obtained from TelnetOpen()

Return Value None.

Description Destroys the instance of the telnet server indicated by the supplied handle. Once called,
the server is shut down and no further telnet sessions can be established. Also, all
spawned connections are immediately terminated.

6.3 DHCP Server Service
When acting as a router, the NDK may also need to maintain the network configuration on one of its
network devices. A DHCP server allows the stack to maintain the IP address of multiple Ethernet client
devices. When combined with Network Address Translation (NAT), the DHCP server can be used to
establish client membership in a private virtual network.

If you are using XGCONF to configure your application, you can configure the DHCP server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

6.3.1 Operation
The DHCP server can be optionally configured to allocate IP addresses out of a pool that is specified by
an IP base address and the number of addresses in the pool. If no pool is specified, the server will use
static client entries in the configuration system to resolve client address requests.

The server will respond to DHCP requests from a single Ethernet device. This allows for isolation of clients
for a given interface, and allows multiple instances of the DHCP server to manage different IP address
pools for different interfaces.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com DHCP Server Service

129SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.3.2 DHCP Server Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the DHCP server service. It is located in the file:
/ti/ndk/inc/nettools/inc/dhcpsif.h.
//
// DHCPS Parameter Structure
//
typedef struct _ntparam_dhcps {

uint32_t Flags; // DHCPS Execution Control Flags
uint32_t PoolBase; // First IP address in optional pool
uint32_t PoolCount; // Number of addresses in optional pool

} NTPARAM_DHCPS;

• Flags - Execution control flags. Can be any combination of the following:

DHCPS_FLG_LOCALDNS Causes DHCPS to report its own IP address as the local
DNS server to clients. If this flag is not set, DHCPS
reports the DNS servers as contained in the SYSINFO
portion of the configuration.

DHCPS_FLG_LOCALDOMAIN Causes DHCPS to report the local domain name
assigned to the virtual network to clients. If this flag is not
set, DHCPS reports the public domain name to clients.

• PoolBase - The first IP address (in network format) of the address pool.
• PoolCount - The number of addresses in the address pool.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

6.3.3 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DHCPSOpen Open a DHCP Server

Syntax void *DHCPSOpen(NTARGS *pNTA, NTPARAM_DHCPS *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.
pNTP Pointer to DHCP parameter structure

Return Value Returns a pointer to a DHCPS instance structure that is used in calls to other DHCPS
functions like DHCPSClose().

Description This function is called to initiate DHCPS control of an IP address pool on a given
interface. The base address of the address pool does not have to be the first IP address
in the subnet.

The DHCP Server executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

DHCPSClose — Close an Instance of the DHCP Server www.ti.com

130 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

DHCPSClose Close an Instance of the DHCP Server

Syntax void DHCPSClose(void *hDHCPS);

Parameters

hDHCPS Handle to a DHCP server instance obtained from DHCPSOpen()

Return Value None.

Description This function is called to terminate DHCPS control of the previously supplied interface.
This call also destroys the supplied DHCP server instance handle hDHCPS.

6.4 DHCP Client Support
At system start up, the DHCP client will try and acquire an IP address from the DHCP servers available on
the network.

Note that the client will accept the first IP address offered. The INIT-REBOOT State (which requests a
previously assigned IP address) is not supported.

More information on DHCP can be found in RFC2131 and RFC2132, released by the Internet Engineering
Task Force (IETF) organization.

If you are using XGCONF to configure your application, you can configure the DHCP client to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

6.4.1 Operation
The DHCP client is a special service that always executes immediately in a system. It is usually after the
DHCP client obtains a public IP address that most of the other services in the system can initialize.

The DHCP client code makes more use of the service status report callback function than most of the
other services. Recall from the beginning of this section that the least significant byte of the report code is
reserved for service specific information.

The following report codes are returned in the LSB of the report code sent by the DHCP service:

DHCPCODE_IPADD An IP client address had been added to the system
DHCPCODE_IPREMOVE An IP client address has been removed from the system
DHCPCODE_IPRENEW An IP client address has been renewed

Note that in each of the above cases, the DHCP portion of the system information configuration (the first
256 entries of CFGTAG_SYSINFO) has been erased and potentially reprogrammed. If an application
needs to share the DHCP portion of the system information configuration, these DHCP report codes can
be used to signal when to add additional application specific tags. For more information on DHCP and the
CFGTAG_SYSINFO tag, see Section 4.3.7.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com DHCP Client Support

131SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.4.2 DHCP Client Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the DHCP client service. It is located in the file:
/ti/ndk/inc/nettools/inc/dhcpif.h.
//
// DCHP Parameter Structure
//
#define DHCP_MAX_OPTIONS 64 // Max number of allowed options

typedef struct _ntparam_dhcp {
unsigned char *pOptions; // Options to request
int len; // Length of options list

} NTPARAM_DHCP;

pOptions Pointer to additional DHCP option tags to request. The list is used
when additional information must be obtained from the DHCP
server. Up to DHCP_MAX_OPTIONS tags can be specified. This
pointer can be NULL when len is set to 0.

len Specifies the length in bytes of the list pointed to by pOptions.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

6.4.3 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DHCPOpen Open a DHCP Server

Syntax void *DHCPOpen(NTARGS *pNTA , NTPARAM_DHCP *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services
pNTP Pointer to DHCP parameter structure

Return Value Returns a pointer to a DHCP instance structure, which is used in calls to other DHCP
functions like DHCPClose().

Description This function is called to initiate DHCP control of a given device.

DHCPOpen() starts the DHCP process. This process will discover if there are any DHCP
servers on the network and request an IP address. The result of the search for an IP
address will be passed to the application via the standard network tools status callback.

The Client will remain running so it can renew the IP address when necessary.

For any additional option tags entered into the DHCP client parameter structure, the
resulting information from the DHCP server is written to the system configuration under
the CFGTAG_SYSINFO entry. See Section 4.3.7 for more information.

The DHCP Client executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

DHCPClose — Close an Instance of the DHCP Client www.ti.com

132 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

DHCPClose Close an Instance of the DHCP Client

Syntax void DHCPClose(void *hDHCP);

Parameters

hDHCP Handle to a DHCP server instance obtained from DHCPSOpen()

Return Value None.

Description This function is called to terminate DHCP control of the previously supplied interface and
frees the supplied DHCP server instance handle hDHCP.

Note this function will also remove any IP address it has added to the system. In the
case of a service shutdown, there will be no status callback indicating the address
removal.

6.5 HTTP Server Support
An HTTP (Hypertext Transfer Protocol) Server allows a remote browser to view content on the server file
system. Files can be stored for viewing and forms can also be stored to allow remote interaction with the
system. Form POST functions become calls to application defined C functions that allow the embedded
system to be remotely controlled via a HTTP browser.

If you are using XGCONF to configure your application, you can configure the HTTP server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

6.5.1 Operation
The HTTP Server service provides a mechanism for serving HTTP content to remote HTTP client
applications. It uses the Embedded File System contained in the OS adaptation layer. These functions in
the EFS programming API include a prefix of efs_. Modifying the EFS functions in the OS adaptation layer
allows the system programmer to support a variety of file storage options, including memory, flash cards
and hard drives.

6.5.2 HTTP Server Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the HTTP server service. It is located in the file:
/ti/ndk/inc/nettools/inc/httpif.h.
//
// HTTP Parameter Structure
//
typedef struct _ntparam_http {

int MaxCon; // Max number of HTTP connections
int Port; // Port (set to NULL for HTTP default)

} NTPARAM_HTTP;

MaxCon Maximum number of simultaneous telnet sessions (1 to 24)
Port TCP port to use for HTTP (set to zero for HTTP default)

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com HTTP Server Support

133SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.5.3 Using the HTTP Server and Adding Web Content
This section discusses how to invoke and monitor the status of the HTTP server. Web application
developers will be more interested in how to add Web content, including HTML pages and CGI functions.
These topics are discussed in Appendix E.

6.5.4 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

httpOpen Start the HTTP Server

Syntax void *httpOpen(NTARGS *pNTA, NTPARAM_HTTP *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.
pNTP Pointer to HTTP client parameter structure.

Return Value Returns a handle to the HTTP Server instance, or NULL if the HTTP Server task could
not be created. This handle is used with httpClose() to shut down the client when it is no
longer needed.

Description httpOpen() starts the HTTP server process. This process will create a connection to the
HTTP Port and listen. When a connection is made, another task will be created to
service the request.

httpClose Destroy an instance of the HTTP Server

Syntax void httpClose(void *hHTTP);

Parameters

hHTTP Handle to a HTTP server instance obtained from httpOpen()

Return Value None.

Description Destroys the instance of the HTTP Server indicated by the supplied handle. Once called,
the Server is shut down.

6.6 DNS Server Service
The DNS server service allows clients on a home network to resolve host names and addresses for clients
on both the home and public networks.

If you are using XGCONF to configure your application, you can configure the DNS server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

DNS Server Service www.ti.com

134 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.6.1 Operation
The NDK contains a small DNS resolver that can resolve hostnames and addresses that are local to the
system via the configuration, or those outside the system by using an external DNS server.

The DNS server service described here allows the same internal DNS resolver to be accessed by clients
on a virtual (home) network. This allows clients on a home network to look up peers on the home network
using the same DNS server that is used for external lookups. Thus, DNS service for the home network is
transparent to these clients.

Because the DNS server service uses the same internal DNS resolver as the client services discussed
earlier, the server adds very little overhead to the system.

6.6.2 DNS Server Parameter Structure
The DNS server service does not require a parameter structure.

6.6.3 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DNSServerOpen Create an Instance of the DNS Server

Syntax void *DNSServerOpen(NTARGS *pNTA);

Parameters

pNTA Pointer to common argument structure used by all services.

Return Value Returns a handle to the new server instance, or NULL if the service could not be
created. This handle is used with DNSServerClose() to shut down the server when it is
no longer needed.

Description Creates a DNS server task that can service external DNS requests using UDP.

DNSServerClose Destroy an Instance of the DNS Server

Syntax void DNSServerClose(void *hDNSS);

Parameters

hDNSS Handle to DNS server instance obtained from DNSServerOpen()

Return Value None.

Description Destroys the instance of the DNS server indicated by the supplied handle. Once called,
the server is shut down. It waits for all spawned sessions to complete.

6.7 Network Address Translation (NAT) Service
The NAT service allows for the establishment of a home virtual network that is isolated and protected from
the external public network. It provides a port based address translation function that allows all the clients
on the home network to share a single public IP address. Thus, multiple clients can share the same ISP
account.

If you are using XGCONF to configure your application, you can configure the NAT service to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com Network Address Translation (NAT) Service

135SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

6.7.1 Operation
The NDK contains both a network address translation module and an IP filtering model. When the
translation service is enabled, any packet received from a client on a virtual network that is destined for
the external public network is adjusted to use the stack's public IP client address.

The translation is performed by allocating a translation record and holding it for a period of time. The
translation records are timed out based on their protocol. In TCP, records are timed out based on the state
of their TCP connection. UDP and ICMP translations time out based on when they were last used.

In addition to translation, the stack contains an IP filter option (always enabled by this service) that filters
packets from the public network from being seen by the private network. For example, if someone on a
public network knew the IP address and the subnet mask of the router's (stack in route mode) private
network, it could set a gateway route to the router's public IP host address and the router would route
packets from the public to the private network and back (internally it does not distinguish between public
and private while routing). The IP filter prevents this. It also prevents an entity on a public network from
accessing protocol servers (like HTTP or Telnet) that are running on the private network. This allows the
router to present different HTTP or Telnet interfaces to the public than it does to clients in the home.

The NAT service is executed on the public interface - i.e., the interface that is assigned a valid public IP
host address (used to carry traffic for the virtual client addresses). There can only be one instance and
thus only one public IP address, but the service can serve multiple virtual (home) networks in the system
so long as they can be combined and still exclude the public IP. If the combination of these networks
results in an overlap with the public network, the service fails.

For example, assume interface If-1 is connected to the physical network 128.32.12.x/255.255.255.0, and
there are two home networks (192.168.0.x/255.255.255.0) on If-2 and (192.168.1 .x/255.255.255.0) on If-
3. To run NAT on both home networks, the NAT interface would be If-1 (the public interface), and the NAT
group (virtual) network would be 192.168.0.0/255.255.254.0, which covers both home networks.

For more information on NAT operation, including how to program proxy filters, see Appendix B, Network
Address Translation.

6.7.2 NAT Server Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the NAT server service. It is located in the file:
/ti/ndk/inc/nettools/inc/natif.h.
//
// NAT Parameter Structure
//
typedef struct _ntparam_nat {

uint32_t IPVirt; // Virtual IP address
uint32_t IPMask; // Mask of virtual subnet
uint32_t MTU; // NAT packet MTU (normally 1500 or 1492)

} NTPARAM_NAT;

IPVirt NAT Group virtual network address
IPMask Subnet mask of NAT Group virtual network
MTU IP MTU Limit (1500 for Ethernet, 1492 for PPPoE, etc.)

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

6.7.3 Invoking the Service via NETTOOLS API
In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NATOpen — Enable the NAT Service www.ti.com

136 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Tools Library - Services

NATOpen Enable the NAT Service

Syntax void *NATOpen(NTARGS *pNTA, NTPARAM_NAT *pNTP);

Parameters

pNTA Pointer to common argument structure used by all services.
pNTP Pointer to NAT parameter structure.

Return Value Returns a handle to the NAT instance (1), or NULL if the service could not be created.
This handle is used with NATClose() to disable the service when it is no longer needed.

Description Enables the Network Address Translation Service. Although the function returns a
handle for compatibility with the standard NETTOOLS API, only one instance of the NAT
service is allowed.

This service utilizes the virtual and external network information using the configuration
system. If the configuration system was not used to create the network records, this
function will fail.

The NAT service executes on a specific public interface. Thus, it is compatible with
NT_MODE_IFIDX only.

NATClose Disable the NAT Service

Syntax void NATClose(void *hNAT);

Parameters

hNAT Handle to NAT service obtained from NATOpen()

Return Value None.

Description Disables the NAT service.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

137SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

Appendix A
SPRU524K–May 2001–Revised October 2017

Internal Stack Functions

In the source code to the network control functions, there are several calls to internal stack functions. This
is similar to calling the kernel in other operating environments. This section contains a partial list of internal
stack functions provided to aid in the comprehension of kernel oriented calls.

Note the following points for this section:
1. This section is required only for system programming that needs low level access to the stack for

configuration and monitoring. This API does not apply to general sockets application
programming.

2. In addition to the internal functions described here, there are scheduling and configurations tools
available that make any direct coding to these functions unnecessary.

Topic ... Page

A.1 Overview ... 138
A.2 Stack Executive (Exec).. 139
A.3 Packet Buffer Manager (PBM) Object .. 140
A.4 Packet Buffer Manager Queue (PBMQ) Object.. 144
A.5 Jumbo Packet Buffer Manager (Jumbo PBM) Object... 146
A.6 Stack Event (STKEVENT) Object .. 148
A.7 Link Layer Information (LLI) Object... 150
A.8 Binding Object ... 155
A.9 Route Object .. 157
A.10 Route Control Object .. 164
A.11 Configuring the Stack ... 167
A.12 Network Address Translation... 176
A.13 Network Interface Management Unit (NIMU)... 177
A.14 Virtual LAN (VLAN) Support... 186
A.15 Raw Ethernet Module .. 192
A.16 Obtaining Stack Statistics ... 196

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Overview www.ti.com

138 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.1 Overview
The control API is the collection of functions supplied in the stack library. The entire API is exposed,
although the vast majority of functions and objects will only be used internally to the stack.

A.1.1 Interrupts and Preemption
It should be noted that no part of the stack is interrupt driven. Neither can any stack function be called at
interrupt time. All interrupt processing is performed in the HAL or OS libraries, and is thus externally-
defined code, which allows the development of a HAL/OS architecture that is best suited for a given
operating environment, without affecting the operation of the stack.

The stack may or may not be preempted, depending on the operating environment in use. A non-
preemptive architecture is possible because the stack code does not use polling loops nor make any
internal blocking type calls, but preemption is also supported.

A.1.2 Proper Use of the llEnter() and llExit() Functions
The internal stack functions are not designed to be reentrant. This allows the stack to operate freely
without the concept of a critical section, which is implementation dependent and potentially detrimental to
real-time operation. Thus, access to stack functions must be strictly controlled. The form of this control is
dependent on the system environment, and is embodied as two low level OS library functions, llEnter()
and llExit(). These functions are called before and after a section of code where any stack functions are
called. For example:
llEnter();
StackFunction1();
StackFunction2();
llExit();

These functions can be thought of as entering and exiting kernel mode.

To make normal user functions appear to be re-entrant, some user functions (like the sockets API) make
internal calls to llEnter() and llExit() when calling into the stack. If an application needs to call both user
functions and internal stack functions, care must be taken so that standard user functions are not called
between an llEnter() / llExit() pair (this would cause an error if they in turn called llEnter()).

The following are good general guidelines:
• Always call llEnter() before calling a stack function, and llExit() when done calling stack functions.
• Try and keep all code that requires llEnter() and llExit() in a single module. They are only required for

system maintenance.
• Do not call a normal user function (like a socket function) between an llEnter()/llExit() pair.
• Never call llEnter() or llExit() from an ISR.

A.1.3 Objects
Many of the control API functions deal with object handles. These handles are created by a variety of
class functions contained in the stack. When using an object handle, it is important to realize how the
object handle will be treated by the function being called.

Associated with every object is the concept of who owns it, who is using it, and who will eventually free it.
In general, when an application creates an object, the application owns it, the application is the only one
using it, and the application must eventually free it. Unfortunately, the matter becomes somewhat
confused when object handles are shared between applications — especially when the scope of the
handle creator may be shorter than the handle itself.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Stack Executive (Exec)

139SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

In this system, there are two basic object types:
• Static Objects - The static object is one that is created by a designated task, and destroyed by that

task or a task where the object has been passed. In most cases, the task that created the object also
destroys it.

• Referenced Objects - A referenced object is one that may be used by other tasks after the original
creator is through with it. This type of handle is useful when an object is needed for a task of
indeterminate length, where the creator of the handle does not need or may not be able to track it.
Under the referenced handle scheme, all tasks that access the object handle make a specific RefXxx()
call so that references may be tracked. Whenever a task is finished with the handle, it calls the object's
de-reference function. The object is not freed until the reference count reaches zero.

A.2 Stack Executive (Exec)
At the heart of the stack is the Executive API (Exec). The Executive acts as a message dispatcher for the
internal stack components. This action is mostly hidden from the application, but there are some public
functions.

A.2.1 API Functions

ExecOpen Prepare the System for Execution

Syntax void ExecOpen();

Description Prepares the stack for execution by initializing the individual components. Until
ExecOpen() is called, the system cannot do any work, but after calling this function,
objects like routes and bindings can be created.

ExecClose Shutdown Stack and Cleanup

Syntax void ExecClose();

Description Completes stack execution. This function is called to perform final clean up on the
system after all user objects (like devices and bindings) have been destroyed.

ExecLowResource Signal Low Resource Condition

Syntax void ExecLowResource();

Description Informs the stack that memory resources are getting dangerously low. As a result of this
call, the stack will abandon certain operations that hold excessive resources. (Pending
ARP packets are thrown away, IP packet fragments pending reassembly are abandoned,
etc.)

ExecTimer Signal 1/10th Second Timer Tick

Syntax void ExecTimer();

Description This function is called ten times a second to inform the stack that one tenth of a second
has elapsed. This function is called from a normal task thread, never an ISR. In theory,
the function can be called from anywhere, but in practice, it is always called from a
scheduler thread that also handles network packets. For more information, see the
description of the NETCTRL functions in the TI Network Developer's Kit (NDK) User's
Guide (SPRU523).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

Packet Buffer Manager (PBM) Object www.ti.com

140 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.3 Packet Buffer Manager (PBM) Object
The NDK uses a common packet buffer object that is managed by a module called the Packet Buffer
Manager (PBM). The implementation of this manager determines the buffer strategy for the entire system.

Internally, the packet buffer objects are pointers to a structure of type PBM_Pkt; however, the buffers are
abstracted into a handle of type PBM_Handle for use by code outside of the NDK. This helps protect the
reserved members of the packet buffer structure from being misused.

If you are using XGCONF to configure your application, you can configure the size and location of the
buffers managed by the PBM in the Buffers page of the NDK Global module configuration. See the
SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

A.3.1 Object Type
Static - PBM objects are owned by a single entity and destroyed by their owner. Ownership of a packet
buffer changes as it is passed via function calls.

A.3.2 API Function Overview
The PBM API functions are as follows:

Initialization/Shutdown Functions:
PBM_open() Open the Packet Buffer Manager
PBM_close() Close the Packet Buffer Manager

Create/Destroy Functions:
PBM_alloc() Create New Packet Buffer
PBM_free() Destroy (Free) Packet Buffer
PBM_copy() Create an exact copy of the Packet Buffer

Property Functions:
PBM_getBufferLen() Get the length of the physical data buffer
PBM_getDataBuffer() Get a pointer to the physical data buffer
PBM_getValidLen() Get the length of the valid data in the buffer
PBM_getDataOffset() Get the buffer offset to the start of the valid data
PBM_getIFRx() Get the device handle of the ingress Ethernet device
PBM_setValidLen() Set the length of the valid data in the buffer
PBM_setDataOffset() Set the buffer offset to the start of the valid data
PBM_setIFRx() Set the device handle of the ingress Ethernet device

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com Packet Buffer Manager (PBM) Object

141SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.3.3 API Function Description

PBM_open Open the Packet Buffer Manager

Syntax uint32_t PBM_open();

Parameters None.

Return Value Function returns 1 on success, and 0 on failure.

Description This function is called once to open the PBM module and allow it to initialize its internal
queues.

PBM_close Close the Packet Buffer Manager

Syntax void PBM_close();

Parameters None.

Return Value None.

Description This function is called at system shutdown to allow the PBM module to shut down and
free any memory it has allocated.

PBM_alloc Create New Packet Buffer

Syntax PBM_Handle PBM_alloc(uint32_t MaxSize);

Parameters

MaxSize Maximum size of the physical data buffer required

Return Value Handle to the packet buffer or NULL on memory allocation error.

Description This function is called to create a new packet buffer handle. When first created, the
packet is entirely uninitialized, except for the physical characteristics of the data buffer
(the buffer pointer and its physical length). The length of the buffer will be the same or
greater than that specified by the caller in MaxSize.

PBM_free Destroy (Free) Packet Buffer

Syntax void PBM_free(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer to free

Return Value None.

Description This function is called to destroy a packet buffer. When called, all objects associated
with the packet buffer are dereferenced or destroyed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

PBM_copy — Create an exact copy of the Packet Buffer www.ti.com

142 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

PBM_copy Create an exact copy of the Packet Buffer

Syntax PBM_Handle PBM_copy(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer to copy

Return Value Handle to the new copy of the packet buffer or NULL on memory allocation error.

Description This function makes a duplicate copy of a packet buffer. It is usually called to copy a
packet to be distributed to multiple destinations, or to be sent to multiple egress devices.

PBM_getBufferLen Get the Length of the Physical Data Buffer

Syntax uint32_t PBM_getBufferLen(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Length of the physical data buffer in bytes.

Description This function is called to get the length of the physical data buffer associated with the
packet buffer handle. Note that the buffer length is fixed for the life of the buffer and
cannot be changed.

PBM_getDataBuffer Get a Pointer to the Physical Data Buffer

Syntax unsigned char *PBM_getDataBuffer(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Pointer to the physical data buffer.

Description This function is called to get a pointer to the physical data buffer associated with the
packet buffer handle. Note that the physical buffer is fixed and cannot be changed.

PBM_getValidLen Get the Length of the Valid Data in the Buffer

Syntax uint32_t PBM_getValidLen(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Byte length of the valid data stored in the packet buffer.

Description This function is called to get the length of the valid data currently held in the packet
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com PBM_getDataOffset — Get the Buffer Offset to the start of the Valid Data

143SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

PBM_getDataOffset Get the Buffer Offset to the start of the Valid Data

Syntax uint32_t PBM_getDataOffset(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value Byte offset from the start of the physical data buffer to the first byte of valid data.

Description This function is called to get the offset in bytes from the start of the physical data buffer
to the first byte of valid data. When a packet buffer is created, it has no valid data, so
this value is initially zero.

PBM_getIFRx Get the Device Handle of the Ingress Ethernet Device

Syntax void *PBM_getIFRx(PBM_Handle hPkt);

Parameters

hPkt Handle to packet buffer

Return Value NULL for locally created packets, or a handle to the device on which the packet was
received.

Description This function is called to get the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type as well as the interface on which the packet was received.

PBM_setValidLen Set the Length of the Valid Data in the Buffer

Syntax void PBM_setValidLen(PBM_Handle hPkt, uint32_t length);

Parameters

hPkt Handle to packet buffer
length Length of the valid data held in the packet buffer

Return Value None.

Description This function is called to set the length of the valid data in the packet buffer. It informs
the system of the number of bytes of valid data that are stored in the physical data
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

PBM_setDataOffset — Set the Buffer Offset to the Start of the Valid Data www.ti.com

144 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

PBM_setDataOffset Set the Buffer Offset to the Start of the Valid Data

Syntax void PBM_setDataOffset(PBM_Handle hPkt, uint32_t offset);

Parameters

hPkt Handle to packet buffer
offset Offset from start of data buffer to valid data

Return Value None.

Description This function is called to set the offset in bytes from the start of the physical data buffer
to the first byte of valid data. It informs the system of where valid data is stored in the
physical data buffer. When a packet buffer is created, it has no valid data, so this value
is initially zero.

PBM_setIFRx Set the Device Handle of the Ingress Ethernet Device

Syntax void PBM_getIFRx(PBM_Handle hPkt, void *hDevice);

Parameters

hPkt Handle to packet buffer
hDevice Handle to packet ingress device

Return Value None.

Description This function is called to set the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type, as well as the interface on which the packet was received.

A.4 Packet Buffer Manager Queue (PBMQ) Object
The PBM module also includes a queue object that can be used to queue packet buffers for later use. The
queue is a first in first out system, so it can be used to queue in-order packets as well as free buffers.

The PBMQ object is just a structure of type PBMQ. Once this structure is declared and initialized, it is
ready for use.

A.4.1 Object Type
Static - PBMQ objects are owned by a single entity and destroyed by their creator.

A.4.2 API Function Overview
The PBM API functions are as follows:

PBMQ_init() Initialize a PBMQ object for use
PBMQ_count() Return the number of PBM packet buffers on the queue
PBMQ_enq() Enqueue a PBM packet buffer onto the queue
PBMQ_deq() Dequeue a PBM packet buffer off the queue

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Packet Buffer Manager Queue (PBMQ) Object

145SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.4.3 API Function Description

PBMQ_init Initialize a PBMQ Object for Use

Syntax void PBMQ_init(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value None.

Description This function is called once to initialize a PBMQ structure for use.

PBMQ_count Return the Number of PBM Packet Buffers on the Queue

Syntax uint32_t PBMQ_count(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value Number of queued buffers.

Description This function is called once to return the number of PBM packet buffers currently on the
indicated queue.

PBMQ_enq Enqueue a PBM Packet Buffer onto the Queue

Syntax void PBMQ_enq(PBMQ *pQ, PBM_Handle hPkt);

Parameters

pQ Pointer to a structure of type PBMQ
hPkt Handle to PBM packet buffer to add to queue

Return Value None.

Description This function is called to add the supplied PBM packet buffer to the indicated queue.

PBMQ_deq Dequeue a PBM Packet Buffer Off the Queue

Syntax PBM_Handle PBMQ_deq(PBMQ *pQ);

Parameters

pQ Pointer to a structure of type PBMQ

Return Value Handle to PBM packet buffer, or NULL on empty queue.

Description This function is called to remove a PBM packet buffer from the indicated queue. The
function returns a handle to the PBM packet buffer removed from the queue, or NULL if
the queue was empty.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Jumbo Packet Buffer Manager (Jumbo PBM) Object www.ti.com

146 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.5 Jumbo Packet Buffer Manager (Jumbo PBM) Object
The PBM object is capable of handling memory allocations only up to buffer sizes of maximum
MMALLOC_MAXSIZE (3068 bytes). For handling memory allocation for jumbo frames, i.e., packets
typically larger than 1500 bytes in size, and that could be as large as 10K bytes, the PBM object invokes
the Jumbo PBM APIs internally. The Jumbo PBM is responsible for handling memory allocation and de-
allocation for Jumbo frames.

The following are some of the main features of Jumbo PBM:
• The Jumbo PBM implementation is similar to the PBM implementation, except that it can handle larger

block sizes than the ones in PBM and ranges between 3K and 10K bytes by default.
• Jumbo PBM does not use any TI-RTOS Kernel APIs or dynamic memory allocation method for its

memory allocation and, therefore, can be used safely in interrupt context. It uses a static memory
allocation method, i.e., it reserves a chunk of memory in the far section of the device memory and uses
it to allocate for the packet buffers required.

• The Jumbo PBM allocates memory off a separate section in the memory than the PBM. The PBM uses
the memory sections NDK_PACKETMEM, NDK_MMBUFFER for its memory allocation. On the other
hand, Jumbo PBM defines and uses a section called NDK_JMMBUFFER for its memory allocation.
The size of this section and its placement are all customizable by an application user.

• A sample implementation of the Jumbo PBM is provided in the NDK OS abstraction layer (OS AL). The
customer is expected to customize this implementation according to their application needs and
system's memory constraints. The memory section sizes, block sizes, and the allocation method is all
up for customization.

• Jumbo PBM APIs are not expected to be invoked directly. The application and driver must call the
PBM_alloc()/PBM_free() APIs only. These APIs in turn invoke the Jumbo PBM APIs to allocate/clean-
up memory if the memory requested is larger than what PBM can handle, i.e., 3K bytes.

For a sample implementation of the Jumbo PBM, refer to the source file /ti/ndk/stack/jumbo_pbm.c.

A.5.1 API Function Overview
The Jumbo PBM API are as follows:

_jumbo_mmInit() API to initialize the Jumbo PBM object
jumbo_mmAlloc() Allocates memory requested for the new packet buffer
jumbo_mmFree() Frees up the memory held in the packet buffer
_jumbo_mmCheck() Dump the current memory usage in Jumbo PBM object

A.5.2 API Function Description

_jumbo_mmInit Initialize the Jumbo PBM object for use.

Syntax int _jumbo_mmInit();

Parameters None

Return Value Always returns 1 to indicate success.

Description This function is called during the system initialization to initialize the Jumbo PBM
memory and any relevant data structures.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com jumbo_mmAlloc — Allocate a new Jumbo packet buffer.

147SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

jumbo_mmAlloc Allocate a new Jumbo packet buffer.

Syntax void *jumbo_mmAlloc(uint32_t Size);

Parameters Size Size of the packet buffer to allocate.

Return Value Pointer to the newly allocated packet buffer.

Description This function is called by the PBM object when an application/driver requests for a
packet buffer larger than what it can handle, i.e., MMALLOC_MAXSIZE (3068 bytes).
This API allocates memory out of jumbo memory pool and returns a pointer to the packet
buffer just allocated.

jumbo_mmFree Frees up memory held by the packet buffer.

Syntax void jumbo_mmFree(void *p);

Parameters Handle to the packet buffer that was obtained earlier using jumbo_mmAlloc API and that
needs to be freed up.

Return Value None

Description This API returns the packet buffer to the jumbo memory pool for use again by the
application. The packet buffer handle passed as an argument to this function must be a
valid handle obtained using jumbo_mmAlloc() API earlier.

_jumbo_mmCheck Dumps the memory usage stats for jumbo PBM object.

Syntax void _jumbo_mmCheck(uint32_t CallMode, int (*pPrn)(const char *,...));

Parameters

CallMode Specifies the type of stats that need to be printed out
The 3 supported call modes are:
MMCHECK_MAP Map out allocated memory, but don't dump IDs
MMCHECK_DUMP Dump allocated block IDs
MMCHECK_SHUTDOWN Dump all allocated blocks and free
pPrn Callback function pointer to be notified

Description This function iterates through the Jumbo PBM object's memory allocation table and
dumps the current memory usage stats according to the arguments specified.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Stack Event (STKEVENT) Object www.ti.com

148 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.6 Stack Event (STKEVENT) Object
Although technically not part of the NDK, the STKEVENT event object is a central component to the low
level architecture. It ties the HAL layer to the network scheduler thread. The network scheduler thread
waits on events from various device drivers in the system including the Ethernet, serial, and timer drivers.
The device drivers use the STKEVENT object to inform the scheduler that an event has occurred.

A.6.1 Object Type
Static - The STKEVENT object is created and owned by the network scheduler.

A.6.2 API Function Overview
The STKEVENT object is implemented entirely via #define MACROs and therefore, does not have a true
API. This allows the network scheduler to present an abstracted API to the HAL layer for network events.
The STKEVENT object is a simple structure and manipulated directly by the network control module
(NETCTRL). This is discussed further in the TI Network Developer's Kit (NDK) User's Guide (SPRU523).

The two MACRO functions are as follows:

Property Functions:
STKEVENT_init() Initialize a new STKEVENT object to NULL
STKEVENT_signal() Signal a new STKEVENT event code

A.6.3 API Function Description

STKEVENT_init Initialize a new STKEVENT object to NULL

Syntax void STKEVENT_init(STKEVENT_Handle hEvent, Semaphore_Handle hSem)

Parameters

hEvent Handle to STKEVENT object
hSem Handle to Semaphore object to use in STKEVENT (if any)

Return Value None.

Description This function is called once to initialize the STKEVENT object so it is ready for use.

NOTE: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com STKEVENT_signal — Signal a New STKEVENT Event Code

149SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

STKEVENT_signal Signal a New STKEVENT Event Code

Syntax void STKEVENT_signal(STKEVENT_Handle hEvent, uint32_t EventCode, uint32_t
fHwAsynch)

Parameters

hEvent Handle to STKEVENT object
EventCode Type of event being signaled
fHwAsynch Flag indicating event triggered by an asynchronous hardware event (e.g., ISR,

PRD).

Return Value None.

Description This function is called from a device driver to signal an event to the network scheduler
for further processing. The STKEVENT handle hEvent is an event handle supplied to the
device driver when the driver is first initialized. The EventCode parameter specifies the
type of event. The defined events include the following:

STKEVENT_TIMER 100 ms Timer Tick Event
STKEVENT_ETHERNET One or more Ethernet packets received
STKEVENT_SERIAL One or more serial packets received
STKEVENT_LINKUP Link has come up
STKEVENT_LINKDOWN Link has gone down

The fHwAsynch flag specifies whether the event was triggered by an external
asynchronous hardware source. Examples of asynchronous events include hardware
interrupts or timer PRDs. An example of a non-asynchronous event would be detecting
an event from within a driver service check function. Service check functions are called
periodically (or polled) by the scheduler.

NOTE: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Link Layer Information (LLI) Object www.ti.com

150 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.7 Link Layer Information (LLI) Object
To make full use of the stack objects described in this section, it is necessary to understand some of the
stack's basic building block components. One such component is the Link Layer Information Object, or LLI
for short.

An LLI object is an ARP table entry. This implementation of the IP stack combines the traditional route
table and ARP table into a single table with a single API. Routes that need to use the ARP function
include an ARP status object, called LLI. Normally, you only use an LLI object to inspect the ARP status of
the route table.

The ARP entries can be of two types:
• Dynamic

These ARP entries are managed using the Address Resolution Protocol (ARP), i.e., through exchange
of ARP Request and ARP Reply messages between the NDK stack and the networking device
engaged in communication with it. These entries are dynamic and have a keep-alive timeout
associated with them. An ARP/LLI entry’s lifetime is extended using ARP revalidation logic if it has
been active, i.e., if it has been used by an application in the system in the last ARP inactivity timeout
seconds. These keep-alive and ARP inactivity timeouts are configurable in NDK and can be tuned as
per the application and system needs. However, if the ARP entry was inactive or idle, or if the ARP
revalidation process failed, the ARP entry is deleted and the communication between the NDK stack
and the networking device in question is broken unless it is re-established using ARP protocol again.
To configure a dynamic ARP entry, the NDK stack internally uses the LLIValidateRoute() API. This API
is documented in the following section.

• Static
On the other hand, static entries are ARP entries that are manually configured by an application in the
stack and they have no timeout associated with them. They remain valid until the application or user
deletes them. No ARP request-reply transactions are performed here.

Both the dynamic and static ARP entries are supported in NDK stack. The next section discusses the APIs
exported by NDK stack to configure dynamic and static ARP entries.

A.7.1 ARP Revalidation Logic
Each dynamic LLI/ARP entry in NDK is associated with a non-zero Keep-alive timeout (controlled using
CFGITEM_IP_RTKEEPALIVETIME). This timeout determines the length of time in seconds that an LLI
entry and its associated route entry is valid. The routing module in the stack internally runs a timer and
periodically checks to see if any routes or associated LLI entries are about to expire. If it finds a route/LLI
entry that is about to expire, it checks to see if that LLI entry is active, i.e., if it has been used in the last
Route Inactivity timeout seconds (configured using CFGITEM_IP_RTARPINACTIVITY). If so, the LLI
module initiates an ARP Request/Reply exchange to revalidate the LLI entry even before it expires and
disrupts any ongoing communication. If an ARP reply is received successfully for the request sent out
earlier, the LLI entry is marked valid again for another Keep-alive timeout seconds and any packets using
the route/LLI entry are sent out of the device. However, if no ARP reply is received, the ARP request is
retransmitted and this process is repeated 3 times before the revalidation process is aborted and the
associated LLI/Route entries are deleted. Also, if the LLI/Route entry was inactive or never used in the last
Route Inactivity Timeout seconds ARP revalidation process is not done for such an entry and is deleted
immediately from the system. Once the LLI/Route entries are deleted they have to be re-established using
a successful ARP Request-Reply exchange triggered by an application's attempt to transmit packets to
the intended destination.

A.7.2 Object Type
Static - LLI objects are owned and destroyed by their creator.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Link Layer Information (LLI) Object

151SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.7.3 Information Structure
The following data structure is used to hold information regarding an ARP/LLI entry in the NDK stack. This
structure is especially useful in presenting the LLI entry info in a simple, compact way to an application
requesting information about the LLI entries configured in the stack.
/**

* @brief
* This structure describes the LLI/ARP Information Object.
*
* @details
* This data structure is used by the LLI module to populate
* LLI/ARP Entry information contained in the NDK Kernel
* in a simple, user-friendly way to the application.
*
*/

typedef struct _lli_info
{

/**
* @brief Links to other LLI_INFO Objects
*/

LIST_NODE Links;

/**
* @brief Boolean Flag to indicate whether this LLI
* entry is a static / dynamic entry.
*/

unsigned char IsStatic;

/**
* @brief The 4 byte IPv4 address associated with this
* LLI/ARP Entry.
*/

uint32_t IPAddr;

/**
* @brief The 6 byte Ethernet MAC address associated with this
* LLI/ARP Entry.
*/

unsigned char MacAddr[6];
} LLI_INFO;

A.7.4 API Function Overview
The LLI API functions are as follows:

LLIGetMacAddr() Get the Mac Address Associated with this LLI.
LLIValidateRoute() Validate an IP address/MAC address pairing in the route table.
LLIAddStaticEntry Add a new static ARP entry/update an existing static ARP

entry/modify a dynamic entry to a static ARP entry in the stack.
LLIRemoveStaticEntry Remove a previously configured static ARP entry from the stack.
LLIGetStaticARPTable Retrieve a copy of the static ARP table from the stack.
LLIFreeStaticARPTable Cleans the memory allocated by a previous call to

LLIGetStaticARPTable API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Link Layer Information (LLI) Object www.ti.com

152 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.7.5 API Functions

LLIGetMacAddr Get the Mac Address Associated with this LLI

Syntax uint32_t LLIGetMacAddr(void *hLLI, unsigned char *pMacAddr, uint32_t MaxLen);

Parameters

hLLI Handle to LLI object
pMacAddr Pointer to buffer to write Mac address data
MaxLen Maximum byte length of buffer (must be at least 6)

Return Value Returns 1 if the Mac address for the LLI is valid and it was successfully written to the
supplied buffer.

Returns 0 if the LLI does not contain a valid Mac address, or one of the calling
parameters is invalid.

Description This function is called to return the six byte Mac address associated with the LLI. It is
used in system programming to obtain the hardware address from an LLI contained in a
route entry.

LLIValidateRoute Validate an IP Address/MAC Address Pairing in the Route Table

Syntax void *LLIValidateRoute(void *hIF, uint32_t IPAddr, unsigned char *MacAddr);

Parameters

hIF Handle to the interface on which the target IP address/MAC address appears
IPAddr IP address to validate
MacAddr Six byte MAC address corresponding to the supplied IP address

Return Value Referenced handle to route or NULL if there was no room to create the entry.

Description This function is called to create or update an entry in the stack route table for the
supplied IP address. The entry for the given IP address is marked as valid, and assigned
the supplied MAC address. Packets sent to the IP address will be assigned the given
MAC address, and no ARP request will be sent.

This function also updates the route in the LLI (ARP) expiration list. It allows an
application to change the state of the ARP entry even if the stack has already created
the route. It should be used when it is unclear if the route (really ARP table entry)
already exists or not.

Note that this function returns a referenced route handle. This handle must be
dereferenced using the RtDeRef() function when it is no longer required. Because the
route is treated as a standard ARP entry (with a standard expiration time as supplied in
the configuration structure), the route can be dereferenced immediately.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com LLIAddStaticEntry — Add/update a static ARP entry or change a dynamic entry to a static ARP entry

153SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

LLIAddStaticEntry Add/update a static ARP entry or change a dynamic entry to a static ARP entry

Syntax int LLIAddStaticEntry(uint32_t IPAddr, unsigned char *pMacAddr);

Parameters

IP Address IPv4 address of the device
pMacAddr 6 byte EMAC address of the device corresponding to the supplied IPv4 address.

Return Value Returns 0 on success or -1 on invalid input/error in LLI entry creation.

Description This API validates the input and returns an error (-1) if any of the following conditions are
met:
• No MAC Address specified
• IPv4 address specified is either a broadcast/multicast address
• IPv4 address specified is a local IP address, i.e., the IP address specified is in use by

a local interface attached to the NDK stack.
• IPv4 address is not reachable using the routes configured. That is, there is no

Network / Cloning route (no local interface is on the same subnet as specified IPv4
address) that can be used to reach the IPv4 address specified.

• Memory allocation issue.

If no error encountered, this API does the following:
• Tries to find a duplicate static entry matching the IP Address Specified. If a duplicate

static entry found, updates the entry with the new MAC address specified. Returns
Success (0).

• Checks for any dynamic LLI/route entries matching the IPv4 address. If found,
deletes this entry and creates a new static LLI entry and host route with the IPv4
address and new MAC address specified. Returns Success (0). This ensures that
Static LLI entries always override the dynamic ones automatically configured by the
stack.

• If no duplicate static/dynamic entry already exists, adds a new static LLI entry and an
associated Host route to the stack using the IPv4 address and MAC address
specified. Returns Success (0).
The static LLI entries have to be removed by an application manually if not in use or
will be deleted when the NDK stack is shutdown.

This API is an application level API and can be called from outside the kernel mode.

LLIRemoveStaticEntry Remove a previously configured static ARP entry from the stack.

Syntax int LLIRemoveStaticEntry(uint32_t IPAddr);

Parameters

IPAddr IPv4 address of the device
Return Value Returns 0 on success or -1 on invalid input/error in LLI entry removal.

Description This API searches for a static route and associated LLI entry in the NDK stack using the
IPv4 address specified and if no entry found returns an error, i.e., -1. If a valid entry is
found, it removes the route and corresponding LLI entries and cleans up any memory
associated with them. On successful clean up, returns 0. If this API is not explicitly called
to remove a previously configured static ARP entry, it is cleaned up only during the NDK
stack shutdown.

This API is an application level API and can be called from outside the kernel mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

LLIGetStaticARPTable — Retrieve a copy of the static ARP table from the stack. www.ti.com

154 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

LLIGetStaticARPTable Retrieve a copy of the static ARP table from the stack.

Syntax void LLIGetStaticARPTable(uint32_t* pNumEntries, LLI_INFO** pStaticArpTable);

Parameters

pNumEntries Pointer to hold the number of static ARP entries in the stack.
pStaticArpTable Pointer to hold the replicated static ARP table returned by this API

Return Value Updates pNumEntries with the number of static ARP Entries and pStaticArpTable with a
list of LLI_INFO structures containing the information of all static ARP entries configured
in the stack.

Description This API can be used to retrieve the number of static ARP entries and a replicated list of
such entries configured in the system. This API traverses through the route and LLI
(ARP) table configured in NDK, finds any static routes/LLI entries configured, and
creates a copy of them and returns them as a linked list of LLI_INFO structures for the
requesting application to use. In case of a memory allocation error or if no static ARP
entries found, this API returns the number of entries (pNumEntries) as zero to indicate
the same.

This API is an application level API and can be called from outside the kernel mode.

LLIFreeStaticARPTable Cleans the memory allocated by a previous call to LLIGetStaticARPTable API.

Syntax void LLIFreeStaticARPTable (LLI_INFO* pStaticArpTable);

Parameters

pStaticArpTable This is the head of the duplicated static ARP table list which has to be cleaned up

Return Value None

Description This function is called to clean the memory allocated by a previous call to
LLIGetStaticARPTable API. This function cleans the replicated copy of the static ARP
table.

This API is an application level API and can be called from outside the kernel mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Binding Object

155SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.8 Binding Object
For a device object to live on the network, it must have an IP address and knowledge of its IP subnet. The
process of assigning an IP address and subnet to a device binds the device with the desired IP
addressing.

A.8.1 Object Type
Static - Binding objects are generally created and destroyed by the same entity.

A.8.2 BIND API Functions
Although the Bind object API is larger than that discussed here, this section covers the portion of the API
that is encountered by a system application.

BindNew Create New IP Binding

Syntax void *BindNew(void *hIF, uint32_t IPAddr, uint32_t IPMask);

Return Value Returns a handle to the Bind object, or NULL on error.

Description Binds the indicated IP address and mask to the supplied Ether device. The handle to the
Ether device object is specified as hIF - or an handle to an interface, because the
interface may or may not be an Ethernet device (but always is in this version).

The IP address and mask arguments are given the type uint32_t. The IP data must be
supplied in network format. If unsure of the network format for your hardware, use the
htonl() macro function on the native format (where 1.2.3.4 = = 0x01020304).

BindFree Destroy IP Binding Object

Syntax void BindFree(void *hBind);

Description Destroys the indicated Bind object, and frees its associated memory. This function
removes the IP address and subnet association in the system route table. It has no
effect on the Ether object involved in the binding.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

BindGetFirst — Start Enumeration of Binding Objects www.ti.com

156 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

BindGetFirst Start Enumeration of Binding Objects

Syntax void *BindGetFirst();

Description Returns a handle to the first binding installed in the system (or NULL if no bindings
exist).

BindGetNext Continue Enumeration of Binding Objects

Syntax void *BindGetNext(void *hBind);

Description Returns a handle to the binding in the installed binding list that follows the indicated
binding (or NULL if no more bindings exist). Note that bindings are not internally kept in
chronological order in which they were installed.

BindGetIF Get the Ether Object that is Bound by this Binding Object

Syntax void *BindGetIF(void *hBind);

Description Returns a handle to the Ether object that is bound by this binding object. Note that a
binding is nothing more than an assignment of an Ether object to an IP address/network.

BindGetIP Get the IP Address/Network that is Bound by this Binding Object

Syntax void BindGetIP(void *hBind, uint32_t *pIPHost, uint32_t *pIPNet, uint32_t *pIPMask);

Description Returns the IP address and mask as requested by the calling arguments. Any of the
pointer arguments can be NULL if the information is not required.

The arguments are defined as follows:

pIPHost Pointer to the local IP address assigned by this binding
pIPNet Pointer to the network assigned by this binding (IP address AND IP Mask)
pIPMask Pointer to the subnet mask of the network assigned by this binding

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Route Object

157SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.9 Route Object
The route manager maintains IP routing information. It is called by various routines to get and set route
information. A route object is a destination on the network. Locally, it consists of an egress interface and a
next hop IP address.

This section describes a subset of the route object. Flags, features, and API calls have been omitted for
simplicity. Also, documenting the entire API would require the documentation of other stack objects that
are not covered in this document.

A.9.1 Object Type
Referenced - Route objects are referenced and dereferenced as needed. The object is removed when the
reference count reaches ZERO.

A.9.2 Route Entry Flags Definition
Associated with each route is a collection of entry/status flags. These flags indicate the type of route and
its status. Most system programming is not concerned with the route entry flags. They are listed here for
completeness. The definition of the various flags is as follows:
• FLG_RTE_UP - Entry is up

When set, indicates that the route is valid. The only time this flag is cleared is when the route is being
initialized, or when an error condition is signaled via RtSetFailure(). The flag is reset to TRUE by
calling RtSetFailure() with NULL failure code, or if the route is modified.

• FLG_RTE_EXPIRED - Entry is expired
When set, indicates that the route is expired. The flag cannot be cleared. A new route must be created.
Expired routes are never found, but a route cached by another entity may expire while it is being held.

• FLG_RTE_STATIC - Entry is static
This flag is set when a route should remain in the routing table even if it has no references. Various
routes can be static. Static routes are manually referenced by the system during create, and manually
de-referenced by the system during system shutdown.

• FLG_RTE_BLACKHOLE - Entry is a blackhole
When set, indicates that the route is a black hole. All packets destined for this address are silently
discarded.

• FLG_RTE_REJECT - Entry is rejected
When set, indicates that the route is to an invalid address. All packets destined for this address are
discarded with an error indication.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Route Object www.ti.com

158 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

• FLG_RTE_MODIFIED - Route has been auto modified
When set, indicates that the route has been modified as a result of an ICMP redirect message. This
can occur only to GATEWAY routes, and only if ICMP modifications are enabled in the stack
configuration.

• FLG_RTE_DYNAMIC - Route has been auto created
When set, indicates that the route has been created as a result of an ICMP redirect message. ICMP
can only create GATEWAY routes, and may do so only if ICMP modifications are enabled in the stack
configuration.

• FLG_RTE_PROXYPUB - Reply to ARP with client's MAC address
This flag indicates that the router is a proxy publisher of another entity's MAC address. When set, the
ARP protocol will respond to ARP requests for the route's IP address with the supplied static MAC
address when the host is on the same IF device as the incoming ARP request. This allows support of
hosts that do not implement ARP but are on the same physical Ethernet network. PROXYPUB entries
are always created with a MAC address and contain a static LLI (link-layer info, i.e., ARP entry).

• FLG_RTE_PROXY - Reply to ARP with router's MAC address
This flag indicates that the router is acting as a proxy for this host or network route. When set, the ARP
protocol will respond to ARP requests with its own MAC address for the associated IP host or network
when the network appears on a different IF device from the incoming ARP request. The MAC address
supplied in the reply is the local MAC of the ingress IF device. This technique tricks clients into sending
packets to the router when subnets are split across physical devices on a router.
One potential use applies when the stack is acting as a PPP server and Ethernet router. If a PPP client
is made part of the same IP subnet as an Ethernet based interface, the stack acts as the PPP client's
proxy so that Ethernet peers can communicate via ARP.

• FLG_RTE_CLONING - Cloning route to a local IP subnet
When set, indicates that the network route is a cloning route. Cloning routes clone (spawn to) host
routes when a route search is performed on a host address that is a member of the cloning route's
network (via the address and subnet mask). Cloned host routes take on most of the properties of their
parent network route, with the following alterations:
– Any MODIFIED or DYNAMIC flags are cleared.
– The STATIC flag is never set.
– The HOST flag is set and the netmask is set to 1s.
– The CLONING flag is cleared.

NOTE: Cloning routes are routes to a network (IP and subnet). These routes are added
automatically when an IP network is added to a device via a Bind object. Take care when
adding this type of route manually.

• FLG_RTE_HOST - Host route (no subnet mask)
When set, indicates that the route entry is a host route. A host route has no subnet mask (or rather a
subnet mask of all 1's). When searching for a route, host routes always match before network routes
(but this behavior can be overridden).

• FLG_RTE_GATEWAY - Destination is available via a Gateway
When set, indicates that the host or network route is indirectly accessible via an IP gateway. For a
route with this flag set, the GateIP address is always valid. Most GATEWAY routes will also be network
routes; however, a host redirect from ICMP can create a host route with a different gateway than its
parent route. When searching for a route, gateway routes always match before host routes (but this
behavior can be overridden).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Route Object

159SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

• FLG_RTE_IFLOCAL - IP address is Local to the stack
When set, indicates that the host route does not have a valid LLI (ARP) entry because the host is local
to the stack. The MAC address of this local IP host address can be obtained from the interface handle
associated with the route.

NOTE: Local routes are in the routing table to route packets that originate in the stack's upper
layers. When handling ARP requests and routing of incoming packets from outside the stack,
the IP address list published via the Bind object is used. The ARP will not respond to, nor will
the IP accept, packets addressed to an IP address that is not in the Bind list, even if an
IFLOCAL address entry exists in the route table. As with a cloning route, the Bind object is
the best way to create a local route.

A.9.3 Route Entry Flags Guidelines
See the following for some general guidelines to use when creating new routes. Use the definitions listed
above with the following legal flag combinations:
• Setting FLG_RTE_BLACKHOLE

FLG_RTE_REJECT - must be OFF
• Setting FLG_RTE_REJECT

FLG_RTE_BLACKHOLE - must be OFF
• Setting FLG_RTE_CLONING

FLG_RTE_HOST - must be OFF
FLG_RTE_GATEWAY - must be OFF
FLG_RTE_IFLOCAL - must be OFF

• Setting FLG_RTE_HOST
FLG_RTE_CLONING - must be OFF

• Setting FLG_RTE_GATEWAY
FLG_RTE_CLONING - must be OFF
FLG_RTE_IFLOCAL - must be OFF

• Setting FLG_RTE_IFLOCAL
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

• Setting FLG_RTE_PROXYPUB
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

• Setting FLG_RTE_PROXY
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Route Object www.ti.com

160 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.9.4 API Functions
The Route API is the most extensive API that a system task uses outside of the stack routines
themselves. As with the other stack APIs, this guide does not document the entire API.

Calls that accept a CallFlags argument can be supplied with the FLG_RTF_REPORT flag to indicate that
the call should result in a route report to the route control object. The route control object is described later
in this section.

RtRef Reference a Route

Syntax void RtRef(void *hRt);

Description Called to add one to the reference count of a route. An application that keeps a route it
did not create itself should reference the route before it uses it, and dereference it when
it is through.

RtDeRef Dereference a Route

Syntax void RtDeRef(void *hRt);

Description Called to remove one from the reference count of a route. An application dereferences a
route when it is through with it. This is the same (to the application) as destroying the
route. The route is actually destroyed when its reference count reaches zero.

RtCreate Create New Route

Syntax void *RtCreate(uint32_t CallFlags, uint32_t RtFlags, uint32_t IPAddr, uint32_t IPMask,
void *hIF, uint32_t IPGateway, unsigned char *pMacAddr);

Parameters

CallFlags Call Type Flags
RtFlags Route Type Flags
IPAddr Destination IP address of route
IPMask Destination IP Mask of route (or NULL)
hIF Interface (or NULL)
IPGateway Gate IP address (or NULL)
pMacAddr Pointer to six byte MAC address (or NULL)

Call Flags

FLG_RTF_REPORT Reports new route (NEW)

Return Value Referenced handle to newly created route.

Description Called to create a new host or network route and add it to the route table. Existing routes
cannot be modified via this call.

Some flag combinations are incorrect, and the following rules are strictly enforced.
• FLG_RTE_UP flag is always SET.
• FLG_RTE_EXPIRED and FLG_RTE_MODIFIED flags are always CLEARED.
• If FLG_RTE_HOST is set, then the route is a host route and IPMask is ignored, and

FLG_RTE_CLONING cannot be set.
• If FLG_RTE_GATEWAY is set, then IPGateway must specify a valid (reachable) IP

address.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com RtFind — Find a Route

161SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

• If FLG_RTE_GATEWAY is not set, then hIF must be valid.
• If FLG_RTE_IFLOCAL is set, then the specified host address is local to this machine,

and FLG_RTE_HOST must also be set, FLG_RTE_GATEWAY cannot be set, and
hIF must be valid.

• If FLG_RTE_CLONING is specified in Flags, the route is a cloning network route.
The IPMask argument must be valid, and neither FLG_RTE_HOST nor
FLG_RTE_GATEWAY may be set.

• If FLG_RTE_STATIC is specified in Flags, the route is referenced once by the route
code, and later dereferenced during shut down.

RtFind Find a Route

Syntax void RtFind(uint32_t CallFlags, uint32_t IPAddr);

Call Flags

FLG_RTF_REPORT Reports any new (cloned) or unfound route (NEW or MISS)

Return Value Referenced handle to best match route (or NULL)

Description This call searches the route table for a route that matches the supplied IP address. The
search always returns the best match for a route. The best match is a match with the
most bits in the subnet mask. Thus, a host match takes priority over a network match.

When there is more than one route with the same subnet mask, the following matching
guidelines are used (listed from best to worst):
• Route has a local destination (occurs with host addresses only).
• Route has a gateway destination.
• Route has a subnet destination on a connected interface.

Sometimes a search is desired where particular matches are desired. The following flags
can be combined with the value of CallFlags to change the behavior of the search:

FLG_RTF_CLONE Clone a network route to a host route if host not found
FLG_RTF_HOST Find only non-gateway host routes

RtSetTimeout Set the Timeout for a Non-static Route

Syntax void RtSetTimeout(void *hRt, uint32_t dwTimeOut);

Description This call allows an application to specify that the stack should time out a referenced
route. When the route is added to the timeout list, the system will add a reference. Thus,
once the application sets the timeout value, it should call RtDeRef() to dereference the
route. The route will stay valid until the timeout value is exceeded, after which it is
dereferenced by the system. Note that if this function is called and the route is not
dereferenced by the caller, it will still be removed from the system route table when the
expiration time elapses, but the object will not be freed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

RtSetFailure — Set the Timeout for a Non-Static Route www.ti.com

162 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

RtSetFailure Set the Timeout for a Non-Static Route

Syntax void RtSetFailure(void *hRt, uint32_t CallFlags, uint32_t FailCode);

Call Flags

FLG_RTF_REPORT Reports the status change of the route (UP or DOWN)

Description This call allows an application to specify a particular error with a route, or clear a
previously indicated error. Setting an error clears the FLG_RTE_UP bit in the flags.
When use of the route is attempted, the specified error is returned. Defined error codes
for the FailCode argument are:

NULL Route is operating normally (sets FLG_RTE_UP flag)
RTC_HOSTDOWN Host is down
RTC_HOSTUNREACH Host unreachable
RTC_NETUNREACH Network unreachable

RtRemove Remove Route from System Route Table

Syntax void RtRemove(void *hRt, uint32_t CallFlags, uint32_t FailCode);

Call Flags

FLG_RTF_REPORT Reports the removal of the route (REMOVED)

Description This call allows an application to remove a route from the system route table
independently of any held references to the route. It is similar to the RtSetFailure() call,
but differs in two ways:
1. It removes the route from the system route table so that it can no longer be returned

by RtFind().
2. It calls the IP and Sockets layers to flush the route from any local cache.

Calling this function clears the FLG_RTE_UP bit in the flags. When use of the route is
attempted, the error specified in FailCode is returned. Defined error codes for the
FailCode argument are:

RTC_HOSTDOWN Host is down
RTC_HOSTUNREACH Host unreachable
RTC_NETUNREACH Network unreachable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com RtGetFailure — Get the Error Code of a Downed Route

163SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

RtGetFailure Get the Error Code of a Downed Route

Syntax uint32_t RtGetFailure(void *hRt);

Return Value Failure code or NULL for normal operation.

Description This call allows an application to retrieve the error code of a route where the
FLG_RTE_UP bit is not set in the route flags. Defined error codes are:

RTC_HOSTDOWN Host is down
RTC_HOSTUNREACH Host unreachable
RTC_NETUNREACH Network unreachable

RtGetFlags Get the Route Flags

Syntax uint32_t RtGetFlags(void *hRt);

Description This function returns the state of the route flags for the indicated route. The flag values
and definitions were discussed earlier in this section.

RtGetIPAddr Get the Route IP Address

Syntax uint32_t RtGetIPAddr(void *hRt);

Return Value IP host/network address.

Description This function returns the specified route's IP address in network format.

RtGetIPMask Get the Route IP Subnet Mask

Syntax uint32_t RtGetIPMask(void *hRt);

Return Value IP subnet mask.

Description This function returns the specified route's IP subnet mask in network format.

RtGetGateIP Get the Route Gateway IP Address

Syntax uint32_t RtGetGateIP(void *hRt);

Return Value IP address of the Gateway or NULL.

Description This function returns the Gateway IP address for the specified route (assuming the
FLG_RTF_GATEWAY bit is set in the route flags).

RtGetIF Get the Route's Destination Hardware Interface

Syntax void *RtGetIF(void *hRt);

Return Value Pointer to Ether Object representing target interface.

Description This function returns an Ether device handle to the egress (target) device of the route.
Even local IP addresses have target devices (the device they are bound to).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

RtGetMTU — Get the MTU of a Packet Sent via this Route www.ti.com

164 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

RtGetMTU Get the MTU of a Packet Sent via this Route

Syntax uint32_t RtGetMTU(void *hRt);

Return Value Packet payload MTU in bytes.

Description This function returns the MTU (not including layer 2 header) of a packet sent via the
supplied route.

RtWalkBegin Start Walking the Route Table

Syntax void *RtWalkBegin();

Return Value Pointer to first route in system route table or NULL if no routes.

Description This function initiates a walk of the route table. It returns the first route in the table. The
walk must be terminated with RtWalkEnd() for the system to behave properly.

RtWalkNext Get Next Route While Walking the Route Table

Syntax void *RtWalkNext(void *hRt);

Return Value Pointer to next route in system route table or NULL if no routes.

Description This function gets the next route (based off the previous route supplied) in a walk of the
route table. The walk must be terminated with RtWalkEnd() for the system to behave
properly.

RtWalkEnd Stop Walking the Route Table

Syntax void RtWalkEnd(void *hRt);

Description This function completes the walk of the route table. The last route (if any) obtained from
RtWalkBegin() or RtWalkNext() is specified in the calling argument. Otherwise, NULL is
used.

A.10 Route Control Object
The route control object is more of a function than an object. It serves as a collection point for route
related information in the system. A routing daemon may use this information, or it could simply be logged
as debugging information.

When so configured, route control messages are transformed into debug messages by the stack and
logged via DbgPrintf(). By default, the route control debug messages are disabled. Also, the message
function can be hooked by an application.

Note, control messages can also be suppressed individually by not supplying the FLG_RTF_REPORT flag
to the Route object API function when the call is made (as mentioned in the previous section).

A.10.1 Route Control Messages
The basic form of the route control message is an unsigned int message value, with two unsigned 32 bit
values for additional data. In most cases these are immediate data. In one instance, the value is actually a
32 bit memory pointer.

Messages are passed internally to the stack via the function:
void RTCReport(uint32_t Msg, uint32_t Param1, uint32_t Param2);

Applications should not call this function directly.

The possible values for Msg are as follows:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com MSG_RTC_UP — Route is Valid/Pending

165SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

MSG_RTC_UP Route is Valid/Pending

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called after a down message indicating that a route that had previously been in the
down state is now up again. This does not mean that the route has been validated, but
only that it will attempt to validate itself if used.

MSG_RTC_DOWN Route is Down

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a route goes down due to an error. Packets sent via a route in this state will
generate an error. The most common reason for a route to go down is for a non-
response to 5 successive ARP requests. In this case, the route will come back up after
the down time has expired.

MSG_RTC_MISS Route Find "Missed" on Route

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when the route table was searched for a route and no matching route was found.
This message will never be sent when there is a default route in the table because all
searches will have a match (unless a special restricted search is performed).

MSG_RTC_NEW New Route has been Entered into the Route Table

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a new route is created and entered into the route table. Routes can be
created by applications, when new bindings are created, by ICMP redirects, or when
local host routes are cloned from local subnet routes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

MSG_RTC_EXPIRED — Route has Expired www.ti.com

166 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

MSG_RTC_EXPIRED Route has Expired

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a route with an expiration timeout has expired and been removed from the
table.

MSG_RTC_REMOVED Route has been Manually Removed

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a route has been manually removed from the table. This message is not
generated when static routes are removed at system shutdown. Generally, a route can
only be removed when its reference count reaches zero. This cannot happen to a static
route or a route with an expiration timeout. For the former, no message is ever
generated. For the latter, the MSG_RTC_EXPIRED message is used.

MSG_RTC_MODIFIED Route has been Manually Modified

Parameters

Param1 Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a route has been manually modified via the RtModify() call. The stack does
not use this function, so if it is not called by an application, this message will never
occur.

MSG_RTC_REDIRECT Route has been Redirected

Parameters

Param1 Route IP
Param2 New Destination Gateway IP

Description Called when an ICMP redirect message is received for a given IP host address.
Because the invention of classless subnets, all redirects are treated as HOST redirects.
If the stack is configured to generate redirect routes automatically (will do so by default),
this message will occur after the new static host redirect route has been created (which
will also generate a MSG_RTC_NEW message). If the stack does not create the redirect
route, this message occurs before the socket layer is notified so that if a new route is
created as a result of this message, the sockets layer will find it.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com MSG_RTC_DUPIP — A Duplicate IP Address has been Detected in the System

167SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

MSG_RTC_DUPIP A Duplicate IP Address has been Detected in the System

Parameters

Param1 Duplicated IP
Param2 Pointer to 6 byte MAC address of offending device

Description Called when an ARP packet is received from a device that has an IP address that is the
same as the IP address of the stack on that physical interface. Depending on the age of
the address, the application may wish to destroy the binding.

A.10.2 Route Control API Functions

RTCAddHook Hook RTC Messages

Syntax uint32_t RTCAddHook (void (*pfn)(uint, uint32_t, uint32_t));

Return Value 1 if the hook was installed, or NULL on an error (too many hooks).

Description Called to hook a message function to receive route control messages. The argument is a
pointer to a message function of the type:
void MyMsgFun(uint32_t Msg, uint32_t Param1, uint32_t Param2);

Note that the supplied callback function is called from within an llExit()/llEnter() pair, and
thus may call the stack API directly, but may not call any applications API functions, like
sockets functions. If such action is required, the callback function may call llExit() when
called and then llEnter() before returning.

When the hook is no longer required, the function may be unhooked by calling
RTCRemoveHook().

RTCRemoveHook Unhook RTC Messages

Syntax void RTCRemoveHook (void (*pfn)(uint, uint32_t, uint32_t));

Return Value None.

Description Called to remove a previously hooked callback function.

A.11 Configuring the Stack
The stack has multiple configuration options that can be changed by the system programmer. This is
possible by altering the default values in a stack configuration structure before the stack is initialized.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Configuring the Stack www.ti.com

168 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.11.1 Configuration Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The stack internal configuration structure is _ipcfg. Any element in this structure may be modified before
the initial system call to ExecOpen(). This structure should not be modified after this initial call.

The _ipcfg structure is of type IPCONFIG, which is defined as follows:
typedef struct _ipconfig {

uint32_t IcmpDoRedirect; // Update RtTable on ICMP redirect (1=Yes)
uint32_t IcmpTtl; // TTL for ICMP messages RFC1700 says 64
uint32_t IcmpTtlEcho; // TTL for ICMP echo RFC1700 says 64
uint32_t IpIndex; // IP Start Index
uint32_t IpForwarding; // IP Forwarding (1 = Enabled)
uint32_t IpNatEnable; // IP NAT Enable (1 = Yes)
uint32_t IpFilterEnable; // IP Filtering Enable (1 = Yes)
uint32_t IpReasmMaxTime; // Max reassembly time in seconds
uint32_t IpReasmMaxSize; // Max reassembly packet size
uint32_t IpDirectedBCast; // Look for directed BCast IP addresses
uint32_t TcpReasmMaxPkt; // Max reasm pkts held by TCP socket
uint32_t RtcEnableDebug; // Enable Route Control Messages (1=On)
uint32_t RtcAdvTime; // Time in sec to send RtAdv (0=don't)
uint32_t RtcAdvLife; // Litetime of route in RtAdv
int RtcAdvPref; // Preference Level (signed) in RtAdv
uint32_t RtArpDownTime; // Time 5 failed ARPs keep Rt down (sec)
uint32_t RtKeepaliveTime; // VALIDATED route timeout (sec)
uint32_t RtArpInactvity; // ARP Inactivity Timeout (sec)
uint32_t RtCloneTimeout; // INITIAL route timeout (sec)
uint32_t RtDefaultMTU; // Default MTU for internal routes
uint32_t SockTtlDefault; // Default Packet TTL
uint32_t SockTosDefault; // Default Packet TOS
int SockMaxConnect; // Max Socket Connections
uint32_t SockTimeConnect; // Max time to connect (sec)
uint32_t SockTimeIo; // Default Socket IO timeout (sec)
int SockTcpTxBufSize; // TCP Transmit buffer size
int SockTcpRxBufSize; // TCP Receive buffer size (copy mode)
int SockTcpRxLimit; // TCP Receive limit (non-copy mode)
int SockUdpRxLimit; // UDP Receive limit
int SockBufMinTx; // Min Tx space for "able to write"
int SockBufMinRx; // Min Rx data for "able to read"
uint32_t PipeTimeIo; // Default Pipe IO timeout (sec)
int PipeBufSize; // Pipe internal buffer size
int PipeBufMinTx; // Min Tx space for "able to write"
int PipeBufMinRx; // Min Rx data for "able to read"
uint32_t TcpKeepIdle; // Time (in 0.1 sec) connection muse be idle

// for TCP to send first keepalive probe.
uint32_t TcpKeepIntvl; // Time (in 0.1 sec) between consecutive TCP

// keep alive probes
uint32_t TcpKeepMaxIdle; // Time (in 0.1 sec) that a TCP connection can

// go without responding to a probe before
// being dropped

uint32_t IcmpDontReplyBCast; // Don't Reply To ICMP ECHO REQ packets
// sent to BCast or Directed BCast

uint32_t IcmpDontReplyMCast; // Don't Reply To ICMP ECHO REQ packets
// sent to Multi-Cast

uint32_t RtGarp; // How to handle received gratuitous ARP
uint32_t IcmpDontReplyEcho; // Don't Reply to ICMP ECHO packets
uint32_t UdpSendIcmpPortUnreach; // Send ICMP Port Unreach if UDP port

// is opened or not.
uint32_t TcpSendRst; // Send RST if TCP port is opened or not.
int SockRawEthRxLimit; // Raw Ethernet Receive limit

} IPCONFIG;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com _ipcfg.IcmpDoRedirect — Update Route Table on ICMP Redirect

169SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

The structure entries are defined as follows:

_ipcfg.IcmpDoRedirect Update Route Table on ICMP Redirect

Default Value 1 (Yes)

Description When set to true (1), causes ICMP to automatically create a route to perform redirects
on an IP host to the gateway supplied in the redirect message. If set to false (0), you can
take whatever action you feel necessary as the ICMP redirect will also generate a route
control message.

_ipcfg.IcmpTtl TTL for ICMP Messages

Default Value 64

Description This is the TTL value ICMP will use in messages it generates as a result of routing IP
packets. Legal values are in the range of 1-255.

_ipcfg.IcmpTtlEcho TTL for ICMP ECHO Reply Messages

Default Value 255

Description This is the TTL value ICMP will use in echo reply messages it generates in response to
receiving echo requests. Legal values are in the range of 1-255.

_ipcfg.IpIndex IP Start Index

Default Value 1

Description This is the initial value that is placed in the IP Id field for IP packets generated by the
system. Legal values are in the range of 1-65535.

_ipcfg.IpForwarding IP Forwarding Enable

Default Value 0 (No)

Description When set to true (1), this allows the stack to forward packets it receives for other IP
address to their next hop destination (i.e., it allows the stack to act as a router).

_ipcfg.IpNatEnable IP Network Address Translation Enable

Default Value 0 (No)

Description When set to true (1), this allows the stack to make use of the network address
translation (NAT) module. Note that in addition to setting this structure element, NAT
must also be configured. This is described in the following section.

_ipcfg.IpFilterEnable P Filtering Enable

Default Value 0 (No)

Description When set to true (1), this allows the stack to make use of the IP filtering module. Note
that this is automatically turned on when NAT is enabled in the stack. This module is
described in more detail in the NAT Service section of this document.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

_ipcfg.IpReasmMaxTime — Maximum IP Packet Reassembly Time in Seconds www.ti.com

170 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.IpReasmMaxTime Maximum IP Packet Reassembly Time in Seconds

Default Value 10

Description This is the maximum time that the stack will hold IP packet fragments while attempting to
assemble a complete packet. If the time expires before all the fragments arrive, the
packet is discarded.

_ipcfg.IpReasmMaxSize Maximum IP Packet Reassembly Packet Size in Bytes

Default Value 3020

Description This is the maximum packet size that the stack will attempt to reassemble. As soon as
the stack determines that the total packet size exceeds this value, the packet is
discarded. The default size of 3020 is the maximum size given the default
implementation of the packet buffer manager (PBM). If a larger size is desired, then
large buffer support must be added to the PBM module. This value is not otherwise
restricted. Note the MAC and IP headers are not included in this size limit.

_ipcfg.IpDirectedBCast Look for Directed Broadcast IP Packets

Default Value 1 (Yes)

Description A directed broadcast address is one where all the bits in the subnet portion of the
address are set to 1. For example, on the network 192.168.1.0:255.2555.255.0, the IP
address 192.168.1.255 would be a directed broadcast IP. This address is treated as a
broadcast for both IP send and receive. The IP layer can be told to disable directed
broadcast by setting this value to zero. When disabled, the directed broadcast address is
treated like any other host address.

_ipcfg.TcpReasmMaxPkt Maximum Reassembly Packets Held by TCP Socket

Default Value 2

Description The TCP layer has its own packet reassembly module, allowing TCP packets to arrive
out of order, and yet be properly reassembled without the need to retransmit data. One
potential issue with embedded environments where the socket receive buffers are large
is that a significant number of packets can be tied up in TCP if the first packet of a large
burst is lost. This value allows you to specify the maximum number of packets the TCP
layer will hold per socket pending reassembly, or in other words, the maximum number
of out of order packets allowed.

_ipcfg.RtcEnableDebug Enable Route Control Messages

Default Value 0 (No)

Description Route control messages keep the system informed of route updates. When set to Yes
(1), this variable causes RTC to process the route control message and convert the
message into a debug call to llDebugMessage(). Note that an application may also hook
into the RTC message loop using the RTCAddHook () function.

_ipcfg.RtcAdvTime Time in Seconds to Send Router Advertisments

Default Value 0 (Do not Send Router Advertisements)

Description The stack has the ability to automatically send ICMP router advertisements at a
predetermined interval. Setting this variable to a non-zero value determines the interval.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com _ipcfg.RtcAdvLife — Lifetime of Route in Router Advertisments

171SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.RtcAdvLife Lifetime of Route in Router Advertisments

Default Value 120

Description If sending router advertisements (see above), this is the route lifetime that will be sent in
the ICMP message.

_ipcfg.RtcAdvPref Preference Level of Route in Router Advertisments

Default Value 0

Description If sending router advertisements (see above), this is the route preference level that will
be sent in the ICMP message. This value is signed.

_ipcfg.RtDownTime Time in Seconds a Route is "Down" Due to Failed ARP

Default Value 20

Description To stop an application from sending endless packets to a route that is not responding to
ARP, the route is brought down for a period of time so that the application will receive an
error when IP attempts to send. After the designated time, the route is brought back up
and will attempt more ARP requests if used again.

_ipcfg.RtKeepAliveTime Time in Seconds a Validated Route is Held

Default Value 1200

Description Routes should not be held indefinitely. Use of a route is also not sufficient to keep the
route alive. This value represents the time an ARP validated route is held before it
expires. If the route is revalidated via ARP during this period, the period is extended for
this interval from that point in time.

_ipcfg.RtArpInactivity ARP Inactivity timeout in seconds

Default Value 3

Description Time in seconds beyond which a route and an associated LLI/ARP entry if unused is
considered inactive or idle. Inactive ARP entries lifetime is not extended using ARP
revalidation process and are instead deleted. The associated route entry is also
removed.

_ipcfg.RtCloneTimeout Default Timeout in Seconds of a Cloned Route

Default Value 120

Description When a host route is first cloned from a network route, it is assigned this default timeout.
Once the route is validated via ARP, the timeout is extended (see above).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

_ipcfg.RtDefaultMTU — Default MTU for Local Routes www.ti.com

172 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.RtDefaultMTU Default MTU for Local Routes

Default Value 1500

Description When a route is created, it gets its MTU from the egress device. However, if the route is
local to the system, there is no egress device. In this case, a default MTU is used.

_ipcfg.SockTtlDefault Default TTL for Packets Sent via a Socket

Default Value 64

Description This is the default IP packet TTL value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockTosDefault Default TOS for Packets Sent via a Socket

Default Value 0

Description This is the default IP packet TOS value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockMaxConnect Maximum Connections on a Listening Socket

Default Value 8

Description This is the maximum number of connections a socket will pend waiting for a sockets
NDK_accept() call from the application. Note: This value is also the upper bounds of the
maximum connection argument supplied by an application via the sockets listen()
function (calls with higher values are silently rounded down).

_ipcfg.SockTimeConnect Maximum Time in Seconds to Wait on a Connect

Default Value 80

Description This is the maximum amount to time the sockets layer will wait on an actively connecting
socket. The default value of 80 is a few seconds longer than the TCP keep time, so TCP
will generate the official (more accurate) timeout error.

_ipcfg.SockTimeIo Maximum Time in Seconds to Wait on Socket Read/Write

Default Value 0

Description This is the maximum amount of time the sockets layer will wait on a read or write
operation without any progress. For example, if the user calls send() with a very large
buffer, the function will not time out so long as some fraction of the data is sent during
the timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

_ipcfg.SockTcpTxBufSize TCP Transmit Buffer Size

Default Value 8192

Description This is the size of the TCP send buffer. A TCP send buffer is allocated for every TCP
socket. This value cannot be overridden by the sockets option function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com _ipcfg.SockTcpRxBufSize — TCP Receive Buffer Size (Copy Mode)

173SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.SockTcpRxBufSize TCP Receive Buffer Size (Copy Mode)

Default Value 8192

Description This is the size of the TCP receive buffer allocated for a standard TCP socket. Note that
only SOCK_STREAM sockets use receive buffers. This value cannot be overridden by
the sockets option function.

_ipcfg.SockTcpRxLimit TCP Receive Limit (Non-Copy Mode)

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given TCP based socket. Note that only TCP sockets using
SOCK_STREAMNC queue packet buffers directly to a socket. This value cannot be
overridden by the sockets option function.

_ipcfg.SockUdpRxLimit UDP Receive Limit

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given UDP or RAW based socket. This value cannot be overridden
by the sockets option function.

_ipcfg.SockBufMinTx Min Size in Bytes for Socket "Able to Write"

Default Value 2048

Description This is the size in bytes required to be free in the TCP buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) This
value is usually about 25% to 50% of the send buffer size. UDP and RAW IP sockets are
always able to write.

_ipcfg.SockBufMinRx Min Size in Bytes for Socket "Able to Read"

Default Value 1

Description This is the size in bytes required to be present in a socket buffer for it to be regarded as
able to be read by the system. (Affects how the read fd set behaves in a select() call.)
Alter at your own risk.

_ipcfg.PipeTimeIo Maximum Time in Seconds to Wait on Pipe Read/Write

Default Value 0

Description This is maximum amount to time the file layer will wait on a read or write operation on a
pipe without any progress. For example, if the user calls send() with a very large buffer,
the function will not time out as long as some fraction of the data is sent during the
timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

_ipcfg.PipeBufSize — Size in Bytes of Each End of a Pipe Buffer www.ti.com

174 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.PipeBufSize Size in Bytes of Each End of a Pipe Buffer

Default Value 1024

Description This is the size of a Pipe send and receive buffer. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinTx Min Size in Bytes for Pipe Able to Write

Default Value 256

Description This is the size in bytes required to be free in the Pipe buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) It is
usually about 25% to 50% of the send buffer size. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinRx Min Size in Bytes for Pipe "Able to Read"

Default Value 1

Description This is the size in bytes required to be present in the Pipe receive buffer for it to be
regarded as able to be read by the system. (Affects how the read fd set behaves in a
select() call.) Alter at your own risk. This value is only examined when pipes are created,
so changing this value will not affect the buffering of existing pipes.

_ipcfg.TcpKeepIdle Keep Idle Time (0.1 Sec Units)

Default Value 72000 (2 hours)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time a TCP connection can be idle before KEEP probes are sent.

_ipcfg.TcpKeepIntvl Keep Probe Interval (0.1 Sec Units)

Default Value 750 (75 seconds)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It specifies the time between probe intervals once TCP begins sending KEEP
probes.

_ipcfg.TcpKeepMaxIdle Keep Probe Timeout (0.1 Sec Units)

Default Value 6000 (10 minutes)

Description This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time the TCP will continue to send unanswered KEEP probes before
timing out the connection.

_ipcfg.IcmpDontReplyBCast Do NOT Reply to ICMP Echo Request Packets Sent to
Broadcast/Directed Addresses

Default Value 0 (Reply to ICMP Echo Request packets sent to broadcast/directed broadcast
addresses)

Description When set, causes ICMP to not reply to ICMP Echo Request packets sent to broadcast or
directed broadcast addresses.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com _ipcfg.IcmpDontReplyMCast — Do NOT Reply to ICMP Echo Request Packets Sent to Multicast Addresses

175SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.IcmpDontReplyMCast Do NOT Reply to ICMP Echo Request Packets Sent to Multicast
Addresses

Default Value 0 (Reply to ICMP Echo Request packets sent to multicast addresses)

Description When set, causes ICMP to not reply to ICMP Echo Request packets sent to multicast
addresses.

_ipcfg.RtGarp How to Handle Received Gratuitous ARP Packets

Default Value 0 (Discard received gratuitous ARP packets)

Description The hosts may send gratuitous ARP packets to broadcast their [IP number, MAC
address] information to inform other hosts in the network. This parameter determines the
handling policy of received gratuitous ARP packets based on the following configuration
values:

0 - Discard the received gratuitous ARP packets. (default)

1 - If host is already in the routing table, update MAC address only.

2 - If host is already in the routing table, update MAC address. If host is not the routing
table, add to the table. This option can cause growing of the table by adding entries for
not communicated host's information, and consumes more memory.

_ipcfg.IcmpDontReplyEcho Reply to ICMP Echo Request Packet

Default Value 0 (Reply to ICMP Echo Request packets with ICMP Echo Reply)

Description The ICMP Echo Request can be used to determine if a host on the Internet is
responding. The host receiving ICMP Echo Request replies with ICMP Echo Reply
packet. The ping program uses ICMP Echo Request/Reply packets. It is a valuable tool
diagnosing host and network problem. However, it can also be used to discover the IP
numbers of hosts connected on the Internet. This option allows configuring to reply ICMP
Echo Request packets or not.

0 - Reply to ICMP Echo Request packets

1 - Do NOT reply to ICMP Echo Request packets

_ipcfg.UdpSendIcmpPortUnreach Reply with ICMP Port Unreachable if UDP Port is Not Listened

Default Value 1 (Reply with ICMP Port Unreachable message)

Description The "port scanning" is used to discover which services is used on a host. If a UDP port
is not listened, the NDK replies with an "ICMP Port Unreachable" message to any
received UDP datagram. So, you can find that if a UDP port is not open, and by
exclusively determine which ports are open. This option allows configuring to reply or not
to not listened UDP ports.

0 - Do NOT reply with ICMP Port Unreachable message

1 - Reply with ICMP Port Unreachable message

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

_ipcfg.TcpSendRst — Reply with RST message if TCP Port is Not Listened www.ti.com

176 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

_ipcfg.TcpSendRst Reply with RST message if TCP Port is Not Listened

Default Value 1 (Reply with RST message)

Description The "port scanning" is used to discover which services is used on a host. If a TCP port is
not listened, the NDK replies with an RST message to a connection attempt (received
SYN message). So, you can find that if a TCP port is not open, and by exclusively
determine which ports are open. This option allows configuring to reply or not to not
listened TCP ports.

0 - Do NOT reply with RST message

1 - Reply with RST message

_ipcfg.SockRawEthRxLimit Raw Ethernet socket receive limit

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given Raw Ethernet socket. This value cannot be overridden by the
sockets option function.

A.12 Network Address Translation
The stack includes a small network address translation (NAT) function that can be used to setup virtual
networks when the stack is acting as a router. When enabled, NAT will translate routed packets sent from
or to a targeted virtual network.

If you are using XGCONF to configure your application, you can configure the NAT service to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

A.12.1 Operation
NAT works by altering the TCP/UDP port numbers of a packet sent from a virtual network, and then using
an alternate IP on the physical network to transfer the packet. For ICMP packets, the Id field of ICMP
requests is used.

When configured, NAT will have a target virtual network that consists of a IP base address and a subnet
mask. It also has a physical IP address that is used as a type of proxy for the translated packets.

The types of packets translated include:
• Any TCP or UDP packet
• ICMP ECHO and TSTAMP packets sent from the virtual network
• ICMP ECHOREPLY and TSTAMPREPLY packets sent to the virtual network
• ICMP error packets sent to the virtual network in response to a translated packet sent from the virtual

network

The translation entries are created dynamically, and have a lifetime based on their protocol. ICMP and
UDP translation entries have a fixed time limit based on the last time they were accessed. TCP expiration
is based on the state of the TCP connection.

Note that some protocols (like FTP) communicate TCP/UDP port information in the packet payload. These
types of protocols will not function under NAT without a custom proxy program to alter the packet payload.
Individual proxies are not provided.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/spru523

www.ti.com Network Interface Management Unit (NIMU)

177SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.13 Network Interface Management Unit (NIMU)

A.13.1 Synopsis
NIMU architecture replaces the existing LL packet layer architecture, originally designed to communicate
with only one instance of the device driver. It adds flexibility to the NDK core stack by adding the capability
to communicate and control multiple device drivers simultaneously. In comparison to single-port serial
device applications, the new NIMU architecture is best suited for Ethernet type devices where it is
common to have multiple instances running concurrently.

NIMU implementation has two parts:
• NIMU NDK core layer that defines the APIs for the network applications to communicate with device

drivers in an abstract manner. It also provides an interface between the NDK core stack and the device
drivers.

• NIMU device driver interface counterpart that implements the NIMU APIs for the specific device driver.

Figure A-1 showcases NIMU architecture.

Figure A-1. NIMU Architecture

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Network Interface Management Unit (NIMU) www.ti.com

178 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.13.2 Data Structure Definition
The NIMU network interface object is equivalent to the device independent packet layer. Each NIMU
network interface object is described with the following data structure:
typedef struct NETIF_DEVICE
{

LIST_NODE links;

/* Device Identification */
uint32_t index;
char name[MAX_INTERFACE_NAME_LEN];

/* Device Specific Information */
uint32_t flags;
uint32_t mtu;
unsigned char mac_address[6];

/* Internal Use: Number of references held. */
uint32_t RefCount;
uint32_t type;

/* Pointer to 'driver specific private data' */
void* pvt_data;

/***
***************** Driver Interface Functions ********************
***/

int (*start)(struct NETIF_DEVICE* ptr_net_device);
int (*stop)(struct NETIF_DEVICE* ptr_net_device);
void (*poll)(struct NETIF_DEVICE* ptr_net_device, uint32_t timer_tick);
int (*send)(struct NETIF_DEVICE* ptr_net_device, PBM_Handle hPkt);
void (*pkt_service) (struct NETIF_DEVICE* ptr_net_device);
int (*ioctl)(struct NETIF_DEVICE* ptr_net_device, uint32_t cmd,

void* pbuf, uint32_t size);
int (*add_header) (struct NETIF_DEVICE* ptr_net_device, PBM_Handle hPkt,

unsigned char* dst_mac, unsigned char* src_mac, uint16_t ether_type);

} NETIF_DEVICE;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com links — Pointers to the next and previous devices

179SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

The structure entries are described below:

links Pointers to the next and previous devices

Description Holds pointers to the previous and next devices in the chain of NIMU registered devices
in the system.

index Unique number to identity the device in the system

Description Numerically identifies devices uniquely in the system. Driver authors can specify a value
for the index; but in the case of conflicts its value will be modified to be unique in the
system by the core. Therefore, if driver authors are using this in their code it is best to
re-read the value after the 'registration' process.

name Device name

Description Name of the device to identify it uniquely in the system. Driver authors can specify a
name for the device; but in the case of conflicts its value will be modified to be unique in
the system. Therefore, if driver authors are using this in their code it is best to re-read
the value after the 'registration' process.

flags Device specific flags

Description Contains additional information which further describes the network device and its
properties. The following flags may be set by a driver author when the NETIF_DEVICE
structure is initialized. Flags should not be set at runtime, because the driver modifies
flags to maintain information about driver status.
• NIMU_DEVICE_NO_ARP. Device does not support ARP.
• NIMU_DEVICE_NO_FREE. Device is responsible for allocating and freeing the

device instance. Setting this flag causes internal calls to mmFree() to be omitted.
Drivers that set this flag should call mmFree() or otherwise free the device instance in
the registered stop function. See Section 2.4.2 for details on mmFree(). For example:
/* Initialization function in driver */
ptr_device = mmAlloc(sizeof(NETIF_DEVICE));
mmZeroInit (ptr_device, sizeof(NETIF_DEVICE));
...
ptr_device->flags = NIMU_DEVICE_NO_FREE;

mtu Maximum transmission unit for the device

Description This defines the maximum size of a packet that can be transmitted over the device
without any fragmentation. Driver authors should configure this value to the maximum
data payload that can be carried without the corresponding Layer2 header. For example,
in Ethernet this will be 1514 (maximum data payload) - 14 (L2 Ethernet header) = 1500.
By default, the value for mtu is 1500.

mac_address Hardware address of this device

Description This is the hardware address of the device that uniquely identifies the device.

RefCount Reference count of the device

Description This indicates the number of references of network interface objects held by
components. Network Interface objects can only be removed from the system if there are
no references of them held in the system. This is used internally by the NIMU control
module and should never be modified by the driver.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

type — Defines the interface type www.ti.com

180 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

type Defines the interface type

Description For compatibility with the old network interface object, this is set to HTYPE_ETH or
HTYPE_PPP depending on the type of network interface object. Moving forward, this
field will be obsolete and application authors should use the field instead.

pvt_data Pointer to device-specific private data

Description This can be used by the driver authors to store any additional driver-specific data.
Memory allocation, Initialization and cleanup is the responsibility of the driver author the
NDK NIMU module does not use this field in any way and is opaque to the NDK core
stack.

The driver interface functions can be described as follows:

start Callback function registered by driver to open the controller

Syntax #include <stkmain.h>

int (*start) (NETIF_DEVICE* ptr_netif_device);

Return Value The function returns a value of 0 on success and a negative value on error.

Description The device start function is a registered call back function which is populated by the
device driver author in the network interface object control block. Once the network
interface object is registered with the NIMU NDK core stack during the registration
process, the NDK core stack will call out this function. Device driver authors are
recommended to place hardware initialization and start-up code in this callback function.
After the successful completion of the API, the driver should be able to receive and
transmit packets from the hardware. Driver authors must specify this callback function or
else the NIMU registration will fail.

stop Callback function registered by driver to close the controller

Syntax #include <stkmain.h>

int (*stop) (NETIF_DEVICE* ptr_netif_device);

Return Value The function returns a value of 0 on Success and a negative value on error.

Description The device stop function is a registered call back function which is populated by the
device driver author in the network interface object control block. The function is invoked
by the NDK core stack when the NIMU network interface object is being unregistered
from the NIMU system. Driver authors are recommended to place the hardware
controller shutdown code in this API. After the successful completion of this API, the
driver should not be able to receive or transmit packets. Driver authors must specify this
callback function or else the NIMU registration will fail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com poll — Callback function registered by driver to be called periodically by the NDK.

181SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

poll Callback function registered by driver to be called periodically by the NDK.

Syntax #include <stkmain.h>

void (*poll) (NETIF_DEVICE* ptr_netif_device, uint32_t
timer_tick);

Return Value None

Description The call back function is used by the NDK core stack to periodically call the driver. Driver
authors can use this function to monitor link activity or do any work outside the kernel
mode context. The callback function registered here is not called from kernel mode.

Table A-1 summarizes the significance of timer_tick.

Table A-1. timer_tick

timer_tick Definition
1 The polling function is called because of a timer event. It is recommended that device authors use this for doing

periodic activities such as link management, watchdog timers, etc.
0 This indicates that the polling function has been called because the driver has indicated a

STKEVENT_signal. This is useful for device authors to signify some activity outside kernel mode.

send Callback function registered by driver to send packets.

Syntax #include <stkmain.h>

int (*send) (NETIF_DEVICE* ptr_netif_device, PBM_Handle
hPkt);

Return Value The function returns a value of 0 on success and a negative value on error. On success,
the packet memory cleanup needs to be handled by the driver; but if an error is returned,
the NDK core stack will clean up the packet.

Description The device send function is an API which is used by the core NDK stack to pass packets
to the driver for transmission. Driver authors must specify this callback function or else
the NIMU registration will fail.

pkt_service Callback function registered by driver for the NDK stack to receive packets

Syntax #include <stkmain.h>

void (*pkt_service) (NETIF_DEVICE* ptr_netif_device);

Return Value None

Description The API is used by the NDK core stack to receive packets from the driver. This is
indicated through the STKEVENT_signal API once the packets have been received.
The NDK core scheduler detects this signal and ensures that the appropriate packet
service API is called. This function is called from kernel mode. The drivers should handle
conditions where even though this API is called there are no packets in the receive
queue.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

ioctl — Callback function registered by driver for the NDK stack to get/set configuration www.ti.com

182 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

ioctl Callback function registered by driver for the NDK stack to get/set configuration

Syntax #include <stkmain.h>

void (*ioctl) (NETIF_DEVICE* ptr_device, uint32_t cmd,
void*pBuf, uint32_t size);

Return Value The function returns a value of 0 on Success and a negative value on error.

Description This API is used by the NDK core stack to be able to get/set configuration in the drivers.
The interface can be used to configure the multicast address list, change device MAC
address, etc. Each NIMU network interface object can also identify its own custom
IOCTL commands to do any device-specific configuration. This function is called from
kernel mode.

add_header Callback function registered by driver for the NDK stack to add custom L2 header

Syntax #include <stkmain.h>

void (*add_header)(NETIF_DEVICE* ptr_netif_device,
PBM_Handle hPkt, unsigned char* dst_mac, unsigned char* src_mac,
uint16_t ether_type);

Return Value None

Description This is a registered call back function added by the driver to add custom layer2 headers
on packets. This is called by the NDK core stack after layer3 has done its work. Ethernet
driver authors can set this API to be NIMUAddEthernetHeader”. However, if the driver is
not a standard Ethernet driver, this can be used to add an appropriate layer2 header.
For example, If the driver is USB-RNDIS, then this function can be defined to add not
only the standard Ethernet header, but also the RNDIS header. If there are custom
headers, then ensure there is sufficient head room in the packet buffers which are being
allocated. Configuration of header and trailer sizes are provided by the NIMU exported
API NIMUSetRsvdSizeInfo. This function is called from kernel mode.

A.13.3 NIMU Configuration
For sample NIMU API usage, please refer to the DSK6455 and DM642 Ethernet driver code in the latest
platform specific packages.

A.13.4 API Function Overview

NIMURegister Registers a NIMU compliant network interface object
NIMUUnregister Un-registers a NIMU compliant network interface object
NIMUGetRsvdSizeInfo Get current header and trailer size
NIMUSetRsvdSizeInfo Set current header and trailer size
NIMUReceivePacket Interface API to pass packets to the NDK core stack
NIMUIoctl Get/set configuration from the NIMU module and drivers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Network Interface Management Unit (NIMU)

183SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.13.5 API Function Description

NIMURegister Callback Registers a NIMU compliant network interface object

Syntax #include <stkmain.h>

int NIMURegister (NETIF_DEVICE* ptr_netif_device);

Return Value The function returns a value of 0 on success and a negative value on error.

Description The API is used to register a NIMU compliant network interface object with the core NDK
NIMU module. As part of the registration process, the API will also invoke the start’ API
to open and begin the corresponding the network device.

NIMUUnregister Un-registers a NIMU compliant network interface object

Syntax #include <stkmain.h>

int NIMUUnregister (NETIF_DEVICE* ptr_netif_device);

Return Value The function returns a value of 0 on success and a negative value on error.

Description The API is used to un-register a previously registered NIMU compliant network interface
object from the core NDK NIMU module. As part of the un-registration process, the API
will also invoke the stop API to close the corresponding network device. This API can
only be called from within kernel mode.

NIMUGetRsvdSizeInfo Get current header and trailer size

Syntax include <stkmain.h>

void NIMUGetRsvdSizeInfo (int* hdr_size, int* trail_size);

Return Value The function returns the current header and trailer reserved space.

Description All packets set aside by the network interface management unit are allocated reserving
some space for headers and trailers. The API is used to get the current header and
trailer size that NIMU will use from this point on. This API can only be called from within
kernel mode.

NIMUSetRsvdSizeInfo Set current header and trailer size

Syntax #include <stkmain.h>

void NIMUSetRsvdSizeInfo (int hdr_size, int trail_size);

Return Value None

Description All packets set aside by the network interface management unit are allocated reserving
some space for headers and trailers. The API is used to set the current header and
trailer size that NIMU will use from this point on. There are no validations done on the
header and trailer size values passed to the function. It is assumed that the system
authors have configured this value correctly. This API can only be called from within
kernel mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NIMUReceivePacket — Interface API to pass packets to the NDK Core stack www.ti.com

184 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

NIMUReceivePacket Interface API to pass packets to the NDK Core stack

Syntax #include <stkmain.h>

int NIMUReceivePacket (PBM_Handle hPkt);

Return Value The function returns the 0 on success and <0 on error. Note that in case of error, the
function will clean the packet memory.

Description This is the interface function which has been exported by the NIMU module to pass
received packets to the networking stack. This API is available only for NIMU network
interface objects and replaces the EtherRxPacket API, which handles the LL packet
architecture. This API can only be called from within kernel mode.

NIMUIoctl Get/Set configuration from the NIMU Module and Drivers

Syntax #include <stkmain.h>

int NIMUIoctl(uint32_t cmd, NIMU_IF_REQ* ptr_nimu_ifreq,
void* pBuf, uint32_t size);

Return Value The function returns the 0 on success and a negative value on error.

Description This function is used to get and set configuration parameters from either the NIMU
module or to the NIMU network interface objects driver attached to the NIMU module.
The NIMU_IF_REQ structure is defined as follows:
typedef struct NIMU_IF_REQ
{

uint32_t index; /* Device Index */
char name[MAX_INTERFACE_NAME_LEN]; /* Device Name */

} NIMU_IF_REQ;

The structure is used to identify the NIMU network interface object which is being
referred to. The introduction of NIMU network interface objects can be referred by a
name or by a unique index. The NIMU IOCTL Interface searches for a matching device
using the name; if no device is found then the device index is used to find a matching
device. If none is found then an error is returned. The cmd parameter is used to specify
the command, and pBuf and size are defined on a per command basis. Table A-2
summarizes the set of supported IOCTL commands and the values expected in the pBuf
and size.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NIMUIoctl — Get/Set configuration from the NIMU Module and Drivers

185SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

Table A-2. IOCTL Commands

Command pBuf Size Description
NIMU_GET_DEVICE_HANDLE &(void *) 4 Use this to get the NIMU device handle associated with the

device.
NIMU_GET_DEVICE_MTU &uint16_t 2 Use this to get the MTU associated with the device.
NIMU_SET_DEVICE_MTU &uint16_t 2 Use this to set the MTU associated with the device. No

validations are done on this.
NIMU_GET_DEVICE_MAC &(unsigned char[6]) 6 Get the device MAC address.
NIMU_SET_DEVICE_MAC &(unsigned char[6]) 6 Set the device MAC address. In this case the MAC address

is also passed down to the NIMU Network interface object
so that the MINI-driver can also be reconfigured. If this is
not supported by the driver the IOCTL fails.

NIMU_GET_DEVICE_NAME &(unsigned char[20]) 20 Use this API to translate the device index to device name.
The device name is returned in pBuf

NIMU_GET_DEVICE_INDEX &uint16_t 2 Use this API to translate the device name to device index.
The device index is returned in pBuf

NIMU_ADD_MULTICAST_ADDRESS &(unsigned char[6]) 6 This API is used to add a multicast MAC address to the
device multicast list. This IOCTL needs to be handled in the
NIMU Network Interface Object Driver.

NIMU_DEL_MULTICAST_ADDRESS &(unsigned char[6]) 6 This API is used to delete a multicast MAC address to the
device multicast list. This IOCTL needs to be handled in the
NIMU Network Interface Object Driver.

Typically, most of the requests are done for a specific network interface object; but in some cases,
configuration might be required for all NIMU network interface objects. In the case of these special cmd,
the value of the interface request is NULL. These special case cmd are shown in Table A-3.

Table A-3. Special Case cmd

Command pBuf Size Description
NIMU_GET_NUM_NIMU_OBJ &uint16_t 2 Use this to get the number of NIMU network interface

objects active in the system.
NIMU_GET_ALL_INDEX &uint16_t (Number of NIMU

Objects) *
sizeof(uint16_t)

The API is used to populate an array of all device index’s
present in the system. Memory allocated should be
sufficient to store all this information. Use the above API to
get an active count and allocate memory appropriately for
pBuf.

This API cannot be called from kernel mode. It is recommended that system application authors use this
API instead of directly trying to access low layer information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

TCP UDP ICMP

NDK Core Stack

IP Stack

PPP Stack VLAN Layer2 Stack

NIMU NDK Core Layer

VLAN Network Interface
Object 1 (VLAN TAG 10)

VLAN Network Interface
Object 2 (VLAN TAG 20)

Ethernet Source Interface
(NIMU Network Object)

Mini Driver for Device 1
(Device Dependent)

Layer 4

Layer 3

Layer 2

Virtual LAN (VLAN) Support www.ti.com

186 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.14 Virtual LAN (VLAN) Support

A.14.1 Synopsis
Virtual LAN (VLAN) support in NDK adds the capability of receiving and transmitting VLAN tagged packets
through the stack. VLAN support in NDK is available only in conjunction with NIMU architecture.

Figure A-2 highlights the VLAN module components in reference to the NIMU enabled NDK stack.

Figure A-2. VLAN Module Placement in NIMU Enabled NDK Stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Virtual LAN (VLAN) Support

187SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

The NIMU core and VLAN modules in the NDK stack are closely tied together. The VLAN module is
brought down by the NIMU as a part of its de-initializing routine during the system shutdown. Similarly, the
NIMU module’s packet receive routine is responsible for handing over all VLAN tagged packets to the
VLAN module for processing. It does so by checking all incoming packets for their L2 type and if it is
VLAN, forwards the packets onto the VLAN module of the stack for further processing.

VLAN implementation has 2 parts:
• VLAN Layer2 stack that is responsible for the addition and deletion of VLAN headers in the transmit

and receive paths.
• VLAN network interface objects which are instances of NIMU devices with VLAN specific attributes like

a VLAN Identifier, user priority, etc.

A VLAN network interface object is a NIMU device characterized additionally by these VLAN specific
attributes:
• VLAN Identifier - Each VLAN node is identified by a unique VLAN identifier per source interface.
• Source Interface - The VLAN source interface is the actual physical interface on which the VLAN

nodes are executing. This is the actual physical Ethernet interface on which packets are received and
transmitted.

• Default Priority - VLAN tagged packets carry a 16-bit tag also known as the tag control information
(TCI) header. This field internally carries a 3-bit user priority. The value here is the default priority
which is filled in these fields if the packet to be transmitted has no priority specified.

• User Priority Mapping - The user priority mappings are specified to remap the packet priority to a 3-bit
user priority.

A.14.2 User Priority Mapping Configuration
A user application can configure the user priority for a VLAN device using the NDK_setsockopt() API,
which is discussed in great detail in Section 3.3.3. The following sections provide an example on how the
VLAN user priority can be communicated by an application to the VLAN module in the core stack and how
they are translated to bits in VLAN header of the packets.

A.14.2.1 User Priority Configuration
Figure A-3 shows two applications that use the NDK stack to communicate with other devices on the
network through an Ethernet interface. The applications use the socket APIs described in Section 3.3.3 to
send/receive packets through the device. With VLAN support, there should be a mechanism which the
application authors will use to communicate the VLAN user priority value to associate their socket to the
stack. This enables the stack to mark the user priority bits appropriately in the VLAN headers of the
packets.

In Figure A-3, let’s assume that Application1 is a high priority application and Application2 is a lower
priority application. The network administrators on which the Ethernet is physically connected should have
defined a Traffic Conditioning Agreement. All devices connected on that network should comply to this
agreement that defines the user priority values for high and low priority application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NDK Stack

Application 1 Application 2

Ethernet Driver

Socket API

Virtual LAN (VLAN) Support www.ti.com

188 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

Figure A-3. VLAN Example

Assuming that the traffic condition agreement mentioned in Section A.14.2.1 is as follows:

Table A-4. User Priorities for Traffic Agreement

Application Priority VLAN User Priority Bits
High 7
Low 5

Undefined 0

This implies that all packets generated by Application1 should be marked with the user priority value of 7.
Similarly, all packets generated by Application2 should be marked with the user priority value of 5.

Each application is capable of sending and receiving packets only through the socket interface; therefore,
you need to ensure that all sockets that send packets in Application1 are mapped to the correct priority
level to ensure that they are marked to the user priority value of 7.

The other advantage of working out priority at the socket level instead of the application level is that
granularity exists which allows prioritization even inside the applications. For example, one data flow in
Application1 could be low priority while the other could be high priority.

As mentioned before, the user priority can be communicated by the application using NDK_setsockopt API
with the socket option parameter set to SO_PRIORITY and the value set to the appropriate user priority.
Note that the valid range for the user priority is 0 – 7; although a value of 0xFFFF can be used to reset the
priority back to default. For more details on how to get/set the user priority using getsockopt() and
setsockopt() socket APIs, see Section 3.3.3.

Example

The following example configures the socket priority to be 0:
uint16_t priority = 0;
if (NDK_setsockopt(s, SOL_SOCKET, SO_PRIORITY, &priority, sizeof(priority) < 0)

printf ("TEST Case Failed: 0x%x\n", fdError());

NOTE: Configuration of the socket priority is equivalent of indicating what the priority of the
application is. The socket priority has no meaning outside the stack and is only used
internally.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Virtual LAN (VLAN) Support

189SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.14.2.2 Marking Packet Priority
This section documents how the translation needs to be done to mark the user priority bits. Once an
application has marked the socket priority, the VLAN module translates the socket priority to user priority
bits using the following formula:

prio_mapping[socket_priority] = VLAN User Priority

Table A-4 shows the traffic conditioning agreement for the VLAN user priority bits. It indicates that
Application1 has HIGH priority so the VLAN module should mark its VLAN user priority bits set to 7 and
that Application2 has LOW priority so the VLAN module should mark its VLAN user priority bits set to 5.

To satisfy this requirement, Application1 should have the following code snippet:
uint16_t priority = 0;
if (NDK_setsockopt(s, SOL_SOCKET, SO_PRIORITY, &priority, sizeof(priority) < 0)

printf ("TEST Case Failed: 0x%x\n", fdError());

The idea is that all packets generated by Application1 will have a socket priority of 0 (HIGH).

Similarly, Application2 should have the following code snippet:
uint16_t priority = 1;
if (NDK_setsockopt(s, SOL_SOCKET, SO_PRIORITY, &priority, sizeof(priority) < 0)

printf ("TEST Case Failed: 0x%x\n", fdError());

The idea is that all packets generated by Application2 will have a socket priority of 1 (LOW).

The VLAN device should be created with the following code snippet:
/* By default: We configure the priority mapping to be as follows:-

* Priority | VLAN User Priority
* -----------------------------------
* 0 | 7
* 1 | 5
* 2 | 0
* 3 | 0
* 4 | 0
* 5 | 0
* 6 | 0
* 7 | 0
*/

prio_mapping[0] = 7;
prio_mapping[1] = 5;
prio_mapping[2] = 0;
prio_mapping[3] = 0;
prio_mapping[4] = 0;
prio_mapping[5] = 0;
prio_mapping[6] = 0;
prio_mapping[7] = 0;

/* Use the VLAN API to create a new VLAN device. */
if (VLANAddDevice (src_index, 10, 0, prio_mapping) < 0)

printf ("Error VLAN Failed errcode=%d\n");

The important point to note in this example is the configuration of the user priority table. This is basically
the translation of the traffic conditioning agreement to an array.

With the VLAN device created as follows, if a packet is transmitted from Application1 it is marked with a
socket priority of 0, and then it is translated by the VLAN module to user priority 7.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Virtual LAN (VLAN) Support www.ti.com

190 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.14.3 API Function Overview
The following are the APIs exported by the VLAN module in the core stack.

VLANInit Initializes the VLAN module in the core NDK stack.
VLANDeinit Deinitalizes the VLAN module and shuts down all the VLAN

enabled NIMU network interface objects in the system.
VLANReceivePacket Handles all VLAN tagged packets on the receive path.
VLANAddDevice Creates a VLAN device on a specified NIMU interface.
VLANDelDevice Deletes a previously created VLAN device.

A.14.4 API Functions

VLANInit Initializes the VLAN module in the core NDK stack.

Syntax #include <stkmain.h>

void VLANInit (void)

Return Value None

Description This function is used to initialize the VLAN module in the NDK core stack. It is for
internal stack usage only and should not be called by any application directly. This
function is called as a part of the stack bring up, i.e., NC_NetStart invocation by the user
application. It initializes the header and trailer sizes for VLAN NIMU objects that would
be created in the system later by a user application.

VLANDeinit Deinitalizes VLAN module and shuts down VLAN enabled NIMU network interface
objects

Syntax #include <stkmain.h>

void VLANDeinit (void);

Return Value None

Description This function is used to shut down the VLAN module in the core stack. It closes and
shuts down any VLAN enabled NIMU network interface objects existent in the system.
This function is for internal stack usage only and should not be called by any application
directly. It is called as a part of stack teardown, i.e., when the user application invokes
NC_NetStop function.

VLANReceivePacket Handles all VLAN tagged packets on the receive path

Syntax #include <stkmain.h>

uint32_t VLANReceivePacket (PBM_Handle hPkt);

Return Value Returns 0xFFFF on error and on success returns the values of the encapsulated
protocol.

Description This function is called by the NIMU receive function when a VLAN tagged packet is
received. It validates the packet and ensures that there is a valid VLAN node on the
system that can process the packet. This function is for internal stack usage only and
should not be called by any application directly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com VLANAddDevice — Create a VLAN Network Interface object

191SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

VLANAddDevice Create a VLAN Network Interface object

Syntax #include <stkmain.h>

int VLANAddDevice (uint32_t src_index, uint16_t vlan_id,

unsigned char default_priority, unsigned char
prio_mapping[]);

Return Value This function returns the device index of the new VLAN network interface object created
on a success or a negative value on error.

Description This API enables system developers to create a VLAN Network Interface object on a
specified NIMU source interface based on the arguments supplied. Note that this
function must be called from user mode only.

VLANDelDevice Deletes a previously created VLAN device

Syntax #include <stkmain.h>

int VLANDelDevice (uint16_t dev_index);

Return Value This function returns 0 on a success or a negative value on error.

Description This API deletes a previously created VLAN network interface object. The device index
passed is the index returned from the prior invocation of the VLANAddDevice API. Note
that this function must be called from user mode only.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Raw
Packet
Rx Q

Raw
Packet
Tx Q

Ethernet NIMU Layer

IP
Packet
Rx Q

IP
Packet
Tx Q

Rx
Buffer
Queue

Tx
Buffer
Queue

Ethernet Driver

Packet Queues to
Replenish Buffers in the

EMAC BDs

BD BD BD
EMAC CSL

EMAC Buffer Descriptors

Raw Qs are
all Serviced to

Completion Before
IP Qs are Serviced.

Primitive QoS
Implementation

Requested by ALU

EMAC Driver

EMAC Hardware PeripheralEMAC H/W

Layer 2 – VLAN / Ethernet

NIMU Core Layer (Interface Between Stack and Eth Driver)

PPP / PPPoE

Layer 3 – IP / IPv6

Layer 4 – TCP / UDP / ICMP / TCP6 / UDP6 / ICMPv6

Socket API

Raw Ethernet
Module

IP Stack

NDK Stack

User Application

Send / Receive Ethernet Packets

R
a
w

A
p

p
li
c
a
ti

o
n

Send / Receive Raw
Ethernet Packets

IP
A

p
p

li
c
a
ti

o
n

Send / Receive
IP Packets

User Application

Raw Ethernet Module www.ti.com

192 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.15 Raw Ethernet Module

A.15.1 Synopsis
A new module called the Raw Ethernet Module has been added to the NIMU enabled NDK stack to
handle the Raw Ethernet packet traffic through NDK. A Raw Ethernet packet can be defined as an
Ethernet packet whose Protocol type (Offset 12 in the Ethernet header) doesn't match any of the well-
known standard protocol types like IP (0x800), IPv6 (0x86DD), VLAN (0x8100), PPPoE Control (0x8863),
PPPoE Data (0x8864). The Raw Ethernet Module interfaces with the application and the stack to provide
the APIs required in configuring a raw Ethernet socket, and in sending and receiving packets using it.

Figure A-4 shows the placement of the Raw Ethernet module in the NDK stack.

Figure A-4. Raw Ethernet Channel Manager Module in NDK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Raw Ethernet Module

193SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

As the Figure A-4 illustrates, traditional data path for the IP packets is different from the data path followed
by the Raw Ethernet packets. The complete Layer 4, Layer 3 and Layer 2 processing in the NDK IP stack
is bypassed for the Raw Ethernet packets. The Raw Ethernet packets alternatively travel through the Raw
Ethernet Module which maintains a mapping between the custom Ethernet type configured and the
interface on which the packets should be transmitted. This mapping is maintained in the “Raw Ethernet
Socket” object structure. Also, shown in the above figure is the implementation of Raw Ethernet
prioritization implementation in the driver using separate queues for IP and raw Ethernet traffic. This
implementation is just an illustration of how this feature can be extended further to suit any application
demands and is not really tied in with the design of Raw Ethernet Socket and Modules.

NOTE: The Raw Ethernet Module is supported only with NIMU enabled NDK stacks and drivers.

For more details on the Raw Ethernet Socket APIs, see Section 3.4 of this document.

A.15.2 Raw Ethernet Data Prioritization - Socket Priority Use Case
A user application can use the Socket Priority to add any sort of special differentiation that the raw
Ethernet application would require for all packets travelling using the specified socket. For example, if
there exists two raw Ethernet sockets, they could be both configured with different priorities using
NDK_setsockopt() API discussed in Section 3.3.3. Further, a desired QoS scheme can be implemented in
the Ethernet driver using this priority that is carried onto the packets. It can be also used by an application
to map the priority to certain transmission properties like EMAC channel number on which the packets are
to be transmitted etc. This section describes one such implementation of Socket Priority to implement Raw
Ethernet Packet Prioritization over traditional IP traffic.

A.15.2.1 Socket Priority Configuration
In this specific use case, the application requires that:
• Raw Ethernet traffic and traditional IP traffic to be sent out on two separate EMAC channels.
• Further, it also requires that both on Transmit (Tx) and Receive (Rx) paths, the Raw Ethernet data is

always serviced before the IP data.

For the implementation to achieve this also has two requirements:
• For requirement 1, the application would have to create a Raw Ethernet socket and configure the

socket priority to carry the EMAC channel number. The Raw Ethernet module in turn will ensure that all
packets travelling using this socket are tagged with the EMAC channel number in their "PktPriority"
field. The socket priority configuration is shown in the following example:
The following example creates a Raw Ethernet socket and configures the EMAC channel number to 3
using socket priority:

SOCKET sraw = INVALID_SOCKET;
uint16_t priority = 0;
int retVal, val;

/* Allocate the file environment for this task */
fdOpenSession(TaskSelf());

/* Create the raw Ethernet socket */
sraw = NDK_socket(AF_RAWETH, SOCK_RAWETH, 0x300);
if(sraw == INVALID_SOCKET)
{

printf("Fail socket, %d\n", fdError());
fdCloseSession (TaskSelf());
return;

}

/* Configure the transmit device */
val = 1;
retVal = NDK_setsockopt(sraw, SOL_SOCKET, SO_IFDEVICE, &val, sizeof(val));
if(retVal)

printf("error in setsockopt \n");

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Raw Ethernet Module www.ti.com

194 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

/* Configure the EMAC channel number */
val = 3;
retVal = NDK_setsockopt(sraw, SOL_SOCKET, SO_PRIORITY, &val, sizeof(val));
if(retVal)

printf("error in setsockopt \n");

• Secondly, to implement the prioritization and also obtain the EMAC channel number on which the
packet needs to be transmitted, the EMAC driver can inspect the "PktPriority" field of the packet and
use it to enqueue the packet to the hardware accordingly. A code snippet from the Ethernet driver is
shown below for illustration purposes:
This is a code snippet from the "Send" routine of the Ethernet driver.

/* Peek into the packet to check out if any prioritization is needed.
*
* All raw Ethernet packets are tagged with the EMAC channel number onto
* which they need to be sent out in the PktPriority field.
*/

if (((PBM_Pkt *)hPkt)->PktPriority != PRIORITY_UNDEFINED)
{

/* Enqueue the packet in the Raw Tx Queue and send it for transmission.
* Use the PktPriority field now as the EMAC channel number on which
* packet needs to be Txed
*/

}
else
{

/* This is just a normal IP packet. Enqueue the packet in the
* Tx queue and send it for transmission.
*/

}

For more details on this use case implementation, please refer to the Ethernet driver code packaged in the
NSP for TCI6488.

A.15.3 API Function Overview
The following APIs are exported by the Raw Ethernet module of the core NDK stack:

RawEthTxPacket API to send out Raw Ethernet data using Raw Ethernet sockets
RawEthTxPacketNC API to send out Raw Ethernet data using Raw Ethernet sockets without any

copy
RawEthRxPacket API to handle raw Ethernet packets received by the stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Raw Ethernet Module

195SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

A.15.4 API Functions

RawEthTxPacket Sends out Raw Ethernet data, creates a copy of the data.

Syntax int RawEthTxPacket (void *hRawEthSock, char* pBuffer, int len);

Parameters

hRawEthSock Handle to the raw Ethernet socket
pBuffer Handle to the data buffer that needs to be sent
len Length of data contained in the data buffer pBuffer.

Return Value

0 Successfully sent out the packet
ENOBUFS Error allocating memory for the packet. Packet not sent out.

Description This is the API called by the Raw Ethernet sockets module to transmit data sent by the
application. This API allocates memory for the packet and the buffer according to the
length specified, copies over the contents of the application buffer to the packet, and
finally populates any socket priority configured on the socket to the PktPriority field of the
packet for further use by the stack or the driver. It also increments the Raw Ethernet
success stats if the transmit succeeded. This API invokes the NIMUSendPacket API to
send out the packet eventually.

RawEthTxPacketNC Sends out Raw Ethernet data, without any copy of the data.

Syntax int RawEthTxPacketNC (void *hRawEthSock, char* pBuffer, int len, void *hPkt);

Parameters

hRawEthSock Handle to the raw Ethernet socket
pBuffer Handle to the data buffer that needs to be sent
len Length of data contained in the data buffer pBuffer
hPkt Handle to the packet that needs to be sent. The pBuffer is the data buffer

Return Value

0 Successfully sent out the packet
EINVAL Bad Packet / Buffer Handles. Packet not sent out

Description This is the API called by the Raw Ethernet sockets module to transmit data sent by the
application without making any copy of it on the Tx path. This API is very useful for
applications which have very definite performance requirements for their application. The
buffers and packet handles passed here can be obtained in advance using the socket
API getsendncbuff() by the application , then can be used to fill data and finally invoke
the sendnc() API to transmit this data. The send no-copy API of the raw Ethernet socket
module in turn invokes this API for finally transmitting the data. The raw Ethernet socket
APIs are all discussed in detail in Section 3.4 of this document. This API validates the
packet and buffer handles, and populates any socket priority configured on the socket to
the PktPriority field of the packet for further use by the stack or the driver. It finally
invokes the NIMUSendPacket API to send out the packet eventually. It also increments
the Raw Ethernet success stats if the transmit succeeded. No memory allocations or
copies are made by this API and hence is less intensive in terms of performance.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

RawEthRxPacket — Receive handler for Raw Ethernet traffic in the stack. www.ti.com

196 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Internal Stack Functions

RawEthRxPacket Receive handler for Raw Ethernet traffic in the stack.

Syntax int RawEthRxPacket (PBM_Handle hPkt);

Parameters

hPkt Handle to the packet which is passed up to the stack by the Ethernet

Return Value

0 Success
1 Error

Description This API is called by the NIMU layer when the Ethernet if a raw Ethernet socket object
exists for the Ethernet type in the packet and if so enqueues in the socket buffer for the
application to receive. No copies are made of the packet and the buffers further on the
receive path by the Raw Ethernet socket layer and the packet is as is handed over for
the application to use. This API also increments the Raw Ethernet receive stats
accordingly.

A.16 Obtaining Stack Statistics
Stack statistics are available from global structures or global arrays exported by the stack library. The
declaration of these global identifiers appears in the interface specification for the individual protocols. The
following protocols contain statistics information:

Protocol Statistics Definition
IP IPIF.H
ICMP ICMPIF.H
TCP TCPIF.H
UDP UDPIF.H
Raw Transport (non-TCP/UDP) RAWIF.H
Network Address Translation NATIF.H
Raw Ethernet RAWETHIF.H

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

197SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

Appendix B
SPRU524K–May 2001–Revised October 2017

Network Address Translation

This section is required only for system programming that needs low level access to the Network Address
Translation (NAT) layer. This API does not apply to sockets application programming.
This section describes functions that are callable from the kernel layer. You should be familiar with the
operation of the operation of llEnter()/llExit() functions before attempting to use the APIs described in this
section (see Section A.1.2).

NAT has a unique status in the stack software because it can be an integral part of programming at both
the user and kernel levels, or can be entirely redundant and even purged from the stack build.

This section describes the operation of the Network Address Translation software included in the NDK,
how to configure it, how to install port mappings, and how to program proxy filter routines to support
protocols like FTP.

Topic ... Page

B.1 NAT Operation ... 198
B.2 NAT Port Mapping .. 208
B.3 NAT Proxy Filters ... 210

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Home Router
(HR)

Using NAT

Internet

Host 1
(H1)

Host 2
(H2)

Internet Host
(IH)

Home
LAN

64.1.1.100

192.168.0.33192.168.0.32

192.168.0.1

128.1.2.12ISP
WAN

192.168.0.x

NAT Operation www.ti.com

198 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

B.1 NAT Operation
NAT is a translation of packet IP address. It is used by the stack when routing, to translate the IP address
of a packet to/from a private LAN from/to a public WAN. NAT is required when the IP address paradigms
on either side of the router are incompatible; for example, virtual addresses vs. physical addresses, or
private vs. public. In the case of a home LAN, NAT allows multiple clients on the home LAN to use a
single ISP account by sharing the router WAN IP address obtained from the ISP.

B.1.1 Typical Configuration
For the examples that follow, consider the typical configuration illustrated in Figure B-1. The NDK is
executing as a home router (HR) and connects the home LAN subnet (192.168.0.x) to the Internet (WAN)
via an ISP that has assigned HR an address of 128.1.2.12. The hosts on the home network (H1 and H2)
have obtained their internet addresses from HR via DHCP. The IP of HR on the home LAN as well as the
IP subnet used by the home LAN is pre-configured in HR. Figure B-1 also shows a host on the public
internet (IH) to which the LAN hosts will connect. Lastly, it is assumed that the home LAN subnet is virtual,
and NAT is required to allow H1 and H2 to share the WAN IP address assigned to HR by the ISP
(128.1.2.12).

Figure B-1. Basic Home Network Configuration

B.1.2 Basic NAT
When sharing a single WAN IP address, the IP address obtained from the ISP is assigned to the router
(the NDK in routing mode). Client machines that are to share the IP address are placed on the home LAN.
The router routes traffic between the LAN and the WAN (internet via the ISP).

As packets traverse from the LAN to the WAN across the router, the source IP address of the packet (a
LAN address) is replaced with the public IP address of the router. The result is that all packets sent to the
WAN appear to have originated from the router with the public IP address obtained from the ISP.

As packets traverse from the WAN to the LAN across the router, the destination IP address of the packet
(the router's WAN IP as obtained from the ISP) is replaced with the home LAN IP address of the physical
client machine to which the packet is ultimately destined.

To perform this translation successfully, some details must be addressed. First, to allow multiple clients to
share the public IP address in a non-ambiguous fashion, there must exist a deterministic method of
mapping packets from the WAN to their correct destination on the LAN. This is done by keeping records of
LAN IP clients that have initiated IP traffic, and by altering the TCP/UDP port (or ICMP Id field) as well as
the IP address when performing the translation.

Every time a LAN client sends a packet to the WAN, the local IP address, port/id, and protocol is recorded
for reverse mapping, as well as the destination IP address and port for security. When a packet is
received from the WAN, the destination port/id is checked against the current database of NAT entries to
see if the packet's destination address and port/id should be translated to a LAN client.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Operation

199SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

For example, when accessing the Internet, all communication is normally initiated by the client. In this
case, communication will be initiated by H1 or H2. Assume that H1 attempts to establish an HTTP
connection with the Internet host (IH). It will send a connection request to the IP address assigned to IH,
and a TCP port value of 80, which is HTTP. The request will be from its own IP address with an
ephemeral port value that is picked from a pool (consider it random for these purposes- for example,
1001). So the request will be addressed as follows:

Packet 1

To From Protocol
64.1.1.100 : 80 192.168.0.32 : 1001 TCP

When the router HR receives this packet, it searches for a NAT entry that matches the From address of
the packet. Because this is the first packet, assume the table is empty. When no entry is found, (skipping
proxies for now) the router will create a new entry. It does this by recording information from packet 1, as
well as picking a new port value from its own pool that has been specifically reserved for NAT (assume
the range is 50000 to 55000, and that it chooses 50001). The new port is used as the packet's source
port. The NAT entry record would look like the following:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 80 192.168.0.32 1001 50001 TCP SYNSENT 00:01:00

The Local IP and Local Port values are those that are local to hosts on the home LAN. The Foreign IP
value is the foreign side of the connection as viewed by hosts on the home LAN. The Mapped Port value
is the source port when the packet is sent from HR. The source IP address used in the packet is that
assigned to HR by the ISP. The IP protocol of the packet is recorded, and when using TCP, the state of
the TCP connection is tracked to establish a reasonable timeout value. The SYNSENT value indicates
that a connection request was sent. Before a full connection is established, the timeout is set fairly low -
for example, 1 minute.

As the packet is transmitted from HR to the ISP, it would look like the following:

Packet 1 (modified)

To From Protocol
64.1.1.100 : 80 128.1.2.12 : 50001 TCP

When IH receives the packet, it believes that the connection request came from HR. It thus sends the
response packet to HR. The packet would be addressed as follows:

Packet 2 (response to packet 1)

To From Protocol
128.1.2.12 : 50001 64.1.1.100 : 80 TCP

When HR receives the packet, it checks the NAT entry table for an entry with a Mapped Port value equal
to the destination port of the packet (in this case 50001). The value of Protocol and the source IP
address/port values must also match the Protocol, Foreign IP, and Foreign Port fields of the NAT entry.
This helps ensure that the reply is from the desired server.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NAT Operation www.ti.com

200 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

Here, HR finds the entry and proceeds to modify the packet. It replaces the destination address/port with
the local address/port stored in the entry. It also resets the timeout of the entry. After modification, the
packet would be addressed as follows:

Packet 2 (modified)

To From Protocol
192.168.0.32 : 1001 64.1.1.100 : 80 TCP

Once a connection is established, the timeout of the entry is set high (for example, five hours), because
TCP connections can stay connected for an indefinite period of time without exchanging any packets.

If H2 attempts to connect to the same host simultaneously, it can share the public IP address assigned to
HR. For example, H2 sends a connection request to IH addressed as follows:

Packet 3

To From Protocol
64.1.1.100 : 80 192.168.0.33 : 1024 TCP

HR would not find a NAT entry for 192.168.0.33:1024, so it would create one:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 80 192.168.0.33 1024 50002 TCP SYNSENT 00:01:00
64.1.1.100 80 192.168.0.32 1001 50001 TCP CONNECT 04:59:23

The modified packet and its reply would proceed similar to packets 1 and 2. Packets that pass from the
LAN to the WAN are searched based on Local IP combined with Local Port. Packets that pass from the
WAN to the LAN are searched based on Mapped Port. Note that for all entries on the NAT entry table,
these values are unique.

B.1.3 NAT Port Mapping
So far, you have examined communication that has been initiated by hosts on the home LAN. Note that
any unsolicited packets sent to HR from the WAN will not match any entry in the NAT table. These
packets will be forwarded to the internal protocol stacks on HR, where they may or may not be used.

Now assume that a host on the home LAN (for example, H2) must place an HTTP server on the Internet.
With what has been examined so far, it would be impossible to contact such a server from the WAN
because no unsolicited traffic (like an HTTP connect request) can pass from the WAN to the LAN.
However, H2 can acquire a portion of HR's WAN presence by mapping one of the well-known port values
on the public WAN IP address to itself through port mapping.

In port mapping, a NAT entry is created to send all traffic destined for a specific port on the public IP
address to an alternate destination. For well-known ports like HTTP, the port value is not usually altered.
Only the destination IP address changes. In this case, port 80 (HTTP) on the public IP address is mapped
to port 80 of the LAN host H2. The entry would look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
wild wild 192.168.0.32 80 80 TCP – STATIC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Operation

201SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

When a connection request arrives from a remote host for the public IP address assigned to HR, as with
the basic NAT discussion of the previous section, the destination port of the packet is matched with the
Mapped Port value of the NAT entry. Normally, the Foreign IP and Port of the NAT entry must also match
for source IP and port of the packet, but here the values are wild. This is because when the entry is
created, the foreign peer is unknown. Because, every TCP connection state must be tracked in its own
NAT entry, a second entry must be spawned. Any match of a wild NAT entry will spawn a fully qualified
entry. For example, assume the following packet arrives:

Packet 4

To From Protocol
128.1.2.12 : 80 64.1.1.100 : 2006 TCP

The resulting NAT entry table would be:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 2006 192.168.0.32 80 80 TCP SYNSENT 00:01:00

wild wild 192.168.0.32 80 80 TCP – STATIC

The packet sent to the LAN by HR would be:

Packet 4 (modified)

To From Protocol
192.168.0.32 : 80 64.1.1.100 : 2006 TCP

Note that the wildcard entry's timeout is STATIC. This means that the entry will never expire. Note that
when the new entry is spawned, it acquires a timeout.

One last point to note here is that the installation of a port map for port 80 does not prohibit HR from
running its own HTTP server hosted on its private LAN IP address (192.168.0.1). This means that local
hosts could get to a local HTTP server on 192.168.0.1, and the public HTTP server on 192.168.0.32, but
outside hosts connecting to 128.1.2.12 could only get to the public HTTP server on 192.168.0.32.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Home Router
(HR)

Using NAT

Internet

Host 1
(H1)

Host 2
(H2)

Internet Host
(IH)

Home
LAN

64.1.1.100

192.168.0.33192.168.0.32

192.168.0.1

128.1.2.12ISP
WAN

192.168.0.x
HTTP
Server

Telnet
Server

HTTP Server

Telnet Server

NAT Operation www.ti.com

202 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

For example, assume the same topology as before, with the HR running both and HTTP and Telnet
servers, H1 running an HTTP server, and H2 running a Telnet server. This is illustrated in Figure B-2.

Figure B-2. Public Servers on the Home Network

To make the servers on H1 and H2 public, the following NAT port mapping entries are installed on HR:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
wild wild 192.168.0.33 23 23 TCP – STATIC
wild wild 192.168.0.32 80 80 TCP – STATIC

With these mappings, the externally available HTTP server and Telnet server publicly accessible on the
WAN IP (128.1.2.12) are actually executing on H1 and H2. However, HR can have its own HTTP and
Telnet servers and make them available to hosts on the LAN.

Also note that, regardless of how hosts on the LAN access HR (either through 192.168.0.1 or 128.1.2.12),
their packets are not processed via NAT. Thus, they are never altered. The following are some connection
examples:

Client Protocol Used Target Address Resulting Server Connection
IH HTTP 128.1.2.12 HTTP on H1
H2 HTTP 128.1.2.12 HTTP on HR
H2 HTTP 192.168.0.1 HTTP on HR
H2 HTTP 192.168.0.32 HTTP on H1
IH Telnet 128.1.2.12 Telnet on H2
H1 Telnet 128.1.2.12 Telnet on HR
H1 Telnet 192.168.0.1 Telnet on HR
H1 Telnet 192.168.0.33 Telnet on H2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Operation

203SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

B.1.4 NAT Proxy Filters

B.1.4.1 Problem Synopsis
Translating the IP destination address of a packet via NAT guarantees that all packets can be redirected
to their correct physical destination, but it does not guarantee that the information will be understood by
the recipient. Because one side of the connection always believes they are actually connected to a
different IP address than their physical peer, there is a possibility that the application using the information
will become confused. The confusion arises when there is information in the packet payload that is
dependent on the IP address/port of the peer connection.

B.1.4.2 Problem Example - FTP Clients on the LAN
As a straightforward example of a situation that requires a proxy filter, consider FTP (file transfer protocol).
FTP actually uses two ports to transmit a file. The first port establishes the control connection. Then, new
ports establish the data connection to actually send the file. The FTP protocol allows an FTP client to
specify its port for the data connection to the server. If no port is specified by the client, the client's control
port value is used.

The above scenario presents a couple problems for standard NAT. First, if NAT creates an entry for the
FTP control connection, the entry could not be used for the data connection. As an example, H1 sends an
FTP connection request to IH. The packet would be addressed as follows:

Packet 1

To From Protocol
64.1.1.100 : 21 192.168.0.32 : 1137 TCP

HR would not find a NAT entry for 192.168.0.33:1137, so it would create one:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 21 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00

The modified packet and its reply would proceed as discussed in Section B.1.2. The modified packet
would be:

Packet 1 (modified)

To From Protocol
64.1.1.100 : 21 128.1.2.12 : 50003 TCP

Now assume that eventually the FTP server on IH attempts to establish a data connection back to what it
thinks is the FTP client's ephemeral port (50003). Note classic FTP uses port 20 to establish data
connections. Its connection request packet would be:

Packet 2 (Data connection request)

To From Protocol
128.1.2.12 : 50003 64.1.1.100 : 20 TCP

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NAT Operation www.ti.com

204 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

Because there is no NAT entry record that will match the address values in this packet (specifically port 20
in the From field), this packet will not be forwarded to the FTP client. For this to work, there must be a port
mapping installed for 64.1.1.100 that has a wildcard port value (it is not certain that the connection request
will arrive on port 20). The NAT entry table would be as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

With such a mapping, if a connection request from port 20 arrived, the wild card entry would be matched,
and another entry spawned for port 20 on IH. The table would look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 20 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00
64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

The second issue in dealing with an FTP client is that the client can change the port on which the FTP
server attempts connection. This is done via a PORT command sent from the client to the server. The
PORT command contains information about the client in the packet payload.

For example, assume the FTP client (H1) creates a new socket for the data connection, and its ephemeral
port value is 1142. H1 would then send an FTP PORT command on the control connection to the server.
The server would then attempt a connection. The following is an approximation of the operation (it is not
the exact syntax of the port command).

Packet 3 (FTP Client H1 Sends Port Command for Port 1142)

To From Protocol Packet Payload
64.1.1.100 : 21 192.168.0.32 : 1137 TCP "PORT 192.168.0.32, 1142"

As a reminder, the FTP server would normally see the packet as:

Packet 3 (modified incorrectly)

To From Protocol Packet Payload
64.1.1.100 : 21 128.1.2.12 : 50003 TCP "PORT 192.168.0.32, 1142"

This packet creates a couple of problems. First, the IP address in the PORT command does not match the
IP address of the FTP server's connected peer. This would produce an error. Plus, the IP address in the
PORT command is not a real Internet address. Lastly, even if the FTP server tried to connect to
128.1.2.12:1142, there is no mapping for the port number in the NAT entry table.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Operation

205SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

The correct procedure for modifying this packet is to solve all the above problems. First, a new NAT entry
is created for 192.168.0.32:1142. The foreign IP address is left as a wildcard because as before, because
it is not certain what port the FTP server will use. The NAT entry table would then look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port IP Protocol TCP State Timeout
64.1.1.100 wild 192.168.0.32 1142 50004 TCP – 00:02:00
64.1.1.100 wild 192.168.0.32 1137 50003 TCP – STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

To review, note that you have the original NAT entry for the FTP control connection, and now two wildcard
entries for possible FTP data connection requests.

The final step of the modification is to alter the payload of the packet so that the information in the PORT
command matches the WAN IP address of HR (128.1.1.21) and the Mapped Port of the new NAT entry
(50004). The correctly modified packet would be:

Packet 3 (modified correctly)

To From Protocol Packet Payload
64.1.1.100 : 21 128.1.2.12 : 50003 TCP "PORT 128.1.2.12, 50004"

It is also possible for a client to request the FTP server to create a new port (the PASV command), but
that does not create any issues for FTP clients on the LAN. If the FTP server were on the LAN and the
client on the WAN, the proxy process would key off the PASV command.

B.1.4.3 NDK Support for Proxy Filters
The modification procedure discussed above does have some multifaceted problems:
1. The creation of the first data connection wildcard entry depends on the knowledge by some entity that

an FTP control connection has occurred, and what IP/PORT the connection occurred on.
2. The creation of the second data connection wildcard entry depends on the detection of a PORT

command being passed from the client to the server.
3. The modification of the data payload of the packet containing the PORT command requires that some

entity is examining packet payloads.
4. Modification of a TCP packet payload can permanently alter the values of the TCP sequence and

acknowledge fields in the TCP header of all future packets on the control connection.

The first three problems are very specific to FTP, and the fourth problem (TCP sequence) is specific to
any alteration of a TCP packet payload. Fortunately, the proxy filter support routines remove much of the
burden of supporting these transformations.

The solution is twofold. First, the stack allows you to install proxy filter callback functions on specified
TCP/UDP port values, either outgoing (for clients) or incoming (for servers). There are three callback
functions involved.

The first callback function Enable is called when a new connection is attempted, or when the NAT entry
expires. This function allows you to establish the basic connection state for the protocol in question. In the
case of the FTP client example, the first wildcard data connection mapping would be installed here. Note
that this function can also be used to filter connection requests. If this function returns zero, the connection
request is ignored.

The second and third callback functions are mirrors of the other. They are the Tx and Rx functions. The Tx
callback is called with the IP header of every packet that passes from the LAN to the WAN for the
connection in question, while the Rx callback is called with the IP header of every packet that passes from
the WAN to the LAN. While in these functions, the programmer can call a packet modify function to modify
the payload of the packet. The system will automatically track and perform modifications to the TCP
sequence values (when using TCP).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NAT Operation www.ti.com

206 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

In the case of the FTP client, there would be no Rx callback because only packets from the client need to
be examined. The Tx callback would look for PORT commands from the client, and when one was
detected, it would install the second wildcard port mapping as discussed in the previous section, and then
modify the packet payload so that the PORT command reflected the WAN IP of HR, and the Mapped Port
of the NAT entry.

B.1.4.4 FTP Proxy Filter Example Code
From the discussion in this section, it would be easy to draw the conclusion that developing proxy filter
code would be horribly complicated. However, the actual implementation is straightforward. The code to
implement the filter discussed in Section B.1.4.3 is shown below. The API for NAT and Proxy is discussed
in the following sections.
//
// GetVal - Convert ASCII decimal string to integer
//
static uint32_t GetVal(unsigned char **pData)
{

uint32_t v = 0;
while(**pData >= '0' && **pData <= '9')

v = v*10 + (*(*pData)++ - '0');
(*pData)++; return(v);

}

//
// FTPCProxyEnable - Proxy for FTP Clients behind firewall
//
// NOTE: Proxy callback function operate at the kernel level. They
// may not make calls to user-level functions.
//
int FTPCProxyEnable(NATINFO *pin, uint32_t Enable)
{

void *hNat;

// Some implementations of FTP require the host to listen for
// connections on the ephemeral port used to connect to the FTP
// server. We create a STATIC mapping to handle this.
if(Enable)
{

// Create it
hNat = NatNew(pNI->IPLocal, pNI->PortLocal, pNI->IPForeign, 0,

IPPROTO_TCP, pNI->PortMapped, 0);
pNI->pUserData = hNat;

}
else
{

// Destroy it
NatFree(pNI->pUserData);

}
return(1);

}

//
// FTPCProxyTx - Proxy for FTP Clients behind firewall
//
// NOTE: Proxy callback function operate at the kernel level. They
// may not make calls to user-level functions.
//
int FTPCProxyTx(NATINFO *pNI, IPHDR *pIpHdr)
{

uint16_t Length, Offset;
TCPHDR *pTcpHdr;
unsigned char *pData;
void *hNAT;
NATINFO *pNINew;
char tmpstr[32];

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Operation

207SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

uint16_t PortNew;
uint32_t IPNew;

pData = (unsigned char*)pIpHdr;

// Get pointer to TCP header
Offset = (pIpHdr->VerLen & 0xf) * 4;
pTcpHdr = (TCPHDR *)(pData + Offset);

// Get length of the IP payload
Length = HNC16(pIpHdr->TotalLen) - Offset;

// Get the offset into the TCP payload and payload size
Offset += pTcpHdr->HdrLen >> 2;
Length -= pTcpHdr->HdrLen >> 2;

// Get pointer to TCP payload
pData += Offset;

//
// For clients, we only care about sending PORT commands
//
// For example, if our client IP is 192.138.139.32, and it reports
// port 384, the form of the command sent to the FTP server would
// be: "PORT 192,138,139,32,1,128\r\n"
//
// We replace the Client IP with the router's IP, and the client
// port with a NAT port which is mapped to the client port.
//
if(!strncmp(pData, "PORT ", 5))
{

// Get the IP/Port declared by sender
// Form is "i1,i2,i3,i4,p1,p2"
pData += 5;
IPNew = ((uint32_t)GetVal (&pDada)) << 24;
IPNew |= ((uint32_t)GetVal (&pDada)) << 16;
IPNew |= ((uint32_t)GetVal (&pDada)) << 8;
IPNew |= ((uint32_t)GetVal (&pData));
IPNew = htonl(IPNew);
PortNew = GetVal(&pData);
PortNew = (PortNew<<8) + GetVal (&pData);

// Add a NAT mapping to client's IP and Port
hNAT = NatNew(IPNew, PortNew, pNI->IPForeign, 0, IPPROTO_TCP,

0, NAT_IDLE_SECONDS);
if(!hNAT)

return(0);

// Get Server IP and Mapped Port
IPNew = htonl(NatIpServer);
pNINew = NatGetPNI(hNAT);
PortNew = pNINew->PortMapped;

// Print a replacement string with IP and Port
sprintf(tmpstr, "%u,%u,%u,%u,%u,%u\r\n",

((uint)(IPNew >> 24)), ((uint)(IPNew >> 16)&0xFF),
((uint)(IPNew >> 8)&0xFF), ((uint)(IPNew)&0xFF),
PortNew>>8, PortNew&0xFF);

// Replace the original string with ours
ProxyPacketMod(Offset+5, Length-5, strlen(tmpstr), tmpstr);

}
return(1);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NAT Port Mapping www.ti.com

208 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

B.2 NAT Port Mapping
NAT port mapping allows a client machine on the LAN (or home network) to appear on a specific port of
the router's public WAN IP address. This API (and NAT in general) is only used when the NDK is acting
as an IP router, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrates how to install and remove port mappings. The functional
operation of NAT and NAT Port Mapping is discussed in more detail in Section B.1.

B.2.1 Function Overview
The following functions create and destroy port mappings:

NatNew() Create a new NAT entry (for port mapping)
NatFree() Free a NAT entry
NatGetPNI() Get a pointer to a NAT entry's NATINFO structure

B.2.2 NAT Entry Information Structure
A port mapping is just a NAT entry. Each NAT entry has its own information structure. This NATINFO
structure allows you to examine the status of a particular entry.

The specification of the NATINFO structure is as follows:
typedef struct _natinfo {

uint32_t TcpState; // Current TCP State (Simplified)
#define NI_TCP_CLOSED 0 // Closed or closing
#define NI_TCP_SYNSENT 1 // Connecting
#define NI_TCP_ESTAB 2 // Established

uint32_t IPLocal; // Translated IP Address
uint16_t PortLocal; // Translated TCP/UDP Port
uint32_t IPForeign; // IP Address of Foreign Peer
uint16_t PortForeign; // Port of Foreign Peer
unsigned char Protocol; // IP Potocol
uint16_t PortMapped; // Locally Mapped TCP/UDP Port (router)
void *hProxyEntry; // Handle to Proxy Entry (if any)
uint32_t Timeout; // Expiration time in SECONDS
void *pUserData; // Pointer to proxy callback data

} NATINFO;

The individual fields are defined as follows:
• uint32_t TcpState;

This is a condensed version of the state of the TCP connection that is being translated by this entry.
This field is only valid when the Protocol field is set to IPPROTO_TCP. The defined values are:

NI_TCP_CLOSED The connection is closed
NI_TCP_SYNSENT The peers are in the process of connecting
NI_TCP_ESTAB A connection has been established

• uint32_t IPLocal;

This is the IP address (in network format) of the peer host on the local network (LAN). It is the entity
that has been assigned a virtual IP address behind the firewall.

• uint16_t PortLocal;

This is the port in use by the peer host on the local network (LAN). It is the entity that has been
assigned a virtual IP address behind the firewall.

• uint32_t IPForeign;

This is the IP address (in network format) of the peer host on the public network (WAN). It is the entity
that is on the physical network outside the firewall.

• uint16_t PortForeign;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Port Mapping

209SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

This is the port in use by the peer host on the public network (WAN). It is the entity that is on the
physical network outside the firewall.

• unsigned char Protocol;

This is protocol in use by the NAT entry. It must be IPPROTO_TCP, IPPROTO_UDP, or
IPPROTO_ICMP.

• uint16_t PortMapped;

This is the port in use by the router on its public (WAN) IP address. It is this port that maps back to a
specific local IP/port on the LAN.

• void *hProxyEntry;

When a NAT entry is created as a result of a proxy filter being installed on a specific port, the pointer
to the proxy filter that spawned the NAT entry is stored here.

• uint32_t Timeout;

This is time in seconds when the proxy entry will expire. The system checks with a fairly large
granularity, so the actual expiration can occur 10 to 20 seconds later. If this value is ZERO, the entry is
static. A NAT entry must be specified as STATIC when it is created. Setting Timeout to ZERO will
cause the entry to expire in 0 to 20 seconds.

• void *pUserData;

This field is reserved for use by proxy filter callback functions. It is not used by the system software.

The NAT information structure is of little importance when only port mapping is required. It is mostly for
use in NAT proxy filters.

B.2.3 NAT API Functions

NatNew Create a NAT Entry (for Port Mapping)

Syntax void *NatNew(uint32_t IPLocal, uint16_t PortLocal, uint32_t IPForeign, uint16_t
PortForeign, unsigned char Protocol, uint16_t PortMapped, uint32_t Timeout);

Parameters

IPLocal IP address (in network format) of host on the LAN to map
PortLocal TCP/UDP port value of host on the LAN to map
IPForeign IP address of WAN peer (usually NULL/wild for port mappings)
PortForeign TCP/UDP port of WAN peer (usually NULL/wild)
Protocol IP protocol (IPPROTO_TCP or IPPROTO_UDP)
PortMapped Port on router's public WAN to map (usually a well-known port)
Timeout Timeout of entry in seconds (NULL for STATIC)

Return Value Handle to NAT entry, or NULL on error.

Description This function creates a NAT entry with the parameters as specified.

For example, to allow a host on a virtual IP address of 1.2.3.4 to run a Telnet server
reachable via the router's public (physical) IP address, a mapping would be installed to
map TCP port 23 (telnet) to 1.2.3.4:23. If the connection were to be open to all foreign
hosts, then IPForeign and PortForeign would be left NULL. The value of Timeout would
also be NULL to make the entry STATIC.
hNatTelnet = NatNew(htonl(0x01020304), 23, 0, 0,
IPPROTO_TCP, 23, 0);

The function returns a handle to the NAT entry created. This handle should be freed with
NatFree() when the mapping is no longer desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NatFree — Destroy a NAT Entry www.ti.com

210 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

NatFree Destroy a NAT Entry

Syntax void NatFree(void *hNat);

Parameters

hNat Handle to NAT entry created with NatNew()

Return Value None.

Description This function frees the supplied NAT entry. It is called to remove a STATIC NAT entry
that is no longer required.

NatGetPNI Get a Pointer to a NAT Entry's NATINFO Structure

Syntax NATINFO NatGetPNI(void *hNat);

Parameters

hNat Handle to NAT entry created with NatNew()

Return Value Pointer to NATINFO structure or NULL on error.

Description This function returns a pointer to the NATINFO structure defined in Section B.2.2. It is
used mainly by NAT proxy filter callback functions.

B.3 NAT Proxy Filters
NAT proxy filters allow NAT to operate correctly with network protocols that have addressing specific data
in their packet payload data. This API (and NAT in general) is only used when the NDK is acting as an IP
router, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrate how to install and remove port proxy filters and their
associated callback functions. The functional operation of NAT and NAT Port Mapping, and NAT Proxy is
discussed in more detail in Section B.2.2.

B.3.1 Function Overview
The following functions create and destroy proxy filters:

ProxyNew() Create Proxy Filter for NAT entries
ProxyFree() Destroy a Proxy Filter declaration

The following function can be called from within a proxy filter callback function:

ProxyPacketMod() Modify a packet being processed by NAT

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com NAT Proxy Filters

211SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

B.3.2 NAT Proxy Filter Callback Functions
The proxy filter callback functions allow the proxy programmer to examine NAT entry properties as the
entries are created, plus the examination of packet data as packets pass between the LAN and WAN. This
section describes the syntax of the callback functions that are supplied to the proxy filter when it is first
installed in the system.

ProxyEnableCallback Proxy Enable Callback Function

Syntax int SampleProxyEnableCallback(NATINFO *pNI, uint32_t EnableFlag);

Parameters

pNI Pointer to NATINFO structure of NAT entry created
EnableFlag Set to 1 for an enable request

Return Value 1 to allow normal operation, or NULL to abort new NAT entry.

Description This function is called when a NAT entry containing a proxy is created or destroyed.
When the entry is created, the value of EnableFlag is 1. When the entry is being
destroyed, the value of EnableFlag is zero.

When EnableFlag is set, the return value of this function determines if the NAT entry will
be enabled. If this function returns NULL, the NAT entry is immediately destroyed (in this
event, the callback is not called a second time for this destroy). This can be used to
restrict peer connections.

ProxyTx/RxCallback Proxy Tx/Rx Callback Functions

Syntax int SampleProxyTxCallback(NATINFO *pNI, IPHDR *pIpHdr);

int SampleProxyRxCallback(NATINFO *pNI, IPHDR *pIpHdr);

Parameters

pNI Pointer to NATINFO structure of NAT entry in use
pIpHdr Pointer to the IP header of the packet being translated

Return Value 1 to allow normal operation, or NULL to abort the supplied packet.

Description This function is called when a packet is crossing the router from the WAN to the LAN
(Rx callback) or from the LAN to the WAN (Tx callback). The NAT entry containing a
proxy that matches the packet is described by the supplied NATINFO structure. This
structure was described in Section B.2.2.

The purpose of the callback is to examine the packet and take appropriate action based
on its contents. The packet payload can be easily modified by the ProxyPacketMod()
function described later in this section. The translation of the IP address and port
information cannot be altered by this callback; however, the callback can act as a packet
filter and discard unwanted packets by returning a value of NULL.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

NAT Proxy Filters www.ti.com

212 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

B.3.3 NAT Proxy API Functions

ProxyNew Create a New Proxy Filter for NAT Entries

Syntax void *ProxyNew(uint32_t NatMode, unsigned char Protocol, uint16_t Port, uint32_t
IPTarget, int (*pfnEnableCb)(NATINFO *, uint), int (*pfnTxCb)(NATINFO *, IPHDR *), int
(*pfnRxCb)(NATINFO *, IPHDR *));

Parameters

NatMode Port direction to detect (NAT_MODE_RX or NAT_MODE_TX)
Protocol Protocol to use (IPPROTO_TCP or IPPROTO_UDP)
Port Port value for RX or TX packets to detect
IPTarget New IP destination NAT_MODE_RX proxy
pfnEnableCb Pointer to proxy Enable callback function (NULL if none)
pfnTxCb Pointer to proxy Tx callback function (NULL if none)
pfnRxCb Pointer to proxy Rx callback function (NULL if none)

Return Value Handle to new proxy, or NULL on error.

Description This function creates a hook that is examined whenever a new NAT entry is created.

The calling parameter NatMode specifies the direction of the proxy (NAT_MODE_RX for
servers behind the firewall, and NAT_MODE_TX for clients behind the firewall).

The Protocol and Port values are the IP protocol and well-known port of the protocol to
proxy.

For example, if setting up a FTP client proxy, set:

NatMode = NAT_MODE_TX, Protocol = IPPROTO_TCP, and Port = 21.

IPTarget is used only in server proxies (when NatMode is set to NAT_MODE_RX). This
specifies the machine behind the firewall that is actually providing the service.

The three pointers to callback functions correspond to the proxy filter callback functions
described in the previous section.

The function returns a handle to the new proxy. Note that a proxy handle is not the same
as (or compatible with) a NAT entry handle.

The proxy should be destroyed by calling ProxyFree() when it is no longer needed.

ProxyFree Destroy a Proxy Filter Declaration

Syntax void ProxyFree(void *hProxy);

Parameters

hProxy Handle to Proxy Filter entry created with ProxyNew()

Return Value None.

Description This function frees the supplied Proxy Filter entry. It is called to remove an entry that is
no longer required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com ProxyPacketMod — Modify the Contents of a Packet

213SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Network Address Translation

ProxyPacketMod Modify the Contents of a Packet

Syntax IPHDR *ProxyPacketMod(uint32_t Offset, uint32_t OldSize, uint32_t NewSize, unsigned
char *pNewData);

Parameters

Offset Offset in bytes from start of IP header to first modified byte
OldSize Size of old data at Offset
NewSize Size of new data to replace old data at Offset
pNewData Pointer to new data to replace old data

Return Value Pointer to new IP header of packet. This pointer is used for further modifications (if
needed).

Description This function may only be called from a proxy filter callback function. Its purpose is to
modify the contents of a TCP or UDP packet, and perform the necessary adjustments for
packet size - including TCP sequencing adjustment.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

214 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

Appendix C
SPRU524K–May 2001–Revised October 2017

Point-to-Point Protocol

Point to point protocol (PPP) was originally designed as a replacement for SLIP (serial line IP) in sending
IP packets via a serial line. In addition to its massive popularity in performing this function, PPP has also
been increasingly used for the transmission of packets over other media. This is due to PPP's inherent
peer-to-peer nature, allowing for per-connection security and billing.

The NDK has built-in support for both PPP servers and clients. The PPP support API is designed to be
shared by one or more physical devices. One obvious device that can be hooked to PPP is a serial line,
but the stack also contains support for PPP over Ethernet (PPPoE). The low level PPP API as well as
Serial HDLC and PPPoE are all discussed in this appendix.

Topic ... Page

C.1 Low Level PPP Support... 215
C.2 Serial HDLC Client and Server Support ... 223
C.3 PPPoE Client and Server Support... 227
C.4 Creating PPP Server User Accounts ... 230

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

TCP/IP
Stack

Packet Decoding

PPP Connect
Session API

Application Software

Packet Encoding

Serial Interface
(SI) Callback

Call StatusTX Packet

Hardware
Timer

www.ti.com Low Level PPP Support

215SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

C.1 Low Level PPP Support
This section describes the operation of the PPP support API included in the NDK.

NOTE: Unlike the HDLC and PPPoE APIs that are application callable, the low level PPP support
API is designed to be called from the kernel layer only. You should be thoroughly familiar
with the operation of the kernel and the llEnter()/llExit() functions before attempting to use the
APIs described in this section.

C.1.1 PPP Operation
PPP is very much like Ethernet in that there is a defined packet format. The basic PPP packet is shown
below. It consists of flag delimiters, address and control bytes, protocol field (similar to ether-type under
Ethernet), and a two byte checksum.

Figure C-1. Standard PPP Frame Over Serial Line
Flag (7E) Addr (FF) Control (03) Protocol Payload CRC Flag (7E)

1 1 1 2 1500 2 1

To abstract out the actual processing of the PPP data from the processing of the PPP frame encoding, the
PPP support included in the NDK expects a smaller frame, consisting of the protocol and payload fields
only. This format is shown in Figure C-2.

Figure C-2. PPP Frame Processed by PPP API
Protocol Payload

2 Size specified by layer 2 (about 1500)

The abstraction of PPP from the layer 2 encoding allows PPP to be carried by a variety of physical
devices. The programming interface to the PPP layer called by the application is actually exposed by the
layer 2 encoder. This layer 2 encoder is referred to as a serial interface (SI), but does not have to be a
serial port. This interoperation between PPP and the SI is shown in Figure C-3. The functions shown in
the dotted rectangle are those provided by the serial interface software.

Figure C-3. Serial Interface (SI) Abstraction

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Low Level PPP Support www.ti.com

216 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

As shown in Figure C-3, the SI interface has the responsibility of providing for connection control, a timer
used by PPP for timeout, packet encoding and decoding, and a SI callback function for status messages
and packet transmission. Note that the SI driver developer also defines the actual API used by the
application software to establish and tear down PPP connection sessions. There is no specific
requirements in specifying the session API for any particular PPP device, but the APIs defined for HDLC
and PPPoE can be used as a guide.

C.1.2 Function Overview
The SI interface module is charged with communicating with both the hardware and the application
program, but the PPP packets themselves are processed via the PPP support functions in the stack. The
PPP support software provides the following functions for use by the SI module:

pppNew() Create a new PPP connection instance
pppFree() Destroy an existing PPP connection instance
pppTimer() Inform PPP that a 1 second timer tick has expired
pppInput() Pass in a received PPP packet for processing

The formal declaration of these functions appear later in this section (see Section C.1.6).

NOTE: These functions can only be called in kernel mode. See Appendix for programming in kernel
mode.

C.1.3 Supported Protocols
In keeping with trying to maintain a small footprint, the PPP software supports a subset of the general
PPP protocols. The following are supported:
• Link Control Protocol (LCP)
• Internet Protocol Control Protocol (IPCP)
• Password Authentication Protocol (PAP)
• Challenge Handshake Authentication Protocol (CHAP) using MD5
• Internet Protocol (IP)

C.1.4 SI Module Callback Function
The PPP support API is used for connection instance creation and destruction, and to pass received
packets to the stack. To get information about PPP back from the stack, and to allow the stack to request
the transmission of PPP packets, the SI module supplies a callback function. A pointer to this callback is
passed to PPP as a parameter to pppNew().

NOTE: This function is called in kernel mode. See Appendix for programming in kernel mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com SIControl — Notify the Serial Interface of a Change in Status, or when SI Needs to Transmit a Packet

217SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

C.1.4.1 Function Declaration
The SI callback function is provided in the SI code module using the following definition:

SIControl Notify the Serial Interface of a Change in Status, or when SI Needs to Transmit a
Packet

Syntax void SIControl(void *hSI, uint32_t Message, uint32_t Data, PBM_Handle hPkt);

Parameters

hSI Handle to SI private data
Message Message code describing the PPP event
Data Additional data concerning the message
hPkt Handle to a PBM packet when Message is SI_MSG_SENDPACKET

Return Value None.

Description This function is called when a PPP needs to notify the serial interface (SI) of a change in
status, or when it needs SI to transmit a packet.

The hSI parameter is a handle (pointer to a void) that is originally passed to PPP via
pppNew(). This value allows the SI module to know which of its own connection
instances is in use. The PPP instance handle in use is not supplied, but rather should be
obtained by reference from the supplied SI handle. If the programmer of the SI module
does not wish to track handles, then this parameter may be NULL (always as originally
supplied to pppNew()). This is NOT the handle to the PPP instance that is passed to
other functions in the PPP API.

The purpose of the callback is determined by the value of the Message parameter. The
following message values are defined for this parameter:

SI_MSG_CALLSTATUS PPP connection status has changed
SI_MSG_SENDPACKET PPP is requesting a packet to be encoded and transmitted
SI_MSG_PEERCMAP LCP has received the peer's 32 bit asynchronous character map

C.1.4.2 SI_MSG_CALLSTATUS Message
When this message value is set, the callback function was called by PPP to update the status of the
connection instance. When the callback is called with this message, the value of Data contains additional
information about the call. Data can be set to any of the following values:

SI_CSTATUS_WAITING Connection instance is idle
SI_CSTATUS_NEGOTIATE Instance in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Instance in authorization stage
SI_CSTATUS_CONFIGURE Instance in IP configuration stage
SI_CSTATUS_CONNECTED Instance is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

SIControl — Notify the Serial Interface of a Change in Status, or when SI Needs to Transmit a Packet www.ti.com

218 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

If Data is set to any of disconnect messages, pppFree() should be called to destroy the connection
instance. For all other status values, no action is required.

NOTE: It is always safe to assume that when the value of Data >= SI_CSTATUS_DISCONNECT,
the message is some type of disconnect.

C.1.4.3 SI_MSG_ SENDPACKET Message
When this message value is set, the callback function was called by PPP to transmit a packet. The Data
parameter is set to the 16 bit PPP protocol of the packet, and the hPkt parameter contains a handle to a
packet (PKT) object that contains the packet payload. It is the job of the SI callback function to encode the
packet and transmit it on the physical hardware.

C.1.4.4 SI_MSG_ PEERCMAP Message
Serial interfaces to PPP require a translation map for the first 32 character values. This map informs the
packet encoded which characters must be escaped and which do not. The default value of the peer CMAP
should be 0xffffffff, and updated only when this message is received. Whether or not PPP will attempt to
exchange CMAP information with its peer, is determined by passing flags to pppNew() when the
connection instance is created.

C.1.4.5 Example Callback Function Implementation
The following is an example of a SI module callback function from the HDLC module code in the example
applications. The code illustrates the basic processing that must be done for the various SI callback
messages. The function calls made in this example are described in Appendix .
//--
// SI Control Function
//--
void hdlcSI(void *hSI, uint32_t Msg, uint32_t Aux, PBM_Handle hPkt)
{

HDLC_INSTANCE *pi = (HDLC_INSTANCE *)hSI;
void *hTmp;
uint32_t Offset,Size;
unsigned char *pBuf;

switch(Msg)
{
case SI_MSG_CALLSTATUS:

// Update Connection Status
pi->Status = (uint)Aux;
if(Aux >= SI_CSTATUS_DISCONNECT)
{

// Close PPP
if(pi->hPPP)
{

hTmp = pi->hPPP;
pi->hPPP = 0;
pppFree(hTmp);

}
}
break;

case SI_MSG_PEERCMAP:
// Update Out CMAP for Transmit
pi->cmap_out = Aux;
llSerialHDLCPeerMap(pi->DevSerial, Aux);
break;

case SI_MSG_SENDPACKET:
if(!hPkt)
{

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Low Level PPP Support

219SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

DbgPrintf(DBG_ERROR,"hdlcSI: No packet");
break;

}

Offset = PBM_getDataOffset(hPkt);
Size = PBM_getValidLen(hPkt);

// Make sure packet is valid, with room for protocol, room for checksum
if((Offset<4) || ((Offset+Size+2)>PBM_getBufferLen(hPkt)))
{

DbgPrintf(DBG_ERROR,"hdlcSI: Bad packet");
PBM_free(hPkt);
break;

}

// Add in 2 byte Protocol and 2 byte header. Also add in size for
// 2 byte checksum. Note that the outgoing checksum is corrected
// (calculated) by the serial driver.
Offset -= 4;
Size += 6;
PBM_setDataOffset(hPkt, Offset);
PBM_setValidLen(hPkt, Size);
pBuf = PBM_getDataBuffer(hPkt)+Offset;
*pBuf++ = 0xFF;
*pBuf++ = 0x03;
*pBuf++ = (unsigned char)(Aux/256);
*pBuf = (unsigned char)(Aux%256);

// Send the buffer to the serial driver
llSerialSendPkt(pi->DevSerial, hPkt);
break;

}
}

C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance

C.1.5.1 Multiple Instances
PPP supports multiple instances, but the SI module implementation tracks multiple instances of itself. This
is done in two ways. One method is for the SI module to have a locally global head pointer to its first
instance, and an array or linked list for additional instances. Or, the instance can be bound to the next
layer down. In the case of the HDLC module, one PPP instance is bound to one serial port driver instance.
So the HDLC module does not need to track instances independently.

When a new PPP connection is established, a new SI module instance should be allocated and a handle
to the new SI instance is passed to the pppNew() function. The handle that pppNew() returns must be
associated with the handle to the SI instance. The PPP handle must be passed to all other PPP API
functions, and PPP will pass back the SI instance handle to the SI callback function.

When new data arrives from the hardware, it is the responsibility of the SI module to associate that data
with a specific SI instance. The SI instance can then be accessed to retrieve the handle to the PPP
instance to use with any PPP function calls. In the case of HDLC, the SI instance is known because it is
associated with a particular serial device instance.

C.1.5.2 Using the Timer Object
PPP requires that its pppTimer() function be called once every second. This can be PRD driven if
necessary, but the timer callback cannot be called from a PRD because it must be called from within
kernel mode (an llEnter()/llExit()) pairing.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Low Level PPP Support www.ti.com

220 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

C.1.5.3 Registering Packet Padding Requirements
Although a serial interface will probably not have any special requirements for packets from the stack, it
must at least be able to construct valid packets to send to the pppInput() function. For a serial interface
that does not use the packet buffer to physically send the packet, the size of the PPP header would be 4
bytes (2 byte HDLC header and 2 byte protocol field), and the padding would be 2 bytes (checksum).

C.1.6 PPP API Functions
The following is the full description of the PPP functions described in this section.

pppNew Create a New PPP Connection Instance

Syntax void *pppNew(void *hSI, uint32_t pppFlags, uint32_t mru, uint32_t IPServer, uint32_t
IPMask, uint32_t IPClient, char *Username, char *Password, uint32_t cmap, void
(*pfnSICtrl)(void *, uint, uint32_t, void *));

Parameters

hSI Handle to SI module to be passed back to callback function
pppFlags Connection option flags
mru Maximum receive unit (maximum size of Payload)
IPServer IP address of server in server mode (NULL in client mode)
IPMask IP subnet mask of client in server mode (NULL in client mode)
IPClient IP address of client in server mode (NULL in client mode)
Username Pointer to username in client mode (NULL in server mode)
Password Pointer to password in client mode (NULL in server mode)
cmap 32-bit local CMAP to pass to peer
pfnSICtrl Pointer to SI module callback function

Return Value Handle to new PPP connection instance, or NULL on error.

Description This function is called to create a new PPP connection instance. The type of connection
created is determined by the calling parameters.
• hSI - This is a private handle created by the caller that points back to the caller's

instance data. It is passed back to the caller via the callback function pointed to by
pfnSICtrl, and can be used to link back to caller's instance data when the callback is
executed.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, one
and only one of the following flags must be set:

PPPFLG_SERVER Create PPP server connection instance
PPPFLG_CLIENT Create PPP client connection instance

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com pppNew — Create a New PPP Connection Instance

221SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

When operating in SERVER mode, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication
PPPFLG_OPT_AUTH_CHAP Require CHAP authentication
PPPFLG_OPT_USE_MSE Use MS extensions as server
PPPFLG_OPT_LOCALDNS Claim Local IP as DNS server
PPPFLG_SIOPT_SENDCMAP Send an async character map
PPPFLG_SIOPT_RECVCMAP Accept an async character map
PPPFLG_CH1 Allow server channel/group 1 account users
PPPFLG_CH2 Allow server channel/group 2 account users
PPPFLG_CH3 Allow server channel/group 3 account users
PPPFLG_CH4 Allow server channel/group 4 account users
PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

When operating in CLIENT mode, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client
PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer (i.e., do

not create a default route using the peer as a
gateway)

PPPFLG_SIOPT_SENDCMAP Send an async character map
PPPFLG_SIOPT_RECVCMAP Accept an async character map
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• mru - The MRU is maximum receive unit, or the maximum size of the payload portion
of a PPP packet. For a standard serial link, the MRU is typically 1500, but can be
smaller.

• IPServer - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the NDK reported to the peer. When operating in CLIENT mode,
this value is NULL.

• IPMask - When creating the PPP instance in SERVER mode, this is the IP subnet
mask of the peer's IP network reported to the peer. When operating in CLIENT mode,
this value is NULL.

• IPClient - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the peer reported to the peer. When operating in CLIENT mode,
this value is NULL.

• Username - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the username to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

• Password - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the password to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

• cmap - When the PPPFLG_SIOPT_SENDCMAP flag is set in the pppFlags
parameter, this is the CMAP value that is sent to the peer; otherwise it is NULL.

• pfnSICtrl - This is a required pointer to the caller's callback function to handle status
updates from the stack, and requests to transmit PPP packets. See Section C.1.4 for
more detail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

pppFree — Destroy PPP Connection Instance www.ti.com

222 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

When run in SERVER mode, the name of the PPP server defaults to DSPIP in CHAP
authentication; however, this can be changed by using the
CFGITEM_SYSINFO_REALMPPP configuration tag. For example:
// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (unsigned char *)"PPP_SAMPLE_NAME", 0);

When successful, this function returns a handle to a new PPP instance. This handle is
used by the caller when calling other functions in the PPP API.

pppFree Destroy PPP Connection Instance

Syntax void pppFree(void *hPPP);

Parameters

hPPP Handle to PPP instance created with pppNew()

Return Value None.

Description This function is called to close and destroy a PPP connection instance created with
pppNew(). This function must be called to free the PPP handle, even if the PPP
connection itself is already disconnected.

pppInput Send a PPP Packet to PPP for Processing

Syntax void pppInput(void *hPPP, PBM_Pkt *pPkt);

Parameters

hPPP Handle to PPP instance created with pppNew()
pPkt Pointer to a PBM packet

Return Value None.

Description This function is called when a PPP packet is received on an active serial interface. The
packet is data decoded into the PPP protocol and payload fields, and given to PPP as a
packet object. The handle hPPP is the PPP connection instance returned from pppNew()
for this connection, and pPkt is a packet object created by the packet buffer manager
(PBM).

pppTimer Notify PPP of One Second Tick

Syntax void pppTimer(void *hPPP);

Parameters

hPPP Handle to PPP instance created with pppNew()

Return Value None.

Description This function is called on an active PPP instance to notify PPP that one second has
elapsed. Because the PPP API is entirely stateless, it relies on the serial interface for
time tick notification.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Serial HDLC Client and Server Support

223SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

C.2 Serial HDLC Client and Server Support
This implementation of HDLC for the NDK library is included in the example applications. It interfaces to
the serial port driver described in the HAL.

NOTE: The HDLC API is user-callable. Unlike the low level PPP support API, you should not use
the llEnter()/llExit() functions when calling the functions described in this section.

C.2.1 Function Overview

Called by Application:
hdlcNew() Create a Serial HDLC Client Session
hdlcFree() Destroy a Serial HDLC Client Session
hdlcGetStatus() Get the Call Status of a Serial HDLC Client Session
hdlcsNew() Create a Serial HDLC Server Session
hdlcsFree() Destroy a Serial HDLC Server Session
hdlcsGetStatus() Get the Call Status of a Server HDLC Client Session

Called by Serial Port Driver:
hdlcInput() Send HDLC input buffer for processing

C.2.2 HDLC API Functions

hdlcNew Create a Serial HDLC Client Session

Syntax void *hdlcNew(uint32_t Dev, uint32_t pppFlags, uint32_t cmap, char *Username, char
*Password);

Parameters

Dev Physical index of serial port to use
pppFlags Connection option flags
cmap Async control character map
Username Pointer to client account username
Password Pointer to client account password

Return Value If it succeeds, the function returns a handle to a HDLC client instance. Otherwise, it
returns NULL.

Description This function is called to create a new serial HDLC client instance on the physical serial
interface specified by the index Dev.
• pppFlags - The flags determine what type of connection instance to create, and what

type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_CLIENT Create PPP client connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client
PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer (i.e.,

don't create a default route using the peer as a
gateway).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

hdlcFree — Destroy a Serial HDLC Client Session www.ti.com

224 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

PPPFLG_SIOPT_SENDCMAP Send an async character map (strongly
recommended)

PPPFLG_SIOPT_RECVCMAP Accept an async character map (strongly
recommended)

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

• Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

• Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new serial HDLC instance. The
current status of the connection can be queried at any time by calling hdlcGetStatus().

hdlcFree Destroy a Serial HDLC Client Session

Syntax void hdlcFree(void *hHDLC);

Parameters

hHDLC Handle to HDLC Client Session

Return Value None.

Description This function is called to close and destroy a serial HDLC client session that was created
with hdlcNew(). This function is always called once for every HDLC instance handle. If
the connection is no longer active, it frees the instance memory. If the connection is still
active, it disconnects the call first.

hdlcGetStatus Get the Status of a Serial HDLC Client Session

Syntax uint32_t hdlcGetStatus(void *hHDLC);

Parameters

hHDLC Handle to HDLC Client Session

Return Value This function returns a uint32_t that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (HDLC session opening)
SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Connection in authorization stage
SI_CSTATUS_CONFIGURE Connection in IP configuration stage
SI_CSTATUS_CONNECTED Connection is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com hdlcsNew — Create a Serial HDLC Server Session

225SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

Description This function is called to get the connection status of a serial HDLC client session using
the HDLC instance handle returned from hdlcNew(). This function can be called any time
after the handle is created with hdlcNew(), and before it is destroyed with hdlcFree().

hdlcsNew Create a Serial HDLC Server Session

Syntax void *hdlcsNew(uint32_t Dev, uint32_t pppFlags, uint32_t cmap, uint32_t IPServer,
uint32_t IPMask, uint32_t IPClient);

Parameters

Dev Physical index of serial port to use
pppFlags Connection option flags
cmap Async control character map
IPServer IP address of server in network format
IPMask IP subnet mask in network format of the peer's network
IPClient IP address in network format of the client

Return Value If it succeeds, the function returns a handle to a serial HDLC server instance. Otherwise,
it returns NULL.

Description This function is called to create a new serial HDLC server instance on the physical serial
interface specified by the index Dev.
• pppFlags - The flags determine what type of connection instance to create, and what

type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_SERVER Create PPP server connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication
PPPFLG_OPT_AUTH_CHAP Require CHAP authentication (PAP is fallback when

specified)
PPPFLG_OPT_USE_MSE Use MS extensions as server
PPPFLG_SIOPT_SENDCMAP Send an async character map (strongly

recommended)
PPPFLG_SIOPT_RECVCMAP Accept an async character map (strongly

recommended)
PPPFLG_CH1 Allow server channel/group 1 account users
PPPFLG_CH2 Allow server channel/group 2 account users
PPPFLG_CH3 Allow server channel/group 3 account users
PPPFLG_CH4 Allow server channel/group 4 account users
PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

• IPServer - This is the IP address in network format of the NDK reported to the peer.
• IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.
• IPClient - This is the IP base address in network format of the IP address to be

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

hdlcsFree — Destroy a Serial HDLC Server Session www.ti.com

226 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

assigned to the client.

When successful, this function returns a handle to a new serial HDLC server instance.
The current status of the connection can be queried at any time by calling
hdlcsGetStatus().

The name of the PPP server defaults to DSPIP in CHAP authentication; however, this
can be changed by using the CFGITEM_SYSINFO_REALMPPP configuration tag. For
example:
// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (unsigned char *)"PPP_SAMPLE_NAME", 0);

hdlcsFree Destroy a Serial HDLC Server Session

Syntax void hdlcsFree(void *hHDLC);

Parameters

hHDLC Handle to HDLC Server Session

Return Value None.

Description This function is called to close and destroy a serial HDLC server session that was
created with hdlcsNew(). This function is always called once for every HDLC instance
handle. If the connection is no longer active, it frees the instance memory. If the
connection is still active, it disconnects the call first.

hdlcsGetStatus Get the Status of a Serial HDLC Server Session

Syntax uint32_t hdlcsGetStatus(void *hHDLC);

Parameters

hHDLC HDLC Server Session

Return Value This function returns a uint32_t that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (PPPoE session opening)
SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Connection in authorization stage
SI_CSTATUS_CONFIGURE Connection in IP configuration stage
SI_CSTATUS_CONNECTED Connection is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com PPPoE Client and Server Support

227SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

Description This function is called to get the connection status of a serial HDLC server session using
the HDLC instance handle returned from hdlcsNew(). This function can be called any
time after the handle is created with hdlcsNew(), and before it is destroyed with
hdlcsFree().

C.3 PPPoE Client and Server Support
The PPPoE (PPP over Ethernet) specification allows for PPP packets to be transmitted in a peer to peer
method over an Ethernet tunnel. The standard has gained in popularity because it allows for the use of
multiple user accounts on a single Ethernet network.

The implementation of PPPoE supplied in the NDK library is built into the stack library code, and linked to
the Ether object that handles packets from all Ethernet devices in the HAL layer. Thus, is it not necessary
to access or alter the HAL to use PPPoE.

The software can be used as a PPP server or PPP client, but not both simultaneously. In both cases,
PPPoE uses the PPP programming interfaces described earlier in this section. Thus, for server mode, the
PPP server will use the same user account information as a serial based server.

NOTE: The PPPoE API is user callable. Unlike the low level PPP support API, you should not use
the llEnter()/llExit() functions when calling the functions described in this section.

C.3.1 Function Overview
The PPPoE function API is short:

pppoeNew() Create a PPPoE Client Session
pppoeFree() Destroy a PPPoE Client Session
pppoeGetStatus() Get the Call Status of a PPPoE Client Session
pppoesNew() Create a PPPoE Server Session
pppoesFree() Terminate a PPPoE Server Session

C.3.2 PPPoE API Functions

pppoeNew Create a PPPoE Client Session

Syntax void *pppoeNew(void *hEther, uint32_t pppFlags, char *Username, char *Password);

Parameters

hEther Handle to Ether device on which to look for a PPPoE server
pppFlags Connection option flags
Username Pointer to client account username
Password Pointer to client account password

Return Value If it succeeds, the function returns a handle to a PPPoE client instance. Otherwise, it
returns NULL.

Description This function is called to create a new PPPoE client instance on the Ether type interface
specified by the handle hEther.
• pppFlags - The flags determine what type of connection instance to create, and what

type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_CLIENT Create PPP client connection instance

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

pppoeFree — Destroy a PPPoE Client Session www.ti.com

228 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

In addition, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client
PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer (i.e., do not

create a default route using the peer as a gateway)
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

• Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new PPPoE instance The current
status of the PPPoE connection can be queried at any time by calling pppoeGetStatus().

pppoeFree Destroy a PPPoE Client Session

Syntax void pppoeFree(void *hPPPOE);

Parameters

hPPPOE Handle to PPPoE Client Session

Return Value None.

Description This function is called to close and destroy a PPPoE client session that was created with
pppoeNew(). This function is always called once for every PPPoE instance handle. If the
connection is no longer active, it frees the instance memory. If the connection is still
active, it first disconnects the call.

pppoeGetStatus Get the Status of a PPPoE Client Session

Syntax uint32_t pppoeGetStatus(void *hPPPOE);

Parameters

hPPPOE Handle to PPPoE Client Session

Return Value This function returns a uint32_t that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (PPPoE session opening)
SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Connection in authorization stage
SI_CSTATUS_CONFIGURE Connection in IP configuration stage
SI_CSTATUS_CONNECTED Connection is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com pppoesNew — Create a PPPoE Server Session

229SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

Description This function is called to get the connection status of a PPPoE client session using the
PPPoE instance handle returned from pppoeNew(). This function can be called any time
after the handle is created with pppoeNew(), and before it is destroyed with pppoeFree().

pppoesNew Create a PPPoE Server Session

Syntax void *pppoesNew(void *hEther, uint32_t pppFlags, uint32_t SessionMax, uint32_t
IPServer, uint32_t IPMask, uint32_t IPClientBase, char *ServerName, char
*ServiceName);

Parameters

hEther Handle to Ether device on which to invoke the PPPoE server
pppFlags Connection option flags
SessionMax Maximum number of client connections allowed
IPServer IP address of server in network format
IPMask IP subnet mask in network format of the client address pool
IPClientBase IP base address in network format of the client address pool
ServerName Server name reported via PPPoE protocol
ServiceName Service name reported via PPPoE protocol

Return Value If it succeeds, the function returns a handle to a PPPoE server instance. Otherwise, it
returns NULL.

Description This function is called to create a new PPPoE server instance on the Ether type interface
specified by the handle hEther.
• SessionMax - This value is the maximum number of simultaneous peer connections

to be allowed at any given time. Thus, it is also the minimum size of the client IP
address pool.

• pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_SERVER Create PPP server connection instance

In addition, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication
PPPFLG_OPT_AUTH_CHAP Require CHAP authentication
PPPFLG_OPT_USE_MSE Use MS extensions as server
PPPFLG_OPT_LOCALDNS Claim Local IP as DNS server
PPPFLG_CH1 Allow server channel/group 1 account users
PPPFLG_CH2 Allow server channel/group 2 account users
PPPFLG_CH3 Allow server channel/group 3 account users
PPPFLG_CH4 Allow server channel/group 4 account users
PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

• IPServer - This is the IP address in network format of the NDK reported to the peer.
• IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.
• IPClientBase - This is the IP base address in network format of the IP address pool

to be assigned to and reported to peer connections. The size of the address pool is
determined by the value of SessionMax.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

pppoesFree — Destroy a PPPoE Server Session www.ti.com

230 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

• ServerName - This is a required pointer to a NULL terminated string containing the
server name that is reported to PPPoE clients. The maximum length of this name
including the NULL terminator is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.

• ServiceName - This is a required pointer to a NULL terminated string containing the
service name that is reported to PPPoE clients. The maximum length of this name,
including the NULL terminator, is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.
The name of the PPP server defaults to DSPIP in CHAP authentication. This is
independent of the PPPoE server name. However, the name can be changed by
using the CFGITEM_SYSINFO_REALMPPP configuration tag. For example:

// Name our authentication group for PPP (Max size = 31)
// This is the authentication "realm" name returned by the PPP
// server when authentication is required.
// (Note the length "16" includes the NULL terminator)

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALMPPP,
0, 16, (unsigned char *)"PPP_SAMPLE_NAME", 0);

When successful, this function returns a handle to a new PPPoE server instance. The
status of individual connections is not available to the caller, but tracked automatically by
PPPoE. When sessions are added or destroyed, the IP address callback supplied to
NC_NetStart() is called and connections can be tracked by the applications programmer
via this function callback.

pppoesFree Destroy a PPPoE Server Session

Syntax void pppoesFree(void *hPPPOES);

Parameters

hPPPOES Handle to PPPoE Server Session

Return Value None.

Description This function is called to close and destroy a PPPoE server session that was created
with pppoesNew(). This function is always called once to shut down the PPPoE server.
Any external client currently connected to the server is disconnected.

C.4 Creating PPP Server User Accounts
To use the PPP or PPPoE protocol in server mode, it advisable to protect access to the system through
the use of a PPP authentication protocol. The PPP supplied in the stack library allows for the use of either
PAP or CHAP in user authentication. The database of authorized users (name and password) is stored in
the configuration system.

C.4.1 Adding and Reviewing User Accounts
The definition of the user account entry in the configuration system is defined in Section 4.3.6. Note in that
section that the server channel flags PPPFLG_CH1 through PPPFLG_CH4 are duplicated in both the
server flags and the client account flags. This allows the system programmer to allow different classes of
services for different channels.

The methodology of adding, querying, and removing user accounts is the same for any other tag in the
configuration system. Some simple examples follow. More example code can be found in the sample
console program.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Creating PPP Server User Accounts

231SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

C.4.1.1 Adding a PPP User Account
The following code adds a PPP user account for the user supplied in name with a password supplied in
password. Note that it also uses the AcctFind() function to verify that the account does not already exist.
void AcctAdd(char *name, char *password)
{

CI_ACCT CA;
void *hAcct;
int rc;

// Check string lengths for name and password
if(strlen(name) >= CFG_ACCTSTR_MAX ||

strlen(password) >= CFG_ACCTSTR_MAX)
{

printf("Name or password too long, %d character max\n\n",
CFG_ACCTSTR_MAX-1);

return;
}

// See if the account already exists
hAcct = AcctFind(tok2);
if(hAcct)
{

printf("Account exits - remove old account first\n\n");

// We must de-reference the account we found
CfgEntryDeRef(hAcct);
return;

}

// Fill in the CA record
strcpy(CA.Username, name);
strcpy(CA.Password, password);

// Give user access to all channels
CA.Flags =

CFG_ACCTFLG_CH1|CFG_ACCTFLG_CH2|CFG_ACCTFLG_CH3|CFG_ACCTFLG_CH4;

// Add it to the configuration
rc = CfgAddEntry(0, CFGTAG_ACCT, CFGITEM_ACCT_PPP,

CFG_ADDMODE_NOSAVE, sizeof(CI_ACCT), (unsigned char *)&CA, 0);

if(rc < 0)
printf("Error adding account\n");

else
printf("Account added\n");

return;
}

C.4.1.2 Searching for a PPP User Account
The following code implements the AcctFind() function called in the previous example. Note that the same
method could be used to print out a list of all accounts.
void *AcctFind(char *name)
{

void *hAcct;
CI_ACCT CA;
int rc;
int size;

// Get the first user account
rc = CfgGetEntry(0, CFGTAG_ACCT, CFGITEM_ACCT_PPP, 1, &hAcct);

// If there are no accounts, then we did not find it
if(rc <= 0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Creating PPP Server User Accounts www.ti.com

232 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Point-to-Point Protocol

return(0);

// Search until we run out of accounts or have a match
while(1)
{

// Get the data for this entry into CA
size = sizeof(CA);
rc = CfgEntryGetData(hAcct, &size, (unsigned char *)&CA);
if(rc <= 0)
{

// This is an unexpected error - deref the handle and abort
CfgEntryDeRef(hAcct);
return(0);

}

// See if the username matches the search name. If so, return
// the referenced handle
if(!strcmp(name, CA.Username))

return(hAcct);

// Since we did not match, get the next entry. If there is no
// next entry, we are done searching.
rc = CfgGetNextEntry(0, hAcct, &hAcct);
if(rc <= 0)

return(0);
}

}

C.4.1.3 Removing a PPP User Account
Removing a specific user account is done by finding the account and removing the entry handle.

The following uses the AcctFind() function to find the target account.
void AcctDelete(char *name)
{

void *hAcct;

// Find the account to delete
hAcct = AcctFind(name);

// If we found the account, remove it
if(hAcct)
{

CfgRemoveEntry(0, hAcct);
printf("Account removed\n");

}
}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

233SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

Appendix D
SPRU524K–May 2001–Revised October 2017

Hardware Adaptation Layer (HAL)

As discussed in the introduction, hardware devices are supported through a Hardware Adaptation Layer.
This section describes the HAL API.

This section is required only for system programming that needs low level access to the hardware for
configuration and monitoring. This API does not apply to sockets application programming.

Topic ... Page

D.1 Overview ... 234
D.2 Low-Level LED Driver (llUserLed) ... 234
D.3 Low-Level Timer Driver (llTimer)... 236
D.4 Low-Level Packet Driver (llPacket).. 237
D.5 Low-Level Serial Port Driver (llSerial).. 241

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Overview www.ti.com

234 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

D.1 Overview
The function of the HAL is to provide resources to the stack library functions and allow them to operate
independently of the current run-time environment. The HAL contains the functionality required by the
stack that depends directly on the hardware in a particular environment.

D.1.1 HAL Function Types
The HAL is interspersed with two different types of functions; those that are called at kernel level (inside
an llEnter()/llExit() pairing), and those that are not. (For more information on the llEnter() and llExit()
functions, see Section A.1.)

To distinguish kernel level functions from application support functions, both have been given a different
naming conventions. Kernel level functions are named with an ll prefix, without a leading underscore, for
example: l lPacketSend(), while application functions have an underscore, for example: _llPacketInit().

D.1.2 External Calls from HAL Functions
Because HAL functions are called from the stack kernel, they are executing within an llEnter()/llExit() pair.
These HAL functions can call the stack API directly, but should not call normal application functions.

If a HAL function must call an external application function, or if it is going to call a potentially blocking
function, then it should first call llExit(). Then, when it has completed, it should call llEnter() before
returning to the stack. It is important not to block while in an llEnter() / llExit() pair.

D.2 Low-Level LED Driver (llUserLed)
The User LED driver is not really a driver at all. It is a collection of functions to control (ON|OFF|TOGGLE)
LED lights on a given hardware platform.

D.2.1 Function Overview

Application Functions:
_llUserLedInit() Initialize the LED displays to their default state
_llUserLedShutdown() Shut down the LED environment
LED_ON() Turn on a LED
LED_OFF() Turn off a LED
LED_TOGGLE() Toggle the state of a LED

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Low-Level LED Driver (llUserLed)

235SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

D.2.2 Low-Level LED API Functions
The following functions are required.

_llUserLedInit Initialize the LED Displays to their Default State

Syntax void _ llUserLedInit();

Return Value None.

Description This function initializes anything necessary to get the LED displays to their default state.

_llUserLedShutdown Shutdown the LED Environment

Syntax void _llUserLedShutdown();

Return Value None.

Description This function is called when shutting down the system to shut down and clean up the
LED environment. Typically, this is an empty function.

LED_ON Turn On an LED

Syntax void LED_ON(uint32_t ledId);

Description This function turns on the specified LED in the calling argument.

LED_OFF Turn Off an LED

Syntax void LED_OFF(uint32_t ledId);

Description This function turns off the LED specified in the calling argument.

LED_TOGGLE Toggle the State of an LED

Syntax void LED_TOGGLE(uint32_t ledId);

Description This function toggles the on/off state of an LED specified in the calling argument.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Low-Level Timer Driver (llTimer) www.ti.com

236 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

D.3 Low-Level Timer Driver (llTimer)
The stack code requires a very basic simple time function. It consists of two parts: a function API, which
can be called from the stack to get the current time, and a scheduler that sends timer event notifications
every 100ms using the STKEVENT event object.

D.3.1 Function Overview

Application Functions:
_llTimerInit() Initialize Timer Environment
_llTimerShutdown() Shutdown Timer Environment

Kernel Layer Functions:
llTimerGetTime() Get the Current Time
llTimerGetStartTime() Get the Initial Startup Time

D.3.2 Low-Level Timer API Functions
The following functions are required.

_llTimerInit Initialize Timer Environment

Syntax void _llTimerInit(STKEVENT_Handle hEvent, uint32_t ctime);

Return Value None.

Description This function is called to initialize the timer environment, and to set the initial time. The
value of ctime is the number of seconds elapsed from a known reference. An initial value
of zero is also acceptable. The stack software is only tracks relative time. Take care
when setting this value because the stack does not manage the timer value wrapping.
This occurs every 136 years, or in 2116 if time is based off of Jan 1, 1980.

Every 100mS, the timer driver will indicate a timer event to the event object specified by
hEvent. This STKEVENT object is discussed in Section A.6.

_llTimerShutdown Shutdown Timer Environment

Syntax void _llTimerShutdown();

Return Value None.

Description This function is called when shutting down the system, to shut down and clean up the
timer environment.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com llTimerGetTime — Get Current Time in Seconds and Milliseconds

237SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llTimerGetTime Get Current Time in Seconds and Milliseconds

Syntax uint32_t llTimerGetTime(uint32_t *pMSFrac);

Description Returns the number of seconds that have elapsed since the timer driver was started. If
the pointer pMSFrac is non-zero, the function writes the fractional seconds (in
milliseconds) to this location (0 to 999).

NOTE: Although the stack does not require real time, do not simply use a
millisecond timer and divide by 1000, as the value will wrap every 50
days. Device drivers should attempt to provide a time value accurate
down to millisecond granularity.

llTimerGetStartTime Get the Initial Startup Time

Syntax uint32_t llTimerGetStartTime();

Return Value Initial start time in seconds.

Description Returns the initial start time that was passed to _llTimerOpen().

D.4 Low-Level Packet Driver (llPacket)
The stack code requires a very basic packet function library. Note that although the high level packet API
is documented here, the HAL contains a generic packet driver that implements this API. It is more efficient
to use the standard llPacket driver and provide a hardware specific mini-driver than to implement the
llPacket API from scratch. The llPacket mini-driver is described in the support package documentation for
your hardware platform.

D.4.1 Function Overview

Application Functions:
_llPacketInit() Initialize Driver Environment and Enumerate Devices
_llPacketShutdown () Shutdown Driver Environment
_llPacketServiceCheck() Check for Packet Activity

Kernel Layer Functions:
llPacketOpen() Open Driver and Bind Logical Ether Object to Device Id
llPacketClose() Close Driver and Unbind Logical Ether Object from Device Id
llPacketSetRxFilter() Set Packet Receive Filter
llPacketGetMacAddr() Get MAC address
llPacketGetMCastMax() Get the Maximum Number of Multicast Addresses
llPacketGetMCast() Get Multicast Address List
llPacketSetMCast() Set Multicast Address List
llPacketService() Service a Queued Packet
llPacketSend() Send a Packet
llPacketIoctl() Execute Driver Specific IOCTL command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Low-Level Packet Driver (llPacket) www.ti.com

238 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

D.4.2 Low-Level Packet API Functions
The low-level support layer must provide the following functions:

_llPacketInit Initialize Driver Environment and Enumerate Devices

Syntax uint32_t _llPacketInit(STKEVENT_Handle hEvent);

Return Value Returns the number of physical packet devices.

Description This function is called by NETCTRL to initialize the packet driver environment. This
function also enumerates all the physical packet devices in the system, and returns a
device count. The stack will then call the llPacketOpen() function once for each physical
device indicated.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a packet is received. This STKEVENT object is discussed in Section A.6.

_llPacketShutdown Shutdown Driver Environment

Syntax void _llPacketShutdown();

Return Value None.

Description This function is called by NETCTRL to indicate a final shutdown of the packet driver
environment. When called, there should be no currently open packet drivers, and
_llPacketInit() will be called again before any call to llPacketOpen().

_llPacketServiceCheck Check for Ethernet Packet Activity

Syntax void _llPacketServiceCheck(uint32_t fTimerTick);

Return Value None.

Description This function is called by NETCTRL to check if packets are available from the Ethernet
device. In a polling system, this function is called continuously. In an interrupt driven
semaphore system, it is called when packet activity is indicated via the STKEVENT
object, and also by the scheduler at 100ms timer intervals for dead man polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100ms timer tick has occurred.

If any new packets are detected from within this function, the packet driver should signal
the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT_signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.6.

llPacketOpen Open Driver and Bind Logical Ether Object to Device ID

Syntax uint32_t llPacketOpen(uint32_t dev, void *hEther);

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level packet driver specified by the one's based index dev. The maximum
value of dev is the number of devices returned from the _llPacketInit() function. When
opening the device, the packet driver should bind the physical index with the logical
Ether object handle specified in hEther. This handle is used in receive indications to the
stack.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com llPacketClose — Close Driver and Unbind Logical Ether Object from Device ID

239SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llPacketClose Close Driver and Unbind Logical Ether Object from Device ID

Syntax void llPacketClose(uint32_t dev);

Return Value None.

Description Closes the low level packet driver specified by the one's based index dev. The maximum
value of dev is the number of devices returned from the _llPacketInit() function. After this
call, the packet driver should no longer attempt to indicate received packets to the stack.

llPacketSetRxFilter Set Packet Receive Filter

Syntax void llPacketSetRxFilter(uint32_t dev, uint32_t filter);

Return Value None.

Description Called to set the types of packets that should be received via the receive indication
function. Each level of filter is inclusive of the previous level. They are:

ETH_PKTFLT_NOTHING No Packets
ETH_PKTFLT_DIRECT Only directed Ethernet
ETH_PKTFLT_BROADCAST Directed plus Ethernet Broadcast
ETH_PKTFLT_MULTICAST Directed, Broadcast, and selected Ethernet Multicast
ETH_PKTFLT_ALLMULTICAST Directed, Broadcast, and all Multicast
ETH_PKTFLT_ALL All packets

llPacketGetMacAddr Get MAC Address

Syntax void llPacketGetMacAddr(uint32_t dev, unsigned char *pbData);

Return Value None.

Description Copies the 6 byte MAC address of the physical device index dev into the supplied data
buffer.

llPacketGetMCastMax Get the Maximum Number of Multicast Addresses

Syntax uint32_t llPacketGetMCastMax(uint32_t dev);

Return Value The maximum number of 6 byte MAC addresses that can be supplied for
llPacketSetMCast().

Description Called to get the maximum number of multicast addresses that can be supported on the
physical packet device.

llPacketGetMCast Get Multicast Address List

Syntax uint32_t llPacketGetMCast(uint32_t dev, uint32_t maxaddr, unsigned char *pbAddr);

Return Value The number of 6 byte MAC addresses written to pbAddr.

Description Called to get the current list of multicast addresses installed on the physical device. The
maximum size of the list (supplied as an address count) is in maxaddr. The list is a
contiguous stream of 6 byte addresses pointed to by pbAddr. The function returns the
number of addresses in the list supplied.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

llPacketSetMCast — Set Multicast Address List www.ti.com

240 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llPacketSetMCast Set Multicast Address List

Syntax void llPacketSetMCast(uint32_t dev, uint32_t addrcnt, unsigned char *pbAddr);

Return Value None.

Description Called to install a list of multicast addresses on the physical device. The size of the list
(supplied as an address count) is in addrcnt. The list is a contiguous stream of 6 byte
addresses pointed to by pbAddr. The new list preempts any previously installed list, and
thus an address count of ZERO removes all multicast addresses.

llPacketService Service a Queued Packet

Syntax void llPacketService();

Description This function is called to inform the driver that it may now indicate any queued packet
buffers to the Ether object corresponding to the physical ingress device. Packet drivers
must internally queue their own packets. Queued packets cause events to be sent to the
scheduler that will in turn call this function.

Packets are passed to the Ether object via EtherRxPacket().

llPacketSend Send a Packet

Syntax void llPacketSend(uint32_t dev, PBM_Handle hPkt);

Description Called to send a packet out the physical packet device indicated by dev. The information
about the packet (size and location) is contained in the PBM packet buffer specified by
the handle hPkt. Once the packet has been sent, the packet buffer must be freed by
calling PBM_free().

The PBM packet buffer object is described in detail in Section A.3.

llPacketIoctl Execute Driver Specific IOCTL Command

Syntax uint32_t llPacketIoctl(uint32_t dev, uint32_t cmd, void *arg);

Return Value This function returns 1 for success.

Description Called to execute the driver specific IOCTL command. For detailed information about the
set of commands specific to your device, check the NDK Support Package document of
your hardware platform.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Low-Level Serial Port Driver (llSerial)

241SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

D.5 Low-Level Serial Port Driver (llSerial)
In the current directory structure, the serial port driver (llSerial) may or may not be part of the HAL
directory (as it is an optional component). However, it is part of the HAL architecture, and should be
programmed using the same guidelines used for the llTimer and llPacket drivers..

D.5.1 Function Overview

Application Functions:
_llSerialInit() Initialize Driver Environment and Enumerate Devices
_llSerialShutdown() Shutdown Driver Environment
_llSerialServiceCheck() Check for packet activity
_llSerialSend() Send Raw Data to the Serial Port

Kernel Layer Functions:
llSerialOpen() Open Driver in Character Mode
llSerialClose() Close Driver Character mode
llSerialOpenHDLC() Open Driver HDLC Session
llSerialCloseHDLC() Close Driver HDLC Session
llSerialConfig() Set Serial Port Configuration
llSerialHDLCPeerMap() Update the HDLC encoding peer CMAP
llSerialService() Service HDLC Packets
llSerialSendPkt() Send a Serial Data Packet

D.5.2 Low-Level Serial API Functions
The low level support layer must provide the following functions:

_llSerialInit Initialize Driver Environment and Enumerate Devices

Syntax uint32_t _llSerialInit(STKEVENT_Handle hEvent);

Return Value Returns the number of physical serial devices.

Description This function is called by NETCTRL to initialize the system to use the serial port. It also
enumerates all the physical devices in the system, and returns a device count. The stack
will then call the llSerialOpen() function and/or the llSerialOpenHDLC() function for each
physical device it requires.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a serial packet (or raw data) is received. This STKEVENT object is discussed
in Section A.6.

_llSerialShutdown Shutdown Driver Environment

Syntax void _llSerialShutdown();

Return Value None.

Description This function is called by NETCTRL to indicate a final shutdown of the serial driver
environment. When called, there should be no currently open serial drivers, and
_llSerialInit() will be called again before any call to llSerialOpen() or llSerialOpenHDLC().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

_llSerialServiceCheck — Check for Serial Port Activity www.ti.com

242 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

_llSerialServiceCheck Check for Serial Port Activity

Syntax uint32_t _llSerialServiceCheck(uint32_t fTimerTick);

Return Value None.

Description This function is called by NETCTRL to check if serial packets (or data) are available from
the serial device. In a polling system, this function is called continuously. In an interrupt
driven semaphore system, it is called when packet activity is indicated via the
STKEVENT object, and also by the scheduler at 100mS timer intervals for dead man
polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100mS timer tick has occurred.

If any new serial packets are detected from within this function, the packet driver should
signal the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT_signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.6.

Finally, if the driver is only open in character mode (not HDLC), and there are characters
for the character mode device waiting, they are passed into the user application from this
function by calling character mode input callback function passed to llSerialOpen().

_llSerialSend Send Raw Data to the Serial Port

Syntax uint32_t _llSerialSend(uint32_t dev, unsigned char *pBuf, uint32_t len);

Return Value The number of bytes sent to the serial port.

Description This function is called by the application to send raw unpacketized serial data to the
serial port. This function may only be called when the serial driver is not open for HDLC
mode. The function returns the number of bytes sent, which will always be either the
number of bytes it was told to send specified by the len parameter, or NULL on an error.

Note that this function is provided mainly for convenience to the application programmer.
The implementation of this function is to packetize the data specified in the pBuf and len
parameters into a PBM buffer, and then call SerialSendPkt().

llSerialOpen Open Driver in Character Mode

Syntax uint32_t llSerialOpenCharmode(uint32_t dev, void (*pCharmodeRxCb)(char c));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in character
mode. The maximum value of dev is the number of devices returned from the
_llSerialInit() function.

Character mode input simply passes all characters received at the port to the character
mode receiver.

When opening the device, the driver should save the callback function pointer
pCharmodeRxCb. This function is called for each character received while in character
mode when the _llSerialServiceCheck() function is called. Serial drivers queue up serial
data, signaling an event to the STKEVENT object passed to _llSerialInit(), and then pass
the serial data to the application callback function from within the _llSerialServiceCheck()
function.

When the driver is opened in HDLC mode, no character mode input is received. When
the HDLC mode is closed, the character mode becomes active again.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com llSerialClose — Close Driver Character Mode

243SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llSerialClose Close Driver Character Mode

Syntax void llSerialClose(uint32_t dev);

Return Value None.

Description Closes the character mode of the low level serial driver specified by the one's based
index dev. Once called, the serial driver should not attempt to call any character mode
callback function.

llSerialOpenHDLC Open Driver HDLC Session

Syntax uint32_t llSerialOpenHDLC(uint32_t dev, void *hHDLC, void (*cbTimer)(void *h), void
(*cbHDLCInput)(PBM_Handle hPkt));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in HDLC mode.
The maximum value of dev is the number of devices returned from the _llSerialInit()
function.

The hHDLC parameter is a handle to the HDLC device. Any HDLC packet received has
its Rx interface in the PBM packet buffer set to this device handle.

The callback function cbTimer is called by the driver every second to drive any timeouts
required by the caller. Note the serial driver calls cbTimer from kernel mode.

Serial drivers queue up HDLC packets. When a complete HDLC packet is ready, the
driver signals an event to the STKEVENT object passed to _llSerialInit(), and then
passes the HDLC packet (as a PBM packet buffer) to the application callback function
cbHDLCInput from within the llSerialService() function.

This is similar to character mode operation, but different because the entire packet is
passed over at one time, and it is done from the llSerialService() function, not from
_llSerialServiceCheck() as with character mode data. The cbHDLCInput function is
called from kernel mode while the character mode application callback is not.

When the driver is in HDLC mode, the driver receives serial data as HDLC packets, and
creates a PBM packet buffer object to hold each HDLC frame. Note that the HDLC flag
character (0x7E) is always removed from the HDLC packets. The HDLC packet passed
to the cbHDLCInput function is formatted as follows:

Addr (FF) Control (03) Protocol Payload CRC
1 1 2 1500 2

The serial driver processes the HDLC packet data as it arrives to remove any escaped
characters and to verify the CRC. When a HDLC packet is ready, the driver signals an
event to the STKEVENT object.

llSerialCloseHDLC Close Driver HDLC Session

Syntax void llSerialCloseHDLC(uint32_t dev);

Return Value None.

Description Closes the HDLC mode of the low level serial driver specified by the one's based index
dev. Once called, the serial driver should not attempt to indicate HDLC frame buffers to
the scheduler or stack. Any queued buffers should be flushed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

llSerialConfig — Configure Serial Port www.ti.com

244 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llSerialConfig Configure Serial Port

Syntax void llSerialConfig(uint32_t dev, uint32_t baud, uint32_t mode, uint32_t flowctrl);

Return Value None.

Description This function is called to configure the serial port attributes for the indicated device.

The value of baud is the baud rate, and must be an even denominator of 230400, up to
a maximum baud rate of 230400. For example: 230400, 115200, 57600, 38400, 28800,
and 19200 are all legal values, while 56000 is not.

The value of mode indicates the mode of the device including data bits, parity, and stop
bits. Only the two most commonly used modes are defined:

HAL_SERIAL_MODE_8N1 8 Data Bits, No Parity, 1 Stop Bit
HAL_SERIAL_MODE_7E1 7 Data Bits, Even Parity, 1 Stop Bit

The value of flowctrl indicates the desired flow control operation. Legal values for this
parameter are:

HAL_SERIAL_FLOWCTRL_NONE No Flow Control
HAL_SERIAL_FLOWCTRL_HARDWARE Hardware Flow Control

This function can be called before or after the device is opened.

llSerialHDLCPeerMap Update the HDLC Encoding Peer CMAP

Syntax void llSerialHDLCPeerMap(uint32_t dev, uint32_t peerMap);

Return Value None.

Description When in HDLC mode, the serial driver sends all serial data as HDLC frames. This
requires it to add the frame flag characters, and do any character escaping necessary to
encode the frame for transmission over the serial link. This includes escaping characters
that appear in the peer's character map (CMAP).

By default, the CMAP is set to 0xFFFFFFFF. For character codes 0 to 31, if the bit
(1<<charval) is set in the CMAP, then the serial driver performs an HDLC escape
sequence when sending the character in an HDLC frame.

This function allows the application to update the peer's CMAP as it gets information
from the peer allowing it to do so.

llSerialService Service HDLC Packets

Syntax void llSerialService();

Return Value None.

Description This function is called to inform the driver that it may now indicate any queued HDLC
buffers to the HDLC callback function corresponding to the serial port. Serial drivers
internally queue a PBM packet buffer for each HDLC frame received. When a new
packet is received, the driver signals the STKEVENT object, which will cause this
function to be called by the network scheduler.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com llSerialSendPkt — Send a Serial Data Packet

245SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Hardware Adaptation Layer (HAL)

llSerialSendPkt Send a Serial Data Packet

Syntax void llSerialSendPkt(uint32_t dev, PBM_Handle hPkt);

Return Value None.

Description Called to send a serial data packet out the physical serial device indicated by dev. The
information about the packet (size and location) is contained in the PBM packet buffer
specified by the handle hPkt. Once the packet has been sent, the packet buffer must be
freed by calling PBM_free().

The data is treated as raw bytes when the driver is not open in HDLC mode. When in
HDLC mode, the data packet is an HDLC frame with the following format:

Addr (FF) Control (03) Protocol Payload CRC
1 1 2 1500 2

Note that the CRC on the packet does not need to be valid. The serial port driver will
validate the CRC when the packet is sent. However, the 2 byte space-holder for the
CRC must be present in the packet.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

246 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

Appendix E
SPRU524K–May 2001–Revised October 2017

Web Programming with the HTTP Server

The easiest way to get information from an embedded network device is through the web server. The
HTTP server pulls files from the embedded file system (EFS) that is included in the NDK software
package's OS adaptation layer. These files can be compiled into the application, located on a network file
system, a memory-based file system, or on a physical disk interfaced to the DSP. The NDK HTTP server
accesses files through the EFS application interface, which can be ported to any file system desired. The
server supports the HTTP/1.0 protocol.

Common Gateway Interface (CGI) programs execute on a web server and process input from a user.
They are useful as interfaces to services running on the device. Writing CGI programs for the NDK is
relatively simple and only requires a few specific functions. A single CGI interface function can be written
to support both HTTP POST requests and GET requests.

The CGI program is built from a single C callable entry-point (or CGI function). Each CGI function is called
on its own independent task thread. The task threads are created with a priority of OS_TASKPRINORM
and a stack size of OS_TASKSTKHIGH. Note that consecutive calls to the same CGI function will not be
on the same task thread. Thus, CGI functions cannot share sockets from one call to the next. In general,
there is no persistent data in a CGI function.

Also, file detection of CGI functions is done purely on the file extension. If the file ends with .cfg (case
insensitive), then a POST or a GET of the file will result in a call to the CGI function mapped to that
filename. A POST call to a non-CGI file is not allowed.

Topic ... Page

E.1 Adding Web Content... 247
E.2 Writing CGI Functions... 248
E.3 HTTP Authentication ... 252
E.4 CGI Function Example .. 254
E.5 HTTP Server Exported Functions ... 256

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Adding Web Content

247SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

E.1 Adding Web Content

E.1.1 Operation
The HTTP server allows access to files using the embedded file system (EFS) API. The default installation
of this API is a RAM based file system that resides in the OS adaptation layer. This OS adaptation layer
allows the HTTP server to work on any file storage device contained in the system.

The default RAM based file system is built up mainly from a standard file I/O API, with the addition of
some private functions. These private functions allow files to be created and destroyed by passing in
memory pointers to where they are stored. These functions are fully documented in Section 2.6.

E.1.2 Converting Standard HTML Files
The example code supplied with the NDK adds Web pages by converting them from binary HTML files
into data arrays declared in C. An MS-DOS utility binsrc is supplied to allow conversion of files to a C
array.

The calling format for binsrc is:

binsrc <input file name> <output file name> <identifier>

Parameters:

input file name File to be converted
output file name Name for file containing C data representation of the input file name
identifier C name for data

For example, to convert an HTML file default.htm for use by EFS, the following command could be
executed from the Windows® command window:
binsrc default.htm default.c DEFAULT

The file default.c would contain the following:
#define DEFAULT_SIZE 1610
unsigned char DEFAULT[] = {0x3C, 0x21, 0x64, 0x6F, 0x63, 0x74, 0x79, 0x70, 0x65,

0x20, 0x68, 0x74, ...

E.1.3 Declaring HTML Files to EFS
Once the HTML file is converted to a memory image, the file is declared to the EFS file system by calling
the function efs_createfile(). All the HTML files are typically created at the same time, during initialization,
and before the HTTP server is actually invoked. In the example code, there are two functions used,
AddWebFiles() and RemoveWebFiles(). These functions include all the code necessary to initialize and
clean up the EFS file environment.

An example implementation of AddWebFiles() is shown below. Note the addition of two file creation calls.
The first call to efs_createfile() creates the file declared in default.c as converted from the file default.htm.
The second call creates a CGI file that is a C function entry-point. When a post is attempted to
sample.cgi, the function cgiSample() is called.
// Include our externally converted pages
#pragma DATA_SECTION(DEFAULT, "HTMLDATA");
#include "default.c"

// Declare our CGI function entry point
static int cgiSample(SOCKET htmlSock, int ContentLength);

// Our function to initialize EFS with our Web files
void AddWebFiles(void)
{

efs_createfile("index.html", DEFAULT_SIZE, DEFAULT);
efs_createfile("sample.cgi", 0, (unsigned char *)cgiSample);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Adding Web Content www.ti.com

248 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

Once the above code is run, the EFS system is ready for the HTTP server to serve up the content. Note
the inclusion of the #pragma to place the converted Web page into a memory section named HTMLDATA.
This allows the page to be placed out of the way by specifying the section's location in the linker
command file.

E.1.4 Cleaning up HTML Files
Because the EFS system uses memory records to simulate file content from static data, the system
should be flushed or cleaned when shutting down or rebooting. In the example code, the function
RemoveWebFiles() is called when the EFS files are no longer required.

An implementation of RemoveWebFiles() that corresponds to the AddWebFiles() function shown above
would be as follows:
void RemoveWebFiles(void)
{

efs_destroyfile("sample.cgi");
efs_destroyfile("index.html");

}

E.2 Writing CGI Functions

E.2.1 Adding Functions to the EFS
CGI programs must be in the EFS for the HTTP server to see them. An example of this was shown in the
previous section by adding an entry for the file sample.cgi that translated into the C function cgiSample().
Whenever a POST is made to the file sample.cgi, the cgiSample() function is called.

E.2.2 CGI Function Declaration
The standard declaration for a CGI function in C is:

Function CGI Function Declaration

Syntax static int cgiSample(SOCKET htmlSock, int ContentLength, char *pArgs);

Parameters

htmlSock The network socket on which the HTTP POST was issued
ContentLength The size of the POST content waiting on socket htmlSock
pArgs Pointer to NULL terminated arguments from a CGI 'GET'

Return Value All CGI functions return 1 if the input socket is left open, and 0 if it is closed or
transferred to another thread.

Description This function reads in the HTTP POST content from the socket htmlSock, and writes out
an HTML reply based on the function and the form content read. The size of the form
content is specified by ContentLength.

The CGI function must decide whether or not to close the socket on which the POST
arrived. By default, the socket is normally left open, but in some cases may need to be
closed. It is also possible that the CGI function may wish to take control of the socket
and close it at a later point in time.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Writing CGI Functions

249SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

The function must return either 0 or 1 to indicate the status of the socket htmlSock. If the
socket is closed or passed on to another task, the function returns 0. If the socket is still
active, the function returns 1.

When there is any doubt whether or not to close the socket, the socket is typically left
open for the HTTP server to close when appropriate.

The ContentLength argument is the size of the CGI argument still to be read from the
socket. On a CGI GET operation, the arguments have already been read from the
socket and are passed as a NULL terminated string in the pArgs parameter. Note that in
any given CGI call, either one or both of these parameters can be NULL. It is also
possible for pArgs to point to a zero length string.

E.2.3 Parsing CGI Form Data
The first task a CGI function will most likely perform is to read the POST form data from the socket. This
can be done easily because two of the calling arguments to the function are the socket to read and the
size of the data. To remain reentrant, the CGI function should allocate its memory buffer to hold the form
data.

After reading in the data from the socket, each form entry can be parsed from the from by using the
supplied example function: cgiParseVars().This function can be used to parse the NULL terminated option
string that may also be passed to the CGI function. The formal definition of the function is shown below.
The source code for cgiParseVars() is included in the /ti/ndk/inc/tools/cgiparse.c file.

cgiParseVars Parse CGI Form POST Input

Syntax char *cgiParseVars(char PostInput[], int *pParseIndex);

Parameters

PostInput[] Pointer to the form data read in from the HTTP request socket
pParseIndex Pointer to an int holding the current parse position (initially zero)

Return Value A pointer to a NULL terminated string within PostInput[], signifying the name or value of
a form entry. Also updates the value pointed to by pParseIndex.

Description Reads input from a CGI POST operation pointed to by PostInput[] at an offset pointed to
by pParseIndex and returns in sequence a pointer to the name and then the value of
each post entry. This function modifies the data in PostInput[]. It also updates the current
parsing position in the variable pParseIndex. The parse index must be set to 0 on initial
call.

On the initial call to this function, the integer value pointed to by pParseIndex should
contain zero.

On reaching the end of the input, the function sets pParseIndex to -1. If called again, the
function will return a NULL pointer and leave the value of pParseIndex unchanged.

E.2.4 Parsing CGI Multi-Part Form Data
In some cases, it is preferable to use a multi-part form when posting CGI data. The multi-part form is
specified in the HTML code by adding the tag ENCTYPE="multipart/form-data" to the form type. When
this form type is used, form entries are sent in a slightly different format than with the standard form, thus
an alternate CGI parsing function is required.

After reading in the data from the socket, each form entry can be parsed from the multi-part form by using
the supplied example function: cgiParseMultiVars().This function parses the post data into individual
records. The formal definition of the function is shown below.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

cgiParseMultiVars — Parse CGI Form Multi-Part POST Input www.ti.com

250 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

cgiParseMultiVars Parse CGI Form Multi-Part POST Input

Syntax int cgiParseMultiVars(char *buffer, int buflen, CGIPARSEREC *recs, int maxrecs);

Parameters

buffer Buffer holding the entire post content
buflen Length of the post content
recs Pointer to an array of records of type CGIPARSEREC
maxrecs The maximum number of records that can be written to recs

Return Value The number of valid records parsed, or -1 on a parsing error.

Description Reads input from a CGI POST operation pointed to by buffer, with length buflen, and
returns a collection of CGIPARSEREC records to recs. The caller must provide buffer
space to hold recs, and indicate the maximum number of records that can be written to
the buffer in maxrecs.

The CGIPARSEREC record is defined as follows:
typedef struct {

char *Name; // NULL terminated entry "name"
char *Filename; // NULL terminated "filename" or NULL if not a file
char *Type; // NULL terminated "Content-Type" or NULL if no type
char *Data; // Pointer to file or entry data (NULL term for string)
int DataSize; // Length of data (valid on strings and file data)

} CGIPARSEREC;

This function modifies the data in buffer to add string delimiters. This function should
only be called once to parse all entries from the form data.

E.2.5 Sending HTTP/HTML Replies
After parsing the CGI POST form data, the CGI function should send some sort of reply to the requesting
client. The reply takes the form of an HTTP message signifying success or error, potentially followed by
HTML data.

The HTTP server supplies several functions to aid in building and sending HTTP data over the socket. In
addition, the example applications contain various MACROS than can also help in initially developing a
CGI function. The HTTP functions are fully described at the end of this section, but the main reply
functions are usually one of the following:

httpSendFullResponse() Send full HTTP response, including a status code and an HTML file
httpSendErrorResponse() Send full HTTP error response, including an HTML message

or
httpSendStatusLine() Send HTTP status response, including a status code and content

type
httpSendEntityLength() Send HTTP content length and terminate HTTP header (optional)
httpSendClientStr() Used after httpSendStatusLine() to send content data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Writing CGI Functions

251SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

As an example of using these functions, consider two response MACROS included in
/ti/ndk/inc/nettools/inc/httpif.h.
//
// Common error responses
//
#define http404(Sock) httpSendErrorResponse(Sock, HTTP_NOT_FOUND)
#define http501(Sock) httpSendErrorResponse(Sock, HTTP_NOT_IMPLEMENTED)

These MACROS use the error response function to send a full error message to the client. Alternately, the
httpSendStatusLine() function can be used to start a message that is completed by the application. Under
normal circumstances, a CGI function will use the httpSendStatusLine() function to send an OK message
to the client, followed by the httpSendClientStr() function to send client data in the form of a NULL
terminated string. Note that an additional carriage return and line feed are required to separate the header
from the HTML data.

For example, the following code sends a quick Success message.
// Send response status
httpSendStatusLine(Sock, HTTP_OK, CONTENT_TYPE_HTML);

// Terminate the response header
httpSendClientStr(Sock, CRLF);

// Send the Success Message
httpSendClientStr(Sock, "<html><h1>Success!</h1>
</html>");

Note that the httpSendClientStr() function replaces the httpSendClientData()function from earlier releases
of the NDK. For data sizes that can be represented by an integer, client data can also be sent simply by
calling the sockets send() function.

E.2.6 HTML Error Response
The HTTP server generates a generic error response message for several possible HTTP errors. The
function httpSendErrorResponse() is part of this function. The error response consists of two parts, the
HTTP header and the HTML response message. It is the HTML message that is displayed to the web
browser when an error occurs.

The default HTML message used by the HTTP server is quite plain. For example, on an error 404, it
generates:

<html><body><h1>HTTP/1.0 404 - File Not Found</h1></body></html>

Some application developers may wish to enhance the HTML generation of errors. This is done by
hooking a callback function into the HTTP server error processing. The callback hook is defined as:

_extern int (*httpErrorResponseHook)(SOCKET Sock, int StatusCode);

Any function using the callback must generate the content length tag, and then the entire HTML response
page. (The content length is the length of the HTML response.) It can be written using the
httpSendEntityLength() function.

If the application does not wish to handle the error, it can return NULL indicating that it did not handle the
error. In this case, the HTTP server will use the default HTML. If the application returns 1, this tells the
HTTP server that the HTTP response was completed by the callback function.

The httpErrorResponseHook function pointer is NULL by default. If an application needs to install a
callback to this pointer, the value should be set before the HTTP server is initialized.

As an example of how the callback function may look, here is the default error response function. Any
substitute function provided by the application would be quite similar:
typedef struct _codestr {

int code;
char *string;

} CODESTR;

// Note MAX string length is 30 (since Data[] is 80 bytes)
CODESTR codestr[] = {

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

HTTP Authentication www.ti.com

252 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

{ HTTP_OK, " OK" },
{ HTTP_NO_CONTENT, " No Content" },
{ HTTP_AUTH_REQUIRED, " Authorization Required" },
{ HTTP_NOT_FOUND, " File Not Found" },
{ HTTP_NOT_IMPLEMENTED, " Not Implemented" },
{ HTTP_NOT_ALLOWED, " Not Allowed" },
{ 0, " Unknown" }

};

int httpSendErrorHTML(SOCKET Sock, int StatusCode)
{

char Data[80];
int I;

// Build the HTML response into Data[]
sprintf(Data, "<html><body><h1>HTTP/1.0 %3d -", StatusCode);
for(i=0;codestr[i].code && codestr[i].code!=StatusCode;i++);
strcat(Data, codestr[i].string);
strcat(Data,"</h1></body></html>");

// Send the length of the HTML response
// (this also terminates the HTTP header)
httpSendEntityLength(Sock, strlen(Data));

// Send the respone data
httpSendClientStr(Sock, Data);
return(1);

}

E.3 HTTP Authentication
The HTTP server included in the NDK supports the Basic method of HTTP authentication, which is MIME
encoding of the username and password.

As with other HTTP functionality, the HTTP server calls an EFS function to perform file access
authentication. The EFS function used is efs_filecheck(). The function is passed the filename of the file to
be authenticated, and the username and password of the user attempting to access the file.

The exact method used to designate a file as protected and to authorize individual access, is determined
by the implementation of the efs_filecheck() function. This section describes the operation of the example
implementation of efs_filecheck() provided in the NDK.

E.3.1 Authorization Realms
Regardless of implementation of the authentication scheme at the EFS layer, the HTTP server
understands the authority system to be based on four authorization realms. The realms are enumerated 1
to 4, and the authorization realm index (when required) is returned to the HTTP server by the
efs_filecheck() function.

When the HTTP server indicates to the client that authorization is required, it supplies the name of the
authorization realm to the client. The application programmer can specify the name of each authorization
realm by using the configuration system. The configuration tag CFGTAG_SYSINFO is used for storing
authorization realm names. The item numbers used for the four realms are CFGITEM_SYSINFO_REALM1
through CFGITEM_SYSINFO_REALM4.

For example, to set the name of authorization realm 1, while building the configuration, the programmer
could write:
// Name our authentication group for HTTP (Max size = 31)
// This is the authorization "realm" name returned by the HTTP
// server when authentication is required on group 1.
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_SYSINFO_REALM1,

0, 30, (unsigned char *)"DSP_CLIENT_DEMO_AUTHENTICATE1", 0);

If no realm name is supplied in the configuration, then a default realm name is used by the HTTP server.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com HTTP Authentication

253SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

E.3.2 User Accounts
How and whether user accounts are stored in the system is entirely up to the system programmer. The
user account is only accessed directly in the efs_filecheck() function.

However, the default implementation of efs_filecheck() uses the configuration system to access
usernames and passwords. These user accounts can be added to the configuration system at any time.
As an example, the following code adds a sample account to access authorization realm 1. The username
and password are simply username and password respectively:
CI_ACCT CA;

// Create a sample user account who is a member of realm 1.
strcpy(CA.Username, "username");
strcpy(CA.Password, "password");
CA.Flags = CFG_ACCTFLG_CH1; // Make a member of realm 1

rc = CfgAddEntry(hCfg, CFGTAG_ACCT, CFGITEM_ACCT_REALM,
0, sizeof(CI_ACCT), (unsigned char *)&CA, 0);

E.3.3 Designating Protected Files
As with the authorization user accounts, the method of how a file is designated as protected depends on
the implementation of the efs_filecheck() function.

In the default implementation, files are grouped for authorization by their first level directory. For example,
the files index.html and banner.gif would both carry the same authorization requirements, while the files
mydir/sample.cgi and mydir/sample.htm would carry a different authorization. The file group is marked for
authorization by placing a special file in the directory, named %R%. This file is exactly 4 bytes long, and
contains an integer value, being the realm index 1 to 4. If there is no %R% file in the directory, then no
authorization is required.

For example, the following code sets up a small web page in an unprotected space (the root directory),
and then sets up sample.cgi and sample.htm in a protected directory, requiring authentication on
authorization realm 1.
//
// The authentication scheme works by looking for files named %R% in the subdirectory
// of any given filename, or in the root directory if no subdirectory exits. The file
// contains a single 4 byte int that is the authentication realm index. If there is
// no file, there is no authentication.
//
// Note for this implementation, only the first subdirectory level is validated.
//
// The int "OurRealm" will be our "%R%" realm file, forcing any file
// located in the same directory to be authenticated on realm 1. The
// system supports realms 1 to 4.
//
// Note that we are only going to protect the "protected/" subdir,
// but it is also possible to protect the entire web site by putting
// a %R% file in the root. Also, you can have the root protected
// on (say) realm 1, and a subdir on (say) realm 2, allowing for
// "users" (members of realm 1) and "superusers" (members of both
// realm 1 and realm 2).
//
static int OurRealm = 1;

void AddWebFiles(void)
{

efs_createfile("index.html", DEFAULT_SIZE, DEFAULT);
efs_createfile("logobar.gif", LOGOBAR_SIZE, LOGOBAR);
efs_createfile("dspchip.gif", DSPCHIP_SIZE, DSPCHIP);
efs_createfile("inform.cgi", 0, (unsigned char *)cgiInform);
efs_createfile("protected/%R%", 4, (unsigned char *)&OurRealm);
efs_createfile("protected/sample.htm", SAMPLE_SIZE, SAMPLE);
efs_createfile("protected/sample.cgi", 0, (unsigned char*)cgiSample);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

CGI Function Example www.ti.com

254 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

E.4 CGI Function Example
As an example of using all the concepts described so far, consider a simple example. Assume an
applications programmer wishes to create a Web form that inputs and processes user data.

E.4.1 Create the HTML Page
The HTML page can be created with an HTML editor, or by hand. For this example, there is an HTML
page that contains a simple CGI form. The contents of the example page, default.htm are shown
below.
<html>
<head><title>CGI Sample</title></head>
<body>

<h1>CGI Sample Form</h1>
<hr WIDTH="100%">

Fill in the form fields and hit 'Submit'.
<form name="my_form" method="POST" action="sample.cgi">

Name: <input type="text" name="name">

I dislike spam: <input type="checkbox" name="spam" value="no!">

Favorite Pizza:

<input type="radio" name="pizza" value="pepperoni"> Pepperoni
<input type="radio" name="pizza" value="sausage"> Sausage
<input type="radio" name="pizza" value="cheese" checked> Cheese
<input type="radio" name="pizza" value="other"> Other

Favorite Color: <select name="color">
<option value="red"> Red
<option value="green"> Green
<option value="blue"> Blue
<option value="yellow"> Yellow
<option value="cyan"> Cyan
<option value="magenta"> Magenta
<option value="black"> Black
<option value="white"> White
</select>

</p>
<input type="submit"> <input type="reset">

</form>
</body> </html>

The next step performed is to convert this HTML file to C source file, as seen in Section E.1.2. Once the
page is in C source code form, it can be added to the program.

E.4.2 Create the Base WEBPAGE Source File
Once the HTML pages are ready in source form, the main webpage.c source file is created. This file will
perform all the necessary Web processing in the example. The basic source code declares the HTML
pages as files to the EFS file system. To do this, it exports two functions called from the main network
initialization routine, AddWebFiles() and RemoveWebFiles(). Note that a CGI function is also declared to
handle processing of the CGI form contained on the Web page, called sample.cgi.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com CGI Function Example

255SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

The source code as defined so far is shown below.
static int cgiSample(SOCKET htmlSock, int ContentLength, char *pArgs)
{

char *name = 0, *spam = 0, *pizza = 0, *color = 0;
char *buffer, *key, *value;
int len;
int parseIndex;
char htmlbuf[MAX_RESPONSE_SIZE];

// The pArgs parameter is used for passing arguments
// on the address line using the '?' operator. It is
// typically not used on a CGI POST

// 1. Read in the request data

// First, allocate a buffer for the request
buffer = (char*) mmBulkAlloc(ContentLength + 1);
if (!buffer)

goto ERROR;

// Now read the data from the client
len = NDK_recv(htmlSock, buffer, ContentLength, MSG_WAITALL);
if (len < 1)

goto ERROR;

// 2. Parse request using cgiParseVars(), or a similar function

// Setup to parse the post data
parseIndex = 0;
buffer[ContentLength] = '\0';

// Process request variables until there are none left to do
{

key = cgiParseVars(buffer, &parseIndex);
value = cgiParseVars(buffer, &parseIndex);

if(!strcmp("name", key))
name = value;

else if(!strcmp("pizza", key))
pizza = value;

else if(!strcmp("spam", key))
spam = value;

else if(!strcmp("color", key))
color = value;

} while (parseIndex != -1);

// 3. Process request in some meaningful way . . .
// (OK, we really don't do this here.)

// 4. Send a response. Keep in mind the first line of the
// response should indicate whether the request was
// successful or not.

httpSendStatusLine(htmlSock, HTTP_OK, CONTENT_TYPE_HTML);

// 5. Send appropriate headers

// No more header data to send - CRLF terminates header
html(CRLF);

// 6. Send the response data

// Build our HTML response
// Here we'll just echo back the input we received
// to an HTML table.
//

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

HTTP Server Exported Functions www.ti.com

256 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

html("<html><body text=#000000 bgcolor=#ffffff>\r\n");
html("<h1>Form Information</h1>");
html(divider);
html("<table border cellspacing=0 cellpadding=5>\r\n");

if(name)
{

sprintf(htmlbuf, tablefmt, "Name:", name);
html(htmlbuf);

}

if(spam)
{

sprintf(htmlbuf, tablefmt, "Likes Spam:", spam);
html(htmlbuf);

}

if(pizza)
{

sprintf(htmlbuf, tablefmt, "Favorite Pizza:", pizza);
html(htmlbuf);
}

if(color)
{

sprintf(htmlbuf, tablefmt, "Favorite Color:", color);
html(htmlbuf);

}

html("</table>
\r\n");
html(divider);
html("Return to Main Page

\r\n");
html("</body></html>\r\n");

ERROR:
if(buffer)

mmBulkFree(buffer);

return(1);
}

E.5 HTTP Server Exported Functions
The HTTP server module exports several functions and strings to aid in the creation of a CGI function.
This section contains the formal specification for these functions. The first part of this appendix describes
how to use these functions in creating a HTTP CGI function in C.

E.5.1 Commonly Used Strings
To aid in the creation of the response data, some commonly used HTML strings can be defined. Some of
these are already defined in the HTTPIF.H file. These include the following (note that all entries, except
the first three, include a trailing space character.):

Global Name String Value
DEFAULT_NAME "index.html"
CRLF "\r\n"
SPACE " "
HTTP_VER "HTTP/1.0 "
CONTENT_LENGTH "Content-length: "
CONTENT_TYPE "Content-type: "
CONTENT_TYPE_APPLET "application/octet-stream "

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com HTTP Server Exported Functions

257SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

Global Name String Value
CONTENT_TYPE_AU "audio/au"
CONTENT_TYPE_DOC "application/msword "
CONTENT_TYPE_GIF "image/gif "
CONTENT_TYPE_HTML "text/html "
CONTENT_TYPE_JPG "image/jpeg "
CONTENT_TYPE_MPEG "video/mpeg "
CONTENT_TYPE_PDF "application/pdf "
CONTENT_TYPE_WAV "audio/wav "
CONTENT_TYPE_ZIP "application/zip "

E.5.2 Function Overview
The basic HTTP Server exported functions are as follows:

httpSendStatusLine() Send the status of this request to the client
httpSendClientStr() Send NULL terminated string data to client
httpSendFullResponse() Send a full formatted response to the client
httpSendEntityLength() Send the content length and terminate HTTP header
httpSendErrorResponse() Send a full formatted response to the client

E.5.3 HTTP Server Exported API Functions

httpSendStatusLine Send the Status of this Request to the Client

Syntax void httpSendStatusLine(SOCKET Sock, int StatusCode, char *ContentType);

Parameters

Sock Socket on which to send
StatusCode HTTP status code of the request
ContentType HTTP type string of the response

Return Value None.

Description Sends a formatted response message to Sock with the given status code and content
type. The value of ContentType can be NULL if no ContentType is required.

The status code and content type should match HTTP standard definitions. Some
content type strings are listed in Section E.5.1. The pre-defined status codes include:

HTTP_OK (200)
HTTP_NO_CONTENT (204)
HTTP_AUTH_REQUIRED (401)
HTTP_NOT_FOUND (404)
HTTP_NOT_ALLOWED (405)
HTTP_NOT_IMPLEMENTED (501)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

httpSendClientStr — Send NULL Terminated String Data to Client www.ti.com

258 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

httpSendClientStr Send NULL Terminated String Data to Client

Syntax void httpSendClientStr(SOCKET Sock, char *Response);

Parameters

Sock Socket on which to send
Response Pointer to NULL terminated string

Return Value None.

Description This function sends the indicated NULL terminated response string to the indicated client
socket. In other words, it calls strlen() and send().

httpSendFullResponse Send a Full Formatted Response to the Client

Syntax void httpSendFullResponse(SOCKET Sock, int StatusCode, char *RequestedFile);

Parameters

Sock Socket on which to send
StatusCode HTTP status code of the request
RequestedFile Pointer to filename of file to include in body

Return Value None.

Description Sends a full formatted response message to Sock, including the file indicated by the
filename pointed to by RequestedFile. The status code for this call is usually HTTP_OK.

httpEntityLength Send the Content Length and Terminate HTTP Header

Syntax void httpSendEntityLength(SOCKET Sock, int32_t EntityLength);

Parameters

Sock Socket on which to send
EntityLength Length of the entity (usually HTML page) to follow the HTTP header

Return Value None.

Description Writes out the entity length tag, and terminates the HTTP header with an additional
CRLF. Because the header is terminated, this must be the last tag written. Entity data
should follow immediately.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com httpSendErrorResponse — Send a Full Formatted Error Response to the Client

259SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Web Programming with the HTTP Server

httpSendErrorResponse Send a Full Formatted Error Response to the Client

Syntax void httpSendErrorResponse(SOCKET Sock, int StatusCode);

Parameters

Sock Socket on which to send
StatusCode HTTP status code of the request

Return Value None.

Description Sends a full formatted error response message to Sock, including a small HTML file
displaying the status code. For example, HTTP_NOT_FOUND would generate:

<html><body><h1>HTTP/1.0 404 – File Not Found</h1></body></html>

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

260 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

BSD Sockets Support

Appendix F
SPRU524K–May 2001–Revised October 2017

BSD Sockets Support

The NDK no longer provides a Berkeley Software Distribution (BSD) API support layer. This layer is now
provided by SlNetSock, which is part of the SimpleLink SDK.

Applications can access the BSD APIs via SlNetSock, but applications must not include both the BSD
headers and the NDK headers in the same compilation unit.

Topic ... Page

F.1 Using BSD Sockets Provided by SlNetSock... 261
F.2 Things to Remember About BSD Compatibility .. 261

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Using BSD Sockets Provided by SlNetSock

261SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

BSD Sockets Support

F.1 Using BSD Sockets Provided by SlNetSock

NOTE: The NDK no longer provides a Berkeley Software Distribution (BSD) API support layer. This
layer is now provided by SlNetSock, which is part of the SimpleLink SDK.

Applications can access the BSD APIs via SlNetSock, but applications must not include both
the BSD headers and the NDK headers in the same compilation unit.

To use BSD APIs, make the following changes to your application.

Update your compiler’s file search path to include the following directory within the SimpleLink SDK
installation. This allows the #include statements in an existing BSD application to be resolved.
<SIMPLELINK_SDK_INSTALL_DIR>/source/ti/net/bsd

Include the BSD socket header file.
#include <sys/socket.h>

Add a new C function that will be run as a thread. (The Task is created in the next step.) Copy the
contents of your BSD sockets code into this new Task function.

Create a new thread that will be used to run your BSD sockets code. The Task thread can be created
dynamically using the NDK’s TaskCreate() API (Section 2.2.2) or using pthread APIs, as described in the
TI Network Developer's Kit (NDK) User's Guide (SPRU523). You must ensure that the Task cannot run
until the stack is up and all IP addresses (IPv4 or IPv6) have been bound and are ready. This is usually
achieved by using a semaphore to block at the beginning of the sockets Task, and posting the same
semaphore from the NDK IP address hook function, which is called when the IPv4 address has been
bound. This prevents the Task from running the sockets code until it unblocked. Another way to prevent
the Task from running too early is to create the Task dynamically in the program at a time when the stack
is ready. For example, the Task may be created in the Network IP address hook function, which is run
when an IPv4 address is added or removed from the system. Refer to the section on "Creating a Task" in
the NDK User’s Guide (SPRU523) for details.

F.2 Things to Remember About BSD Compatibility
Remember the following issues when integrating BSD sockets code into an NDK application.

Include statement: Most BSD sockets applications should have the following include statement:
#include <sys/socket.h>

File separation: In general, a BSD application should contain BSD-style sockets code in a separate C
file. That is, BSD sockets code should not be mixed with NDK code, such as NDK sockets code or
standard (non-BSD) NDK APIs. This must be done in order to avoid type and function name conflicts
between standard NDK headers and BSD layer headers.
The file containing BSD-style code can include BSD header files (for example, sys/socket.h) and should
not need to include any NDK header file found in ti/ndk/inc.

A good rule to follow is to organize BSD sockets code into a separate file that includes only BSD style
header files along with OS related header files as needed. Code that performs NDK-specific functionality--
for example, NDK network open or close hooks, IPv6 system initialization and deinitialization calls--should
go a separate file or files that include the NDK header files found in ti/ndk/inc.

Types and domains: While BSD sockets (for example, in Linux) can support many different domains and
types (such as "PF_APPLETALK" or "SOCK_SEQPACKET"), only existing NDK socket domains and
types are supported. No support for new types or domains has been added. The domains and types
supported in the BSD layer are AF_INET and AF_INET6.

IPv6 support: In order for IPv6 sockets code to work correctly, application code must be compiled with
_INCLUDE_IPv6_CODE defined and with IPv6 enabled in XGCONF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/SPRU523
http://www.ti.com/lit/pdf/SPRU523

262 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

Appendix G
SPRU524K–May 2001–Revised October 2017

IP Version 6 (IPv6) Stack API

This section discusses use of the API for the IPv6 stack.

Topic ... Page

G.1 Synopsis ... 263
G.2 API Functions and Data Structures ... 264

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Bind6MLD Route6

Core IPv6 Stack

LLI6

IPv6 Core Stack

UDPTCP ICMPv6

Socket Layer Extensions for IPv6

NUMU Network Interface
Object #1

NUMU Network Interface
Object #2

www.ti.com Synopsis

263SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

G.1 Synopsis
The IPv6 stack is designed to be modular and coexist with the traditional IPv4 stack. The IPv6 stack can
be easily built in or out of an application using the "_INLCUDE_IPv6_CODE" compilation flag. IPv6 stack
is available only with NIMU enabled architectures. Default stack builds are provided with IPv6 stack
enabled.

The IPv6 stack is similar in its architecture to the IPv4 stack with respect to the components it is made of.
Figure G-1 shows the main building blocks of IPv6.

Figure G-1. NDK IPv6 Architectural Block Diagram

The IPv6 stack components and the RFCs it supports are as follows:
• IPv6 Core Stack

– Neighbor Cache Support
– Routing Table Support
– Extension Header Support
– Fragmentation/Reassembly
– Binding Lifetime Management
– Routing Table Lifetime Management
– RFCs

• RFC 3596 DNS Extensions to Support IPv6
• RFC 2460 Internet Protocol Version 6 - Only support for processing of extension headers
• RFC 2461 Neighbor Discovery for IPv6
• RFC 2462 IPv6 Stateless Address Autoconfiguration
• RFC 2463 IPv6 Internet Control Message Protocol (ICMPv6) for IPv6
• RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
• RFC 3484 Default Address Selection for IPv6 - Implemented partially
• RFC 3587 IPv6 Global Unicast Address Format
• RFC 3493 Basic Socket Interface Extensions for IPv6 - Implemented but not fully. No compatibility with

IPv4 nodes and multicast.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

API Functions and Data Structures www.ti.com

264 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

• RFC 2373 IPv6 Addressing Architecture - No support for IPv6 addresses embedded with IPv4.
• Layer4 Support

– ICMPv6
– RAW
– UDP
– TCP

• Socket Layer Extensions for IPv6
• Application Support

– TFTP
– Telnet
– Web Server
– DNS

G.2 API Functions and Data Structures
The IP Version 6 (IPv6) Stack API and data structures are documented in the ndk.chm file provided in the
/ti/ndk/docs/stack/doxygen directory of the NDK installation.

G.2.1 Socket Support for IPv6
The following is a list of Socket API that is supported:
• socket
• bind
• listen
• connect
• getpeername
• getsockname
• send
• sendto
• recv
• recvfrom
• setsockopt (limited IPv6 options supported)
• getsockopt (limited IPv6 options supported)
• close
• shutdown

The No-Copy variants for receive are not supported for IPv6 sockets.

In order for IPv6 sockets code to work correctly, application code must be compiled with
_INCLUDE_IPv6_CODE defined and with IPv6 enabled in XGCONF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com API Functions and Data Structures

265SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

G.2.2 Architecture
Figure G-2 illustrates the internal architecture block diagram for the socket layer:

Figure G-2. Internal Architecture Block Diagram for Socket Layer

When a socket is created, it is marked as either an IPv4 socket or an IPv6 socket, i.e., in the socket
creation the socket family selected is either AF_INET (IPv4) or AF_INET6 (IPv6). This is then used as a
de-multiplexing field to differentiate which socket implementation needs to be selected. This architecture
reduces the impact on the existing IPv4 implementation of sockets.

G.2.3 Socket Options
The IPv6 socket layer supports all the standard socket properties except the following:
• SO_IFDEVICE

The option binds the socket to an interface and ensures that packets are transmitted on the specified
interface.

• SO_TXTIMESTAMP
This is a Texas Instruments specific option that was used for time stamping the path through the IPv6
Stack.

Of all the IPv6 specific options, the only one supported is the IPV6_UNICAST_HOPS, which allows the
configuration of the Hop Limit in the packet.

G.2.4 Daemon6
NDK supports a module called Daemon, which is a single network task that monitors the socket status of
multiple network servers. When activity is detected, the daemon creates a task thread specifically to
handle the new activity. This is more efficient than having multiple servers, each with their own listening
thread.

Since the Daemon operates on sockets, a new module called Daemon6 has been created that does the
same functionality as Daemon except that it operates on V6 sockets.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

API Functions and Data Structures www.ti.com

266 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

The following snippet of code indicates how Echo Servers on UDP can be made to operate on both IPV4
and IPV6
hEchoUdp = DaemonNew(SOCK_DGRAM, 0, 7, dtask_udp_echo, OS_TASKPRINORM,

OS_TASKSTKNORM, 0, 1);

#ifdef _INCLUDE_IPv6_CODE
hEchoUdp6 = Daemon6New (SOCK_DGRAM, IPV6_UNSPECIFIED_ADDRESS, 7,

dtask_udp_echo6, OS_TASKPRINORM,
OS_TASKSTKNORM, 0, 1);

#endif

G.2.5 Nettools Applications
The Net-Tools module in the NDK stack has multiple applications that are provided to System developers.
These applications provide basic services such as Telnet, TFTP etc. This section documents the
modifications in these applications to support IPv6.

G.2.5.1 Telnet
Telnet is implemented as a server daemon that resides on port 23 and waits for incoming connections.
The Telnet protocol by itself is agnostic to the Layer3 implementation i.e. IPv4 or IPv6. To be able to
support IPv6 the following code needs to be added in the application startup code:
hTelnet6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS, 23,

(int(*)(SOCKET,uint32_t))telnetClientProcess,
OS_TASKPRINORM, OS_TASKSTKLOW,
(uint32_t)ConsoleOpen, 2);

The code uses the Daemon6 API described above and starts the Telnet Daemon that opens an IPv6
socket on port 23. There is no conflict since the IPv4 Telnet daemon has also opened port 23 since the
socket library for IPv4 and IPv6 are different.

With these modifications the Telnet daemon works over IPv6. There is one minor change in the Telnet
code base that needs to be addressed. This is a display issue; after performing the telnet the server
displays the Peer IP Address and Port Information.

For example, on IPv4 the display is as follows:
TCP/IP Stack Example Client
Welcome connection : 192.168.1.2:3881

Welcome to the console program.
Enter '?' or 'help' for a list of commands.
>

On IPv6, the display code needs to be modified as follows to display the IPv6 address of the peer:
TCP/IP Stack Example Client
Welcome connection : fe80::a00:9ff:fedc:fbdc:1061

Welcome to the console program.
Enter '?' or 'help' for a list of commands.
>

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com API Functions and Data Structures

267SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

G.2.5.2 Web Server
The Web Server is implemented as a server daemon that resides on port 80 and waits for incoming
connections. Much like Telnet; the web server is agnostic to the layer3 protocol.

The following snippet of code needs to be added to the application startup code to start the web server as
a daemon:
hWeb6 = Daemon6New (SOCK_STREAM, IPV6_UNSPECIFIED_ADDRESS HTTPPORT,

httpClientProcess, OS_TASKPRINORM, OS_TASKSTKHIGH,
0, MAX_CONN);

Besides this, there are no additional modifications required in the HTTP code.

G.2.5.3 TFTP
The TFTP is an IPv6 client that implements the Trivial File Transfer Protocol over IPv6. The TFTP protocol
uses the IP Address and Port information to ensure that data packets being received match the peer
server and port information; this is typically implemented by most TFTP implementations for a more
secure file transfer.

To achieve modularity, a new module TFTP6 has been created, which was based on the TFTP module.
Modifications have been done to ensure that the TFTP6 module uses the AF_INET6 family for socket
creation and the security checks are done with respect to the IPv6 addresses.

The following new API has been published to be able to retrieve a file over an IPv6 network through
TFTP:
int Nt6TftpRecv (IP6N TftpIP, char *szFileName, char *FileBuffer,

uint32_t *FileSize, uint16_t *pErrorCode);

G.2.5.4 DNS Client
The existent DNS Client in NDK is capable of doing IPv4 forward and reverse name resolutions [2]. This is
extended to do IPv6 forward and reverse AAAA (Quad-A) type DNS lookups as described in RFC 3596 [2]
over IPv4 network. There is no support for the DNS client to communicate with an IPv6 DNS server; i.e.,
the DNS client is only capable of doing name resolutions by communicating with an IPv4 DNS server.

To support IPv6 name resolution, the following changes have been made to the existing implementation of
DNS:
• A new Record type T_AAAA specific to the Internet class has been defined that can store a single IPv6

address. The IANA assigned value of the type is 28 (decimal) [2].
• The basic HOSTENT data structure has been modified (as shown below) such that it can hold both

IPv4 and IPv6 addresses.
/**

* @brief
* The structure describes the Host Name - IP Address record
*
* @details
* The HOSTENT structure holds information such as IPv4/v6
* address, host name mappings for a given host. It is used
* by the DNS resolver in conveying such HostName - IP Address
* mappings to a user application.
*/

struct _hostent {
/**

* @brief This is the official name / Fully Qualified Domain Name
* (FQDN) of the host.
*/

char *h_name;

/**
* @brief This indicates the address family of the IP address that
* maps to the given hostname. The values it takes are AF_INET (v4) /
* AF_INET6 (v6).
*/

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

API Functions and Data Structures www.ti.com

268 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

int h_addrtype;

/**
* @brief This indicates the length (in bytes) of the IP address that follows.
* For IPv4 address it is set to 4, and for IPv6 address set to 16 bytes.
*/

int h_length;

/**
* @brief This is the number of IP addresses returned for the given
* hostname.
*/

int h_addrcnt;

#ifndef _INCLUDE_IPv6_CODE

/**
* @brief List of up to MAXIPADDR IPv4 addresses (Network format) that map
* to the given hostname.
*/

uint32_t h_addr[MAXIPADDR];

#else
/**

* @brief List of up to MAXIPADDR IPv4/IPv6 addresses that map to given hostname.
*/

char* h_addr_list[MAXIPADDR];
#endif
}

NOTE: The field h_addr_list is an array of strings that holds the IPv4/v6 addresses as pointers to
IPN/IP6N, respectively. The following is an example illustration of how one could use the
h_addr_list field to access IPv4/IPv6 address from the HOSTENT structure.

IPv4 Illustration:
uint32_t IPTmp;
retcode = DNSGetHostByXXX(arg1, ... argn);

for(retcode = 0; retcode < phe->h_addrcnt; retcode++)
{

IPTmp = (uint32_t)RdNet32(phe->h_addr_list[retcode]);
ConPrintf("IPAddr = ");
ConPrintIPN(IPTmp);
ConPrintf("\n");

}

IPv6 Illustration:
IP6N IPv6Tmp;
retcode = DNSGetHostByXXX(arg1, ... argn);

for(retcode = 0; retcode < phe->h_addrcnt; retcode++)
{

IPv6Tmp = *(IP6N *)phe->h_addr_list[retcode];
ConPrintf("IPv6 Addr = ");
ConIPv6DisplayIPAddress(IPv6Tmp);
ConPrintf("\n");

}

• Two new APIs have been added for hostname to IPv6 address and IPv6 address to hostname
resolution. The following are the two new APIs:

IPv6 Address to Hostname Resolution API (reverse DNS lookup for IPv6):
/**

* @b Description
* @n
* This function does reverse DNS lookup on the supplied

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com API Functions and Data Structures

269SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

* IPv6 Address. On a successful return, pScrapBuf can be
* treated as a HOSTENT structure. The size of the scrap
* buffer (size) must be greater than the size of the structure
* as the structure will contain pointers into the scrap
* buffer, and the scrp buffer is also used for temporary
* name storage. 512 bytes of scrap buffer memory should be
* sufficient for most requests.
*
* @param[in] IPAddr
* The IPv6 address that needs to be resolved in IP6N format.
*
* @param[out] pScrapBuf
* Scrap buffer area to hold the results on a successful
* DNS resolution.
*
* @param[in] size
* Size of the scrap buffer available.
*
* @retval
* Success - 0
*
* @retval
* Error - >0, error code to determine the error.
*/

int DNSGetHostByAddr2(IP6N IPAddr, void *pScrapBuf, int size);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

API Functions and Data Structures www.ti.com

270 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

Hostname to IPv6 Address Resolution API (forward DNS lookup for IPv6):
/**

* @b Description
* @n
* This function does DNS lookup on the supplied hostname.
* On a successful return, the pScrapBuf can be treated as a
* HOSTENT structure. The size of the scrap buffer (size)
* must be greater than the size of the structure as the
* structure will contain pointers into the scrap buffer, and
* the scrap buffer is also used for temporary name storage.
* 512 bytes should be sufficient for most DNS requests.
*
* If the host name "Name" is terminated with a dot ('.'), the
* dot is removed. If the name contains a dot anywhere, it is
* used unmodified for an initial lookup. If the lookup fails -
* the appropriate DNS error code is returned. No default
* domain lookups are performed for IPv6, so if the hostname
* provided by user does not contain a dot, implying no
* domain name is provided, this function returns a format error.
*
* @param[in] Name
* The hostname to be resolved supplied by the user.
*
* @param[in] af_family
* The family (AF_INET/AF_INET6) of the IP address to which the
* query needs to be resolved to. If AF_INET is provided as the
* argument, then DNSGetHostByName is called in turn for IPv4
* lookup.
*
* @param[out] pScrapBuf
* Scrap buffer area to hold the results on a successful
* DNS resolution.
*
* @param[in] size
* Size of the scrap buffer available.
*
* @retval
* Success - 0
*
* @retval
* Error - >0, error code to determine the error.
*/

int DNSGetHostByName2(char *Name, unsigned char af_family, void *pScrapBuf, int size);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

Network Support
Package

System
Application

IPv6InterfaceInit IPv6InterfaceDeInit

IPv6 Stack

www.ti.com API Functions and Data Structures

271SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

IP Version 6 (IPv6) Stack API

G.2.6 Configuring the IPv6 Stack
One of the key differences between IPv6 and IPv4 is that the IPv6 stack needs to be instantiated at run
time. This is because all IPv6 enabled interfaces automatically get a link local address, which is identified
by the unique MAC address. Once an IPv6 address is assigned, it is mandatory that the IPv6 stack
perform the Duplicate Address Detection process to ensure address uniqueness.

This implies that unlike IPv4 addresses cannot be assigned to the interface before the Ethernet Link is up
because this will imply that the DAD packets never get transmitted out hence defeating the overall
purpose.

RFC 2462, Section 5.3, states the following:

A node forms a link-local address whenever an interface becomes enabled. An interface may become
enabled after any of the following events:
• The interface is initialized at system startup time.
• The interface is reinitialized after a temporary interface failure or after being temporarily disabled by

system management.
• The interface attaches to a link for the first time.
• The interface becomes enabled by system management after having been administratively disabled.

In order to support IPv6 all Platform Support Packages should be modified such that the above mentioned
API’s are added in the Ethernet Link Change code. This is outside the context of the document and should
be addressed in the NDK Support Package documentation.

Initialization and de-Initialization of the IPv6 stack is the responsibility of the system application and should
be used in conjunction with the Link change events described above. Figure G-3 showcases the various
entities in the system:

Figure G-3. IPv6 Stack Instantiation Placement

The IPv6 stack provides the necessary API’s, which are responsible for the initialization and cleanup of
the IPv6 stack instance on the interface.

For user convenience, a sample command prompt demonstration has been provided with the IPv6 stack
to initialize and attach the IPv6 stack to a desired interface, and to demonstrate the use of various IPv6
utilities. For more details, see the IPv6 Stack Testing section of the TI Network Developer's Kit (NDK)
v2.21 User's Guide (SPRU523) document.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K
http://www.ti.com/lit/pdf/SPRU523

272 SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Revision History

Appendix H
SPRU524K–May 2001–Revised October 2017

Revision History

H.1 Revision List
Table H-1 lists the changes made since the previous version of this document.

Table H-1. Document Revision History

Reference Additions/Modifications/Deletions
Change Summary for NDK 3.00 (SPRU524K)
Notational Conventions Directory path references are now relative to a common directory for all installation

types.
API syntax throughout document C99 standard types are used instead of NDK local typedefs.

Removed some sections that no longer apply due to use of POSIX, inclusion of the
NDK in SimpleLink SDK, and no longer being dependent on CCStudio and TI-RTOS
Kernel.

Section 1.2 NDK supports multiple RTOS kernels through the use of POSIX pthreads. Currently,
TI-RTOS Kernel and FreeRTOS are supported.

Section 2.1.1, Section 4.3.9 Added configuration of the boot task stack size.
Section 3.3 The default and recommended socket interface is now the non-BSD interface.
Section 4.2 The recommended configuration method is now the Configuration Manager API.
Section B.1.3 Corrected the local and mapped port for the HTTP server.

Change Summary for NDK 2.25 (SPRU524J)
Provided code example for SO_LINGER option for getsockopt(). Added
documentation of getpeername(), getsockname(), and shutdown().

Section 3.4.2 Corrected the type code for IPv6 in several locations.
Appendix A The Interface (IF) and Ether object modules have been removed from the stack.
Section A.4.3 Corrected the syntax shown for PBMQ_* functions to not omit the Q.
Section A.6.3 Added the STKEVENT_LINKUP and STKEVENT_LINKDOWN event codes.
Section G.2.5.4 Corrected the code example for DNS Client

Change Summary for NDK 2.24 (SPRU524I)
Section 3.1.2.2 Calls to fdOpenSession and fdCloseSession can be configured to be called

automatically.
fdClose() topic Documented error codes returned by fdClose() and fdSelect().
FD_ISSET() topic Documented correct return type for FD_ISSET().
Section 3.3 The NDK now provides a Berkeley Software Distribution (BSD) API layer to allow

easier compatibility with existing BSD socket application code.
Section 5.1.1 Added freeaddrinfo(), getaddrinfo(), inet_ntop(), and inet_pton() to the list of generic

support calls.
RtGetFailure() topic Corrected the short description of the RtGetFailure() function.
Section A.13.2 Added flags values that can be set when creating the NETIF_DEVICE structure

during driver initialization.
Section G.2 Documentation for IPv6 APIs is provided in the ndk.chm file. In order for IPv6

sockets code to work correctly, application code must be compiled with
_INCLUDE_IPv6_CODE defined and with IPv6 enabled in XGCONF.

Change Summary for NDK 2.21 (SPRU524H)
DSP/BIOS 5.x is no longer supported; use the NDK with SYS/BIOS 6.30+.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

www.ti.com Revision List

273SPRU524K–May 2001–Revised October 2017
Submit Documentation Feedback

Copyright © 2001–2017, Texas Instruments Incorporated

Revision History

Table H-1. Document Revision History (continued)
Reference Additions/Modifications/Deletions

Section 4.1 New graphical configuration support for NDK modules has been added through the
XGCONF configuration tool in CCS. Many settings that had to be made in C code
can now be made with this tool.

Section 4.5.1 If you use XGCONF for configuration, the initialization process is automated and you
can configure hook functions to be executed at various defined points.

Related Documentation From Texas
Instruments

In addition to C6000 support, the NDK now supports the Cortex-A8 and ARM9 in
ELF format.

Changes in Earlier Versions
How to Use This Manual Added text
Related Documentation From Texas
Instruments

Added reference

Section 1.3 Added text
Section 2.6.3 Added new sections
Section 3.4.2 Added new section "Raw Ethernet Sockets Programming Interface" - following

sections renumbered accordingly
Section 4.3.1 Added note
Section 4.3.9 Added/deleted text
Chapter 5 Add text
Section A.5 Added new section "Jumbo Packet Buffer Manager (Jumbo PBM) Object " -

following sections renumbered accordingly
Section A.15 Added new section "Raw Ethernet Module"- following sections renumbered

accordingly
Section A.7.1 Added new section "ARP Revalidation Logic"- following sections renumbered

accordingly
Section A.7.3 Added new section "Information Structure"- following sections renumbered

accordingly
Section A.7.5 Added new modules
Section A.11.1 Added/deleted text
Section A.16 Added text

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524K

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Table of Contents
	Preface
	1 Introduction
	1.1 What This Document Covers
	1.2 Introduction
	1.3 Supplemental API Information

	2 Operating System Abstraction API
	2.1 Operating System Configuration
	2.1.1 Configuration Structure

	2.2 Task Support
	2.2.1 Function Overview
	2.2.2 Task API Functions

	2.3 Semaphore Support
	2.3.1 Function Overview
	2.3.2 Semaphore API Functions

	2.4 Memory Allocation Support
	2.4.1 Function Overview
	2.4.2 Memory Allocation API Functions

	2.5 Print and Debug Support
	2.5.1 Standard API Functions
	2.5.2 Debug API Functions

	2.6 File I/O Support for Embedded Systems
	2.6.1 Function Overview
	2.6.2 EFS Custom API Functions
	2.6.3 EFS Standard API Functions

	3 Sockets and Stream IO API
	3.1 File Descriptor Environment
	3.1.1 Organization
	3.1.2 Initializing the File System Environment
	3.1.2.1 When to Initialize the File Descriptor Environment
	3.1.2.2 Auto-Initializing the File Descriptor Environment

	3.2 File Descriptor Programming Interface
	3.2.1 Function Overview
	3.2.2 File Descriptor API Functions
	3.2.3 File Descriptor Set (fd_set) Macros

	3.3 Sockets Programming Interface
	3.3.1 Enhanced No-Copy Socket Operation
	3.3.2 Function Overview
	3.3.3 Sockets API Functions

	3.4 Raw Ethernet Sockets Programming Interface
	3.4.1 Function Overview
	3.4.2 Raw Ethernet Sockets API Functions

	3.5 Full Duplex Pipes Programming Interface
	3.5.1 Pipe API Functions

	3.6 Internet Group Management Protocol (IGMP)

	4 Configuration and Initialization
	4.1 Configuration Methods
	4.2 Configuration Manager API
	4.2.1 Function Overview
	4.2.2 Configuration API Functions
	4.2.3 Configuration Entry API Functions

	4.3 Configuration Specification
	4.3.1 Organization
	4.3.2 Network Service Specification (CFGTAG_SERVICE)
	4.3.2.1 Service Types
	4.3.2.2 Common Argument Structure
	4.3.2.3 Individual Configuration Entry Instance Structures
	4.3.2.4 Specifying Network Services
	4.3.2.4.1 Specifying Telnet Service Using the Configuration
	4.3.2.4.2 Specifying DHCP Server Service Using the Configuration
	4.3.2.4.3 Specifying DHCP Client Service Using the Configuration
	4.3.2.4.4 Specifying HTTP Service Using the Configuration
	4.3.2.4.5 Specifying DNS Service Using the Configuration
	4.3.2.4.6 Specifying NAT Service Using the Configuration

	4.3.3 IP Network Specification (CFGTAG_IPNET)
	4.3.4 IP Gateway Route Specification (CFGTAG_ROUTE)
	4.3.5 Client Record Specification (CFGTAG_CLIENT)
	4.3.6 Client User Account (CFGTAG_ACCT)
	4.3.7 System Information Specification (CFGTAG_SYSINFO)
	4.3.8 Extended System Information Tags
	4.3.9 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)

	4.4 Initialization Procedure
	4.5 Network Control Initialization Procedure (NETCTRL)
	4.5.1 Initialization Procedure
	4.5.2 Function Overview
	4.5.3 Network Control API Functions

	5 Network Tools Library - Support Functions
	5.1 Generic Support Calls
	5.1.1 Function Overview
	5.1.2 Network Tools Support API Functions

	5.2 DNS Support Calls
	5.2.1 Function Overview
	5.2.2 Standard Types and Definitions
	5.2.2.1 Host Entry Structure
	5.2.2.2 Function Return Codes

	5.2.3 DNS Support API Functions

	5.3 TFTP Support
	5.3.1 TFTP Support API Functions

	5.4 TCP/UDP Server Daemon Support
	5.4.1 Server Daemon Support API Functions
	5.4.2 Server Daemon Example

	6 Network Tools Library - Services
	6.1 Service Calling Conventions
	6.1.1 Specifying Network Services Using the Configuration
	6.1.1.1 Service Report Function

	6.1.2 Invoking Network Services by NETTOOLS API

	6.2 Telnet Server Service
	6.2.1 Telnet Parameter Structure
	6.2.2 Invoking the Service via NETTOOLS API

	6.3 DHCP Server Service
	6.3.1 Operation
	6.3.2 DHCP Server Parameter Structure
	6.3.3 Invoking the Service via NETTOOLS API

	6.4 DHCP Client Support
	6.4.1 Operation
	6.4.2 DHCP Client Parameter Structure
	6.4.3 Invoking the Service via NETTOOLS API

	6.5 HTTP Server Support
	6.5.1 Operation
	6.5.2 HTTP Server Parameter Structure
	6.5.3 Using the HTTP Server and Adding Web Content
	6.5.4 Invoking the Service via NETTOOLS API

	6.6 DNS Server Service
	6.6.1 Operation
	6.6.2 DNS Server Parameter Structure
	6.6.3 Invoking the Service via NETTOOLS API

	6.7 Network Address Translation (NAT) Service
	6.7.1 Operation
	6.7.2 NAT Server Parameter Structure
	6.7.3 Invoking the Service via NETTOOLS API

	A Internal Stack Functions
	A.1 Overview
	A.1.1 Interrupts and Preemption
	A.1.2 Proper Use of the llEnter() and llExit() Functions
	A.1.3 Objects

	A.2 Stack Executive (Exec)
	A.2.1 API Functions

	A.3 Packet Buffer Manager (PBM) Object
	A.3.1 Object Type
	A.3.2 API Function Overview
	A.3.3 API Function Description

	A.4 Packet Buffer Manager Queue (PBMQ) Object
	A.4.1 Object Type
	A.4.2 API Function Overview
	A.4.3 API Function Description

	A.5 Jumbo Packet Buffer Manager (Jumbo PBM) Object
	A.5.1 API Function Overview
	A.5.2 API Function Description

	A.6 Stack Event (STKEVENT) Object
	A.6.1 Object Type
	A.6.2 API Function Overview
	A.6.3 API Function Description

	A.7 Link Layer Information (LLI) Object
	A.7.1 ARP Revalidation Logic
	A.7.2 Object Type
	A.7.3 Information Structure
	A.7.4 API Function Overview
	A.7.5 API Functions

	A.8 Binding Object
	A.8.1 Object Type
	A.8.2 BIND API Functions

	A.9 Route Object
	A.9.1 Object Type
	A.9.2 Route Entry Flags Definition
	A.9.3 Route Entry Flags Guidelines
	A.9.4 API Functions

	A.10 Route Control Object
	A.10.1 Route Control Messages
	A.10.2 Route Control API Functions

	A.11 Configuring the Stack
	A.11.1 Configuration Structure

	A.12 Network Address Translation
	A.12.1 Operation

	A.13 Network Interface Management Unit (NIMU)
	A.13.1 Synopsis
	A.13.2 Data Structure Definition
	A.13.3 NIMU Configuration
	A.13.4 API Function Overview
	A.13.5 API Function Description

	A.14 Virtual LAN (VLAN) Support
	A.14.1 Synopsis
	A.14.2 User Priority Mapping Configuration
	A.14.2.1 User Priority Configuration
	A.14.2.2 Marking Packet Priority

	A.14.3 API Function Overview
	A.14.4 API Functions

	A.15 Raw Ethernet Module
	A.15.1 Synopsis
	A.15.2 Raw Ethernet Data Prioritization - Socket Priority Use Case
	A.15.2.1 Socket Priority Configuration

	A.15.3 API Function Overview
	A.15.4 API Functions

	A.16 Obtaining Stack Statistics

	B Network Address Translation
	B.1 NAT Operation
	B.1.1 Typical Configuration
	B.1.2 Basic NAT
	B.1.3 NAT Port Mapping
	B.1.4 NAT Proxy Filters
	B.1.4.1 Problem Synopsis
	B.1.4.2 Problem Example - FTP Clients on the LAN
	B.1.4.3 NDK Support for Proxy Filters
	B.1.4.4 FTP Proxy Filter Example Code

	B.2 NAT Port Mapping
	B.2.1 Function Overview
	B.2.2 NAT Entry Information Structure
	B.2.3 NAT API Functions

	B.3 NAT Proxy Filters
	B.3.1 Function Overview
	B.3.2 NAT Proxy Filter Callback Functions
	B.3.3 NAT Proxy API Functions

	C Point-to-Point Protocol
	C.1 Low Level PPP Support
	C.1.1 PPP Operation
	C.1.2 Function Overview
	C.1.3 Supported Protocols
	C.1.4 SI Module Callback Function
	C.1.4.1 Function Declaration
	C.1.4.2 SI_MSG_CALLSTATUS Message
	C.1.4.3 SI_MSG_ SENDPACKET Message
	C.1.4.4 SI_MSG_ PEERCMAP Message
	C.1.4.5 Example Callback Function Implementation

	C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance
	C.1.5.1 Multiple Instances
	C.1.5.2 Using the Timer Object
	C.1.5.3 Registering Packet Padding Requirements

	C.1.6 PPP API Functions

	C.2 Serial HDLC Client and Server Support
	C.2.1 Function Overview
	C.2.2 HDLC API Functions

	C.3 PPPoE Client and Server Support
	C.3.1 Function Overview
	C.3.2 PPPoE API Functions

	C.4 Creating PPP Server User Accounts
	C.4.1 Adding and Reviewing User Accounts
	C.4.1.1 Adding a PPP User Account
	C.4.1.2 Searching for a PPP User Account
	C.4.1.3 Removing a PPP User Account

	D Hardware Adaptation Layer (HAL)
	D.1 Overview
	D.1.1 HAL Function Types
	D.1.2  External Calls from HAL Functions

	D.2 Low-Level LED Driver (llUserLed)
	D.2.1 Function Overview
	D.2.2 Low-Level LED API Functions

	D.3 Low-Level Timer Driver (llTimer)
	D.3.1 Function Overview
	D.3.2 Low-Level Timer API Functions

	D.4 Low-Level Packet Driver (llPacket)
	D.4.1 Function Overview
	D.4.2 Low-Level Packet API Functions

	D.5 Low-Level Serial Port Driver (llSerial)
	D.5.1 Function Overview
	D.5.2 Low-Level Serial API Functions

	E Web Programming with the HTTP Server
	E.1 Adding Web Content
	E.1.1 Operation
	E.1.2 Converting Standard HTML Files
	E.1.3 Declaring HTML Files to EFS
	E.1.4 Cleaning up HTML Files

	E.2 Writing CGI Functions
	E.2.1 Adding Functions to the EFS
	E.2.2 CGI Function Declaration
	E.2.3 Parsing CGI Form Data
	E.2.4 Parsing CGI Multi-Part Form Data
	E.2.5 Sending HTTP/HTML Replies
	E.2.6 HTML Error Response

	E.3 HTTP Authentication
	E.3.1 Authorization Realms
	E.3.2 User Accounts
	E.3.3 Designating Protected Files

	E.4 CGI Function Example
	E.4.1 Create the HTML Page
	E.4.2 Create the Base WEBPAGE Source File

	E.5 HTTP Server Exported Functions
	E.5.1 Commonly Used Strings
	E.5.2 Function Overview
	E.5.3 HTTP Server Exported API Functions

	F BSD Sockets Support
	F.1 Using BSD Sockets Provided by SlNetSock
	F.2 Things to Remember About BSD Compatibility

	G IP Version 6 (IPv6) Stack API
	G.1 Synopsis
	G.2 API Functions and Data Structures
	G.2.1 Socket Support for IPv6
	G.2.2 Architecture
	G.2.3 Socket Options
	G.2.4 Daemon6
	G.2.5 Nettools Applications
	G.2.5.1 Telnet
	G.2.5.2 Web Server
	G.2.5.3 TFTP
	G.2.5.4 DNS Client

	G.2.6 Configuring the IPv6 Stack

	H Revision History
	H.1 Revision List

	Important Notice

