TMS320C6000 Optimizing C/C++ Compiler
v8.3.x

User’s Guide

Wi} TEXAS INSTRUMENTS

Literature Number: SPRUI04D
JULY 2015 — REVISED JANUARY 2022

https://www.ti.com/lit/pdf/SPRUI04

Table of Contents

i3 TEXAS INSTRUMENTS

REAA This FiISt...... .. oottt e et e oo oottt e oo o s bttt e e e e b b et e e e e e e bt e et e e e st b ee e e e e eaaneneeeeeannnnee 11
ADOUL THIS IMIBINMUAL. ...ttt ettt e e oo e bttt e e 2o st e et e e 4o s b bttt e o4 e s bt et e e e e anba et e e e e e antb e e e e e e anbeneas 11
o1 ez L[a T T I @0 a1V =T o1 (o] oL R SSPSN 11
Related DOCUMENTALION. ... ettt e e et e e e oo bttt e oo e ettt e e e e saa b e et e e e aaabbee e e e e e annneeeeeesnnee 12
Related Documentation From Texas INSIIUMENTS..........oooi e 13
JLILE e (100 =T o G PSP OPUPUPPOT 13

1 Introduction to the Software Development TOOIS................ooiiiiiiiiiiie e e e s e e e e e e saraeee s 15
1.1 Software DevelopmeENt TOOIS OVEIVIEW............uiiiei it ettt e e et e e e e et e e e e e st e e e e e sasbaaeaeeesnsseeeeeesssseeeessasseeeaesaanes 16
LI O70) g] o111 il [0] (=T = LotV PSSO USURPPPPRTON 17
LRSI A S 1 IS T @ T =T Vo F= T o ST 17
L O U { o1V | 1= ORPPUPTN 18
ST 1T OSSPSR 18

2 Getting Started with the Code Generation TOOIS.................oooiiiiiiiiiiiiie e e e e e s e s naaeeae e 19
2.1 How Code Composer Studio Projects Use the COMPIIET..........ccoiiiiii oot e e e e e e e eneaes 20
2.2 Compiling from the ComMaNd LiNE...........ooiiiiiiiiiii et e e e e e st e e e e e st ae e e e e sestaeaeeeseasssseeaeeennnseeaaeeans 20

B USING the CICH+ COMIPIIET........coooiiiiiiiie et e et e e e e ettt e e e e s taeeee e e e sasaeeaeeasssseeeeeeassaeeeeesaasssaeeaeeannsrenaeensan 21
I T Y o Yo 1U & £ TN 00 4o o1 L= ST SUPPRRP 22
3.2 INVOKING the C/CH+ COMPIIET.......eeiiiee ettt e e e e e e e e e e et e e e e e e essbeaeeeeeassseeeeeesataeeaeesasseeeeeeeannnneaeeans 22
3.3 Changing the Compiler's Behavior With OpioNS..........cc.uuiiiiiiiiii e e e e e e e earaaea s 23

B TR B I I 1 (= S @ o] 1o o T USRS RRR PP 29
BT B2 ol (=Y (01T o (VAL U ET=Te [@ o] i o] g - T O PRSOTPPP 32
3.3.3 Miscellaneous USEfUI OPtiONS.uiiiiiiiiiiiiie it e et e et e e e e et e e e e e e aae et e e e eesssseeeeeesassaeeeeseassaseeaesassseeeeeeannnens 33
3.3.4 RUN-TIME MOAEI OPtIONS. eiiiiiiiiiieiee et e et e e e e et e e e e e e e taeeeeeeeaataeeeeeesstseeaeeaassseeaeeeansseeaeesannsanneaeas 34
3.3.5 Selecting Target CPU Version (--Silicon_version OPtioN)..........ccoi i e e 34
3.3.6 Symbolic Debugging and Profiling OPtioNS...........coiiiiiiiiiiii et e e e e e e e e anre e e e e e annaes 35
3.3.7 SPECITYING FIIENAMES......oii ittt e e e e e e e e e e s e e aaea e e e e e s asbeeeeeesasseseeaesaasssseeaeeannsbeeeeeseansnneeaens 35
3.3.8 Changing How the Compiler Interprets FilENamES.............oiiiiiiiiiiiie et e e s e re e e e e 36
3.3.9 Changing How the Compiler ProCesSeS C FilES..........uuiiiiiiiiiiiii ettt et e et e e e e e e e e e e nnneee s 36
3.3.10 Changing How the Compiler Interprets and Names EXtENSIONS..........cc.uviiiiiiiiiiiii i 36
3.3.11 SPECITYING DIMECIOMIES. ... ieiieii ettt ettt e e e et e e e e e ab e e e e e e eaasseeaeeesstaaeaeesassseeeeseanssseeaeeesnssneaeesan 37
3.3.12 ASSEMDIET OPLIONS.cciiiiiiei ettt et e e e e et e e e e e et e et e e e saataeeeae e e ssaaeeaeeassssaeeeeesansbaeeeeeaansaaeeeeeaasnreeeeeeannnres 37
3.4 Controlling the Compiler Through Environment Variables...............occuiiiiiiiiiiiie et 38
3.4.1 Setting Default Compiler Options (CBX_C_OPTION)......cciiiiiiiiiieiitiie ettt e et e s e e e e et e e s e e snneeeeneeeeeans 38
3.4.2 Naming One or More Alternate Directories (CEX_C_DIR)........iiiiiiiiiiiiiiiiie et e e 38
3.5 CONIrOlliNG e PrEPIrOCESSOT eviiie e e ettt e ettt e ettt e e e e ettt e e e e e st e et e e e s e saeaeeeeeassaseeeeeeastaeeeeesansssaeeeseanssseeaesesnnsaneaaeaan 39
3.5.1 Predefine€d MacCIO INAIMES.........ooiiii ettt ettt e ettt e et e e s bt e e e bt e e e neeeesnbeeeeanbeeeanseeeanbeeeenteeennneas 39
3.5.2 The Search Path for INCIUAE FilES.........coiiiiiii ettt et s e ettt e e s et e e s neeeeaneeeeens 40
3.5.3 Support for the #warning and #Warn DIFECHVES............uiii i e e s e e e e e e e e e e e ensreeens 41
3.5.4 Generating a Preprocessed Listing File (--preproc_only Option)...........cooiieioiiire i 41
3.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)...........ccceooeriiiiieiiiie e 42
3.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)............ccccceviieeriinennnne. 42
3.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)..........ccccceveriiiiiieeenienens 42
3.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)...........cccevriieiiieeiiieeeiieeenene 42
3.5.9 Generating a List of Files Included with #include (--preproc_includes Option)...........cccovriiiiiiieiiiie e 42
3.5.10 Generating a List of Macros in a File (--preproc_macros OPtioNn).........c.ceeiueiiiiiieiiiiee e e e 42
3.6 Passing Arguments 10 MAIN()......ceeiuueeiiiiie et e ettt ettt ettt e et e e sttt e e as bt e e e seeeeeae e e e aabeeeaneeeeanneeeanbaeeeanteeesneeeeanneeean 42
3.7 Understanding DiagNOStiC MESSAQES.uuuuuuuiiiiiiiiiiieieiee e et e e et et e e ettt e e e et eeaaaaaaaaaeeaeaesasaaaasanssssestatasneeeneeaeaaaaaaenns 43
3.7.1 Controlling DIiagnOStiC MESSAQGES.ccciiiuiiiie ettt e ettt e e e et e e e e e st e e e e e s ssbeeeaeseasssaeeaesessssseeeeesansseeeaaenanes 44
3.7.2 How You Can Use Diagnostic SUPPression OPtioNS..........coiiiiiiiiiieiiiiiieee et e sttt e e s e siiree e e e e st e e e e s sntaeeeaeaennes 45
3.8 OthEr IMESSAQES. ... iietiiiee ettt e ettt e e et ettt e e e e e s ataeeee e e e sbaeeeeeaasssseeaeee s ntseeaeeeasseaeeeeeaansseeeeeesansaeeeaeeeannnaeeaeeaanre 46
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 3
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
3.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)..........cccvcueeeiiieeiniiieciieeeeiec e 46
3.10 Generating a Raw Listing File (--gen_preprocessor_listing OPtioN)..........ccoiviriiiiiiiiiee e 46
3.11 Using INliN€ FUNCHON EXPANSION.......coiiiiiiiiiiii ettt et e et e e eab e e e s bt e e et e e e aateeesaneee s 47
3.11.1 INlNING INEFNSIC OPEIAtOrS.eiiiitiie ittt etttk e oo sttt e st e e ek bt e e sabe e e sb et e e as bt e e sne e e s anneeeanbeeenans 48
3.11.2 INlNING RESIIICHONS.ce ittt e ettt e e a bt e e e bt e e bt e e e eas e e e et e e e sate e e snbeeeabeeenans 49
3.11.3 Unguarded Definition-Controlled ININING...........oiiiiiii et e e e e 49
3.11.4 Guarded Inlining and the _INLINE PreproCessor SYMDOL..........ccouiiiiiiiiiiiiiiee e 50
3.12 Interrupt Flexibility Options (--interrupt_threshold Oplion)..........coouiiiiiiiii e 51
A3 USING INEETIIST. ..ottt h e et e et oo h bt e e e bt e e sttt e 1o bt e ek bt e e aat et e s b et e e b e e e et e e nneeas 52
3.14 Generating and UsiNg PerformMancCe AGQVICE........ccoouuii ittt ettt ettt e sne e e nanee s 52
3.15 About the Application BiNary INTEITACE.uii it 53
3.16 Enabling Entry Hook and Exit HOOK FUNCHONS.ooiiiiiiii e 53
4 OPIMIZING YOUE COUE...... ..ottt h e h e oottt e bt e e oa bt e ook et e e eh et e e oa b e e e e s bt e e eab e e e enbe e e e nbeeenanneeennneeean 55
N I 1\ Vo] (e I @) 100121 (o] o O U PTUPPU PRI 56
4.2 Controlling Code SiZ€ VEISUS SPEEU.o.uuiiiiiiieiiiie ettt ettt e bt e e e bt esbe e e sab et e et et e sent e e e s beeeenbneenaee 57
4.3 Performing File-Level Optimization (--0pt_leVel=3 OPtioN).........ccuiiiiiiiiie e e 57
4.3.1 Creating an Optimization Information File (--gen_opt_info OPtion)...........cueiiiiiiiiiiiie e 58
4.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)............cccceviiiiriiiiiiiee e 58
4.4.1 Controlling Program-Level Optimization (--call_assumptions Option)...........ccccoiieiiriiiiniiee e 59
4.4.2 Optimization Considerations When Mixing C/C++ and ASSEMDIY.........ccoiiiiiiiiiiiii e 59
4.5 Automatic Inline Expansion (-—auto_inliNg OPLION)..........uii ittt e e e et e e 60
4.6 Optimizing SOftWare PIiPEliNING..........c.ueiiiiiiiii ettt aa e ettt e e b b e e e st e e e sbt e e e aab e e e e beeeenne e e 61
4.6.1 Turn Off Software Pipelining (--disable_software_pipeling OPption)............c.eoiiiiiiiiiiiii e 62
4.6.2 Software Pipelining INfOrMEatioN.oc.uiiiiii et b ettt e b bt e e aate e e sneeeentbeeeaaee 62
4.6.3 Collapsing Prologs and Epilogs for Improved Performance and Code Siz€.........cccceviiiiiiiiiiii i 67
A L= To [V gTo F= oL o To] o F O SO P PRI 69
4.8 Utilizing the Loop BUfer USING SPLOOP..........oi ittt st e et e et eeate e e 70
4.9 Reducing Code Size (--opt_for_space (0r -MS) OPION).........eiiiiiiiiiiie ittt st bre e 70
4.10 Using Feedback Directed OptimIZation...........oocuiiiiiiiiiiie ettt et e s nnnee s 71
4.10.1 Feedback Directed OptiMIZatioN.............ooiiiiiiiiiieiie ettt ettt e st e e et e snee e eas 71
4.10.2 Profile Dat@ DECOET.........coiuieeiiiie ettt ettt a et aa bt e ettt e e eb bt e e aa bt e e eb et e e eab et e et et e nnee e e nane e e e baeenaee 73
4.10.3 Feedback Directed OptimiZation APL....... .o ittt e et 73
4.10.4 Feedback Directed Optimization SUMMATY..........ooiiiiiiiieeiiie ettt st e e et e e sabeeas 74
4.11 Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage...........ccoceveiiuieeinenrennnen. 75
4.11.1 Background and MOTIVALION.ooiiiiiii ettt ea e e b e e e sttt e nane e b b e e e nnes 75
o e O7o o [70)V T = o =S PRSP OPPP 75
4.11.3 What Performance Improvements Can You EXPECE {0 SEE7.........oiiiiiiiiiiiii ittt 76
4.11.4 Program Cache Layout Related Features and Capabilities............coccueiiiiiiiiiiiiii e 77
4.11.5 Program Instruction Cache Layout Development FIOW.coouiiiiiiiiiii et 78
4.11.6 Comma-Separated Values (CSV) Files with Weighted Call Graph (WCG) Information............cccocoevviiiiinieninnnenn. 80
4.11.7 Linker Command File Operator - UNOFAEIrEA().........ueueirieeiiiie ittt ettt sbe e snn e e e e 81
4.11.8 ThINGS 10 D& AWAIE OF......ciiiiiiiiie ettt ekt e bt e s bt e e e b et e e bt e e ean e e e et e e e ente e e nanes 83
4.12 Indicating Whether Certain Aliasing TeChNIQUES Are USEd...........coiiiiiiiiiiiiiiie ittt 84
4.12.1 Use the --aliased_variables Option When Certain Aliases are USed...........cccocuiiiiiiiiiiiiie i 84
4.12.2 Use the --no_bad_aliases Option to Indicate That These Techniques Are Not Used.............ccccevvieiiiiiiiiiien e, 84
4.12.3 Using the --no_bad_aliases Option With the Assembly Optimizer.............cooiiiiiiiiiiii e 85
4.13 Prevent Reordering of Associative Floating-Point Operations.............cuiiiiiiiiiiiiiiie e 85
4.14 Use Caution With asm Statements in Optimized COTe.........cocuiiiiiiiiii e 86
4.15 Using Performance Advice to Optimize YOUr COUE.........oiiiiiiiiiiii ittt ettt e e 86
O T N LYot 2 0L USSP 87
4.15.2 Advice #27001 Increase OptimiZation LEVEL.........c.c.uiiiiiiiiiii et 88
4.15.3 Advice #27002 Do not turn off software pPipelining............cooiiiiiiiiiii e 88
4.15.4 Advice #27003 Avoid compiling with debug OPtIONS..........coiiiiiiiii e 88
4.15.5 Advice #27004 No Performance AdVICe gENETateU............coiuiiiiiiiiiiiiie et e 88
4.15.6 Advice #30000 Prevent Loop Disqualification due t0 Call.............coceiiiiiiiiiiiiiiiice e 89
4.15.7 Advice #30001 Prevent Loop Disqualification due t0 rtS-Call............ooceiiiiiiiiiiiii e 89
4.15.8 Advice #30002 Prevent Loop Disqualification due to asm statement..............cccoiiiiiiini e, 89
4.15.9 Advice #30003 Prevent Loop Disqualification due to complex condition.............cccceoiieiiiiiiiiiee e 90
4.15.10 Advice #30004 Prevent Loop Disqualification due to switch statement.............cccoooiiiiiiiii e, 90
4.15.11 Advice #30005 Prevent Loop Disqualification due to arithmetic operation............ccccociiiiiiiiiiiii 91
4.15.12 Advice #30006 Prevent Loop Disqualification due to Call(2)..........ccueeiiiiiiiiiiiiiiieciiiee e 91
4 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
4.15.13 Advice #30007 Prevent Loop Disqualification due to rsS-Call(2)...........cooruiiiiiiiiiiiii e 92
4.15.14 Advice #30008 Improve Loop; Qualify With FeStriCE...........cciiiiiii e 92
4.15.15 Advice #30009 Improve Loop; Add MUST_ITERATE Pragma.........cccicuureaiiiieniiee ittt 93
4.15.16 Advice #30010 Improve Loop; Add MUST_ITERATE Pragma(2).........cc.ceeuueeeriieeiiieeeeieee e 93
4.15.17 Advice #30011 IMmprove LOOP; Add _NASSSEIT()......uueerrueeeiriiieiiiiie ettt ettt ettt sne e sneee s 93
4.16 Using the Interlist Feature With OptimizZation.............cooiiiiiiiiiii e 93
4.17 Debugging and Profiling OptiMIZEd COTE.........ccoiuuiiiiiieiiiee ettt sttt e s e e e e e ebneeeaee 95
4.17.1 Profiling OPtMIZEA COUE...... ..ottt ettt e e e bt e e aa b et e s et e e bb e e s aate e e sneeeeasneeeanee 95
4.18 What Kind of Optimization Is Being PerformeEd™?..........oouii ittt 95
4.18.1 Cost-Based ReGiSter AlIOCATION.iiiiiie ittt ettt s e e e b b e e e aate e e sbe e e e ntbeeeaaee 96
4.18.2 Alias DisambIGUATION.......couuiiiiiiie ittt b e bt e b e bt e e n e aneas 96
4.18.3 Branch Optimizations and Control-FIow SimplifiCation............c..coiiiiiiiii e 96
4.18.4 Data FIOW OPUMIZAtIONS.eeiiiiiiiiiiee ettt sh et e et et e s b et e e ea bt e e e be e e e be e e e s abeeeenbeeennneas 96
4.18.5 EXPression SIMPIifICAtION.ccoiiiiiiiiee ettt e e h e e e e 96
4.18.6 Inline EXPanSion Of FUNCHONS.uuiiiiiii ettt ea ettt ebt e e e st eenre e nane s 96
4.18.7 FUNCLION SYMDBDOI AlIBSING.eeeitieiiiiet ettt ettt h e s e bt e bt e eh b et e aa bt e e ebe e e e eabe e e aabe e e enbe e e saneeeabeeennee 97
4.18.8 Induction Variables and Strength REAUCHION.............oi it 97
4.18.9 Loop-INvariant Code MOLION.ii ittt e bttt e e rab et e e bt e sabe e e saneeesbaeennee 97
BB ST [0 Mo To] o B o) -1 11] PO SO PROUPP PP TPRNY 97
4.18.11 VECtOrZAtioN (SIMD)......ciiiiiii ittt ea e e et e bt e e et e e bt e e hb e e e ab et e nane e e e nbb e e e anbe e e nanes 97
4.18.12 INSLrUCHION SCNEAUIING.ee ittt ettt ettt sh bt e e et et e e bt e e sab e e e et et e e aabe e e saneeeabneennee 97
4.18.13 REGISIEI VATTADIES. ...ttt a e e bt e b e e e e st et e s bt e e e eh bt e e et e e snte e e sabe e e e tnee e 97
4.18.14 Register TraCKinG/TargetiNg.uuei ottt ettt ettt e bt e e et e e s bt e e ek b e e e eabeeesbeeeesaneeeans 98
4.18.15 SOWAIE PIPEINING. .. ce itttk e ettt e o bt e e e b bt e e e be e e sab et e e b b e e e eate e e sbeeeeasreeenaee 98
5 Using the ASSembIy OPHIMIZET.............ooiii ettt ra et e s bt e e ab et e sane e e s nneee s 99
5.1 Code Development Flow to INnCrease PerfOormMancCe.oooiuiiiiiiii it 100
5.2 AbouUt the ASSEMDIY OPHIMIZET.........eiiieiii ettt ra e e bt e s bt e e sab e e et et e snt e e e nabeeeas 101
5.3 What You Need to Know to Write Linear ASSEMDIY.........cooiiiiiiiiiiiiiie ettt 102
5.3.1 Linear Assembly Source Statement FOrMat............ooo it 103
5.3.2 Register Specification for Lin€ar ASSEMDIY..........cooiiiiiiiiiii e 104
5.3.3 Functional Unit Specification for Linear ASSEMDIY...........coiiiiiiiiiiiie e 106
5.3.4 Using Linear Assembly SOUrCE COMMENTS.iiiiiiiiiiiie ittt sttt s e e e e ebee e neeas 107
5.3.5 Assembly File Retains Your Symbolic Register Names..........ccooiiiiiiiiiiii e 107
5.4 ASSEMDIY OPHMIZET DIFECHIVES. ...ttt e et e e et e e e eae e e e e bt e e bt e e e sab e e e et e e e e aate e e 108
5.4.1 Instructions That Are Not AlIowed iN PrOCEAUIES.........coouuiiiiiiiiiiii ettt 124
5.5 Avoiding Memory Bank Conflicts With the Assembly OptimizZer...........ccooiiiiiiiiii e 125
5.5.1 Preventing Memory Bank CONFIICES.coiiiiiiii ettt e e 126
5.5.2 A Dot Product Example That Avoids Memory Bank ConfliCtS..........ccouiiiiiiiiiiiie e 127
5.5.3 Memory Bank Conflicts for INdeXed POINTEIS..........c.uiiiiiiii et 130
5.5.4 Memory Bank ConfliCt AIGOTTNML.........iiii et e et e st e rane e e abeeeenee 130
5.6 Memory Alias DiSAmMDIGUEALION.coiuiiiiiiii ettt et e et bt e e et e e e s bt e e e b bt e e abee e s abeeeeanbe e e e 130
5.6.1 How the Assembly Optimizer Handles Memory References (Default).............ccocveiiiiiiiiiiiiiic e, 130
5.6.2 Using the --no_bad_aliases Option to Handle Memory References..........cooouviiiiieiiiiiiiniiiee e 131
5.6.3 USiNG the .NO_MAEP DIFECHIVE.ueiiiiiiiiiii ettt e st sb e e s bt e e an b e e e sneeesnnnee s 131
5.6.4 Using the .mdep Directive to Identify Specific Memory Dependenci€s............cceviriiiiiiieiiiiee e 131
5.6.5 MemOry AlIAS EXAMPIES.......oi ittt ettt b e e ea bt s b et e b et e ettt e n et eane e aneas 132
B LINKING C/CHF COUE.........oiiiiiiiiiiii ittt ettt h e e ea bt oo h e e ook b e e e aa bt e oo b e e e e b b et e aab et e ean et e e asb e e e eabeeeebeeeeanbeeenane 135
6.1 Invoking the Linker Through the Compiler (-Z OPtioN)........c.ueiiiiiiiii e 136
6.1.1 Invoking the LINKEr SEP@rately........ccc.eei ittt et et e e e i e e e 136
6.1.2 Invoking the Linker as Part of the ComPile SEP........coocuiiiiiiii e 137
6.1.3 Disabling the Linker (--compile_only Compiler OPtion)...........c.eioiiiiiiiii e 137
6.2 Linker Code OPtMIZALIONS.couiiiiiiit ettt e bt e e s e et e et e e st et e sabe e e ettt e e eateeesbeeeeanneeenaes 138
(0 B 0o g To 1 (o] =TI I 1] ¢ oo [SRR PR PSP TPRIN 138
6.2.2 Generating Function Subsections (--gen_func_subsections Compiler Option)..........ccooceiiiiieiiiieeiiieee s 138
6.2.3 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)..........cccccvviriieiinieeinieeene 138
6.3 Controlling the LiNKING PrOCESS.cciuiiiiiii ittt ettt e bt e e et e e s bt e e e as b e e ebe e e e nnseeeanbeeenaes 138
6.3.1 Including the RUN-TIimMe-SuPPOIt LIDIary.........ooueo i e e 139
6.3.2 RUN-TIME INIIAIZATION.eiiieeie ettt ettt e sttt e et e e s bt e e sab et e e bt e e e eabe e e sbeeeeanbeeens 140
SRS RC N €1l0] oT-1 W@ o] [=To1 f00] 4151 1y o1 (o] =TSPTSRO 140
6.3.4 Specifying the Type of Global Variable INitialiZzation...............ccoiiiiii e 140
6.3.5 Specifying Where to Allocate SeCtions iN MEMOTY.........c.uiiiiiiiiiiii et 141
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 5
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
6.3.6 A Sample Linker CommaNnd FilE........c.uii ittt ettt et et e e e 142
7 CIC++ Language IMpPIementation................oooiiiiiiiiii ettt ettt 143
7.1 Characteristics of TMS320CB000 C.......cccuutiiuiieeitiee ettt et et e e abe e e rb et e et b e e e aaeeeesbeeeeabbeeeaabeeesabseeeasbeeenaes 144
7.1.1 Implementation-DefiNe@d BERAVIOT............iii ittt et e et e 144
7.2 Characteristics of TMS320CB6000 CA.....coiuiiiiiiiie ettt e et e e et e s bt e e e sab e e e e be e e snt e e e sab e e e abreesneeas 148
RS T DL 1= T Y o 1= T PSSP OUPPPTPRRN 149
7.3.1 SIZE OF ENUM TYPES...c ittt ettt h oo bt e e bt e oo ae et e e e b et e e sttt e ea bt e e e ket e e nt e e e sab e e e e bbeeeanteeenanees 150
[A =Te (o B T ¢ T Y o 1= T SRR PR OPPPTPRN 151
7.4 File ENcodings and CharaCter SEtS..........c.ueii ittt ettt ettt e b e e e e aa e e nbe e e s nnneeeanbeeenaes 152
I G TA o] o T OO SR PR 153
7.5.1 T COMPIEX KEYWOIG. ...ttt etttk a bt s bt e e b et e eab e e e e be e e e s b et e e st e e s enb e e e sabe e e enneeenaneas 153
7.5.2 THE CONSE KEYWOI.eiiitie ittt etttk o bttt ek et e et e e o b et e e s bt e e eab et e sabe e e e aa b e e e eabe e e e nneeeanbeeenans 153
7.5.3 The __CregiSter KEYWOIT.co ittt ettt a e e bt e e bttt e ea bt e et et e e st e e e sab e e e e be e e s nneeenanes 154
7.5.4 The __iNterrUPt KEYWOIT.eiiiiiiieiieie ettt ettt ettt ab et e et e e st e e e sab e e e ettt e e ante e e saneeeenbbeeenaee 155
7.5.5The __near and _ far KEYWOIAS.uoi ittt ettt e et e e e eate e e sne e e nsbeeeeaee 156
7.5.6 The reStrCt KEYWOIT. ..ottt ettt a e e bt e ekt e e e h et e e st et e e st e e e eab e e e e be e e eanne e e nanes 157
7.5.7 The VOIATIE KEYWOIT.ciiiiiiiiitie ettt e ettt rab et e ek et e e sttt e s abe e e ettt e e ambe e e saneeeenbbeeeaaee 157
7.6 CH+ EXCEPHON HANAIING. ...ttt ettt a e et e e bt e e st e e s ab et e e b bt e e st e e e sab e e e enre e e naneas 159
7.7 Register Variables and Parameters............cocuii i e 159
7.8 The _@SM SEAIEMENT......c.. ittt a e e et et e e bt e e e ea bt e e et et e es b e e e sa bt e e eabb e e e nnteeenabeeeas 160
7.9 Pragma DIFECHIVES. ..ottt ettt a et oo bt e o bttt e ea b et e oa b et e o bt e e e oa bt e e ek et e e st e e e eab e e e e be e e e nt e e nareeean 161
7.9.1 TRE CALLS Pragma.....ccoiieeeeiieie ittt etttk et e ettt £ bttt ek bt eea bt e o b st e e sttt e eab e e e s abb e e e anbe e e sneeeannneeean 162
7.9.2 The CODE_ALIGN PragiMa.......ceiiitiieiiiie ettt ettt ettt ettt ettt s bt e eae e e aabe e e e st e e es et e e sabe e e sst e e e eabe e e ebeeeeanneeenanees 162
7.9.3 The CODE_SECTION PragiMa.ccciueieitiieiiiie ettt ate ettt et e s ste e e st e e e ekt e s st et e s seeeeas b e e e aabeeenneeeenaneeas 163
7.9.4 The DATA_ALIGN Pragma......oocueee ettt ettt ettt et ettt s b e e a bt e e e e et e e b et e e aa b et e sbbe e e eaneeesabeeeeneeeenanee 164
7.9.5 The DATA_MEM_BANK PragiMa.........cooiiiiiiiiieiieie ittt ettt ettt e e st e s sate e e s be e e este e e sane e e ebb e e e anteeenanee 164
7.9.6 The DATA_SECTION PragiMa.........ceiiiiieiiieeitiee ettt ettt e ettt et s bt e e e b b e e e aabe e e sb et e e asbe e e eaneeesneeeeanbeeeaas 165
7.9.7 The DiagnostiC MESSAGE Pragmas.eiiiiiiiiiiie ittt ettt et e e s bt e s at e e e sab e e e abe e e eanneeenanees 166
7.9.8 The FORCEINLINE PragiMa.cooiuieiiiiieiiiet it ee ettt sttt sttt s st aa et e ettt e e abe e e e aa b et e ente e e eabe e e aabeeeenneeenanes 167
7.9.9 The FORCEINLINE_RECURSIVE Pragma.........cciiiuiiiiiieieiiiee ettt sse e s emt e aabe e s e 167
7.9.10 The FUNC_ALWAYS_INLINE Pragma..........cooouuiiiiiie ittt ettt ettt nss et e nae e nnne e et nnees 168
7.9.11 The FUNC_CANNOT_INLINE PragiMa.ccootiiiiiieiiiiie ittt sttt ettt sate e ssse e e sbe e e enne e nnneas 169
7.9.12 The FUNC_EXT_CALLED Pragma.......cueeiitiee ittt ettt ettt e sttt e st e e sabe e e e bt e e s ante e e sneeeeanneeeanes 169
7.9.13 The FUNC_INTERRUPT_THRESHOLD Pragma..........ccciiuitiiiiiieiiiee ittt st e e 170
7.9.14 The FUNC_IS_PURE Pragma.......coooueiiiiiee ittt ettt ettt sttt e ekt e e et et s et e e asb e e aabe e e snneeenaneeas 170
7.9.15 The FUNC_IS_SYSTEM Pragma.ccccuueeoiieieiiiee ettt ettt sttt ettt e eht e s bt e ebe e e e sab e e e abe e e eane e e nanes 171
7.9.16 The FUNC_NEVER_RETURNS Pragma........c.uooiiiiiiiiiii ettt ettt s e e ntne e 171
7.9.17 The FUNC_NO_GLOBAL_ASG PragMa.......ccuctiiueeiiiiieeiiiee sttt ettt ettt e sttt e s et e ssee e asbeesasbeeesneeeenaneeas 171
7.9.18 The FUNC_NO_IND_ASG PragimMa.ccoiieieiiieeiitiie ettt e et s ams e e aab e e e sste e s esbe e e sabeeeeanneeenanees 172
7.9.19 The FUNCTION_OPTIONS Pragma.......oocueee ittt ettt ettt ettt e st e bt e s et et e s e e e sn e e e ateeenneeas 172
7.9.20 The INTERRUPT Pragma.ccoouei ottt ettt ettt ea et ea e e e e e ae et e aa ket e e st e e sabe e e et e e sane e e naneeeabaeennee 173
7.9.21 THe LOCATION Pragma.....ccocueee ettt ettt ettt e ettt 1 bt e et e e ea b et e £ be e e e ettt e eabe e e e b et e eanbe e e saneeesneee s 173
7.9.22 The MUST _ITERATE PragiMa........ccoiouiiiiiii ittt ettt ettt eat e st e e st e s eate e e sab e e esb e e e anneeesneee s 174
7.9.23 The NMI_INTERRUPT Pragma........ccooueoiiiiieiiiee ettt ettt ettt se et e e st e s ean e e e st e e e nne e e 176
7.9.24 The NOINIT and PERSISTENT Pragmas........ocueeeiuiteaiiie ettt ee ettt ettt ettt aate e sane e e s nbeeesanteeenanee 176
7.9.25 THEe NOINLINE PragiMa........ceie ittt ettt ettt ettt sttt e et e e st sa et e e b bt e e aabe e e sabe e e e kb e e e anbeeesneeeeanbeeennes 177
7.9.26 The NO_HOOKS PragmMa.cooiueeeiiieeaeiie ettt ettt ettt s bt e e st e e aa b et e sbe e e ek bt e e aabe e e sbe e e e bt e e e saneeesbeeeeas 178
7.9.27 THE ONCE PragIMa. ittt h e oo ettt e o bt e e s bt e e ettt e e ehe e e e ea b e e e eab b e e e embe e e sabeeeente e e nanns 178
7.9.28 THE PACK Pragma.....cco ittt ettt ettt h e e ekt e e h e o1 a et e ek bt e e st et e sab e e e et b e e e anee e e saneeeensbeeenaee 178
7.9.29 The PROB_ITERATE PragiMa........ccoitiiiiiiii ittt ettt ettt e st e e st e s et e e s b e e e sbe e e saneeeaneee s 179
7.9.30 THEe RETAIN Pragma... ..o o oeee ittt ettt ettt ettt st e ettt e bttt o1 ab et e et e e s s et e e ra bt e e e a b e e e s ne e e e sab e e e enteeesnnes 179
7.9.31 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas.........ccceeruitinieie e 180
7.9.32 The STRUGCT_ALIGN Pragma.coooueiiiiiie ittt ettt ettt e bt e e et et s s e e e s e e e eabe e e snneeenaneeas 181
7.9.33 THE UNROLL Pragma.coueee ittt ettt st h ettt e st e hb e e ettt e e s te e e ea bt e e et b e e e ate e e saneeeebaeeeanee 181
7.10 The _Pragma OPEIatOr.........c.uei ittt ettt e ettt b e e b bt oo ettt a4 b et e e sttt oo s et a4 b et e e an b et e eane e e e abb e e e aabeeenneeeennneeean 182
7.11 Application BiNary INTEITACE.cui ittt a e e st e et e eab e e s b e e e nre e e e 183
7.12 Object File Symbol Naming Conventions (LINKNGMES)..........cuiiiiiiiiiiiie ettt 183
7.13 Changing the ANSI/ISO C/C++ Language MOGE...........ooiiiiiiiiieeiiie ettt e e as 184
A I OIS 1] o] oTo] A Gt o2 1) O PSP UP P OTPPP TSR 184
RS 2 O RS T o] oo o A o e I T PRSPPI UPRI 185
7.13.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)...........ccccovueerriiieiiieneniee e, 185
6 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
7.14 GNU and Clang Language EXIENSIONS.coouiiiiiiie ittt ettt e bt e et sae e nb e e e et e e nnre e e naneeeas 186
I =3 (= TS o] 1S TP OPP 186
T.14.2 FUNCHON ALTIDULES. ...ttt b e e a et sa e e e bt e e st et e sab e e e e bb e e e anteeenanees 188
T.14.3 FOr LOOP ALITIDULES. ...ttt h e e ettt sebe e e e e bt e e e bttt e ean e e e st e e e ente e e nanees 189
T.14.4 Variable AHIIDULES. ..ottt ettt e a et e et et e e ab e e e s bt e e et bt e e aabe e e s be e e e anreeea 189
T 4.5 TYPE ATTIDULES. ...ttt e bttt oo h et e o bt e e h et e e a bt e e e b bt e e nb et e sabe e e e abb e e e anne e e nane s 190
7146 BUIIE-IN FUNCHONS......ceiiiie ettt ettt ettt oottt et e e ea bt e e ea b bt e s bt e e e aabe e e anne e s neeeeanbeeennns 191
7.15 Operations and FUNCtions for VECIOr Data TYPES......cooiuuiiiiiiie ittt sttt 192
7.15.1 Vector Literals and CONCAtENALION.oi ittt e bt e et e et e e nnes 192
7.15.2 Unary and Binary Operators fOr VECIOTS.couiiiiiiiiit ettt 193
7.15.3 SWIzZZIe OPErators fOr VECIOTS.c.uiiiiiiee ittt ettt et s st e st e e ettt e este e e saneeeabaeennee 194
7.15.4 Conversion FUNCHONS fOr VECIOTS.uiiiiiie ittt et et e bt e e b e e e nanes 195
7.15.5 Re-Interpretation FUNCHONS fOr VECIOTS.uii ittt e e 196
7.15.6 USING PriNtf() WIth VECIOTS. ...t ettt b e st e e rab e e et e e e aate e e nanes 196
7.15.7 BUIlIt-IN VECIOT FUNCHONS. ..ottt et b et a e e s bt e e st e e sab e e e e bb e e e anne e e nanees 197
8 RUN-TIME@ ENVIFONMENL. ...ttt a e bt e e et e s e bt e e e b bt e e e a b et e eab et e ek b e e e e abe e e nneeeesabeeean 201
T IV =T o oo VY. oo Y TP PP PP SR TUPR 202
S I IS T=Tex (o 3 - T PP PO S PP PRSP PUSRN 202
8.1.2 C/CH+ SYSIEM STACK. ...ttt ettt h et et e e bttt e hb et e et et e este e e sab e e e et b e e e aate e e naneeeebne e e e 203
8.1.3 DYNaMIC MEMOTY AlIOCALION.ceiitieeiitit ettt ettt b e e ea bt e e s b et e e b b e e e et et e e ne e e e aa b e e e enne e e nnneas 204
8.1.4 Data MEMOTY IMOEIS....... ittt ettt ottt a e e ettt e s be e e e b bt e e et e e e e bt e e eanb e e e sneeeanaeeeas 204
8.1.5 Trampoline Generation for FUNCHON CallS.............ooiiiiiiiiiii e 205
8.1.6 POSItion INAEPENAENT DATA......ccoiiiiiiiiie ettt e bt e et e s bt e a e en e e e e nae 206
8.2 ODJECE REPIESENTALION. ...ttt ettt b ettt e ekt e e sttt e sab et e e bb e e e st e e e sab e e e ebe e e e naneas 207
S B B) = T Y o TSRS (o] = To = T PSPPSR 207
S = 11 =YL TR SURRRI 213
8.2.3 Character StriNG CONSIANTS.oiuuiiiiiiie ettt e e et et e e ate e e eab et e et e e e aate e e saneeeenbbeeeaaee 214
R I a{CTo 151 (=T g 0] 1)Y= o1 1o] T PO PP OP PRI 216
8.4 Function Structure and Calling CONVENTIONS.........coiuiiiiiiie ittt ettt e e b e e et et e s enreeesaneeeas 217
8.4.1 HOw @ FUNCHON MAKES @ Call.......eiiiiiiiiiiee ettt b e ettt e et b e e st e e sneeeeaabeeeeaes 217
8.4.2 How a Called FUNCHON RESPONAS.......ciiiiiiiiiiiiie ittt ettt e et s st st e e et e e s aate e e saneeeenbneeeaaee 218
8.4.3 Accessing Arguments and LOCal VariabIes.c.eoi i 219
8.5 Accessing Linker SymboIs in € @nd C. .ottt 219
8.6 Interfacing C and C++ With ASSEMDIY LanQUAJE.oiiiiiiiiiiiieiie et 219
8.6.1 Using Assembly Language Modules With C/C++ COUE.........uuiiiiiiiiiiiieiiiee et 220
8.6.2 Accessing Assembly Language Functions From C/CH+ ...t 221
8.6.3 Accessing Assembly Language Variables From C/C++.........iiiiiiiiiiiiee e e 222
8.6.4 Sharing C/C++ Header Files With ASSEMDIY SOUICE..........ciiiiiiiiiiie e 223
8.6.5 Using INline ASSEMDIY LANGUAGE.eiiimiieiitiie ettt ettt b ettt e et e e et e e et e e sneeeenbbee e e 224
8.6.6 Using Intrinsics to Access Assembly Language Statements............cooiiiiiiiiiiiiiei e 224
8.6.7 The __ X128 _t CONTAINET TPttt ettt ettt et e e bt e e st e e sab et e et b e e e ante e e sneeeenbbeeenaee
8.6.8 The __ float2_t Container Type
8.6.9 Using Intrinsics for Interrupt Control and AtOmIC SECHONS.cciuiiiiiiii e 243
8.6.10 Using Unaligned Data and 64-Bit VAIUES............ocuuiiiiiiiiiii ettt e e 244
8.6.11 Using MUST_ITERATE and _nassert to Enable SIMD and Expand Compiler Knowledge of Loops.................... 244
8.6.12 Methods t0 AlIGN DAtA.......ueii ittt a et e e e bt e e s e e e s b et e et e e et e e e et e e e 246
8.6.13 SAT Bit SidE EffECES.ueiitiiiiiieiie ettt ettt sttt e e et e e st e e ente e beesabeenbeesnbeesaeeenbeesneeenee e 248
8.6.14 IRP @nd AMR CONVENTIONS.eeiiiitiieiiiie ettt ettt ettt et e e ae e e e b et e e b bt e e ea bt e e e be e e s nbe e e sabe e e e bbeeeanneeenanees 249
8.6.15 Floating Point Control Register Side EffECtS..........oui i 249
A 101 (Y4 U o] i F= 1o T | 1o T PSPPSR PRI 250
8.7.1 SAVING the SGIE Bil......ccueiiiiiieieiii ettt sttt e et e bt eeat e e beeemteebe e e beeaaeeenbeesneeenbeesnbeeneennnean 250
8.7.2 Saving Registers DUMNG INTEITUPDES.coouiii ittt st et e e aan e e e nanees 250
8.7.3 Using C/CH+ INterrUPt ROULINES.......ooiiiiiiiiiie ittt e bttt e e s bt e e aa b e saeeeannee s 250
8.7.4 Using Assembly Language INterrupt ROUTINES.cooiiiiiiiiiiiie ettt 251
8.8 Run-Time-Support ArithmeEtic ROULINES.oiiiiiiiiie ettt e e bt e e s neee s 252
8.9 SYSEM INIIAIZATION.eee ittt e e s et e et e a et sa bt e e bt e e n e e et aaneas 254
8.9.1 Boot Hook Functions for System Pre-Initialization..............ccooiiiiiii e 254
8.9.2 Automatic Initialization Of VariabIesooiiiiii e 254
8.10 Support for Multi-Threaded APPIICALIONS.c..uiiiiii ettt e et s e e naneeeas 259
8.10.1 Compiling With OPENIMPt h e e ettt s bt e e aa bt e e ettt e e eaae e e aabe e e ente e e nanees 259
8.10.2 Multi-Threading RUNTIME SUPPOTT......co.uiiiiiieiiee ettt ettt e e st e e sae e e rabe e e abe e e eaane e e nanees 260
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 7
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
9 Using Run-Time-Support Functions and Building Libraries...................ccooiiiiiii e 261
9.1 C and C++ RUN-TIME SUPPOIt LIDFATES.c..uiieiiiiiiiee ettt ettt e et e e saneeas 262
9.1.1 Linking Code With the ODBJECt LIDrary..........c.eei ittt 262
S A o 1o To L= 1o R R PP P PSPPI 262
9.1.3 Modifying @ Library FUNCHON...........oiiiii ettt b e e e e e e e e neee s 263
9.1.4 Support fOr STHNG HANAING.ccoiiiiiiee ettt ettt s a et e et e e e aste e e saneeeenbbeeenaee 263
9.1.5 Minimal Support for INternationNaliZation.............o.oiii e e 264
9.1.6 Support for Time and ClOCK FUNCHONS.iiiiii et e s s 264
9.1.7 Allowable NUMDEr Of OPEN FlES.......coiiiiiiiiii ettt e e esane e e nanees 265
9.1.8 Library Naming CONVENTIONS.oiiiiiieiiiie ettt ettt et e s st e e s ab et e et et e ea e e e e sabe e e eabb e e eante e e saneeeebaeeeaaee 265
LI I TN O 1L @ B U] ed (o] S T O P PP PPOTSPPTPRRN 265
9.2.1 HIGN-LEVEI I/O FUNCHONS. ..ottt ettt bt e ettt s bt e e s bt e e e bt e e ean e e e st e e e ente e e nanees 266
9.2.2 Overview of Low-Level /O IMplementation............c..ooiiiiiiiiiiiit et 267
9.2.3 Device-Driver LeVEl 1/O FUNCHONS.coiiiiieitiee ettt ettt e ettt rab e et e e s aate e e sneeeeanneeeanee 271
9.2.4 Adding a User-Defined Device Driver fOr C 1/O.......cuii ittt 275
9.2.5 TRE EVICE PrefiX. ... ittt h ettt s bt e e e bt e e ettt e s bt e e e aab e e e sbe e e s enneeeanbeeenaes 276
9.3 Handling Reentrancy (_register_lock() and _register_unlock() FUNCHONS)..........ccoiiiiiiiiiiiiii e 278
9.4 LIDrary-Build PrOCESS.ciiuiiiiiii ettt h et e et e bttt o1 h bt e e et bt e e sttt e 1a bt e e et bt e e eate e e s be e e e nnne e e e 279
9.4.1 Required Non-Texas INStruments SOMWAIE.........ocuii i 279
9.4.2 Using the Library-Build PrOCESS.uiiiiiii ittt ettt et ettt e et e e sane e e e baeeeaee 279
9.4.3 EXTENAING MKIID.......ceieeieeei ettt etk e e bt e bt e et e e eae e e abeesaeeenbeesmbeenbeesnbeeabeeenbeesbeeenneenneean 282
10 CHt NAME DEMANGIETot e e bt e e ea et oo b et e oo h et e e ea bt e e eaa e e e e hb e e e aab et e nant e e e abbeeeanteeenanees 283
10.1 Invoking the C++ NamMe DEMANGIET........cooiiiiiiii ettt b e s bt e e s e e st e e ente e e nannes 284
10.2 Sample Usage of the C++ Name DeMENGIET..........ooi ittt e e nnee s 284
PN €] Lo T T | Y PO PRSP OPPRN 287
N B [T 4 1311 g ol (o | PP OPPPUPROE 287
B REVISION HISTOTYo it h et e bt e e e et oa bt e ek bt e e e st et e sabe e e e ebb e e e aabe e e sneeeenaneeeas 293
List of Figures
Figure 1-1. TMS320C6000 Software Development FIOW.........ccoiiii it 16
Figure 4-1. SOftWare-PipeliN@d LOOPcooiiiiiiiiei ittt e b e e et s bt e e e sab e e e be e e snre e e saneeeabreennee 61
Figure 5-1. 4-Bank INterleaved MEMOTYoo i ittt e e b et s e e s be e e e st e e nnn e e s enreeeas 125
Figure 5-2. 4-Bank Interleaved Memory With TWO MEMOTY SPACES.......ccccuiiiiiiiiiiiie ettt 125
Figure 8-1. Char and Short Data Storage FOrMAL...........oooiiiiiiiiii et 208
Figure 8-2. 32-Bit Data Storage FOMMAL............oi ittt e e et s b e e e e et nneeas 209
Figure 8-3. Single-Precision Floating-Point Char Data Storage FOrmat.............ccooouiiiiiiiiiiicie e 209
Figure 8-4. 40-Bit Data Storage Format Signed _ iNtA0_t..........oo i e 210
Figure 8-5. Unsigned 40-Dit _ INTA0_L... . .eiiieiiiiiie ettt 210
Figure 8-6. 64-Bit Data Storage Format Signed 64-bit IONG.........cocuiiiiiiii e 21
Figure 8-7. UnSIGNed B4-Dit IONG......couuiiiiiii ettt e e h e e e n 211
Figure 8-8. Double-Precision Floating-Point Data Storage FOrmat..............cooiiiiiiiiiii e 212
Figure 8-9. Bit-Field Packing in Big-Endian and Little-Endian FOrmats..............ccooiiiiiiiiiiec e 214
Figure 8-10. Register Argument CONVENTIONS.ooiiiiiiieiei ettt ettt e e e e et esne e e e s e e abneennneas 218
Figure 8-11. Autoinitialization @t RUN TimIE.......coiiiiiiiee ettt b e e e s e e nnree s 256
Figure 8-12. Initialization at LOAd TiME........coiiiiiiiii ettt ettt ek e et e st e e aab e e e ebe e e e neeas 259
Figure 8-13. CONSITUCION TADIE.......c..uiiiiiiiee ettt e e e e h et e st et e e bttt e e b e e e e b e e e e anb et e nneeeeaaneeeas 259
List of Tables
Table 2-1. Steps for Creating @ CCS PrOJECL. ..o ittt e et e e e ettt e e e e et be e e e e e e e nneeeeaaaaantaeeeaeeaannnneaaeaanns 20
Table 3-1. PrOCESSOr OPLIONS. .. .uuiiiiiiieieiiiiee ettt e e e e et et eeaaaeaeeeeeesesasaa e s aasaessssssaseeeeeeeeaeeaaaaeaeaeeeesesasanaaannnnsnes 23
Table 3-2. OptMIZAtION OPHONST ... oottt et et e et ee et e e ee e e e e e e e eee e eee e e e e e 23
Table 3-3. Advanced Optimization OPHONS(....... ...t ettt et e e e e ee e e ee e ee e 23
o) (ST B B LY o1 W o [@ o i (o o - TSP OUPRRRN 24
Table 3-5. INCIUAE OPIIONS.ttt e e e e e e et e e e e e e et e eeeaaaaaaeeeeeeseaeaaa s nsasasasesesssaseseeeeeeeaaaaaaeeaeeesaaanaannnnes 24
Table 3-6. CONTrOl OPtIONS.t e et e oot e e e e e e e e e et eeeeeeaaaaeaeeeeeeseaesa s e asasasasssesasaseeeeeeeaaaaaaaaeeaesseaaaaaannnes 24
= o) (ST A =T g Vo T = o [T @ o] 1 o] 1 PR PUUPERN: 25
Table 3-8. Parser PreproCesSSiNg OPHIONS.c.oa ittt e e ettt e e e e s te e e e e e e astaeeaaeaasaeeeeaeaaannseeeaaeanssneaaeaaannneeaaeaaannnes 25
Table 3-9. Predefined MacCro OPtiONS.ottt e e e e e et e e e e e e e e et e e e ae e e e e e eeeeaaaaaaaeaaeaeeesasaaaaasnnsnsssssssssnnnnnenes 26
Table 3-10. DiagnostiCc MESSAQgE OPLIONS.uiiiii it e ettt e e e e et e e e e e e eaeeea e e e e aseeeaeaeanbeeeaaeaannneeeaeeaanseeaaaaannn 26
Table 3-11. Supplemental INformation OPLIONS.........uuiiiiiiiieieeeee raaaaerereeeeaaaaaas 26
8 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
Table 3-12. RUN-TIME MOAEI OPLIONS.coiiiiiiiiii ittt a bt e b et e s b et e e aa b et e eabe e e e abn e e e aabe e e sneeesnnnee s 26
Table 3-13. ENtry/EXit HOOK OPHIONS.ottt ettt et e et s bt e e aa et e eabe e e s be e e e aabe e e ebneeennneas 27

Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.
Table 3-28.
Table 3-29.

T To T Tl (@ o] (o] T PSPPSR 27
F XTSIt o] o] =T @] o] o] o - T PO U PP OTPPP PPN 27
File Type SPeCfier OPLIONS.ottt ettt e e bt e rab e e et e e e snte e e sabeeeenbneeenes 28
DireCtOry SPECITIEr OPHIONS.ttt h e e ea et s et e e b e e e et e e e s be e e e bt e e e aaneeeaneeeeas 28
Default File EXIENSIONS OPTONS.ttt ettt ettt s b e as et e aabe e s eae e e e aabe e e esr e e e nnneas 28
(070]00104F=ToTo I a1 ToT N @] o] (o] o K S PO T P OU PP TPPPOPPR 28
Performance AdVISOT OPTIONS.coii ittt ettt sttt e sa e e e et et e sat e e e rab e e e eabe e e snte e e saneeeebneennee 29
o] = = EY o @] o] o] o I PP PSPPSR OPRPPPRNY 29
File SEaArch Path OPtiONS.coiiiiiiiii ettt e et e e bttt rab et e et bt e e st e e sbeeeenbbeeeanee 29
Command File PreproCessing OPtiONS.ui ittt s it e e e e et e e enn e e e naneeas 29
DiagnostiCc MESSAGE OPHIONS. ...ttt ettt s et e e st e e et e e s be e e e aa b e e e nne e e nnaeeeas 29
LinKer OULPUL OPTIONS.ciiiii ittt a et e bt e ea et e et et e e st e e e rab et e et b e e ente e e saneeeennbeeeanes 30
Symbol ManagemENTt OPtiIONS.eii ittt e bt e e et e e bt e e aa b e e et sne e ee s 30
RUN-TiMe ENVIrONMENT OPLIONS.uiiiiiiiieiiiie ittt e bt e et e e bt e s sa b e e e aabe e e nnneeenanee 30
MiISCEIIANEOUS OPTIONS. ...ttt ettt ettt b et e e bt e ettt e s be e e e sttt e eabe e e e abb e e e aabe e e enreeennneas 31
Predefined CB000 MaCIO NAIMES.........oiiiiiiiiiiie ettt ettt et e e e et e st e e b e e e sabe e e sbeeeeaabeeeaaes 39

Table 3-30. Raw Listing File IA@NTfIEIS.coouuiiiie ettt et e e e e e et e eaee 47
Table 3-31. Raw Listing File DiagnostiC IAENTIIEIS.oiiiiii e 47
Table 4-1. Options That You Can Use With —-0pt_IEVEIS3..........eiiii e 58
Table 4-2. Selecting a Level for the —-gen_opt_info OPtioN.ooiii i 58
Table 4-3. Selecting a Level for the --call_assumptions OPLioN...........cooiiiiiiiiiiii e 59
Table 4-4. Special Considerations When Using the --call_assumptions Option...........ccccoiiiiiiiiiiiieec e 59
Table 5-1. Options That Affect the ASSEMbBIY OPLMIZET..........cuiiiiiiii e 102
Table 5-2. Assembly Optimizer DireCliVES SUMMAIY........cocuiiiiiiiiiii ettt et 108
Table 6-1. Initialized Sections Created by the COMPIIET ..o e 141
Table 6-2. Uninitialized Sections Created by the COMPIIET...........cooiiiiiiii e 141
Table 7-1. TMS320C6000 C/CH+ DAt TYPES.....eeruuteueeruiteitieateestieateesteeateesseeeseessteesseesaseesteeaseesteeaaseesseeabesanseeasessnseesseesnnes 149
B o Lo O Y= Te: (o] g = = T Y =T PP STRUPPPOTI 151
Table 7-3. COMPIEX VECIOT DAtA TYPES. .. ceiiuteiiiieiieitie ettt ettt e aa bt e bt e s b et e e aa bt e e e bttt e eab e e e aabe e e enb et e naneeesbeeeeas 152
Table 7-4. Control Registers for C64x+, C6740, and CB600oooiiiiiiiiiiiiiiiiiei et e e e e e e sree e e e e s e ebeeeaeeeannreeaaeaas 154
Table 7-5. Additional Control Registers for C6740 and CB600..............ueiiiuiiiiiieeiiiee ettt sneee e saneeeas 154
Table 7-6. GCC Language EXIENSIONS.c..uii ittt ettt a e e e s bt e e ekttt e e b e e e e be e e e st e e e saneeeenaneeean 186
Table 7-7. Unary Operators Supported fOr VECIOr TYPES.......cii ittt ettt b et 193
Table 7-8. Binary Operators Supported fOr VECIOr TYPES.ccoiuuiiiiiiieiiiie ittt sttt 193
Table 7-9. Built-In Functions that AcCept VeCtor ArQUMENTS........ccuuiiiiiii ettt 197
Table 8-1. Data Representation in Registers @and MEMOTY.........cooiiiiiiiiiiiiie et 207
TabIE 8-2. REGISIEr USAGE.teiiiiiiiiiiie ettt a bt e et eh e e 1a bt e oot bt e e b bt e e o bt e e e b bt e e eab e e e e be e e nnb e e e nanes 216
Table 8-3. Device Families and INtriNSICS TaDIES...........cooiiiiiiii e e 224
Table 8-4. C6000 C/C++ INtrinSiCS SUPPOIT DY DEVICE.......coiiuiiiiiiiiiiiiie ettt 225
Table 8-5. TMS320C6000 C/C++ ComMPIler INFNSICS......eciiutiiiiiiie ittt sttt sb e an e 231
Table 8-6. TMS320C6740 and C6600 C/C++ ComPpiler INtrNSICS.......cocueiiiiiieiiiei e 236
Table 8-7. TMS320C6600 C/C++ ComMPIlEr INHNSICS......ceiiuiiiiiiiieiiiee ettt sb e e e 237
Table 8-8. Vector-in-Scalar Support C/C++ Compiler V7.2 INtrNSICS........eiiiiiiiiiiie ettt 243
Table 8-9. C6000 Run-Time-Support Arithmetic FUNCHONS............oiiiii et e e e 252
Table 9-1. Differences between __time32_t and _ fimMEB4_t..........ooo i 265
Table 9-2. The MKIID Program OPtiONS.o ettt e et eb et s b e sab e e et e s bt e e e s b e e e sbneesnnneas 281
Table 13-1. REVISION HISTOTY ...ttt at ettt e bt e e ettt e sab et e e e bb e e e et et e nneee e naneeeas 294
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 9
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS

Table of Contents www.ti.com
This page intentionally left blank.

10 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022

v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Preface

Read This First

i3 TEXAS INSTRUMENTS

About This Manual

The TMS320C6000 Optimizing C/C++ Compiler User's Guide explains how to use the following Texas
Instruments Code Generation compiler tools:

» Compiler

* Assembly optimizer

» Library build utility

* C++ name demangler

The TI compiler accepts C and C++ code conforming to the International Organization for Standardization (ISO)
standards for these languages. The compiler supports the 1989, 1999, and 2011 versions of the C language and
the 2014 version of the C++ language.

This user's guide discusses the characteristics of the TI C/C++ compiler. It assumes that you already know how
to write C/C++ programs. The C Programming Language (second edition), by Brian W. Kernighan and Dennis M.
Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie (hereafter referred to
as K&R) book as a supplement to this manual. References to K&R C (as opposed to ISO C) in this manual refer
to the C language as defined in the first edition of Kernighan and Ritchie's The C Programming Language.

Notational Conventions
This document uses the following conventions:

* Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from
items that the system displays (such as prompts, command output, error messages, etc.). Here is a sample
of C code:

#include <stdio.h>

main ()

{ printf ("Hello World\n");
}

* In syntax descriptions, instructions, commands, and directives are in a bold typeface and parameters are in
an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.

» Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter:

‘clﬁx [options] [filenames] [--run_linker [link_options] [object files]]

» Braces ({and }) indicate that you must choose one of the parameters within the braces; you do not enter the
braces themselves. This is an example of a command with braces that are not included in the actual syntax
but indicate that you must specify either the --rom_model or --ram_model option:

cl6éx --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]

--library= libraryname

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 1
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Read This First www.ti.com

* In assembler syntax statements, the leftmost column is reserved for the first character of a label or symbol. If
the label or symbol is optional, it is usually not shown. If a label or symbol is a required parameter, it is shown
starting against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in the leftmost column.

symbol .usect "section name", size in bytes[, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive. This syntax is
shown as [, ..., parameter].

» This document describes support for the C64+, C6740, and C6600 variants of the TMS320C6000™
processor series. The C6200, C6400, C6700, and C6700+ variants are not supported in v8.0 and later
versions of the TI Code Generation Tools. If you are using one of these legacy devices, please use v7.4 of
the Code Generation Tools and refer to SPRU187 and SPRU186 for documentation.

Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The 1999 C Standard),
International Organization for Standardization

ISO/IEC 9899:2011, International Standard - Programming Languages - C (The 2011 C Standard),
International Organization for Standardization

ISO/IEC 14882-2014, International Standard - Programming Languages - C++ (The 2014 C++ Standard),
International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie, published by
Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by Prentice
Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by O'Reilly
& Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0, TIS
Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2005 (http://dwarfstd.org)

DWARF Debugging Information Format Version 4, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2010 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)

OpenCL™ Specification version 1.2 (https://www.khronos.org/opencl/)

12 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru187
https://www.ti.com/lit/pdf/spru186
http://dwarfstd.org
http://dwarfstd.org
http://www.sco.com/developers/gabi/
https://www.khronos.org/opencl/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS

www.ti.com

Read This First

Related Documentation From Texas Instruments

See the following resources for further information about the TI Code Generation Tools:

* Code Composer Studio Documentation Overview
« Texas Instruments E2E Software Tools Forum

You can use the following documents to supplement this user's guide:

SPRUIO03

SPRAB89

SPRU190

SPRU732

TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly language tools
(assembiler, linker, and other tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the C64+, C6740, and
C6600 variants of the TMS320C6000 platform of devices. Refer to SPRU186 when using legacy
C6200, C6400, C6700, and C6700+ devices.

The C6000 Embedded Application Binary Interface. Provides a specification for the ELF-
based Embedded Application Binary Interface (EABI) for the TMS320C6000 family of processors
from Texas Instruments. The EABI defines the low-level interface between programs, program
components, and the execution environment, including the operating system if one is present.

TMS320C6000 DSP Peripherals Overview Reference Guide. Provides an overview and briefly

describes the peripherals available on the TMS320C6000 family of digital signal processors (DSPs).

TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRUGH7 TMS320C66x CPU and Instruction Set Reference Guide. Describes the CPU architecture,

SPRUFES8

SPRAAB5

SPRUEX3

pipeline, instruction set, and interrupts for the TMS320C66Xx digital signal processors (DSPs) of
the TMS320C6000 DSP platform. The C66x DSP generation comprises floating-point devices in the
C6000 DSP platform.

TMS320C674x CPU and Instruction Set Reference Guide. Describes the CPU architecture,
pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs)

of the TMS320C6000 DSP platform. The C674x is a floating-point DSP that combines the
TMS320C67x+™ DSP and the TMS320C64x+™ DSP instruction set architectures into one core.

The Impact of DWARF on TI Object Files. Describes the Texas Instruments extensions to the
DWAREF specification.

TI SYS/BIOS Real-time Operating System User's Guide. SYS/BIOS gives application developers
the ability to develop embedded real-time software. SYS/BIOS is a scalable real-time kernel. It

is designed to be used by applications that require real-time scheduling and synchronization or
real-time instrumentation. SYS/BIOS provides preemptive multithreading, hardware abstraction,
real-time analysis, and configuration tools.

Trademarks

TMS320C6000™ and Code Composer Studio™ are trademarks of Texas Instruments.
OpenCL™ is a trademark of Apple Inc. used by permission by Khronos.

All trademarks are the property of their respective owners.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

13

https://software-dl.ti.com/ccs/esd/documents/ccs_documentation-overview.html
http://e2e.ti.com/support/tools/ccs/f/81
https://www.ti.com/lit/pdf/sprui03
https://www.ti.com/lit/pdf/spru186
https://www.ti.com/lit/pdf/sprab89
https://www.ti.com/lit/pdf/spru190
https://www.ti.com/lit/pdf/spru732
https://www.ti.com/lit/pdf/sprugh7
https://www.ti.com/lit/pdf/sprufe8
https://www.ti.com/lit/pdf/spraab5
https://www.ti.com/lit/pdf/SPRUEX3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS

Read This First www.ti.com
This page intentionally left blank.

14 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022

v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Chapter 1
Introduction to the Software Development Tools

i3 TEXAS INSTRUMENTS

The TMS320C6000™ is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembly optimizer , an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++ compiler.
The assembly optimizer is discussed in . The assembler and linker are discussed in detail in the TMS320C6000
Assembly Language Tools User's Guide.

1.1 Software Development TOOIS OVEIVIEW................iiiiiiiiiiii et e et et e e s e e e s abe e e e asne e e sane e e asreeeennneesnneeaas 16

1.2 CoMPIIEr INTEITACE.ottt et e ekt e e at e e ab bt e e skt e e et e e eaan e e e s nb e e e eaneeennnes 17

1.3 ANSHISO STANAAN..........ceoiiiii et ettt et sh et e e bt e e as e e e b e e e et e ebe e et e e eae e s b e e emnesneeshneeaneenaneen 17

LB OULPUL FIlES...... ..ottt e e e e ettt e e e e e e st et e e e e eeataaeeeeeeaaseseeaeeeaasbaeeeeeaansseeeaeeeannsseeaeeeanbaneaaean 18

0 = PP 18
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 15
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral functions
that enhance the development process.

Figure 1-1. TMS320C6000 Software Development Flow

The following list describes the tools that are shown in Figure 1-1:

* The assembly optimizer allows you to write linear assembly code without being concerned with the pipeline
structure or with assigning registers. It accepts assembly code that has not been register-allocated and is

16 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to the Software Development Tools

unscheduled. The assembly optimizer assigns registers and uses loop optimization to turn linear assembly
into highly parallel assembly that takes advantage of software pipelining. See Chapter 5.

» The compiler accepts C/C++ source code and produces C6000 assembly language source code. See
Chapter 3.

» The assembler translates assembly language source files into machine language relocatable object files.
See the TMS320C6000 Assembly Language Tools User's Guide.

« The linker combines relocatable object files into a single absolute executable object file. As it creates the
executable file, it performs relocation and resolves external references. The linker accepts relocatable object
files and object libraries as input. See Chapter 6 for an overview of the linker. See the TMS320C6000
Assembly Language Tools User's Guide for details.

» The archiver allows you to collect a group of files into a single archive file, called a library. The archiver
allows you to modify such libraries by deleting, replacing, extracting, or adding members. One of the most
useful applications of the archiver is building a library of object files. See the TMS320C6000 Assembly
Language Tools User's Guide.

* The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler. See
Chapter 9.

The library-build utility automatically builds the run-time-support library if compiler and linker options require
a custom version of the library. See Section 9.4. Source code for the standard run-time-support library
functions for C and C++ is provided in the lib\src subdirectory of the directory where the compiler is installed.

« The hex conversion utility converts an object file into other object formats. You can download the converted
file to an EPROM programmer. See the TMS320C6000 Assembly Language Tools User's Guide.

« The C++ name demangler is a debugging aid that converts names mangled by the compiler back to their
original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++ name
demangler on the assembly file that is output by the compiler; you can also use this utility on the assembler
listing file and the linker map file. See Chapter 10.

* The disassembler decodes object files to show the assembly instructions that they represent. See the
TMS320C6000 Assembly Language Tools User's Guide.

* The main product of this development process is an executable object file that can be executed on a
TMS320C6000 device. You can use an XDS emulator when refining and correcting your code.

1.2 Compiler Interface

The compiler is a command-line program named cl6x. This program can compile, optimize, assemble, and link
programs in a single step. Within Code Composer Studio™, the compiler is run automatically to perform the
steps needed to build a project.

For more information about compiling a program, see Section 3.1

The compiler has straightforward calling conventions, so you can write assembly and C functions that call each
other. For more information about calling conventions, see Chapter 8.

1.3 ANSI/ISO Standard

The compiler supports the 1989, 1999, and 2011 versions of the C language and the 2014 version of the C++
language. The C and C++ language features in the compiler are implemented in conformance with the following
ISO standards:

» ISO-standard C: The C compiler supports the 1989, 1999, and 2011 versions of the C language.

— €89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C
standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the
same programming language. "C89" is used in this document.

— €99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C

standard.
— C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C
standard.
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 17
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R).

* ISO-standard C++: The compiler uses the C++14 version of the C++ standard. Previously, C++03 was used.
See the C++ Standard ISO/IEC 14882:2014. For a description of unsupported C++ features, see Section 7.2.

* ISO-standard run-time support: The compiler tools come with an extensive run-time library. Library
functions conform to the ISO C/C++ library standard unless otherwise stated. The library includes functions
for standard input and output, string manipulation, dynamic memory allocation, data conversion, timekeeping,
trigonometry, and exponential and hyperbolic functions. Functions for signal handling are not included,
because these are target-system specific. For more information, see Chapter 9.

See Section 7.13 for command line options to select the C or C++ standard your code uses.
1.4 Output Files
The following type of output file is created by the compiler:

* ELF object files. Executable and Linking Format (ELF) enables supporting modern language features like
early template instantiation and exporting inline functions. ELF is part of the System V Application Binary
Interface (ABI). The ELF format used for C6000 is extended by the C6000 Embedded Application Binary
Interface (EABI), which is documented in SPRABS89.

COFF object files are not supported in v8.0 and later versions of the Tl Code Generation Tools. If you would
like to produce COFF output files, please use v7.4 of the Code Generation Tools and refer to SPRU186 for
documentation.

1.5 Utilities
These features are compiler utilities:
« Library-build utility

The library-build utility lets you custom-build object libraries from source for any combination of run-time
models. For more information, see Section 9.4.
* C++ name demangler

The C++ name demangler (dem6x) is a debugging aid that translates each mangled name it detects in
compiler-generated assembly code, disassembly output, or compiler diagnostic messages to its original
name found in the C++ source code. For more information, see Chapter 10.

* Hex conversion utility

For stand-alone embedded applications, the compiler has the ability to place all code and initialization data
into ROM, allowing C/C++ code to run from reset. The ELF files output by the compiler can be converted
to EPROM programmer data files by using the hex conversion utility, as described in the TMS320C6000
Assembly Language Tools User's Guide.

18 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/
https://www.ti.com/lit/pdf/SPRAB89
https://www.ti.com/lit/pdf/spru186
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Chapter 2
Getting Started with the Code Generation Tools

i3 TEXAS INSTRUMENTS

This chapter provides an overview of the procedure for creating a Code Composer Studio project that uses the
C6000 Code Generation Tools. In addition, it provides an introduction to the command-line for the compiler and
linker.

2.1 How Code Composer Studio Projects Use the COMPIIEr...............cocciiiiiiiiiiiiii e 20
2.2 Compiling from the COMMEANG LiNE.............c.ooiiiiiiiiiii ettt seat e e sab e e e e bne e eenneeesaneee s 20
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 19

Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Getting Started with the Code Generation Tools www.ti.com

2.1 How Code Composer Studio Projects Use the Compiler

If you use Code Composer Studio (CCS) as your development environment, the compiler and linker options are
automatically set for you when you create a project. The project settings you make determine which compiler
and linker command line options are used to build the project. Follow these steps to create and build a project in
CCS v6.0. The exact steps may vary somewhat in other versions of CCS.

Table 2-1. Steps for Creating a CCS Project
Step Effects on Use of the Compiler

1. Choose File > New > CCS Project from the menus.

2. In the New CCS Project wizard, first select the Target. You can use the Sets the --silicon_version (-mv) compiler option. See Section
drop-down on the left to filter the list of specific targets on the right. The 3.3.5. In addition, a preprocessor symbol matching the target is
v8.x C6000 Code Generation Tools support C64x+, C6600, and C6740 defined using the --define compiler option. See Section 3.3.2.
targets.

3. In the Connection field, select the emulator you will use to connectto ~ Generates a target configuration file for use when running the
the device. project.

4. In the Project name field, type a name for the project. Determines the folder where the project is stored.
5. Expand the Advanced settings area.

6. Make sure the Compiler version you want to use is selected. Sets the --include_path compiler option to the include directory
for that version of the Code Generation Tools. See Section
3.5.2.1.

7. By default, C6000 applications are compiled to be little-endian. In the Sets the --big_endian compiler option if the default is not used.

Device endianness field, you can choose big-endian if needed. See Section 3.3.4.

8. The linker command file and runtime support library are selected
automatically based on your choices in the other fields.

9. Expand the Project templates and examples area.

10. Select a template for your project. The project templates you can
choose from include a completely empty project with no source files,

a project containing only main.c, an assembly-only project, and a Hello
World example. Other examples that use plug-in software components you
have installed are available in the TI Resource Explorer window.

11. Click Finish.

After you have created a CCS project, you can use the Properties dialog for the project to see how the compiler
and linker will be used and modify the command-line options used when compiling and linking. To open this
dialog, select the project in the Project Explorer and choose Project > Properties from the menus. Expand the
category tree to select Build > C6000 Compiler and Build > C6000 Linker. You can learn more about any
command-line options you see in this dialog in Chapter 3.

2.2 Compiling from the Command Line

If you are developing your project outside of an IDE such as Code Composer Studio, you will need to use the
command-line interface to the compiler and linker.

The compiler and linker are run using the same executable. This executable is the cl6x.exe file, which is located
in the bin subdirectory of your Tl Code Generation Tools installation.

You can use a single command line to both compile your code to create object files and link the object files

to create an executable. All the command-line options that occur before the --run_linker (or -z for short) option
apply to the compiler. All the command-line options that occur after the --run_linker (-z) option apply to the linker.
In the following command-line, the -mv6740, --c99, --opt_level, --define, and --include_path options are compiler
options. The --library, --heap_size, and --output_file options are linker options.

cléx -mv6740 --c99 --opt level=1 --define=c6748 --include path="C:/ti/ti-cgt-c6000 8.3/include"
hello.c objects.cpp algs.asm

--run linker --library=lnk.cmd --heap size=0x800 --output file=myprogram.out
20 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Chapter 3
Using the C/C++ Compiler

i3 TEXAS INSTRUMENTS

The compiler translates your source program into machine language object code that the TMS320C6000 can
execute. Source code must be compiled, assembled, and linked to create an executable file. All of these steps
are executed at once by using the compiler.

3.1 ADOUL the COMIPIIET......... .ottt e ettt e e ae e e s bt e e se et e e s e e e e b et e e st et e anmn e e e bn e e s anne e e nanns 22
3.2 Invoking the CICH+ COMPIIET...........oooiiiiii ettt h e e e e et e e bt e e eabe e e e abe e e snne e e snneeeenneenan 22
3.3 Changing the Compiler's Behavior With OPtioNns.................ccooiiiiiiiiiiii e 23
3.4 Controlling the Compiler Through Environment Variables...............c...ccooiiiiiiiii e 38
3.5 CoNtrolling the PrePrOCESSONcc.. ittt e e e e e te e et e e e neeeesaeeeeamteeeaneeeeamneeeanseeeaneeeeanneeeanneeeannees 39
3.6 Passing Arguments t0 M@IN()........ccooo ittt e e e ettt e e e e ettt e e e e e hae e e e e e e aanbe e e e e e e annrneaeeeannaeean 42
3.7 Understanding DiagnoStiC IMESSAQGES.coiiiiiiiiiiie ittt et e e s e e e ket e e e e e e sne e e e st e e enneeesnnee s 43
3.8 Other IMESSAQES. ...ttt ettt e et e ettt sttt oo as e e ek et e £ sttt e 1h s et e ea ket e £ ae et e 1 a Rt e e e b et e e nn e e e e e e e e nn e 46
3.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)..............ccccccceiiiiiiniieiniennn. 46
3.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)................cccooiiiiiiiiiiiii e, 46
3.11 Using Inline FUNCtion EXPANSION..........c.oooo ettt e e et e e e e et e e e e s e ane e e e e e e annneeeas 47
3.12 Interrupt Flexibility Options (--interrupt_threshold Option).................cccoi i 51
BAAB USING INEEITIST. ... ettt ettt ettt e st e e ettt e et e e e e Re e a2 et e e eann e e e nn e e e anne e e nanneeeannee s 52
3.14 Generating and Using Performance AdVICe...............cuii ittt ettt nnn e e sanee s 52
3.15 About the Application Binary INterface................oouiiiiiiiiiiiii e 53
3.16 Enabling Entry Hook and Exit HOOK FUNCLIONS...............c.oiiiiiiii e 53
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 21
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

3.1 About the Compiler

The compiler lets you compile, optimize, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:

* The compiler accepts C/C++ source code, assembly code, and linear assembly code. It produces object
code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 3.3.10 for more information.

* The linker combines object files to create a static executable file. The link step is optional, so you can
compile and assemble many modules independently and link them later. See Chapter 6 for information about
linking the files.

Note
Invoking the Linker

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker
(-z) compiler option. See Section 6.1.1 for details.

For a complete description of the assembler and the linker, see the TMS320C6000 Assembly Language Tools
User's Guide.

3.2 Invoking the C/C++ Compiler

To invoke the compiler, enter:

‘clﬁx [options] [filenames] [--run_linker [link_options] object files]]

cléx Command that runs the compiler and the assembler.

options Options that affect the way the compiler processes input files. The options are listed in Table 3-6 through Table
3-28.

filenames One or more C/C++ source files, assembly language source files , and linear assembly files.

--run_linker (-z) Option that invokes the linker. The --run_linker option's short form is -z. See Chapter 6 for more information.

link_options Options that control the linking process.

object files Names of the object files for the linking process.

The arguments to the compiler are of three types:

» Compiler options
* Link options
* Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can be
placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named seek.asm,
and link to create an executable program called myprogram.out, you will enter:

cléx symtab.c file.c seek.asm --run linker --library=Ilnk.cmd
--output file=myprogram.out

22 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

3.3 Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions and
an option summary table. It also provides detailed descriptions of the most frequently used options, including
options used for type-checking and assembling.

For a help screen summary of the options, enter cl6x with no parameters on the command line.
The following apply to the compiler options:

» There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is
usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters
and numbers that are not always intuitive.

* Options are usually case sensitive.

* Individual options cannot be combined.

» An option with a parameter should be specified with an equal sign before the parameter to clearly associate
the parameter with the option. For example, the option to undefine a constant can be expressed as
--undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed
as -0=3. You can also specify a parameter directly after certain options, for example -O3 is the same as
-O=3. No space is allowed between the option and the optional parameter, so -O 3 is not accepted.

» Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all
compiler options and precede any linker options.

You can define default options for the compiler by using the C6X_C_OPTION environment variable. For a
detailed description of the environment variable, see Section 3.4.1.

Table 3-6 through Table 3-28 summarize all options (including link options). Use the references in the tables for
more complete descriptions of the options.

Table 3-1. Processor Options

Option Alias Effect Section

--silicon_version=id -mv Selects target version. Defaults to 6400+. The other supported Section 3.3.5
options are 6600 and 6740.

--big_endian -me Produces object code in big-endian format. Section 3.3.4

Table 3-2. Optimization Options(!

Option Alias Effect Section

--opt_level=off Disables all optimization (default). Section 4.1

--opt_level=n -On Level 0 (-O0) optimizes register usage only . Section 4.1,
Level 1 (-O1) uses Level 0 optimizations and optimizes locally. Section 4.3

Level 2 (-O2) uses Level 1 optimizations and optimizes globally .
Level 3 (-O3) uses Level 2 optimizations and optimizes the file.

--opt_for_space=n -ms Controls code size on four levels (0, 1, 2, and 3). Section 4.9

--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this Section 4.2
option is not specified or is specified without n, the default value is 4.

(1) Note: Machine-specific options (see Table 3-12) can also affect optimization.

Table 3-3. Advanced Optimization Options(!
Option Alias Effect Section

--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not Section 4.5
specified, the default is 1.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 23
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Using the C/C++ Compiler

13 TEXAS

INSTRUMENTS

www.ti.com

Table 3-3. Advanced Optimization Options(!) (continued)

Option Alias

Effect

Section

--call_assumptions=n -opn

--disable_inlining
--fp_mode={relaxed|strict}
--fp_reassoc={on|off}

--gen_opt_info=n -onn

--optimizer_interlist
--program_level_compile
--sat_reassoc={on|off}

--aliased_variables

Level 0 (-op0) specifies that the module contains functions and
variables that are called or modified from outside the source code
provided to the compiler.

Section 4.4.1

Level 1 (-op1) specifies that the module contains variables modified

from outside the source code provided to the compiler but does not
use functions called from outside the source code.

Level 2 (-op2) specifies that the module contains no functions or
variables that are called or modified from outside the source code
provided to the compiler (default).

Level 3 (-op3) specifies that the module contains functions that are
called from outside the source code provided to the compiler but
does not use variables maodified from outside the source code.

Prevents any inlining from occurring.
Enables or disables relaxed floating-point mode.
Enables or disables the reassociation of floating-point arithmetic.

Level 0 (-on0) disables the optimization information file.
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.

Interlists optimizer comments with assembly statements.
Combines source files to perform program-level optimization.

Enables or disables the reassociation of saturating arithmetic.
Default is --sat_reassoc=off.

Notifies the compiler that addresses passed to functions may be
modified by an alias in the called function.

Section 3.11

Section 3.3.3
Section 3.3.3
Section 4.3.1

Section 4.16
Section 4.4
Section 3.3.3

Section 4.12.1

M

Note: Machine-specific options (see Table 3-12) can also affect optimization.

Table 3-4. Debug Options

Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation Section 3.3.6
of debug information does not impact optimization. Therefore, Section 4.17
generating debug information is enabled by default.
--symdebug:dwarf_version=2|3 Specifies the DWARF format version. Section 3.3.6
--symdebug:none Disables all symbolic debugging. Section 3.3.6
Section 4.17
--disable_push_pop Disables the code-size optimization that calls the RTS functions --
_push_rts() and _pop_rts(). You may want to use this option if you
receive warnings about calls to RTS routines that are placed out of
range of the calling location.
--machine_regs Displays reg operands as machine registers in assembly code. Section 3.3.12
Table 3-5. Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 3.5.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 3.3.3
Table 3-6. Control Options
Option Alias Effect Section
--compile_only -C Disables linking (negates --run_linker). Section 6.1.3
--help -h Prints (on the standard output device) a description of the options Section 3.3.2
understood by the compiler.
--run_linker -z Causes the linker to be invoked from the compiler command line. Section 3.3.2
--skip_assembler -n Compiles C/C++ source file or linear assembly source file, producing Section 3.3.2

an assembly language output file. The assembler is not run and no
object file is produced.

24 TMS320C6000 Optimizing C/C++ Compiler
v8.3.x

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 3-7. Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 7.13
--c99 Processes C files according to the ISO C99 standard. Section 7.13
--c11 Processes C files according to the ISO C11 standard. Section 7.13
--c++14 Processes C++ files according to the ISO C++14 standard. Section 7.13
The --c++03 option has been deprecated.
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 3.3.8
--exceptions Enables C++ exception handling. Section 7.6
--extern_c_can_throw Allow extern C functions to propagate exceptions. -
--float_operations_allowed Restricts the types of floating point operations allowed. Section 3.3.3
={none|all|32|64}
--gen_cross_reference -px Generates a cross-reference listing file (.crl). Section 3.9
--multithread Inserts a build attribute into the compiler-generated object file that Section 8.10.2
will cause the Tl linker to choose a thread-safe version of the RTS
library when auto-selecting an RTS library or resolving a reference to
libc.a. Alternately, a linker option with the same name (--multithread)
can be used to force the linker to choose a thread-safe version of
the RTS library, even if none of the object files contain this build
attribute. If you use the --openmp option, the --multithread option is
enabled automatically.
--openmp --omp Enables support for OpenMP. Using this option automatically Section 8.10.1
enables the --multithread option, which causes the Tl linker to
choose a thread-safe version of the RTS library when auto-selecting
an RTS library or resolving a reference to libc.a.
--pending_instantiations=# Specify the number of template instantiations that may be in Section 3.3.4
progress at any given time. Use 0 to specify an unlimited number.
--printf_support={nofloat]|full| Enables support for smaller, limited versions of the printf function Section 3.3.3
minimal} family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions.
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by Section 7.13.3
default. To disable this mode, use the --strict_ansi option.
--riti -rtti Enables C++ run-time type information (RTTI). —
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this Section 7.13.3

mode, language extensions that conflict with ANSI/ISO C/C++ are
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are
reported as errors. Violations that are considered discretionary may
be reported as warnings instead.

--vectypes={on|off} Enable support for native vector data types. Section 7.3.2
--wchar_t={32|16} Sets the size of the C/C++ type wchar_t. Default is 16 bits. Section 3.3.4
Table 3-8. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 3.5.8
output, writes a list of dependency lines suitable for input to a
standard make utility.
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 3.5.9
output, writes a list of files included with the #include directive.
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user- Section 3.5.10
defined macros to a file with the same name as the input but with
a .pp extension.
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 3.5.4
with the same name as the input but with a .pp extension.
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 3.5.6

the comments, to a file with the same name as the input but with
a .pp extension.

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022

Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler

Copyright © 2022 Texas Instruments Incorporated

v8.3.x

25

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 3-8. Parser Preprocessing Options (continued)
Option Alias Effect Section
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> Section 3.5.5
options that normally disable compilation.
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line- Section 3.5.7

control information (#line directives) to a file with the same name as

the input but with a .pp extension.

Table 3-9. Predefined Macro Options

Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 3.3.2
--undefine=name -U Undefines name. Section 3.3.2
Table 3-10. Diagnostic Message Options

Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. -
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 3.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 3.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 3.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 3.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-

line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this Section 3.7.1

command-line option cannot be used within the Code Composer

Studio IDE.
--emit_warnings_as_errors -pdew Treat warnings as errors. Section 3.7.1
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 3.7.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 3.7.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 3.7.1

this number of errors. (The default is 100.)
--super_quiet -qq Super quiet mode. -
--tool_version -version Displays version number for each tool. -
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original Section 3.7.1

source with line-wrap. Note that this command-line option cannot be

used within the Code Composer Studio IDE.
--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only Section 3.7.1

option. Note that this command-line option cannot be used within

the Code Composer Studio IDE.

Table 3-11. Supplemental Information Options

Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 3.10
--section_sizes={on|off} Generates section size information, including sizes for sections Section 3.7.1

containing executable code and constants, constant or initialized

data (global and static variables), and uninitialized data. (Default is

off if this option is not included on the command line. Default is on if

this option is used with no value specified.)

Table 3-12. Run-Time Model Options

Option Alias Effect Section
--common={on|off} On by default. When on, uninitialized file scope variables are emitted Section 3.3.4

as common symbols. When off, common symbols are not created.
--debug_software_pipeline -mw Produce verbose software pipelining report. Section 4.6.2

26
v8.3.x

TMS320C6000 Optimizing C/C++ Compiler

Copyright © 2022 Texas Instruments Incorporated

SPRUI04D — JULY 2015 — REVISED JANUARY 2022

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 3-12. Run-Time Model Options (continued)
Option Alias Effect Section
--disable_software_pipeline -mu Turns off software pipelining. Section 4.6.1
--fp_not_associative -mc Prevents reordering of associative floating-point operations. Section 4.13
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into Section 6.2.3
subsections. This gives the linker more control over removing
unused data during the final link step. See the link to the right for
details about the default setting.
--gen_func_subsections={on|off} -mo Puts each function in a separate subsection in the object file. If this ~ Section 6.2.2
option is not used, the default is off. See the link to the right for
details about the default setting.
--interrupt_threshold[=num] -mi Specifies an interrupt threshold value. Section 3.12
--mem_model:const= Allows const objects to be made far independently of the -- Section 8.1.4.3
{far_aggregatesi|far|data} mem_model:data option.
--mem_model:data= Determines data access model. Section 8.1.4.1
{far_aggregates|near|far}
--no_bad_aliases -mt Allows certain assumptions about aliasing and loops. Section 4.12.2
--no_compress Prevents compression. --
--no_reload_errors Turns off all reload-related loop buffer error messages. -
--profile:breakpt Enables breakpoint-based profiling. Section 3.3.6
Section 4.17.1
--speculate_loads=n -mh Specifies speculative load byte count threshold. Allows speculative ~ Section 4.6.3.1
execution of loads with bounded address ranges.
--speculate_unknown_loads Allows speculative execution of loads with unbounded addresses. Section 3.3.4
--use_const_for_alias_analysis -0X Uses const to disambiguate pointers. Section 3.3.4
Table 3-13. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 3.16
--entry_parm={none|name| Specifies the parameters to the function to the --entry_hook option. Section 3.16
address}
--exit_hook[=name] Enables exit hooks. Section 3.16
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 3.16
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 3.16
Table 3-14. Feedback Options
Option Alias Effect Section
--analyze={codecov|callgraph} Generate analysis info from profile data. Section 4.11.4.2
--analyze_only Only generate analysis. Section 4.11.4.2
--gen_profile_info Generates instrumentation code to collect profile information. Section 4.10.1.3
--use_profile_info=file1], file2,...] Specifies the profile information file(s). Section 4.10.1.3
Table 3-15. Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 3.3.12
--asm_listing -al Generates an assembly listing file. Section 3.3.12
--c_src_interlist -SS Interlists C source and assembly statements. Section 3.13
Section 4.16
--src_interlist -s Interlists optimizer comments (if available) and assembly source Section 3.3.2
statements; otherwise interlists C and assembly source statements.
--asm_define=name[=def] -ad Sets the name symbol. Section 3.3.12
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 3.3.12
--asm_includes -api Performs preprocessing; lists only included #include files. Section 3.3.12

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022

Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler

Copyright © 2022 Texas Instruments Incorporated

v8.3.x

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 3-15. Assembler Options (continued)
Option Alias Effect Section
--asm_undefine=name -au Undefines the predefined constant name. Section 3.3.12
--asm_listing_cross_reference -ax Generates the cross-reference file. Section 3.3.12
--include_file=filename -ahi Includes the specified file for the assembly module. Section 3.3.12
--no_const_clink Stops generation of .clink directives for const global arrays. Section 3.3.3
--strip_coff_underscore Aids in transitioning hand-coded assembly from COFF to EABI. Section 3.3.12
Table 3-16. File Type Specifier Options
Option Alias Effect Section
--ap_file=filename -fl Identifies filename as a linear assembly source file regardless of its ~ Section 3.3.8
extension. By default, the compiler and assembly optimizer treat .sa
files as linear assembly source files.
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 3.3.8
extension. By default, the compiler and assembler treat .asm files
as assembly source files.
--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By Section 3.3.8
default, the compiler treats .c files as C source files.
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 3.3.8
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 3.3.8
By default, the compiler and linker treat .obj files as object code files,
including both *.c.obj and *.cpp.obj files.
Table 3-17. Directory Specifier Options
Option Alias Effect Section
--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the Section 3.3.11
current directory.
--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file Section 3.3.11
directory By default, the compiler uses the object file directory.
--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the Section 3.3.11
current directory.
--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 3.3.11
--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses Section 3.3.11
the current directory.
--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the Section 3.3.11
current directory.
Table 3-18. Default File Extensions Options
Option Alias Effect Section
--ap_extension=[.]Jextension -el Sets a default extension for linear assembly source files. Section 3.3.10
--asm_extension=[.]Jextension -ea Sets a default extension for assembly source files. Section 3.3.10
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 3.3.10
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files. Section 3.3.10
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 3.3.10
--obj_extension=[.]Jextension -e0 Sets a default extension for object files. Section 3.3.10
Table 3-19. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Section 3.3.2
Multiple -@ instances can be used.
28 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 3-20. Performance Advisor Options
Option Alias Effect Section
--advice:performance[={alljnone}] Generates compiler optimization advice. Default is all. Section 3.14
--advice:performance_file={stdout| Specifies that advice be written to stdout, stderr, or a file. Section 3.14
stderr|user_specified_filename}
--advice:performance_dir= Specifies that advice file be created in the named directory. Section 3.14

{user_specified_directory_name}

3.3.1 Linker Options

The following tables list the linker options. See Chapter 6 of this document and the TMS320C6000 Assembly
Language Tools User's Guide for details on these options.

Table 3-21. Linker Basic Options

Option Alias Description

--run_linker -z Enables linking.

--output_file=file -0 Names the executable output file. The default filename is a .out file.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in file.

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the
stack size. Default = 1K bytes.

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a

global symbol that specifies the heap size. Default = 1K bytes.

Table 3-22. File Search Path Options

Option Alias Description

--library=file -l Names an archive library or link command file as linker input.

--disable_auto_rts Disables the automatic selection of a run-time-support library. See Section 6.3.1.1.

--priority -priority Satisfies unresolved references by the first library that contains a definition for that
symbol.

--reread_libs -X Forces rereading of libraries, which resolves back references.

--search_path=pathname -I Alters library-search algorithms to look in a directory named with pathname before
looking in the default location. This option must appear before the --library option.

Table 3-23. Command File Preprocessing Options
Option Alias Description

--define=name=value

--undefine=name

Predefines name as a preprocessor macro.

Removes the preprocessor macro name.

--disable_pp Disables preprocessing for command files.

Table 3-24. Diagnostic Message Options
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error.
--diag_remark=num Categorizes the diagnostic identified by num as a remark.
--diag_suppress=num Suppresses the diagnostic identified by num.
--diag_warning=num Categorizes the diagnostic identified by num as a warning.
--display_error_number Displays a diagnostic's identifiers along with its text.
--emit_references:file[=file] Emits a file containing section information. The information includes section size,

symbols defined, and references to symbols.

--emit_warnings_as_errors -pdew Treat warnings as errors.

--issue_remarks
--no_demangle

--no_warnings

Issues remarks (non-serious warnings).
Disables demangling of symbol names in diagnostic messages.

Suppresses diagnostic warnings (errors are still issued).

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022

Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler
v8.3.x

Copyright © 2022 Texas Instruments Incorporated

29

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-24. Diagnostic Message Options (continued)

Option Alias

Description

--set_error_limit=count

--verbose_diagnostics

Sets the error limit to count. The linker abandons linking after this number of errors. (The
default is 100.)

Provides verbose diagnostic messages that display the original source with line-wrap.

--warn_sections -w Displays a message when an undefined output section is created.
Table 3-25. Linker Output Options
Option Alias Description
--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --

--ecc={ on | off }

--ecc:data_error

--ecc:ecc_error
--mapfile_contents=attribute
--relocatable -r

--xml_link_info=file

absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe were
specified.

Enable linker-generated Error Correcting Codes (ECC). The default is off.
Inject specified errors into the output file for testing.

Inject specified errors into the Error Correcting Code (ECC) for testing.
Controls the information that appears in the map file.

Produces a nonexecutable, relocatable output object file.

Generates a well-formed XML file containing detailed information about the result of a
link.

Table 3-26. Symbol Management Options

Option Alias

Description

--entry_point=symbol -e

--globalize=pattern
--hide=pattern

--localize=pattern

--make_global=symbol -g
--make_static -h
--no_symtable -S

--retain={symbol|
section specification}

--scan_libraries -scanlibs

--symbol_map=refname=defname

--undef_sym=symbol -u
--unhide=pattern

Defines a global symbol that specifies the primary entry point for the executable object
file.

Changes the symbol linkage to global for symbols that match pattern.

Hides symbols that match the specified pattern.

Make the symbols that match the specified pattern local.

Makes symbol global (overrides -h).

Makes all global symbols static.

Strips symbol table information and line number entries from the executable object file.

Specifies a symbol or section to be retained by the linker.

Scans all libraries for duplicate symbol definitions.

Specifies a symbol mapping; references to the refname symbol are replaced with
references to the defname symbol.

Adds symbol to the symbol table as an unresolved symbol.
Excludes symbols that match the specified pattern from being hidden.

Table 3-27. Run-Time Environment Options

Option Alias

Description

--arg_size=size --args
--cinit_compression[=type]

--copy_compression[=type]

-fill_value=value -f
--multithread

--ram_model -cr
--rom_model -C

--trampolines[=off|on]

Reserve size bytes for the argc/argv memory area.

Specifies the type of compression to apply to the C auto initialization data. Default is rle.
Compresses data copied by linker copy tables. Default is rle.

Sets default fill value for holes within output sections

Causes the linker to choose a thread-safe version of the RTS library when auto-
selecting an RTS library or resolving a reference to libc.a, even if none of the input
object files contain the Tl build attribute placed by the --multithread compiler option. If
you used the --openmp compiler option to create any of the object files, the --multithread
option is enabled automatically.

Initializes variables at load time. See Section 6.3.4 for details.
Autoinitializes variables at run time. See Section 6.3.4 for details.

Generates far call trampolines. Default is on.

30 TMS320C6000 Optimizing C/C++ Compiler
v8.3.x

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 3-28. Miscellaneous Options
Option Alias Description
--compress_dwarf[=off|on] Aggressively reduces the size of DWARF information from input object files. Default is
on.
--linker_help [-]-help Displays information about syntax and available options.
--minimize_trampolines[=off| Places sections to minimize number of far trampolines required. Default is postorder.
postorder]
--preferred_order=function Prioritizes placement of functions.
--strict_compatibility[=off|on] Performs more conservative and rigorous compatibility checking of input object files.
Default is on.
--trampoline_min_spacing=size When trampoline reservations are spaced more closely than the specified limit, tries to
make them adjacent.
--unused_section_elimination[=off|on] Eliminates sections that are not needed in the executable module. Default is on.
--zero_init=[offlon] Controls preinitialization of uninitialized variables. Default is on. Always off if --
ram_model is used.
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 31
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
3.3.2 Frequently Used Options
Following are detailed descriptions of options that you will probably use frequently:
--c_src_interlist Invokes the interlist feature, which interweaves original C/C++ source with compiler-generated assembly

language. The interlisted C statements may appear to be out of sequence. You can use the interlist feature
with the optimizer by combining the --optimizer_interlist and --c_src_interlist options. See Section 4.16. The
--c_src_interlist option can have a negative performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. Use this option to avoid limitations on command line
length or C style comments imposed by the operating system. Use a # or ; at the beginning of a line in the
command file to include comments. You can add comments by surrounded by /* and */. To specify options,
surround hyphens with quotation marks. For example, "--"quiet. You can use the --cmd_file option multiple
times to specify multiple files. For example, the following indicates file3 should be compiled as source and
file1 and file2 are --cmd._file files:

cléx --cmd file=filel --cmd file=file2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which specifies linking. The --compile_only
option's short form is -c. Use this option when you have --run_linker specified in the C6X_C_OPTION
environment variable and you do not want to link. See Section 6.1.3.

--define=name[=def] Predefines the constant name for the preprocessor. This is equivalent to inserting #define name def at the
top of each C source file. If the optional[=def] is omitted, the name is set to 1. The --define option's short form
is -D.

If you want to define a quoted string and keep the quotation marks, do one of the following:

* For Windows, use --define=name="\"string def\"". For example, --define=car="\"sedan\""
» For UNIX, use --define=name="string def". For example, --define=car=""sedan
» For CCS, enter the definition in a file and include that file with the --cmd_file option.

--help Displays the syntax for invoking the compiler and lists available options. If the --help option is followed by
another option or phrase, detailed information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for #include files. The --include_path
option's short form is - I . You can use this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a directory name, the preprocessor
ignores the --include_path option. See Section 3.5.2.1.

--keep_asm Retains the assembly language output from the compiler or assembly optimizer. Normally, the compiler
deletes the output assembly language file after assembly is complete. The --keep_asm option's short form is
-k.

--quiet Suppresses banners and progress information from all the tools. Only source filenames and error messages

are output. The --quiet option's short form is -q.

--run_linker Runs the linker on the specified object files. The --run_linker option and its parameters follow all other
options on the command line. All arguments that follow --run_linker are passed to the linker. The --run_linker
option's short form is -z. See Section 6.1.

--skip_assembler Compiles only. The specified source files are compiled but not assembled or linked. The --skip_assembler
option's short form is -n. This option overrides --run_linker. The output is assembly language output from the
compiler.

--src_interlist Invokes the interlist feature, which interweaves optimizer comments or C/C++ source with assembly source.

If the optimizer is invoked (--opt_level=n option), optimizer comments are interlisted with the assembly
language output of the compiler, which may rearrange code significantly. If the optimizer is not invoked,
C/C++ source statements are interlisted with the assembly language output of the compiler, which allows you
to inspect the code generated for each C/C++ statement. The --src_interlist option implies the --keep_asm
option. The --src_interlist option's short form is -s.

--tool_version Prints the version number for each tool in the compiler. No compiling occurs.
--undefine=name Undefines the predefined constant name. This option overrides any --define options for the specified
constant. The --undefine option's short form is -U.
--verbose Displays progress information and toolset version while compiling. Resets the --quiet option.
32 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

3.3.3 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--float_operations_allowed=
{none|all|32|64}

--fp_mode={relaxed|strict}

--fp_reassoc={on|off}

--no_const_clink

--preinclude=filename

--printf_support={full|
nofloat|minimal}

--sat_reassoc={on|off}

Restricts the type of floating point operations allowed in the application. The default is all. If set

to none, 32, or 64, the application is checked for operations that will be performed at runtime. For
example, if --float_operations_allowed=32 is specified on the command line, the compiler issues an
error if a double precision operation will be generated. This can be used to ensure that double precision
operations are not accidentally introduced into an application. The checks are performed after relaxed
mode optimizations have been performed, so illegal operations that are completely removed result in no
diagnostic messages.

The default floating-point mode is strict. To enable relaxed floating-point mode use the
--fp_mode=relaxed option. Relaxed floating-point mode causes double-precision floating-point
computations and storage to be converted to single-precision floating-point where possible. This
behavior does not conform with ISO, but it results in faster code, with some loss in accuracy. The
following specific changes occur in relaxed mode:

« If the result of a double-precision floating-point expression is assigned to a single-precision
floating-point or an integer or immediately used in a single-precision context, the computations
in the expression are converted to single-precision computations. Double-precision constants in
the expression are also converted to single-precision if they can be correctly represented as single-
precision constants.

» Calls to double-precision functions in math.h are converted to their single-precision counterparts if
all arguments are single-precision and the result is used in a single-precision context. The math.h
header file must be included for this optimization to work.

« Division by a constant is converted to inverse multiplication.

In the following examples, iN=integer variable, fN=float variable, and dN=double variable:

il = f1 + £f2 * 5.0 -=> +, * are float, 5.0 is converted to 5.0f
il = dl + d2 * d3 -> +, * are float
f1 = f2 + £3 * 1.1; -> +, * are float, 1.1 is converted to 1.1f

To enable relaxed floating-point mode use --fp_mode=relaxed, which also sets --fp_reassoc=on. To
disable relaxed floating-point mode use --fp_mode=strict, which also sets --fp_reassoc=off.

If --strict_ansi is specified, --fp_mode=strict is set automatically. You can enable the relaxed floating-
point mode with strict ANSI mode by specifying --fp_mode=relaxed after --strict_ansi.

Enables or disables the reassociation of floating-point arithmetic. If --strict_ansi is set, --fp_reassoc=off
is set since reassociation of floating-point arithmetic is an ANSI violation.

Because floating-point values are of limited precision, and because floating-point operations round,
floating-point arithmetic is neither associative nor distributive. For instance, (1 + 3e100) - 3e100 is
not equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the compiler cannot, in general,
reassociate floating-point operations. Using --fp_reassoc=on allows the compiler to perform the
algebraic reassociation, at the cost of a small amount of precision for some operations.

Tells the compiler to not generate conditional linking (.clink) directives for const global arrays. By
default, these arrays are placed in a .const subsection and conditionally linked.

Includes the source code of filename at the beginning of the compilation. This can be used to establish
standard macro definitions. The filename is searched for in the directories on the include search list.
The files are processed in the order in which they were specified.

Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.) and the

scanf function family (sscanf, fscanf, etc.) run-time-support functions. The valid values are:

» full: Supports all format specifiers. This is the default.

» nofloat: Excludes support for printing and scanning floating-point values. Supports all format
specifiers except %a, %A, %f, %F, %g, %G, %e, and %E.

* minimal: Supports the printing and scanning of integer, char, or string values without width or
precision flags. Specifically, only the %%, %d, %o, %c, %s, and %Xx format specifiers are supported

There is no run-time error checking to detect if a format specifier is used for which support is
not included. The --printf_support option precedes the --run_linker option, and must be used when
performing the final link.

Enables or disables the reassociation of saturating arithmetic.

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 33

Submit Document Feedback

v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

3.3.4 Run-Time Model Options

These options are specific to the TMS302C6000 toolset. See the referenced sections for more information.
TMS320C6000-specific assembler options are listed in Section 3.3.12.

The C6000 compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which uses the
ELF object format and the DWARF debug format. Refer to the C6000 Embedded Application Binary Interface
Application Report (SPRAB89) for details about EABI. If you want support for the legacy COFF ABI, please use
the C6000 v7.4.x Code Generation Tools and refer to SPRU187 and SPRU186 for documentation.

--big_endian
--advice:performance

--common={on|off}

--debug_software_pipeline
--disable_software_pipeline
--fp_not_associative

--interrupt_threshold=n

--mem_model:const=type

--mem_model:data=type

--pending_instantiations=#

--silicon_version=num

--speculate_loads=n

--speculate_unknown_loads

--static_template_instantiation

--use_const_for_alias_analysis

--wchar_t={32|16}

Produces code in big-endian format. By default, little-endian code is produced.
Generates compile-time optimization advice. See Section 3.14.

When on (the default), uninitialized file scope variables are emitted as common symbols.
When off, common symbols are not created. The benefit of allowing common symbols

to be created is that generated code can remove unused variables that would otherwise
increase the size of the .bss section. (Uninitialized variables of a size larger than 32 bytes are
separately optimized through placement in separate subsections that can be omitted from a
link.) Variables cannot be common symbols if they are assigned to a section other than .bss
or have a specified memory bank .

Produces verbose software pipelining report. See Section 4.6.2.
Turns off software pipelining. See Section 4.6.1.
Compiler does not reorder floating-point operations. See Section 4.13.

Specifies an interrupt threshold value n that sets the maximum cycles the compiler can
disable interrupts. See Section 3.12.

Allows const objects to be made far independently of the --mem_model:data option. The type
can be data, far, or far_aggregates. See Section 8.1.4.3

Specifies data access model as type far, far_aggregates, or near. Default is far_aggregates.
See Section 8.1.4.1.

Specify the number of template instantiations that may be in progress at any given time. Use
0 to specify an unlimited number.

Selects the target CPU version. See Section 3.3.5.

Specifies speculative load byte count threshold. Allows speculative execution of loads with
bounded addresses. See Section 4.6.3.1.

Allows speculative execution of loads with unbounded addresses.

Instantiates all template entities in the current file as needed though the parser. These
instantiations are also given internal (static) linkage. This option may provide a slight
improvement to compilation speed.

Uses const to disambiguate pointers.

Sets the size (in bits) of the C/C++ type wchar_t. By default the compiler generates 16-bit
wchar_t. 16-bit wchar_t objects are not compatible with 32-bit wchar_t objects; an error is
generated if they are combined. When the --linux option is specified, it implies --wchar_t=32
since Linux uses 32-bit extended characters.

3.3.5 Selecting Target CPU Version (--silicon_version Option)

The --silicon_version option controls the use of target-specific instructions and alignment. The alias for this
option is -mv. If this option is not used, the compiler generates code for the C6400+ parts by default.

Specify the family of the part, for example, --silicon_version=6400+ or --silicon_version=6740.

Target CPU version options include:

¢ -mv6400+ or -mv64+
e -mv6740
¢ -mv6600

34 TMS320C6000 Optimizing C/C++ Compiler

v8.3.x

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/sprab89
https://www.ti.com/lit/pdf/spru187
https://www.ti.com/lit/pdf/spru186
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

If you want support for C6200, C6400, C6700, or C6700+ targets, please use the C6000 v7.4.x Code Generation
Tools and refer to SPRU187 and SPRU186 for documentation. These targets are no longer supported by the
C6000 v8.x Code Generation Tools.

3.3.6 Symbolic Debugging and Profiling Options

The following options are used to select symbolic debugging or profiling:

--profile:breakpt Disables optimizations that would cause incorrect behavior when using a breakpoint-based
profiler.
--symdebug:dwarf (Default) Generates directives that are used by the C/C++ source-level debugger and enables

assembly source debugging in the assembler. The --symdebug:dwarf option's short form is -g.
See Section 4.17. For details on the DWARF format, see The DWARF Debugging Standard.

--symdebug:dwarf_ Specifies the DWARF debugging format version (2 or 3) to be generated when --symdebug:dwarf

version={2|3} (the default) is specified. By default, the compiler generates DWARF version 3 debug information.
For more information on Tl extensions to the DWARF language, see The Impact of DWARF on T
Object Files (SPRAABS).

--symdebug:none Disables all symbolic debugging output. This option is not recommended; it prevents debugging

and most performance analysis capabilities.

3.3.7 Specifying Filenames

The input files that you specify on the command line can be C source files, C++ source files, assembly source
files, linear assembly files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type
.asm, .abs, or .s* (extension begins with s) Assembly source
.c C source
.C Depends on operating system
.cpp, .CXX, .CC C++ source
.obj .c.obj .cpp.obj .0* .dll .so Object
.sa Linear assembly
Note

Case Sensitivity in Filename Extensions: Case sensitivity in filename extensions is determined
by your operating system. If your operating system is not case sensitive, a file with a .C extension
is interpreted as a C file. If your operating system is case sensitive, a file with a .C extension is
interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see Section
3.3.8. For information about how you can alter the way that the compiler interprets and names the extensions of
assembly source and object files, see Section 3.3.11.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by system;
use the appropriate form listed in your operating system manual. For example, to compile all of the files in a
directory with the extension .cpp, enter the following:

cléx *.cpp

Note

No Default Extension for Source Files is Assumed: If you list a filename called example on the
command line, the compiler assumes that the entire filename is example not example.c. No default
extensions are added onto files that do not contain an extension.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 35
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru187
https://www.ti.com/lit/pdf/spru186
https://www.ti.com/lit/pdf/SPRAAB5
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

3.3.8 Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use are
different from those recognized by the compiler, you can use the filename options to specify the type of file. You
can insert an optional space between the option and the filename. Select the appropriate option for the type of
file you want to specify:

--ap_file=filename for a linear assembly source file
--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy, use the
--asm_file and --c_file options to force the correct interpretation:

cléex --c file=file.s --asm file=assy

You cannot use the filename options with wildcard specifications.

Note

The default file extensions for object files created by the compiler have been changed in order

to prevent conflicts when C and C++ files have the same names. Object files generated from C
source files have the .c.obj extension. Object files generated from C++ source files have the .cpp.obj
extension.

3.3.9 Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler treats files
with a .c extension as C files. See Section 3.3.10 for more information about filename extension conventions.

3.3.10 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they apply to
on the command line. You can use wildcard specifications with these options. An extension can be up to nine
characters in length. Select the appropriate option for the type of extension you want to specify:

--ap_extension=new extension for a linear assembly source file
--asm_extension=new extension for an assembly language file
--c_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--obj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:

cléx --asm_extension=.rrr --obj extension=.o fit.rrr ‘

The period (.) in the extension is optional. You can also write the example above as:

cl6x --asm _extension=rrr --obj extension=o fit.rrr ‘

36 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

3.3.11 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the current
directory. If you want the compiler program to place these files in different directories, use the following options:

--asm_directory=directory Specifies a directory for assembly files. For example:
‘cl6x --asm _directory=d:\assembly ‘

--list_directory=directory Specifies the destination directory for assembly listing files and cross-reference listing files. The
default is to use the same directory as the object file directory. For example:
‘cl6x --list directory=d:\listing ‘

--obj_directory=directory Specifies a directory for object files. For example:
‘cl6x --obj directory=d:\object ‘

--output_file=filename Specifies a compilation output file name; can override --obj_directory. For example:
‘cl6x --output file=transfer ‘

--pp_directory=directory Specifies a preprocessor file directory for object files (default is .). For example:
‘cl6x --pp_directory=d:\preproc ‘

--temp_directory=directory Specifies a directory for temporary intermediate files. For example:
‘cl6x --temp directory=d:\temp ‘

3.3.12 Assembler Options

Following are assembler options that you can use with the compiler. For more information, see the
TMS320C6000 Assembly Language Tools User's Guide.

--asm_define=name[=def] Predefines the constant name for the assembler; produces a .set directive for a constant
or an .arg directive for a string. If the optional [=def] is omitted, the name is set to 1. If you
want to define a quoted string and keep the quotation marks, do one of the following:

* For Windows, use --asm_define=name="\"string deA"". For example: --
asm_define=car="\"sedan\""

» For UNIX, use --asm_define=name=""string def". For example: --
asm_define=car='"sedan"'
* For Code Composer Studio, enter the definition in a file and include that file with the

--cmd_file option.

--asm_dependency Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of dependency lines suitable for input to a standard make utility. The list is
written to a file with the same name as the source file but with a .ppa extension.

--asm_includes Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of files included with the #include directive. The list is written to a file with the
same name as the source file but with a .ppa extension.

--asm_listing Produces an assembly listing file.

--asm_undefine=name Undefines the predefined constant name. This option overrides any --asm_define options
for the specified name.

--asm_listing_cross_reference Produces a symbolic cross-reference in the listing file.

--include_file=filename Includes the specified file for the assembly module; acts like an .include directive. The file
is included before source file statements. The included file does not appear in the assembly
listing files.

--machine_regs Displays reg operands as machine registers in the assembly file for debugging purposes.

--no_compress Prevents compression in the assembler. Compression changes 32-bit instructions to 16-bit
instructions, where possible/profitable.

--no_reload_errors Turns off all reload-related loop buffer error messages in assembly code.

--strip_coff_underscore Aids in transitioning hand-coded assembly from COFF to EABI. Although the COFF output

is no longer supported, this option remains available as a COFF ABI to ELF EABI migration
aid. For COFF ABI, the compiler prepended an underscore to the beginning of all C/C++
identifiers. For EABI, the link-time symbol is the same as the C/C++ identifier name. This
option removes the underscore prefix from legacy symbol references as needed.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 37
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

3.4 Controlling the Compiler Through Environment Variables

An environment variable is a system symbol you define and assign a string to. Setting environment variables is
useful if you want to run the compiler repeatedly without re-entering options, input filenames, or pathnames.

Note

C_OPTION and C_DIR -- The C_OPTION and C_DIR environment variables are deprecated. Use
device-specific environment variables instead.

3.4.1 Setting Default Compiler Options (C6X_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default options using the C6X_C_OPTION
environment variable. If you do this, the compiler uses the default options and/or input filenames that you name
C6X_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and the
input filenames, it looks for the C6X_C_OPTION environment variable and processes it.

The table below shows how to set the C6X_C_OPTION environment variable. Select the command for your
operating system:

Operating System Enter
UNIX (Bourne shell) C6X_C_OPTION=" option4 [option, . . .]"; export C6X_C_OPTION
Windows set C6X_C_OPTION= option [option; . . .]

Environment variable options are specified in the same way and have the same meaning as they do on

the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++ source
interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the C6X_C_OPTION
environment variable as follows:

set C6X C OPTION=--quiet --src_interlist --run_linker

Any options following --run_linker on the command line or in C6X_C_OPTION are passed to the linker. Thus,
you can use the C6X_C_OPTION environment variable to specify default compiler and linker options and
then specify additional compiler and linker options on the command line. If you have set --run_linker in the
environment variable and want to compile only, use the compiler --compile_only option. These additional
examples assume C6X_C_OPTION is set as shown above:

clex *c ; compiles and links
cléx --compile only *.c ; only compiles
cl6éx *.c --run_linker Ilnk.cmd ; compiles and links using a command file
cléx --compile only *.c --run_linker lnk.cmd
; only compiles (--compile only overrides --run_linker)

For details on compiler options, see Section 3.3. For details on linker options, see the Linker Description chapter
in the TMS320C6000 Assembly Language Tools User's Guide.

3.4.2 Naming One or More Alternate Directories (C6X_C_DIR)

The linker uses the C6X_C_DIR environment variable to name alternate directories that contain object libraries.
The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C6X_C_DIR=" pathname; ; pathname, ;..."; export C6X_C_DIR
Windows set C6X_C_DIR= pathname, ; pathname; ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:

38 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

» Pathnames must be separated with a semicolon.
» Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after the
semicolon in the following is ignored:

‘ set C6X_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools ‘

+ Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

‘ set C6X C DIR=c:\first path\to\tools;d:\second path\to\tools ‘

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) [unset céx_C DIR |
Windows ‘set C6X_C DIR= ‘

3.5 Controlling the Preprocessor

This section describes features that control the preprocessor, which is part of the parser. A general description
of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard C/C++ preprocessing
functions, which are built into the first pass of the compiler. The preprocessor handles:

» Macro definitions and expansions

» #include files

» Conditional compilation

» Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the error
occurred are printed along with a diagnostic message.

3.5.1 Predefined Macro Names
The compiler maintains and recognizes the predefined macro names listed in Table 3-29.
Table 3-29. Predefined C6000 Macro Names

Macro Name Description

__DATE_ (™ Expands to the compilation date in the form mmm dd yyyy

__FILE_ ™ Expands to the current source filename

LINE ™ Expands to the current line number

__STbc_ (™ Defined to 1 to indicate that compiler conforms to ISO C Standard. See Section 7.1 for
exceptions to ISO C conformance.

__STDC_VERSION___ C standard macro.

__STDC_HOSTED__ C standard macro. Always defined to 1.

_ STDC_NO_THREADS__ C standard macro. Always defined to 1.

__TI_32BIT_LONG__ Defined to 1 if the type "long" is 32 bits wide; otherwise, it is undefined.

__TI_40BIT_LONG__ Defined to 1if __TI_32BIT_LONG__ is not defined; otherwise, it is undefined.

__TI_C99 _COMPLEX_ENABLED__ Defined to 1 if complex data types are enabled. This is always the case, though math
operations are available only if complex.h is included.

__TI_COMPILER_VERSION___ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not

contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros
are dropped to prevent the number being interpreted as an octal.

__TILEABI__ Always defined
__TI_GNU_ATTRIBUTE_SUPPORT__ Defined to 1 if GCC extensions are enabled (which is the default)
__TI_STRICT_ANSI_MODE__ Defined to 1 if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it is
defined as 0.
__TI_STRICT_FP_MODE___ Defined to 1 if --fp_mode=strict is used (default); otherwise, it is defined as 0.
__TI_WCHAR_T_BITS__ Set to the type of wchar_t.
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 39
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 3-29. Predefined C6000 Macro Names (continued)
Macro Name Description
__TIME__(Expands to the compilation time in the form "hh:mm:ss"
_ WCHAR_T_TYPE__ Set to the type of wchar_t.
_BIG_ENDIAN Defined if big-endian mode is selected (the --big_endian option is used); otherwise, it is
undefined.
_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.
_LITTLE_ENDIAN Defined if little-endian mode is selected (the --big_endian option is not used); otherwise, it is
undefined.
_TMS320C6X Always defined
_TMS320C6400_PLUS Defined if target is C6400+, C6740, or C6600
_TMS320C6740 Defined if target is C6740 or C6600
_TMS320C6600 Defined if target is C6600
__TMS320C6X__ Always defined for use as alternate name for _TMS320C6x

(1) Specified by the ISO standard

You can use the names listed in Table 3-29 in the same manner as any other defined name. For example,

‘printf ("%s %s" , _ TIME__, _ DATE);

translates to a line such as:

‘printf ("%s %s" , "13:58:17", "Jan 14 1997"); ‘

3.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can be a
complete pathname, partial path information, or a filename with no path information.

» If you enclose the filename in double quotes (" "), the compiler searches for the file in this order:
1. The directory of the file that contains the #include directive and in the directories of any files that contain
that file.
2. Directories named with the --include_path option.
3. Directories set with the C6X_C_DIR environment variable.
» If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:
1. Directories named with the --include_path option.
2. Directories set with the C6X_C_DIR environment variable.

See Section 3.5.2.1 for information on using the --include_path option. See Section 3.4.2 for more information on
input file directories.

3.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path option's
short form is -1 . The format of the --include_path option is:

--include_path=directory1 [--include_path= directory?2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --include_path
option names one directory. In C source, you can use the #include directive without specifying any directory
information for the file; instead, you can specify the directory information with the --include_path option.

40 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

For example, assume that a file called source.c is in the current directory. The file source.c contains the following
directive statement:

#include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX Jtools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter

UNIX ‘cl6x --include path=/tools/files source.c ‘
Windows ‘cl6x --include_path=c:\tools\files source.c ‘
Note

Specifying Path Information in Angle Brackets: If you specify the path information in angle
brackets, the compiler applies that information relative to the path information specified with --
include_path options and the C6X_C_DIR environment variable.

For example, if you set up C6X_C_DIR with the following command:

‘C6X7C7DIR "/usr/include; /usr/ucb"; export C6X_C DIR ‘

or invoke the compiler with the following command:

cléx --include_path=/usr/include file.c ‘

and file.c contains this line:

‘ #include <sys/proc.h> ‘

the result is that the included file is in the following path:

‘ /usr/include/sys/proc.h ‘

3.5.3 Support for the #warning and #warn Directives

In strict ANSI mode, the Tl preprocessor allows you to use the #warn directive to cause the preprocessor
to issue a warning and continue preprocessing. The #warn directive is equivalent to the #warning directive
supported by GCC, IAR, and other compilers.

If you use the --relaxed_ansi option (on by default), both the #warn and #warning preprocessor directives are
supported.

3.5.4 Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an extension
of .pp. The compiler's preprocessing functions perform the following operations on the source file:

» Each source line ending in a backslash (\) is joined with the following line.
» Trigraph sequences are expanded.

+ Comments are removed.

» #include files are copied into the file.

* Macro definitions are processed.

* All macros are expanded.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 41
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

« All other preprocessing directives, including #line directives and conditional compilation, are expanded.

The --preproc_only option is useful when creating a source file for a technical support case or to ask a question
about your code. It allows you to reduce the test case to a single source file, because #include files are
incorporated when the preprocessor runs.

3.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your

source code. To override this feature and continue to compile after your source code is preprocessed,

use the --preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file with
a .pp extension, and compile your source code.

3.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing comments and
generates a preprocessed version of your source file with a .pp extension. Use the --preproc_with_comment
option instead of the --preproc_only option if you want to keep the comments.

3.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line directives,
use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only and writes
preprocessed output with line-control information (#line directives) to a file named as the source file but with
a .pp extension.

3.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only. Instead of writing preprocessed output, it writes
a list of dependency lines suitable for input to a standard make utility. If you do not supply an optional filename,
the list is written to a file with the same name as the source file but a .pp extension.

3.5.9 Generating a List of Files Included with #include (--preproc_includes Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output, writes a
list of files included with the #include directive. If you do not supply an optional filename, the list is written to a file
with the same name as the source file but with a .pp extension.

3.5.10 Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not supply an
optional filename, the list is written to a file with the same name as the source file but with a .pp extension.

The output includes only those files directly included by the source file. Predefined macros are listed first and
indicated by the comment /* Predefined */. User-defined macros are listed next and indicated by the source
filename.

3.6 Passing Arguments to main()

Some programs pass arguments to main() via argc and argv. This presents special challenges in an embedded
program that is not run from the command line. In general, argc and argv are made available to your program
through the .args section. There are various ways to populate the contents of this section for use by your
program.

To cause the linker to allocate an .args section of the appropriate size, use the --arg_size=size linker option.
This option tells the linker to allocate an uninitialized section named .args, which can be used by the loader to
pass arguments from the command line of the loader to the program. The size is the number of bytes to be
allocated. When you use the --arg_size option, the linker defines the __¢_args__ symbol to contain the address
of the .args section.

It is the responsibility of the loader to populate the .args section. The loader and the target boot code can use
the .args section and the __c_args__ symbol to determine whether and how to pass arguments from the host to

42 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

the target program. The format of the arguments is an array of pointers to char on the target. Due to variations in
loaders, it is not specified how the loader determines which arguments to pass to the target.

If you are using Code Composer Studio to run your application, you can use the Scripting Console tool to
populate the .args section. To open this tool, choose View > Scripting Console from the CCS menus. You can
use the loadProg command to load an object file and its associated symbol table into memory and pass an array
of arguments to main(). These arguments are automatically written to the allocated .args section.

The loadProg syntax is as follows, where file is an executable file and args is an object array of arguments. Use
JavaScript to declare the array of arguments before using this command.

loadProg(file, args)

The .args section is loaded with the following data for non-SYS/BIOS-based executables, where each element in
the argv[] array contains a string corresponding to that argument:

Int argc;
Char * argv([0];
Char * argv[l];

Char * argv([n];

For SYS/BIOS-based executables, the elements in the .args section are as follows:

Int argc;
Char ** argv; /* points to argv[0] */
Char * envp; /* ignored by loadProg command */

Char * argv([0];
Char * argv([1l];

Char * argv([n];

For more details, see the "Scripting Console" page.
3.7 Understanding Diagnostic Messages

One of the primary functions of the compiler and linker is to report diagnostic messages for the source program.
A diagnostic message indicates that something may be wrong with the program. When the compiler or linker
detects a suspect condition, it displays a message in the following format:

" file.c ™, line n : diagnostic severity : diagnostic message

" file.c " The name of the file involved

linen: The line number where the diagnostic applies

diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have a severity, as follows:

» A fatal error indicates a problem so severe that the compilation cannot continue. Examples of such problems
include command-line errors, internal errors, and missing include files. If multiple source files are being
compiled, any source files after the current one will not be compiled.

* An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may
continue, but object code is not generated.

* A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For
example, the compiler emits a warning for an unused variable. An unused variable does not affect program
execution, but its existence suggests that you might have meant to use it. Compilation continues and object
code is generated (if no errors are detected).

* Aremark is less serious than a warning. It may indicate something that is a potential problem in rare
cases, or the remark may be strictly informational. Compilation continues and object code is generated (if no

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 43
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/ccs_scripting_console.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

errors are detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable
remarks.
« Advice provides information about recommended usage. See Section 4.15 for details.

Diagnostic messages are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch
break;

~

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display the
source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the position
indicated by the * character) follows the message. If several diagnostic messages apply to one source line, each
diagnostic has the form shown; the text of the source line is displayed several times, with an appropriate position
indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric identifier
be included in the diagnostic message. When displayed, the diagnostic identifier also indicates whether the
diagnostic can have its severity overridden on the command line. If the severity can be overridden, the
diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is present. For example:

"Test name.c", line 7: error #64-D: declaration does not declare anything
struct {};
"Test name.c", line 9: error #77: this declaration has no storage class or type specifier

XXXXX;

~

Because errors are determined to be discretionary based on the severity in a specific context, an error can be
discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are listed
following the initial error message:

"test.c", line 4: error: more than one instance of overloaded function "f"
matches the argument list:
function "f (int)"
function "f(float)"
argument types are: (double)

In some cases, additional context information is provided. Specifically, the context information is useful when the
front end issues a diagnostic while doing a template instantiation or while generating a constructor, destructor, or
assignment operator function. For example:

"test.c", line 7: error: "A::A()" 1is inaccessible
B x;
A

detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.
3.7.1 Controlling Diagnostic Messages

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostic messages.
The diagnostic options must be specified before the --run_linker option.

44 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

--diag_error=num

--diag_remark=num

--diag_suppress=num

--diag_warning=num

--display_error_number

--emit_warnings_as_
errors

--issue_remarks
--no_warnings

--section_sizes={on|off}

--set_error_limit=num

--verbose_diagnostics

--write_diagnostics_file

Categorizes the diagnostic identified by num as an error. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_error=num to recategorize the diagnostic as an error. You can only alter the severity of
discretionary diagnostic messages.

Categorizes the diagnostic identified by num as a remark. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_remark=num to recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostic messages.

Suppresses the diagnostic identified by num. To determine the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate compile. Then use --
diag_suppress=num to suppress the diagnostic. You can only suppress discretionary diagnostic
messages.

Categorizes the diagnostic identified by num as a warning. To determine the numeric identifier of

a diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_warning=num to recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostic messages.

Displays a diagnostic's numeric identifier along with its text. Use this option in determining which
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error,
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes the
suffix -D; otherwise, no suffix is present. See Section 3.7.

Treats all warnings as errors. This option cannot be used with the --no_warnings option. The
--diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.

Issues remarks (non-serious warnings), which are suppressed by default.
Suppresses diagnostic warnings (errors are still issued).

Generates section size information, including sizes for sections containing executable code and
constants, constant or initialized data (global and static variables), and uninitialized data. Section size
information is output during both the assembly and linking phases. This option should be placed on the
command line with the compiler options (that is, before the --run_linker or --z option).

Sets the error limit to num, which can be any decimal value. The compiler abandons compiling after this
number of errors. (The default is 100.)

Provides verbose diagnostic messages that display the original source with line-wrap and indicate the
position of the error in the source line. Note that this command-line option cannot be used within the
Code Composer Studio IDE.

Produces a diagnostic message information file with the same source file name with an .err extension.
(The --write_diagnostics_file option is not supported by the linker.) Note that this command-line option
cannot be used within the Code Composer Studio IDE.

3.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler. You
control the linker diagnostic messages in a similar manner.

int one();

int I;

int main ()

{
switch (I) {
case 1;

break;
default:

return 0;
break;

}

return one ();

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 9: warning:
"err.c", line 12: warning: statement is unreachable

statement is unreachable

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022

Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler 45
v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

Because it is standard programming practice to include break statements at the end of each case arm to avoid
the fall-through condition, these warnings can be ignored. Using the --display_error_number option, you can find
out the diagnostic identifier for these warnings. Here is the result:

[err.c]
"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation produces no diagnostic messages (because remarks are disabled by
default).

Note

You can suppress any non-fatal errors, but be careful to make sure you only suppress diagnostic
messages that you understand and are known not to affect the correctness of your program.

3.8 Other Messages

Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability to find
specified files, are usually fatal. They are identified by the symbol >> preceding the message.

3.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)

The --gen_cross_reference option generates a cross-reference listing file that contains reference

information for each identifier in the source file. (The --gen_cross_reference option is separate from --
asm_listing_cross_reference, which is an assembler rather than a compiler option.) The cross-reference listing
file has the same name as the source file with a .crl extension.

The information in the cross-reference listing file is displayed in the following format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:
D Definition
d Declaration (not a definition)
M Modification
A Address taken
u Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate
filename The source file
line number The line number in the source file
column number The column number in the source file

3.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)

The --gen_preprocessor_listing option generates a raw listing file that can help you understand how the
compiler is preprocessing your source file. Whereas the preprocessed listing file (generated with the --
preproc_only, --preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options)
shows a preprocessed version of your source file, a raw listing file provides a comparison between the original
source line and the preprocessed output. The raw listing file has the same name as the corresponding source
file with an .rl extension.

The raw listing file contains the following information:

46 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

« Each original source line
« Transitions into and out of include files
« Diagnostic messages

* Preprocessed source line if nontrivial processing was performed (comment removal is considered trivial,

other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed in Table 3-30.
Table 3-30. Raw Listing File Identifiers

Identifier Definition
N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source
if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:

1 = entry into an include file
2 = exit from an include file

The --gen_preprocessor_listing option also includes diagnostic identifiers as defined in Table 3-31.

Table 3-31. Raw Listing File Diagnostic Identifiers

Diagnostic Identifier Definition
E Error
F Fatal
R Remark
w Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 3-31 that indicates the severity of the diagnostic
filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostic messages after the end of file are indicated as the last line of the file with a column number of 0. When diagnostic message text
requires more than one line, each subsequent line contains the same file, line, and column information but uses a lowercase version of the

diagnostic identifier. For more information about diagnostic messages, see Section 3.7.

3.11 Using Inline Function Expansion

When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point

of the call. This is known as inline function expansion, commonly called function inlining or just inlining. Inline
function expansion can speed up execution by eliminating function call overhead. This is particularly beneficial
for very small functions that are called frequently. Function inlining involves a tradeoff between execution speed
and code size, because the code is duplicated at each function call site. Large functions that are called in many

places are poor candidates for inlining.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler

Copyright © 2022 Texas Instruments Incorporated

v8.3.x

47

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

Note

Excessive Inlining Can Degrade Performance: Excessive inlining can make the compiler
dramatically slower and degrade the performance of generated code.

Function inlining is triggered by the following situations:

» The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined
automatically, even though no function body exists.

* Useofthe inline keyword or the equivalent inline keyword. Functions declared with the inline
keyword may be inlined by the compiler if you set --opt_level=0 or greater. The inline keyword is a suggestion
from the programmer to the compiler. Even if your optimization level is high, inlining is still optional for the
compiler. The compiler decides whether to inline a function based on the length of the function, the number
of times it is called, your --opt_for_speed setting, and any contents of the function that disqualify it from
inlining (see Section 3.11.2). Functions can be inlined at --opt_level=0 or above if the function body is visible
in the same module or if -pm is also used and the function is visible in one of the modules being compiled.
Functions defined as both static and inline are more likely to be inlined.

* When --opt_level=3 is used, the compiler may automatically inline eligible functions even if they are not
declared as inline functions. The same list of decision factors listed for functions explicitly defined with the
inline keyword is used. For more about automatic function inlining, see Section 4.5.

» The pragma FUNC_ALWAYS_INLINE (Section 7.9.10) and the equivalent always inline attribute
(Section 7.14.2) force a function to be inlined (where it is legal to do so) unless --opt_level=off. That is,
the pragma FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline and
the --opt_level=0 or --opt_level=1.

* The FORCEINLINE pragma (Section 7.9.8) forces functions to be inlined in the annotated statement.

That is, it has no effect on those functions in general, only on function calls in a single statement. The
FORCEINLINE_RECURSIVE pragma forces inlining not only of calls visible in the statement, but also in the
inlined bodies of calls from that statement.

* The --disable_inlining option prevents any inlining. The pragma FUNC_CANNOT_INLINE prevents a function
from being inlined. The NOINLINE pragma prevents calls within a single statement from being inlined.
(NOINLINE is the inverse of the FORCEINLINE pragma.)

Note

Function Inlining Can Greatly Increase Code Size: Function inlining increases code size, especially
inlining a function that is called in a number of places. Function inlining is optimal for functions that are
called only from a small number of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline
keyword in C++ code follow the C++ standard.

The inline keyword is supported in all C++ modes, in relaxed ANSI mode for all C standards, and in strict
ANSI mode for C99 and C11. It is disabled in strict ANSI mode for C89, because it is a language extension that
could conflict with a strictly conforming program. If you want to define inline functions while in strict ANSI C89
mode, use the alternate keyword inline .

Compiler options that affect inlining are: --opt_level, --auto_inline, --remove_hooks_when_inlining, --
opt_for_speed, and --disable_inlining.

3.11.1 Inlining Intrinsic Operators

The compiler has a number of built-in function-like operations called intrinsics. The implementation of an intrinsic
function is handled by the compiler, which substitutes a sequence of instructions for the function call. This is

similar to the way inline functions are handled; however, because the compiler knows the code of the intrinsic
function, it can perform better optimization.

Intrinsics are inlined whether or not you use the optimizer.

48 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

For details about intrinsics, and a list of the intrinsics, see Section 8.6.6. In addition to those listed, abs and
memcpy are implemented as intrinsics.

3.11.2 Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in Section 3.11.
In addition, there are several restrictions that can disqualify a function from being inlined by automatic inlining or
inline keyword-based inlining.

The compiler will leave calls as they are if the function:

» Has a different number of arguments than the call site
* Has an argument whose type is incompatible with the corresponding call site argument
* Is not declared inline and returns void but its return value is needed

The compiler will also not inline a call if the function has features that create difficult situations for the compiler:

* Has a variable-length argument list

* Never returns

* Is arecursive or non-leaf function that exceeds the depth limit

* Is not declared inline and contains an asm() statement that is not a comment

* Is an interrupt function

* Is the main() function

* Is not declared inline and will require too much stack space for local array or structure variables
« Contains a volatile local variable or argument

« Is a C++ function that contains a catch

* Is not defined in the current compilation unit

A call in a statement that is annotated with a NOINLINE pragma will not be inlined, regardless of other
indications (including a FUNC_ALWAYS_INLINE pragma or always_inline attribute on the called function).

A call in a statement that is annotated with a FORCEINLINE pragma will always be inlined, if it is not
disqualified for one of the reasons above, even if the called function has a FUNC_CANNOT _INLINE pragma
or cannot_inline attribute.

In other words, a statement-level pragma overrides a function-level pragma or attribute. If both NOINLINE and
FORCEINLINE apply to the same statement, the one that appears first is used and the rest are ignored.

3.11.3 Unguarded Definition-Controlled Inlining

The inline keyword causes a function to be expanded inline at the point where it is called rather than using
standard calling procedures. The compiler performs inline expansion of functions declared with the inline
keyword.

You must invoke the optimizer with any --opt_level option to turn on definition-controlled inlining. Automatic
inlining is also turned on when using --opt_level=3.

Example 3-1 uses the inline keyword. The function call is replaced by the code in the called function.

Example 3-1. Using the Inline Keyword

inline float volume sphere (float r)

{

return 4.0/3.0 * PI * r * r * r;

}

int foo(...)

{

volume = volume sphere (radius);

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 49
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

3.11.4 Guarded Inlining and the _INLINE Preprocessor Symbol

When declaring a function in a header file as static inline, you must follow additional procedures to avoid a
potential code size increase the optimizer is not run.

To prevent a static inline function in a header file from causing an increase in code size when inlining gets turned
off, use the following procedure. This allows external-linkage when inlining is turned off; thus, only one function
definition will exist throughout the object files.

* Prototype a static inline version of the function. Then, prototype an alternative, nonstatic, externally-linked
version of the function. Conditionally preprocess these two prototypes with the _INLINE preprocessor symbol,
as shown in Example 3-2.

» Create an identical version of the function definition in a .c or .cpp file, as shown in Example 3-3.

In the following examples there are two definitions of the strlen function. The first (Example 3-2), in the header
file, is an inline definition. This definition is enabled and the prototype is declared as static inline only if _INLINE
is true (_INLINE is automatically defined for you when the optimizer is used).

The second definition (see Example 3-3) for the library, ensures that the callable version of strlen exists when
inlining is disabled. Since this is not an inline function, the INLINE preprocessor symbol is undefined (#undef)
before string.h is included to generate a non-inline version of strlen's prototype.

Example 3-2. Header File string.h

/‘k***********************/

/* string.h vx.xx (Excerpted) */
/***/
#ifdef INLINE

#define _IDECL static inline

#else

#define IDECL extern CODE_ACCESS

#endif

_IDECL size t strlen(const char * string);

#ifdef INLINE

/‘k***********************/

/* strlen */
/‘k***********************/
static inline size t strlen(const char *string)
{

size t n = (size t)-1;

const char *s = string - 1;

do n++; while (*++s);

return n
}
fendif

Example 3-3. Library Definition File

VAR AR EEE SRSt EEEE Rttt EEE Rt EEE R REEE Rt

/* strlen */

/**/

#undef INLINE

#include <string.h>

{

_CODE_ACCESS size t strlen(cont char * string)
size t n = (size t)-1;
const char *s = string - 1;
do n++; while (*++s);
return n;

50 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

3.12 Interrupt Flexibility Options (--interrupt_threshold Option)

On the C6000 architecture, interrupts cannot be taken in the delay slots of a branch. In some instances the
compiler can generate code that cannot be interrupted for a potentially large number of cycles. For a given
real-time system, there may be a hard limit on how long interrupts can be disabled.

The --interrupt_threshold=n option specifies an interrupt threshold value n. The threshold value specifies the
maximum number of cycles that the compiler can disable interrupts. If the n is omitted, the compiler assumes
that the code is never interrupted. In Code Composer Studio, to specify that the code is never interrupted, select
the Interrupt Threshold check box and leave the text box blank in the Build Options dialog box on the Compiler
tab, Advanced category.

If the —-interrupt_threshold=n option is not specified, then interrupts are only explicitly disabled around software
pipelined loops. When using the --interrupt_threshold=n option, the compiler analyzes the loop structure and
loop counter to determine the maximum number of cycles it takes to execute a loop. If it can determine that the
maximum number of cycles is less than the threshold value, the compiler generates the fastest/optimal version
of the loop. If the loop is smaller than six cycles, interrupts are not able to occur because the loop is always
executing inside the delay slots of a branch. Otherwise, the compiler generates a loop that can be interrupted
(and still generate correct results—single assignment code), which in most cases degrades the performance of
the loop.

The --interrupt_threshold=n option does not comprehend the effects of the memory system. When determining
the maximum number of execution cycles for a loop, the compiler does not compute the effects of using slow
off-chip memory or memory bank conflicts. It is recommended that a conservative threshold value is used to
adjust for the effects of the memory system.

See Section 7.9.13 or the TMS320C6000 Programmer's Guide for more information.

Note
RTS Library Files Are Not Built with the --interrupt_threshold Option

The run-time-support library files provided with the compiler are not built with the interrupt flexibility
option. Refer to the readme file to see how the run-time-support library files were built for your release.
See Section 9.4 to build your own run-time-support library files with the interrupt flexibility option.

Note
Special Cases with the --interrupt_threshold Option

The --interrupt_threshold=0 option generates the same code to disable interrupts around software-
pipelined loops as when the --interrupt_threshold option is not used.

The --interrupt_threshold option (the threshold value is omitted) means that no code is added to
disable interrupts around software pipelined loops, which means that the code cannot be safely
interrupted. Also, loop performance does not degrade because the compiler is not trying to make the
loop interruptible by ensuring that there is at least one cycle in the loop kernel that is not in the delay
slot of a branch instruction.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 51
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

3.13 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements into the assembly language output
of the compiler. The interlist feature enables you to inspect the assembly code generated for each C statement.
The interlist behaves differently, depending on whether or not the optimizer is used, and depending on which
options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the interlist
on a program called function.c, enter:

cléx --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output file. The
output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between the
code generator and the assembler. It reads both the assembly and C/C++ source files, merges them, and writes
the C/C++ statements into the assembly file as comments.

For information about using the interlist feature with the optimizer, see Section 4.16. Using the --c_src_interlist
option can cause performance and/or code size degradation.

The following example shows a typical interlisted assembly file.

_main:
STW .D2 B3, *SP--(12)
STW .D2 A10, *+SP(8)
; 5 | printf("Hello, world\n");
B S1 printf
NOP
MVKL .S1 SL1+0,A0
MVKH .S1 SL1+0,A0
|| MVKL .S2 RLO, B3
STW .D2 AQ, *+SP (4)
|| MVKH .S2 RLO, B3
RLO: ; CALL OCCURS
; 6 | return 0;
ZERO L1 Al0
MV L1 Al10,A4
LDW .D2 *+SP (8),A10
LDW .D2 *+4+3P(12),B3
NOP 4
B .82 B3
NOP 5
; BRANCH OCCURS

3.14 Generating and Using Performance Advice

The compiler can do better optimization in some cases, if the user aids the compiler by providing additional
information in the code. The compiler can prompt you to take certain actions to improve performance, by emitting
"Advice". To get this Advice, use the --advice:performance option:

cléx —--advice:performance -o03 filename.c

This Performance Advice is of 3 different types :

» Advice to use correct compiler options
» Advice to prevent software pipeline disqualification
» Advice to improve loop performance

For more details on Using Performance Advice to Optimize your Code, see Section 4.15

52 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

3.15 About the Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together,
regardless of their origin, and allows the resulting executable to run on any system that supports that ABI.

The C6000 compiler supports only the Embedded Application Binary Interface (EABI) ABI, which works only
with object files that use the ELF object file format and the DWARF debug format. If you want support for the
legacy COFF ABI, please use the C6000 v7.4.x Code Generation Tools and refer to SPRU187 and SPRU186 for
documentation.

There is no automated COFF to ELF conversion tool; you will need to recompile or reassemble assembly code.
See the TMS320C6000 EABI Migration Guide (SPRAB90) for the benefits of migration from COFF to ELF and
links to strategies and issues for migration.

3.16 Enabling Entry Hook and Exit Hook Functions

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a routine that
is called upon exit of each function. Applications for hooks include debugging, trace, profiling, and stack overflow
checking. Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise, the default entry hook
function name is __entry_hook.

--entry_parm{=name| Specify the parameters to the hook function. The name parameter specifies that the name of the calling

address|none} function is passed to the hook function as an argument. In this case the signature for the hook function

is: void hook(const char *name);

The address parameter specifies that the address of the calling function is passed to the hook function.
In this case the signature for the hook function is: void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise, the default exit hook
function name is __exit_hook.

--exit_parm{=name| Specify the parameters to the hook function. The name parameter specifies that the name of the calling

address|none} function is passed to the hook function as an argument. In this case the signature for the hook function

is: void hook(const char *name);

The address parameter specifies that the address of the calling function is passed to the hook function.
In this case the signature for the hook function is: void hook(void (*addr)());

The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given signature. If
a declaration or definition of the hook function appears in the compilation unit compiled with the options, it must
agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as other
inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same function
can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any function
which itself has hook calls inserted. To help prevent this, hooks are not generated for inline functions, or for the
hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are auto-
inlined by the optimizer.

See Section 7.9.26 for information about the NO_HOOKS pragma.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 53
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru187
https://www.ti.com/lit/pdf/spru186
https://www.ti.com/lit/pdf/SPRAB90
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS

Using the C/C++ Compiler www.ti.com
This page intentionally left blank.

54 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022

v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

Chapter 4
Optimizing Your Code

i3 TEXAS INSTRUMENTS

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of C and
C++ programs by simplifying loops, software pipelining, rearranging statements and expressions, and allocating
variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when performing
optimization and how you can profile or debug optimized code.

4.1 INVOKING OPtIMIZAtION.... ...ttt e bt e e et e ek et e e e aa e e e et et e ann e e e aane e e e bne e e enneeenanns 56
4.2 Controlling Code Size VErSUS SPEEM..........ccccuuiiiiiiiiiiiii ittt e et e e et e e sse e e e aba e e s aatee e snneeesbbeeeenbeeenanees 57
4.3 Performing File-Level Optimization (--opt_level=3 option)................ccoiiiiiiiiiii e 57
4.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)..................cccecceeniiinininnns 58
4.5 Automatic Inline Expansion (--auto_inline OPtion)..............ccoiiiiiiiiiii e e e e 60
4.6 Optimizing Software PipeliniNg........ ... i ettt e e e e e et e e e e e e bae e e e e e eansaeeaeeaannneaeaeaannes 61
4.7 ReAUNAANTE LOOPS........coiiiiiiiiiie ittt ettt e e et e e bt e sttt e e s et e £ s et a2 ea b et e 2 s e et e e ks e e e e b et e 2t et e aane e e e nbneenanne e e nann s 69
4.8 Utilizing the Loop Buffer USiNG SPLOOP........ ..ottt e et e e ate e sbe e e e abb e e s aanneesnneeeasneeeanes 70
4.9 Reducing Code Size (--opt_for_space (Or -ms) OPtion)...........cooiiiiiiiiiiiiiie et sanees 70
4.10 Using Feedback Directed Optimization...................oooiiiiiiiiiiiii et ee et e et e e eeanaeeeeaes 7
4.11 Using Profile Information to Get Better Program Cache Layout and Analyze Code Coverage........................ 75
4.12 Indicating Whether Certain Aliasing Techniques Are USed..................oooiiiiiiiiiiiiiiii e 84
4.13 Prevent Reordering of Associative Floating-Point Operations....................cccooiiiie 85
4.14 Use Caution With asm Statements in Optimized Code................oooiiiiiiiiiiiiii s 86
4.15 Using Performance Advice to Optimize YOUr COE............cc.oiiiiiiiiiiiiiiiiie ettt 86
4.16 Using the Interlist Feature With Optimization..................coooii i e 93
4.17 Debugging and Profiling Optimized Code.................ooiiiiiiiii et e e e e e st e e e neeeeenneeeanneeean 95
4.18 What Kind of Optimization Is Being Performed?.................o e 95
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 55
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.1 Invoking Optimization

The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use higher optimization levels,
such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option on the
compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of optimization
(0, 1, 2, 3), which controls the type and degree of optimization.

* --opt_level=off or -Ooff
— Performs no optimization
+ --opt_level=0 or -0O0
— Performs control-flow-graph simplification
— Allocates variables to registers
— Performs loop rotation
— Eliminates unused code
— Simplifies expressions and statements
— Expands calls to functions declared inline
* --opt_level=1 or -O1

Performs all --opt_level=0 (-O0) optimizations, plus:
— Performs local copy/constant propagation
— Removes unused assignments
— Eliminates local common expressions
* --opt_level=2 or -02

Performs all --opt_level=1 (-O1) optimizations, plus:
— Performs software pipelining (see Section 4.6)
— Performs loop optimizations
— Eliminates global common subexpressions
— Eliminates global unused assignments
— Converts array references in loops to incremented pointer form
— Performs loop unrolling
* --opt_level=3 or -0O3

Performs all --opt_level=2 (-O2) optimizations, plus:

— Removes all functions that are never called

— Simplifies functions with return values that are never used

— Inlines calls to small functions

— Reorders function declarations; the called functions attributes are known when the caller is optimized

— Propagates arguments into function bodies when all calls pass the same value in the same argument
position

— ldentifies file-level variable characteristics

If you use --opt_level=3 (-O3), see Section 4.3 and Section 4.4 for more information.

For details about how the --opt_level and --opt_for_speed options and various pragmas affect inlining, see
Section 3.11.

Debugging is enabled by default, and the optimization level is unaffected by the generation of debug information.

Optimizations are performed by the stand-alone optimization pass. The code generator performs several
additional optimizations, particularly processor-specific optimizations. It does so regardless of whether you
invoke the optimizer. These optimizations are always enabled, though they are more effective when the
optimizer is used.

56 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

www.ti.com

I

TEXAS
INSTRUMENTS

Optimizing Your Code

Note
Do Not Lower the Optimization Level to Control Code Size

To reduce code size, do not lower the level of optimization. Instead, use the --opt_for_space option
to control the code size/performance tradeoff. Higher optimization levels (--opt_level or -O) combined
with high --opt_for_space levels result in the smallest code size. For more information, see Section
4.9,

Note
The --opt_level= n (-O n) Option Applies to the Assembly Optimizer

The --opt_level=n (-O) option should also be used with the assembly optimizer. The assembly
optimizer does not perform all the optimizations described here, but key optimizations such as
software pipelining and loop unrolling require the --opt_level option.

4.2 Controlling Code Size Versus Speed

To balance the tradeoff between code size and speed, use the --opt_for_speed option. The level of optimization
(0-5) controls the type and degree of code size or code speed optimization:

--opt_for_speed=0

Optimizes code size with a high risk of worsening or impacting performance.
--opt_for_speed=1

Optimizes code size with a medium risk of worsening or impacting performance.
--opt_for_speed=2

Optimizes code size with a low risk of worsening or impacting performance.
--opt_for_speed=3

Optimizes code performance/speed with a low risk of worsening or impacting code size.
--opt_for_speed=4

Optimizes code performance/speed with a medium risk of worsening or impacting code size.
--opt_for_speed=5

Optimizes code performance/speed with a high risk of worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If you do
not specify the --opt_for_speed option, the default setting is 4

The older mechanism for controlling code space, the --opt_for_space option, has the following equivalences with
the --opt_for_speed option:

--opt_for_space --opt_for_speed

none =4
=0 =3
=1 =2
=2 =1
=3 =0

4.3 Performing File-Level Optimization (--opt_level=3 option)

The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level optimization. You
can use the --opt_level=3 option alone to perform general file-level optimization, or you can combine it with other
options to perform more specific optimizations. The options listed in Table 4-1 work with --opt_level=3 to perform
the indicated optimization:

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

TMS320C6000 Optimizing C/C++ Compiler
v8.3.x

Copyright © 2022 Texas Instruments Incorporated

57

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

Table 4-1. Options That You Can Use With --opt_level=3

If You ... Use this Option See

Want to create an optimization information file --gen_opt_level=n Section 4.3.1

Want to compile multiple source files --program_level_compile Section 4.4
Note

Do Not Lower the Optimization Level to Control Code Size

When trying to reduce code size, do not lower the level of optimization, as you might see an increase
in code size. Instead, use the --opt_for_space option to control the code.

4.3.1 Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option , you can use the --gen_opt_info option to create an
optimization information file that you can read. The number following the option denotes the level (0, 1, or 2).
The resulting file has an .nfo extension. Use Table 4-2 to select the appropriate level to append to the option.

Table 4-2. Selecting a Level for the --gen_opt_info Option

If you... Use this option

Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 option --gen_opt_info=0
in a command file or an environment variable. The --gen_opt_level=0 option restores the default behavior of
the optimizer.

Want to produce an optimization information file --gen_opt_info=1
Want to produce a verbose optimization information file --gen_opt_info=2

4.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)

You can specify program-level optimization by using the --program_level _compile option with the --opt_level=3
option (aliased as -0O3).

With program-level optimization, all of your source files are compiled into one intermediate file called a module.
The module moves to the optimization and code generation passes of the compiler. Because the compiler can
see the entire program, it performs several optimizations that are rarely applied during file-level optimization:

» If a particular argument in a function always has the same value, the compiler replaces the argument with the
value and passes the value instead of the argument.

» If areturn value of a function is never used, the compiler deletes the return code in the function.

» If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 in order to perform these optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to generate
an information file. See Section 4.3.1 for more information.

In Code Composer Studio, when the --program_level _compile option is used, C and C++ files that have the
same options are compiled together. However, if any file has a file-specific option that is not selected as a
project-wide option, that file is compiled separately. For example, if every C and C++ file in your project has

a different set of file-specific options, each is compiled separately, even though program-level optimization has
been specified. To compile all C and C++ files together, make sure the files do not have file-specific options. Be
aware that compiling C and C++ files together may not be safe if previously you used a file-specific option.

Note
Compiling Files With the --program_level_compile and --keep_asm Options

If you compile all files with the --program_level _compile and --keep_asm options, the compiler
produces only one .asm file, not one for each corresponding source file.

58 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.4.1 Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3, by
using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in other
modules can call a module's external functions or modify a module's external variables. The number following
--call_assumptions indicates the level you set for the module that you are allowing to be called or modified.

The --opt_level=3 option combines this information with its own file-level analysis to decide whether to treat this
module's external function and variable declarations as if they had been declared static. Use Table 4-3 to select
the appropriate level to append to the --call_assumptions option.

Table 4-3. Selecting a Level for the --call_assumptions Option

If Your Module ... Use this Option
Has functions that are called from other modules and global variables that are modified in other modules --call_assumptions=0
Does not have functions that are called by other modules but has global variables that are modified in other --call_assumptions=1
modules

Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules

Has functions that are called from other modules but does not have global variables that are modified in --call_assumptions=3

other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you specified,
or it might disable program-level optimization altogether. Table 4-4 lists the combinations of --call_assumptions
levels and conditions that cause the compiler to revert to other --call_assumptions levels.

Table 4-4. Special Considerations When Using the --call_assumptions Option
Then the --call_assumptions

If --call_assumptions is... Under these Conditions... Level...
Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2
Not specified The compiler sees calls to outside functions under the --opt_level=3 Reverts to --call_assumptions=0
optimization level
Not specified Main is not defined Reverts to --call_assumptions=0
--call_assumptions=1 or No function has main defined as an entry point, and no interrupt Reverts to --call_assumptions=0
--call_assumptions=2 functions are defined, and no functions are identified by the
FUNC_EXT_CALLED pragma
--call_assumptions=1 or A main function is defined, or, an interrupt function is defined, or a Remains --call_assumptions=1 or
--call_assumptions=2 function is identified by the FUNC_EXT_CALLED pragma --call_assumptions=2
--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a --call_assumptions
option or the FUNC_EXT_CALLED pragma. See Section 4.4.2 for information about these situations.

4.4.2 Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the --
program_level_compile option. The compiler recognizes only the C/C++ source code and not any assembly
code that might be present. Because the compiler does not recognize the assembly code calls and variable
modifications to C/C++ functions, the --program_level_compile option optimizes out those C/C++ functions. To
keep these functions, place the FUNC_EXT_CALLED pragma (see Section 7.9.12) before any declaration or
reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the --
call_assumptions=n option with the --program_level_compile and --opt_level=3 options. See Section 4.4.1 for
information about the --call_assumptions=n option.

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or --call_assumptions=2.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 59
Submit Document Feedback v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

If any of the following situations apply to your application, use the suggested solution:

» Situation: Your application consists of C/C++ source code that calls assembly functions. Those assembly
functions do not call any C/C++ functions or modify any C/C++ variables.

Solution: Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler that
outside functions do not call C/C++ functions or modify C/C++ variables.

If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts from
the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler uses --
call_assumptions=0, because it presumes that the calls to the assembly language functions that have a
definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

« Situation: Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution: Try both of these solutions and choose the one that works best with your code:

— Compile with --program_level _compile --opt_level=3 --call_assumptions=1.

— Add the volatile keyword to those variables that may be modified by the assembly functions and compile
with --program_level_compile --opt_level=3 --call_assumptions=2.

» Situation: Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the assembly
functions call are never called from C/C++. These C/C++ functions act like main: they function as entry points
into C/C++.

Solution: Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then, you

can optimize your code in one of these ways:

— You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the entry-point
functions called from the assembly language interrupts, and then compiling with --program_level _compile
--opt_level=3 --call_assumptions=2. Be sure that you use the pragma with all of the entry-point functions.
If you do not, the compiler might remove the entry-point functions that are not preceded by the
FUNC_EXT_CALLED pragma.

— Compile with --program_level _compile --opt_level=3 --call_assumptions=3. Because you do not use the
FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is less aggressive
than the --call_assumptions=2 option, and your optimization may not be as effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the compiler
removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED pragma to keep
these functions.

4.5 Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option (aliased as -O3), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold for automatic inlining. This
option controls only the inlining of functions that are not explicitly declared as inline.

When the --auto_inline option is not used, the compiler sets the size limit based on the optimization level and the
optimization goal (performance versus code size). If the -auto_inline size parameter is set to 0, automatic inline
expansion is disabled. If the --auto_inline size parameter is set to a non-zero integer, the compiler automatically
inlines any function smaller than size. (This is a change from previous releases, which inlined functions for which
the product of the function size and the number of calls to it was less than size. The new scheme is simpler, but
will usually lead to more inlining for a given value of size.)

The compiler measures the size of a function in arbitrary units; however the optimizer information file (created
with the --gen_opt_info=1 or --gen_opt_info=2 option) reports the size of each function in the same units that
the --auto_inline option uses. When --auto_inline is used, the compiler does not attempt to prevent inlining that
causes excessive growth in compile time or size; use with care.

60 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

When --auto_inline option is not used, the decision to inline a function at a particular call-site is based on an
algorithm that attempts to optimize benefit and cost. The compiler inlines eligible functions at call-sites until a
limit on size or compilation time is reached.

Inlining behavior varies, depending on which compile-time options are specified:

* The code size limit is smaller when compiling for code size rather than performance. The --auto_inline option
overrides this size limit.

* At --opt_level=3, the compiler automatically inlines small functions.

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 3.11.

Note
Some Functions Cannot Be Inlined: For a call-site to be considered for inlining, it must be legal

to inline the function and inlining must not be disabled in some way. See the inlining restrictions in
Section 3.11.2.

Note
Optimization Level 3 and Inlining: In order to turn on automatic inlining, you must use the
--opt_level=3 option. If you desire the --opt_level=3 optimizations, but not automatic inlining, use
--auto_inline=0 with the --opt_level=3 option.

Note
Inlining and Code Size: Expanding functions inline increases code size, especially inlining a function
that is called in a number of places. Function inlining is optimal for functions that are called only from a
small number of places and for small functions. To prevent increases in code size because of inlining,
use the --auto_inline=0 option. This option causes the compiler to inline intrinsics only.

4.6 Optimizing Software Pipelining

Software pipelining schedules instructions from a loop so that multiple iterations of the loop execute in parallel.
At optimization levels --opt_level=2 (or -O2) and --opt_level=3 (or -O3), the compiler usually attempts to software
pipeline your loops. The --opt_for_space option also affects the compiler's decision to attempt to software
pipeline loops. In general, code size and performance are better when you use the --opt_level=2 or --opt_level=3
options. (See Section 4.1.)

Figure 4-1 illustrates a software-pipelined loop. The stages of the loop are represented by A, B, C, D, and E. In
this figure, a maximum of five iterations of the loop can execute at one time. The shaded area represents the
loop kernel. In the loop kernel, all five stages execute in parallel. The area above the kernel is known as the
pipelined loop prolog, and the area below the kernel is known as the pipelined loop epilog.

Al
B1 A2
1 5o A3 Pipelined-loop prolog
D1 c2 B3 A4
E1 D2 C3 B4 A5 Kernel
E2 D3 C4 B5
E3 D4 C5
2 D5 Pipelined-loop epilog
E5
Figure 4-1. Software-Pipelined Loop
SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 61
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

If you enter comments on instructions in your linear assembly input file, the compiler moves the comments to the
output file along with additional information. It attaches a 2-tuple <x, y> to the comments to specify the iteration
and cycle of the loop an instruction is on in the software pipeline. The zero-based number x represents the
iteration the instruction is on during the first execution of the loop kernel. The zero-based number y represents
the cycle that the instruction is scheduled on within a single iteration of the loop.

For more information about software pipelining, see the TMS320C6000 Programmer's Guide.
4.6.1 Turn Off Software Pipelining (--disable_software_pipeline Option)

At optimization levels --opt_level=2 (or -O2) and -O3, the compiler attempts to software pipeline your loops.
You might not want your loops to be software pipelined for debugging reasons. Software-pipelined loops are
sometimes difficult to debug because the code is not presented serially. The --disable_software_pipeline option
affects both compiled C/C++ code and assembly optimized code.

Note
Software Pipelining May Increase Code Size

Software pipelining without the use of SPLOOP can lead to significant increases in code size. To
control code size for loops that get software pipelined, the --opt_for_space option is recommended
over the --disable_software_pipeline option. The --opt_for_space option is capable of disabling non-
SPLOOP software pipelining if necessary to achieve code size savings, but it does not affect

the SPLOOP capability (Section 4.8). SPLOOP does not significantly increase code size, but can
greatly speed up a loop. Using the --disable_software_pipeline option disables all software pipelining
including SPLOOP.

4.6.2 Software Pipelining Information

The compiler embeds software pipelined loop information in the .asm file. This information is used to optimize
C/C++ code or linear assembly code.

The software pipelining information appears as a comment in the .asm file before a loop and for the assembly
optimizer the information is displayed as the tool is running. Example 4-1 illustrates the information that is
generated for each loop.

The --debug_software_pipeline option adds additional information displaying the register usage at each cycle of
the loop kernel and displays the instruction ordering of a single iteration of the software pipelined loop.

Note
More Details on Software Pipelining Information

Refer to the TMS320C6000 Programmer’s Guide for details on the information and messages that can
appear in the Software Pipelining Information comment block before each loop.

62 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

Example 4-1. Software Pipelining Information

Known Minimum Trip Count

Known Maximum Trip Count

Known Max Trip Count Factor
Loop Carried Dependency Bound (")
Unpartitioned Resource Bound
Partitioned Resource Bound (*)
Resource Partition:

L BN NN

A-side B-side
units 2 3
units

units

units

cross paths

.T address paths
Long read paths
Long write paths
Logical ops (.LS)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Addition ops (.LSD)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

HXZXUownH

(.L or .S unit)

(.L or .S or .D unit)
Bound(.L .S .LS)
Bound(.L .S .D .LS .LSD)

G WO OOOHrHRKF ORI
B WHOOOWOOoO ™

Searching for software pipeline schedule at
ii = 5 Register is live too long
ii
ii
done

6 Did not find schedule
7 Schedule found with 3 iterations in parallel

Epilog not entirely removed
Collapsed epilog stages : 1

Prolog not removed
Collapsed prolog stages : 0

Minimum required memory pad : 2 bytes

Minimum safe trip count HE

4.6.2.1 Software Pipelining Information Terms

The terms defined below appear in the software pipelining information. For more information on each term, see
the TMS320C6000 Programmer's Guide.

* Loop unroll factor. The number of times the loop was unrolled specifically to increase performance.

* Known minimum trip count. The minimum number of times the loop will be executed.

* Known maximum trip count. The maximum number of times the loop will be executed.

* Known max trip count factor. Factor that would always evenly divide the loops trip count. This information
can be used to possibly unroll the loop.

* Loop label. The label you specified for the loop in the linear assembly input file. This field is not present for
C/C++ code.

* Loop carried dependency bound. The distance of the largest loop carry path. A loop carry path occurs
when one iteration of a loop writes a value that must be read in a future iteration. Instructions that are part of
the loop carry bound are marked with the * symbol.

« Initiation interval (ii). The number of cycles between the initiation of successive iterations of the loop. The
smaller the initiation interval, the fewer cycles it takes to execute a loop.

* Resource bound. The most used resource constrains the minimum initiation interval. If four instructions
require a .D unit, they require at least two cycles to execute (4 instructions/2 parallel .D units).

* Unpartitioned resource bound. The best possible resource bound values before the instructions in the loop
are partitioned to a particular side.

« Partitioned resource bound (*). The resource bound values after the instructions are partitioned.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 63
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

Resource partition. This table summarizes how the instructions have been partitioned. This information can
be used to help assign functional units when writing linear assembly. Each table entry has values for the
A-side and B-side functional units. An asterisk is used to mark those entries that determine the resource
bound value. The table entries represent the following terms:

— .L units is the total number of instructions that require .L units.

— .S units is the total number of instructions that require .S units.

— .D units is the total number of instructions that require .D units.

— .M units is the total number of instructions that require .M units.

— .X cross paths is the total number of .X cross paths.

— .T address paths is the total number of address paths.

— Long read path is the total number of long read port paths.

— Long write path is the total number of long write port paths.

— Logical ops (.LS) is the total number of instructions that can use either the .L or .S unit.

— Addition ops (.LSD) is the total number of instructions that can use either the .L or .S or .D unit
Bound(.L .S .LS). The resource bound value as determined by the number of instructions that use the .L
and .S units. It is calculated with the following formula:

Bound(.L .S .LS) =ceil((.L +.S + .LS)/2)
Bound(.L .S .D .LS .LSD). The resource bound value as determined by the number of instructions that use
the .D, .L, and .S units. It is calculated with the following formula:

Bound(.L .S .D .LS .LSD) =ceil((.L +.S+.D + .LS + .LSD)/ 3)
Minimum required memory pad. The number of bytes that are read if speculative execution is enabled. See
Section 4.6.3 for more information.

4.6.2.2 Loop Disqualified for Software Pipelining Messages

The following messages appear if the loop is completely disqualified for software pipelining:

Bad loop structure. This error is very rare and can stem from the following:

— An asm statement inserted in the C code inner loop

— Parallel instructions being used as input to the Linear Assembly Optimizer

— Complex control flow such as GOTO statements and breaks

Loop contains a call. Sometimes the compiler may not be able to inline a function call that is in a loop.
Because the compiler could not inline the function call, the loop could not be software pipelined.

Too many instructions. There are too many instructions in the loop to software pipeline.

Software pipelining disabled. Software pipelining has been disabled by a command-line option, such as
when using the --disable_software_pipeline option, not using the --opt_level=2 (or -O2) or --opt_level=3 (or
-03) option, or using the --opt_for_space=2 or --opt_for_space=3 option.

Uninitialized trip counter. The trip counter may not have been set to an initial value.

Suppressed to prevent code expansion. Software pipelining may be suppressed because of the --
opt_for_space=1 option. When the --opt_for_space=1 option is used, software pipelining is disabled in less
promising cases to reduce code size. To enable pipelining, use --opt_for_space=0 or omit the --opt_for_space
option altogether.

Loop carried dependency bound too large. If the loop has complex loop control, try --speculate_loads
according to the recommendations in Section 4.6.3.2.

Cannot identify trip counter. The loop trip counter could not be identified or was used incorrectly in the loop
body.

4.6.2.3 Pipeline Failure Messages

The following messages can appear when the compiler or assembly optimizer is processing a software pipeline
and it fails:

Address increment is too large. An address register's offset must be adjusted because the offset is out of
range of the C6000's offset addressing mode. You must minimize address register offsets.

Cannot allocate machine registers. A software pipeline schedule was found, but it cannot allocate machine
registers for the schedule. Simplification of the loop may help.

64

TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

The register usage for the schedule found at the given ii is displayed. This information can be used when
writing linear assembly to balance register pressure on both sides of the register file. For example:

ii = 11 Cannot allocate machine registers
Regs Live Always : 3/0 (A/B-side)

Max Regs Live : 20/14

Max Condo Regs Live : 2/1

— Regs Live Always. The number of values that must be assigned a register for the duration of the whole
loop body. This means that these values must always be allocated registers for any given schedule found
for the loop.

— Max Regs Live. Maximum number of values live at any given cycle in the loop that must be allocated to a
register. This indicates the maximum number of registers required by the schedule found.

— Max Cond Regs Live. Maximum number of registers live at any given cycle in the loop kernel that must
be allocated to a condition register.

* Cycle count too high. Never profitable. With the schedule that the compiler found for the loop, it is more
efficient to use a non-software-pipelined version.

» Did not find schedule. The compiler was unable to find a schedule for the software pipeline at the given ii
(iteration interval). You should simplify the loop and/or eliminate loop carried dependencies.

* Iterations in parallel > minimum or maximum trip count. A software pipeline schedule was found, but
the schedule has more iterations in parallel than the minimum or maximum loop trip count. You must enable
redundant loops or communicate the trip information.

» Speculative threshold exceeded. It would be necessary to speculatively load beyond the threshold
currently specified by the --speculate_loads option. You must increase the --speculate_loads threshold as
recommended in the software-pipeline feedback located in the assembily file.

* Register is live too long. A register must have a value that exists (is live) for more than ii cycles. You may
insert MV instructions to split register lifetimes that are too long.

If the assembly optimizer is being used, the .sa file line numbers of the instructions that define and use the
registers that are live too long are listed after this failure message. For example:

ii = 9 Register is live too long
|10 => [17]

This means that the instruction that defines the register value is on line 10 and the instruction that uses the
register value is on line 17 in the .sa file.

* Too many predicates live on one side. The C6000 has predicate, or conditional, registers available for use
with conditional instructions. There are six predicate registers . There are three on the A side and three on
the B side. Sometimes the particular partition and schedule combination requires more than these available
registers.

» Schedule found with N iterations in parallel. (This is not a failure message.) A software pipeline schedule
was found with N iterations executing in parallel.

» Trip variable used in loop - Cannot adjust trip count. The loop trip counter has a use in the loop other
than as a loop trip counter.

» Unsafe schedule for irregular loop. "Irregular” loops are non-downcounting loops with a known number
of iterations, such as a while loop. Irregular loops may require transformations that execute instructions
more times than called for by the loop. This error means the compiler was unable to find a schedule with
instructions that are safe to over-execute, are guarded with a predicate, or have their effects undone after
the loop. Try to rewrite the loop as a down-counting loop. You may also try increasing the --speculate_loads
(-mh) option.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 65
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.6.2.4 Register Usage Table Generated by the --debug_software_pipeline Option

The --debug_software_pipeline option places additional software pipeline feedback in the generated assembly
file. This information includes a single scheduled iteration view of the software pipelined loop.

If software pipelining succeeds for a given loop, and the --debug_software_pipeline option was used during the
compilation process, a register usage table is added to the software pipelining information comment block in the
generated assembly code.

The numbers on each row represent the cycle number within the loop kernel.

Each column represents one register on the TMS320C6000. The registers are labeled in the first three rows of
the register usage table and should be read columnwise.

An * in a table entry indicates that the register indicated by the column header is live on the kernel execute
packet indicated by the cycle number labeling each row.

An example of the register usage table follows:

Had Searching for software pipeline schedule at
Hl ii = 15 Schedule found with 2 iterations in parallel
. %

Had Register Usage Table:

H to—mm +
;x | AAAAAAAAAAAAAAAA | BBBBBBBBBBBBBBEB |
H |000000000011111110000000000111111|
Hl [10123456789012345(10123456789012345|
sk e T
:-* O: :*** * Kk kK |~k~k~k * ok k ok kK :
,-* 1: |**** * KKKk |*** KKK KKK |
;* 2: |**** * Kk Kk Kk |*** * Kk kK k Kk |
;* 3: | * * * Kk k ok ok |~k~k~k * ok k ok kK |
,-* 4: | * K* KKK KK |*** KKK KKK |
;* 5: | * % * Kk Kk Kk Kk |*** * Kk kK Kk Kk |
;* 6: | * * * Kk k ok ok |~k~k~k~k~k~k~k~k~k~k |
,-* 7: |*** K KKKk K |** KKK K KKK |
;* 8: |**** * Kk Kk Kk Kk |*********** |
;* 9: |~k~k~k~k~k~k~k~k~k~k |~k~k * ok kkkkkk |
,-* 10: |*********** |** KAKKKKK KKK |
;* ll: |*********** |** Kk Kk k Kk Kk Kk Kk |
;* 12: |~k~k~k~k~k~k~k~k~k~k |~k~k~k~k~k~k~k~k~k~k~k~k |
,-* 13: |**** KK KKK |** KAKKKKKK Kk |
,* 14: |*** * Kk Kk Kk Kk |*** Xk kkKk Kk Kk |
;* B b +
,*

This example shows that on cycle 0 (first execute packet) of the loop kernel, registers A0, A1, A2, A6, A7, A8,
A9, B0, B1, B2, B4, B5, B6, B7, B8, and B9 are all live during this cycle.

66 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.6.3 Collapsing Prologs and Epilogs for Improved Performance and Code Size

When a loop is software pipelined, a prolog and epilog are generally required. The prolog is used to pipe up the
loop and epilog is used to pipe down the loop.

In general, a loop must execute a minimum number of iterations before the software-pipelined version can be
safely executed. If the minimum known trip count is too small, either a redundant loop is added or software
pipelining is disabled. Collapsing the prolog and epilog of a loop can reduce the minimum trip count necessary to
safely execute the pipelined loop.

Collapsing can also substantially reduce code size. Some of this code size growth is due to the redundant loop.
The remainder is due to the prolog and epilog.

The prolog and epilog of a software-pipelined loop consists of up to p-1 stages of length ii, where p is the
number of iterations that are executed in parallel during the steady state and ii is the cycle time for the
pipelined loop body. During prolog and epilog collapsing the compiler tries to collapse as many stages as
possible. However, over-collapsing can have a negative performance impact. Thus, by default, the compiler
attempts to collapse as many stages as possible without sacrificing performance. When the --opt_for_space=2
or --opt_for_space=3 options are invoked, the compiler increasingly favors code size over performance.

4.6.3.1 Speculative Execution

When prologs and epilogs are collapsed, instructions might be speculatively executed, thereby causing loads
to addresses beyond either end of the range explicitly read within the loop. By default, the compiler cannot
speculate loads because this could cause an illegal memory location to be read. Sometimes, the compiler
can predicate these loads to prevent over execution. However, this can increase register pressure and might
decrease the total amount of collapsing which can be performed.

When the --speculate_loads=n option is used, the speculative threshold is increased from the default of 0 to n.
When the threshold is n, the compiler can allow a load to be speculatively executed as the memory location it
reads will be no more than n bytes before or after some location explicitly read within the loop. If the n is omitted,
the compiler assumes the speculative threshold is unlimited. To specify this in Code Composer Studio, select the
Speculate Threshold check box and leave the text box blank in the Build Options dialog box on the Compiler tab,
Advanced category.

Collapsing of the prolog and epilog can usually reduce the minimum safe trip count. If the minimum known trip
count is less than the minimum safe trip count, a redundant loop is required. Otherwise, pipelining must be
suppressed. Both these values can be found in the comment block preceding a software pipelined loop.

;*Known Minimum Trip Count: 1

;*Minimum safe trip count: 7

If the minimum safe trip count is greater than the minimum known trip count, use of --speculate_loads is highly
recommended, not only for code size, but for performance.

When using --speculate_loads, you must ensure that potentially speculated loads will not cause illegal reads.
This can be done by padding the data sections and/or stack, as needed, by the required memory pad in both
directions. The required memory pad for a given software-pipelined loop is also provided in the comment block
for that loop.

;*Minimum required memory pad: 8 bytes

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 67
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.6.3.2 Selecting the Best Threshold Value
When a loop is software pipelined, the comment block preceding the loop provides the following information:

* Required memory pad for this loop
* The minimum value of n needed to achieve this software pipeline schedule and level of collapsing
» Suggestion for a larger value of n to use which might allow additional collapsing

This information shows up in the comment block as follows:

;*Minimum required memory pad : 5 bytes
;*Minimum threshold value : —-speculate loads=7
. %

;*For further improvement on this loop, try option --speculate loads=14

For safety, the example loop requires that array data referenced within this loop be preceded and followed by a
pad of at least 5 bytes. This pad can consist of other program data. The pad will not be modified. In many cases,
the threshold value (namely, the minimum value of the argument to --speculate_loads that is needed to achieve
a particular schedule and level of collapsing) is the same as the pad. However, when it is not, the comment block
will also include the minimum threshold value. In the case of this loop, the threshold value must be at least 7 to
achieve this level of collapsing.

The compiler and linker can provide automatic load speculation via the auto argument to the --speculate_loads
option (i.e. --speculate_loads=auto or -mh=auto). Use of the auto argument makes it easier to use and benefit
from speculative load optimizations. This option can generate speculative loads of up to 256 bytes beyond
memory that the compiler can prove to be allocated.

In addition, the compiler communicates information to the linker to help automatically ensure the required pre-
and post-padding:

+ If the symbol of the speculatively loaded buffer is known at compile time, the linker ensures the object pointed
to by the symbol has the required padding to let the speculative load access legal memory.

+ If the symbol information is not known during compile time, the linker will ensure that the placement of data
sections will allow legal accessing beyond the boundaries of the data sections. The linker does this by simply
padding the start and end of the memory range(s) where the data sections are placed.

However, you can also specify the speculative loads threshold explicitly via the --speculate _loads=n option,
where n is at least the minimum required pad (as explained earlier), but you also need to consider whether a
larger threshold value would facilitate additional collapsing. This information is also provided, if applicable. For
example, in the above comment block, a threshold value of 14 might facilitate further collapsing. If you choose
the auto argument to --speculate_loads, the compiler will consider the larger threshold value automatically.

68 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.7 Redundant Loops

A loop iterates some number of times before the loop terminates. The number of iterations is called the trip
count. The variable that counts iterations is the frip counter. When the trip counter reaches a limit equal to the
trip count, the loop terminates. The Code Generation Tools use the trip count to determine whether or not a loop
can be pipelined. The structure of a software pipelined loop requires the execution of a minimum number of loop
iterations (a minimum trip count) in order to fill or prime the pipeline.

The minimum trip count for a software pipelined loop is set by the number of iterations executing in parallel. In
Figure 4-1, the minimum trip count is five. In the following example A, B, and C are instructions in a software
pipeline, so the minimum trip count for this single-cycle software pipelined loop is three.

A
B A
C B A «—Three iterations in parallel = minimum trip count
C B
Cc

When the Code Generation Tools cannot determine the trip count for a loop, then by default two loops and
control logic are generated. The first loop is not pipelined, and it executes if the run-time trip count is less than
the loop's minimum safe trip count. The second loop is the software pipelined loop, and it executes when the
run-time trip count is greater than or equal to the minimum trip count. At any given time, one of the loops is a
redundant loop. For example:

foo(N) /* N is the trip count */
{
for (I=0; I < N; I++) /* I is the trip counter */

}

After finding a software pipeline for the loop, the compiler transforms foo() as below, assuming the minimum trip
count for the loop is 3. Two versions of the loop would be generated and the following comparison would be
used to determine which version should be executed:

foo (N)
{
if (N < 3)
{
for (I=0; I < N; I++) /* Unpipelined version */
}
else
}
for (I=0; I < N; I++) /* Pipelined version */
}
}
foo(50); /* Execute software pipelined loop */
foo(2); /* Execute loop (unpipelined)*/

You may be able to help the compiler avoid producing redundant loops with the use of --program_level_compile
--opt_level=3 (see Section 4.4) or the use of the MUST_ITERATE pragma (see Section 7.9.22).

Note
Turning Off Redundant Loops: Specifying any --opt_for_space option turns off redundant loops.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 69
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.8 Utilizing the Loop Buffer Using SPLOOP

The loop buffer improves performance and reduces code size for software pipelined loops. The loop buffer
provides the following benefits:

* Code size. A single iteration of the loop is stored in program memory.

* Interrupt latency. Loops executing out of the loop buffer are interruptible.

* Improves performance for loops with unknown trip counts and eliminates redundant loops.
* Reduces or eliminates the need for speculated loads.

* Reduces power usage.

You can tell that the compiler is using the loop buffer when you find SPLOOP(D/W) at the beginning of a
software pipelined loop followed by an SPKERNEL at the end. Refer to the TMS320C64x/C64x+ CPU and
Instruction Set Reference Guide for information on SPLOOP.

When the --opt_for_space option is not used, the compiler will not use the loop buffer if it can find a faster
software pipelined loop without it. When using the --opt_for_space option, the compiler will use the loop buffer
when it can.

The compiler does not generate code for the loop buffer (SPLOOP/D/W) when any of the following occur:

i (initiation interval) > 14 cycles

* Dynamic length (of a single iteration) > 48 cycles

* The optimizer completely unrolls the loop

» Code contains elements that disqualify normal software pipelining (call in loop, complex control code in loop,
etc.). See the TMS320C6000 Programmer's Guide for more information.

4.9 Reducing Code Size (--opt_for_space (or -ms) Option)

When using the --opt_level=n option (or -On), you are telling the compiler to optimize your code. The higher the
value of n, the more effort the compiler invests in optimizing your code. However, you might still need to tell the
compiler what your optimization priorities are. By default, when --opt_level=2 or -opt_level=3 is specified, the
compiler optimizes primarily for performance. (Under lower optimization levels, the priorities are compilation time
and debugging ease.) You can adjust the priorities between performance and code size by using the code size
flag --opt_for_space=n. The --opt_for_space=0, --opt_for_space=1, --opt_for_space=2 and --opt_for_space=3
options increasingly favor code size over performance.

When you specify --silicon_version=6400+ in conjunction with the --opt_for_space option, the code will be
tailored for compression. That is, more instructions are tailored so they will more likely be converted from 32-bit
to 16-bit instructions when assembled.

It is recommended that a code size flag not be used with the most performance-critical code. Using --
opt_for_space=0 or --opt_for_space=1 is recommended for all but the most performance-critical code. Using
--opt_for_space=2 or --opt_for_space=3 is recommended for seldom-executed code. Either --opt_for_space=2
or --opt_for_space=3 should be used if you heed minimum code size. It is generally recommended that the code
size flags be combined with --opt_level=2 or --opt_level=3.

Note
Disabling Code-Size Optimizations or Reducing the Optimization Level

If you reduce optimization and/or do not use code size flags, you are disabling code-size optimizations
and sacrificing performance.

Note
The --opt_for_space Option is Equivalent to --opt_for_space=0

If you use --opt_for_space with no code size level number specified, the option level defaults to
--opt_for_space=0.

70 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.10 Using Feedback Directed Optimization

Feedback directed optimization provides a method for finding frequently executed paths in an application
using compiler-based instrumentation. This information is fed back to the compiler and is used to perform
optimizations. This information is also used to provide you with information about application behavior.

4.10.1 Feedback Directed Optimization

Feedback directed optimization uses run-time feedback to identify and optimize frequently executed program
paths. Feedback directed optimization is a two-phase process.

4.10.1.1 Phase 1 -- Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of instrumentation
code to determine control flow frequencies. Memory is allocated to store counter information.

The instrumented application program is executed on the target using representative input data sets. The

input data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT
file. The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or pdd6x. The pdd6x
tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 4.10.2) for
consumption by phase 2 of feedback directed optimization.

4.10.1.2 Phase 2 -- Use Application Profile Information for Optimization

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which reads the specified PRF
file generated in phase 1. In phase 2, optimization decisions are made using the data generated during phase
1. The profile feedback file is used to guide program optimization. The compiler optimizes frequently executed
program paths more aggressively.

The compiler uses data in the profile feedback file to guide certain optimizations of frequently executed program
paths.

4.10.1.3 Generating and Using Profile Information
There are two options that control feedback directed optimization:

--gen_profile_info tells the compiler to add instrumentation code to collect profile information. When the program executes the
run-time-support exit() function, the profile data is written to a PDAT file. This option applies to all the C/C++
source files being compiled on the command-line.

If the environment variable TI_PROFDATA on the host is set, the data is written into the specified file.
Otherwise, it uses the default filename: pprofout.pdat. The full pathname of the PDAT file (including the
directory name) can be specified using the TI_PROFDATA host environment variable.

By default, the RTS profile data output routine uses the C 1/0O mechanism to write data to the PDAT file. You
can install a device handler for the PPHNDL device to re-direct the profile data to a custom device driver
routine. For example, this could be used to send the profile data to a device that does not use a file system.
Feedback directed optimization requires you to turn on at least some debug information when using the
--gen_profile_info option. This enables the compiler to output debug information that allows pdd6x to correlate
compiled functions and their associated profile data.

--use_profile_info specifies the profile information file(s) to use for performing phase 2 of feedback directed optimization. More
than one profile information file can be specified on the command line; the compiler uses all input data from
multiple information files. The syntax for the option is:

--use_profile_info==file1[, file2, ..., filen]
If no filename is specified, the compiler looks for a file named pprofout.prf in the directory where the compiler
in invoked.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 71
Submit Document Feedback v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.10.1.4 Example Use of Feedback Directed Optimization
These steps illustrate the creation and use of feedback directed optimization.

1. Generate profile information.

clex -mv6400+ --opt level=2 --gen_profile info foo.c --run_linker --output file=foo.out
--library=lnk.cmd --library=rtséd4plus.lib

2. Execute the application.

The execution of the application creates a PDAT file named pprofout.pdat in the current (host) directory. The
application can be run on target hardware connected to a host machine.
3. Process the profile data.

After running the application with multiple data-sets, run pdd6x on the PDAT files to create a profile
information (PRF) file to be used with --use_profile_info.

‘pdd6x -e foo.out -o pprofout.prf pprofout.pdat ‘

4. Re-compile using the profile feedback file.

--output file=foo.out --library=lnk.cmd --library=rtsé64plus.lib

cl6ox -mv6400+ --opt level=2 --use profile info=pprofout.prf foo.c --run linker

4.10.1.5 The .ppdata Section

The profile information collected in phase 1 is stored in the .ppdata section, which must be allocated into target
memory. The .ppdata section contains profiler counters for all functions compiled with --gen_profile_info. The
default Ink.cmd file in has directives to place the .ppdata section in data memory. If the link command file has
no section directive for allocating .ppdata section, the link step places the .ppdata section in a writable memory
range.

The .ppdata section must be allocated memory in multiples of 32 bytes. Please refer to the linker command file
in the distribution for example usage.

4.10.1.6 Feedback Directed Optimization and Code Size Tune

Feedback directed optimization is different from the Code Size Tune feature in Code Composer Studio (CCS).
The code size tune feature uses CCS profiling to select specific compilation options for each function in order to
minimize code size while still maintaining a specific performance point. Code size tune is coarse-grained, since
it is selecting an option set for the whole function. Feedback directed optimization selects different optimization
goals along specific regions within a function.

4.10.1.7 Instrumented Program Execution Overhead

During profile collection, the execution time of the application may increase. The amount of increase depends on
the size of the application and the number of files in the application compiled for profiling.

The profiling counters increase the code and data size of the application. Consider using the --opt_for_space
(-ms) code size option when using profiling to mitigate the code size increase. This has no effect on the accuracy
of the profile data being collected. Since profiling only counts execution frequency and not cycle counts, code
size optimization flags do not affect profiler measurements.

72 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.10.1.8 Invalid Profile Data
When recompiling with --use_profile_info, the profile information is invalid in the following cases:

» The source file name changed between the generation of profile information (gen-profile) and the use of the
profile information (use-profile).

* The source code was modified since gen-profile. In this case, profile information is invalid for the modified
functions.

» Certain compiler options used with gen-profile are different from those with used with use-profile. In particular,
options that affect parser behavior could invalidate profile data during use-profile. In general, using different
optimization options during use-profile should not affect the validity of profile data.

4.10.2 Profile Data Decoder

The code generation tools include a tool called the Profile Data Decoder or pdd6x, which is used for post
processing profile data (PDAT) files. The pdd6x tool generates a profile feedback (PRF) file. See Section 4.10.1
for a discussion of where pdd6x fits in the profiling flow. The pdd6x tool is invoked with this syntax:

pdd6éx -e exec.out -0 application.prf filename .pdat

-a Computes the average of the data values in the data sets instead of accumulating data values
-e exec.out Specifies exec.out is the name of the application executable.
-0 application.prf Specifies application.prf is the formatted profile feedback file that is used as the argument to --

use_profile_info during recompilation. If no output file is specified, the default output filename is
pprofout.prf.

filename .pdat Is the name of the profile data file generated by the run-time-support function. This is the default name and
it can be overridden by using the host environment variable TI_PROFDATA.

The run-time-support function and pdd6x append to their respective output files and do not overwrite them. This
enables collection of data sets from multiple runs of the application.

Note
Profile Data Decoder Requirements

Your application must be compiled with at least DWARF debug support to enable feedback directed
optimization. When compiling for feedback directed optimization, the pdd6x tool relies on basic debug
information about each function in generating the formatted .prf file.

The pprofout.pdat file generated by the run-time support is a raw data file of a fixed format understood
only by pdd6x. You should not modify this file in any way.

4.10.3 Feedback Directed Optimization API

There are two user interfaces to the profiler mechanism. You can start and stop profiling in your application by
using the following run-time-support calls.

» _TI_start_pprof_collection()

This interface informs the run-time support that you wish to start profiling collection from this point on and
causes the run-time support to clear all profiling counters in the application (that is, discard old counter
values).

* _TI_stop_pprof_collection()

This interface directs the run-time support to stop profiling collection and output profiling data into the output
file (into the default file or one specified by the TI_PROFDATA host environment variable). The run-time
support also disables any further output of profile data into the output file during exit(), unless you call
_TI_start_pprof_collection() again.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 73
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.10.4 Feedback Directed Optimization Summary

Options

--gen_profile_info Adds instrumentation to the compiled code. Execution of the code results in profile data being emitted
to a PDAT file.

--use_profile_info=file.prf Uses profile information for optimization and/or generating code coverage information.

--analyze=codecov Generates a code coverage information file and continues with profile-based compilation. Must be
used with --use_profile_info.

--analyze_only Generates only a code coverage information file. Must be used with --use_profile_info. You must
specify both --analyze=codecov and --analyze_only to do code coverage analysis of the instrumented
application.

Host Environment Variables

TI_PROFDATA Writes profile data into the specified file

TI_COVDIR Creates code coverage files in the specified directory
TI_COVDATA Writes code coverage data into the specified file
API

_TI_start_pprof_collection() Clears the profile counters to file
_TI_stop_pprof_collection() Writes out all profile counters to file

PPHDNL

Device driver handle for low-level C I/0O based driver for writing out profile data from a target program.

Files Created

*.pdat Profile data file, which is created by executing an instrumented program and used as input to the
profile data decoder
*.prf Profiling feedback file, which is created by the profile data decoder and used as input to the re-
compilation step
74 TMS320C6000 Optimizing C/C++ Compiler

SPRUI04D — JULY 2015 — REVISED JANUARY 2022

v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.11 Using Profile Information to Get Better Program Cache Layout and Analyze Code
Coverage

There are two different types of analysis information you can get from the path profiler: code coverage
information and call graph information.

The program cache layout tool helps you to develop better program instruction cache efficiency into your
applications. Program cache layout is the process of controlling the relative placement of code sections into
memory to minimize the occurrence of conflict misses in the program instruction cache.

4.11.1 Background and Motivation

Effective utilization of the program instruction cache is an important part of getting the best performance from a
C6000. The dedicated program instruction cache (L1P) provides fast instruction fetches, but a cache miss can
be very costly. Some applications (e.g. h264) can spend 30%+ of the processor's time stalling due to L1P cache
misses. A cache miss occurs when a fetch fails to read an instruction from L1P and the process is required to
access the instruction from the next level of memory. A request to L2 or external memory has a much higher
latency than an access from L1P.

Careful placement of code sections can greatly reduce the number of cache misses. The C6000 L1P is
especially sensitive to code placement because it is direct-mapped.

Many L1P cache misses are conflict misses. Conflict misses occur when the cache has recently evicted a block
of code that is then needed again. In a program instruction cache this often occurs when two frequently executed
blocks of code (usually from different functions) interleave their execution and are mapped to the same cache
line.

For example, suppose there is a call to function B from inside a loop in function A. Suppose also that the code
for function A's loop is mapped to the same cache line as a block of code from function B that is executed every
time that B is called. Each time B is called from within this loop, the loop code in function A is evicted from the
cache by the code in B that is mapped to the same cache line. Even worse, when B returns to A, the loop code
in A evicts the code from function B that is mapped to the same cache line.

Every iteration through the loop will cause two program instruction cache conflict misses. If the loop is heavily
traversed, then the number of processor cycles lost to program instruction cache stalls can become quite large.

Many program instruction cache conflict misses can be avoided with more intelligent placement of functions
that are active at the same time. Program instruction cache efficiency can be significantly improved using code
placement strategies that utilize dynamic profile information that is gathered during the run of an instrumented
application.

The program cache layout tool (clt6x) takes dynamic profile information in the form of a weighted call graph and
creates a preferred function order command file that can be used as input to the linker to guide the placement of
function subsections.

You can use the program cache layout tool to help improve your program locality and reduce the number of
L1P cache conflict misses that occur during the run of your application, thereby improving your application's
performance.

4.11.2 Code Coverage

The information collected during feedback directed optimization can be used for generating code coverage
reports. As with feedback directed optimization, the program must be compiled with the --gen_profile_info option.
Code coverage conveys the execution count of each line of source code in the file being compiled, using data
collected during profiling.

4.11.2.1 Phase1 -- Collect Program Profile Information

In this phase, the compiler is invoked with --gen_profile_info, which instructs the compiler to add instrumentation
code to collect profile information. The compiler inserts a small amount of instrumentation code to determine
control flow frequencies. Memory is allocated to store counter information.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 75
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

The instrumented application program is executed on the target using representative input data sets. The

input data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT
file. The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or pdd6x. The pdd6x
tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 4.10.2) for
consumption by phase 2 of feedback directed optimization.

4.11.2.2 Phase 2 -- Generate Code Coverage Reports

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which indicates that the compiler
should read the specified PRF file generated in phase 1. The application must also be compiled with either

the --codecov or --onlycodecov option; the compiler generates a code-coverage info file. The --codecov option
directs the compiler to continue compilation after generating code-coverage information, while the --onlycodecov
option stops the compiler after generating code-coverage data. For example:

cléx --opt level=2 --use profile info=pprofout.prf --onlycodecov foo.c

You can specify two environment variables to control the destination of the code-coverage information file.

» The TI_COVDIR environment variable specifies the directory where the code-coverage file should be
generated. The default is the directory where the compiler is invoked.

» The TI_COVDATA environment variable specifies the name of the code-coverage data file generated by
the compiler. the default is filename.csv where filename is the base-name of the file being compiled. For
example, if foo.c is being compiled, the default code-coverage data file name is foo.csv.

If the code-coverage data file already exists, the compiler appends the new dataset at the end of the file.

Code-coverage data is a comma-separated list of data items that can be conveniently handled by data-
processing tools and scripting languages. The following is the format of code-coverage data:

"filename-with-full-path","funcname" line#,columni#,exec-frequency,"comments"

"filename-with-full-path" Full pathname of the file corresponding to the entry

"funcname" Name of the function

line# Line number of the source line corresponding to frequency data

column# Column number of the source line

exec-frequency Execution frequency of the line

"comments" Intermediate-level representation of the source-code generated by the parser

The full filename, function name, and comments appear within quotation marks ("). For example:
"/some dir/zlib/c64p/deflate.c"," deflateInit2 ",216,5,1,"(strm->zalloc)"

Other tools, such as a spreadsheet program, can be used to format and view the code coverage data.

4.11.3 What Performance Improvements Can You Expect to See?

If your application does not suffer from inefficient usage of the L1P cache, then the program cache layout
capability will not have any effect on the performance of your application. Before applying the program cache
layout tooling to your application, analyze the L1P cache performance in your application.

4.11.3.1 Evaluating L1P Cache Performance

Evaluating the L1P cache usage efficiency of your application will not only help you determine whether or not
your application might benefit from using program cache layout, but it also gives you a rough estimate as to how
much performance improvement you can reasonably expect from applying program cache layout.

There are several resources available to help you evaluate L1P cache usage in your application. One way of
doing this is to use the Function Profiling capability in Code Composer Studio (CCS).

76 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

The number of CPU stall cycles that occur due to L1P cache misses gives you a reasonable upper bound
estimate of the number of CPU cycles that you may be able to recover with the use of the program cache layout
tooling in your application. Please be aware that the performance impact due to program cache layout will tend
to vary for the different data sets that are run through your application.

4.11.4 Program Cache Layout Related Features and Capabilities

The code generation tools provide some features and capabilities that can be used in conjunction with the
program cache layout tool, clt6x. The following is a summary:

4.11.4.1 Path Profiler

The code generation tools include a path profiling utility, pproféx, that is run from the compiler, cl6x. The pprof6x
utility is invoked by the compiler when the --gen_profile or the --use_profile command is used from the compiler
command line:

cléx --gen_profile ... file.c

cléx --use_profile ... file.c

For further information about profile-based optimization and a more detailed description of the profiling
infrastructure, see Section 4.10.

4.11.4.2 Analysis Options

The path profiling utility, pprof6x, appends code coverage or weighted call graph analysis information to existing
CSV (comma separated values) files that contain the same type of analysis information.

The utility checks to make sure that an existing CSV file contains analysis information that is consistent with the
type of analysis information it is being asked to generate (whether it be code coverage or weighted call graph
analysis). Attempts to mix code coverage and weighted call graph analysis information in the same output CSV
file will be detected, and pprof6x will emit a fatal error and abort.

--analyze=callgraph Instructs the compiler to generate weighted call graph analysis information.

--analyze=codecov Instructs the compiler to generate code coverage analysis information. This option replaces the
previous --codecov option.

--analyze_only Halts compilation after generation of analysis information is completed.

4.11.4.3 Environment Variables
To assist with the management of output CSV analysis files, pprof6x supports these environment variables:

TI_WCGDATA Allows you to specify a single output CSV file for all weighted call graph analysis information. New
information is appended to the CSV file identified by this environment variable, if the file already exists.

TI_ANALYSIS_DIR Specifies the directory in which the output analysis file will be generated. The same environment variable
can be used for both code coverage information and weighted call graph information (all analysis files
generated by pproféx will be written to the directory specified by the TI_ANALYSIS_DIR environment
variable).

Note
TI_COVDIR Environment Variable

The existing TI_COVDIR environment variable is still supported when generating code coverage
analysis, but is overridden in the presence of a defined TI_ANALYSIS_DIR environment variable.

4.11.4.4 Program Cache Layout Tool, clt6x

The program cache layout tool creates a preferred function order command file from input weighted call graph
(WCG) information. The syntax is:

\cltex CSV files with WCG info -o forder.cmd

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 77
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.11.4.5 Linker

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order= function specification

4.11.4.6 Linker Command File Operator unordered()

The new linker command file keyword unordered relaxes placement constraints placed on an output section
whose specification includes an explicit list of which input sections are contained in the output section. The
syntax is:

unordered()

4.11.5 Program Instruction Cache Layout Development Flow

Once you have determined that your application is experiencing some inefficiencies in its usage of the program
instruction cache, you may decide to include the program cache layout tooling in your development to attempt to
recover some of the CPU cycles that are being lost to stalls due to program instruction cache conflict misses.

4.11.5.1 Gather Dynamic Profile Information

The program cache layout tool, clt6x, relies on the availability of dynamic profile information in the form of a
weighted call graph in order to produce a preferred function order command file that can be used to guide
function placement at link-time when your application is re-built.

There are several ways in which this dynamic profile information can be collected. For example, if you are
running your application on hardware, you may have the capability to collect a PC discontinuity trace. The
discontinuity trace can then be post-processed to construct weighted call graph input information for the clt6x.

The method for collecting dynamic profile information that is presented here relies on the path profiling
capabilities in the C6000 code generation tools. Here is how it works:

1. Build an instrumented application using the --gen_profile_info option.

Using --gen_profile_info instructs the compiler to embed counters into the code along the execution paths of
each function.

To compile only use:

‘clﬁx options --gen_profile_info src_file(s) ‘

The compile and link use:

‘chx options --gen_profile_info src_file(s) -run_linker --library Ink.cmd ‘

2. Run an instrumented application to generate a .pdat file.

When the application runs, the counters embedded into the application by --gen_profile_info keep track of
how many times a particular execution path through a function is traversed. The data collected in these
counters is written out to a profile data file named pprofout.pdat.

The profile data file is automatically generated.
3. Decode the profile data file.

Once you have a profile data file, the file is decoded by the profile data decoder tool, pdd6x, as follows:

pdd6x -e= instrumented app out file -o=pprofout.prf pprofout.pdat

Using pdd6x produces a .prf file which is then fed into the re-compile of the application that uses the profile
information to generate weighted call graph input data.

78 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4. Use decoded profile information to generate weighted call graph input.

The --analyze compiler option tells the compiler to generate weighted call graph or code coverage analysis
information. Its syntax is as follows:

--analyze=callgraph Instructs the compiler to generate weighted call graph information.

--analyze=codecov Instructs the compiler to generate code coverage information. This option replaces the previous
--codecov option.

The compiler also supports a new --analyze_only option which instructs the compiler to halt compilation after
the generation of analysis information has been completed. This option replaces the previous --onlycodecov
option.

To make use of the dynamic profile information that you gathered, re-compile the source code for your
application using the --analyze=callgraph option in combination with the --use_profile_info option:

cl6éx options -mo --analyze=callgraph --use_profile_info=pprofout.prf src_file(s)

The use of -mo instructs the compiler to generate code for each function into its own subsection. This option
provides the linker with the means to directly control the placement of the code for a given function.

The compiler generates a CSV file containing weighted call graph information for each source file that is
specified on the command line. If such a CSV file already exists, then new call graph analysis information
will be appended to the existing CSV file. These CSV files are then input to the cache layout tool (clt6x) to
produce a preferred function order command file for your application.

For more details on the content of the CSV files (containing weighted call graph information) generated by
the compiler, see Section 4.11.6.

4.11.5.2 Generate Preferred Function Order from Dynamic Profile Information

At this point, the compiler has generated a CSV file for each C/C++ source file specified on the command line
of the re-compile of the application. Each CSV file contains weighted call graph information about all of the call
sites in each function defined in the C/C++ source file.

The program cache layout tool, clt6x, collects all of the weighted call graph information in these CSV files into a
single, merged weighted call graph. The weighted call graph is processed to produce a preferred function order
command file that is fed into the linker to guide the placement of the functions defined in your application source
files. This is the syntax for clt6x:

cltéx *.csv -o forder.cmd

The output of clt6x is a text file containing a sequence of --preferred_order= function specification options. By
default, the name of the output file is forder.cmd, but you can specify your own file name with the -o option. The
order in which functions appear in this file is their preferred function order as determined by the clt6x.

In general, the proximity of one function to another in the preferred function order list is a reflection of how

often the two functions call each other. If two functions are very close to each other in the list, then the linker
interprets this as a suggestion that the two functions should be placed very near to one another. Functions that
are placed close together are less likely to create a cache conflict miss at run time when both functions are
active at the same time. The overall effect should be an improvement in program instruction cache efficiency and
performance.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 79
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.11.5.3 Utilize Preferred Function Order in Re-Build of Application

Finally, the preferred function order command file that is produced by the clt6x is fed into the linker during the
re-build of the application, as follows:

cléx options --run_linker *.obj forder.cmd -l Ink.cmd

The preferred function order command file, forder.cmd, contains a list of --preferred_order=function specification
options. The linker prioritizes the placement of functions relative to each other in the order that the --
preferred_order options are encountered during the linker invocation.

Each --preferred_order option contains a function specification. A function specification can describe simply the
name of the function for a global function, or it can provide the path name and source file name where the
function is defined. A function specification that contains path and file name information is used to distinguish
one static function from another that has the same function name.

The --preferred_order options are interpreted by the linker as suggestions to guide the placement of functions
relative to each other. They are not explicit placement instructions. If an object file or input section is explicitly
mentioned in a linker command file SECTIONS directive, then the placement instruction specified in the linker
command file takes precedence over any suggestion from a --preferred_order option that is associated with a
function that is defined in that object file or input section.

This precedence can be relaxed by applying the unordered() operator to an output specification as described in
Section 4.11.7.

4.11.6 Comma-Separated Values (CSV) Files with Weighted Call Graph (WCG) Information

The format of the CSV files generated by the compiler under the --analyze=callgraph --use_profile_info option
combination is as follows:

"caller","callee","weight" [CR][LF]

caller spec,callee spec,call frequency [CR][LF]
caller spec,callee spec,call frequency [CR][LF]
caller spec,callee spec,call frequency [CR][LF]

Keep the following points in mind:

+ Line 1 of the CSV file is the header line. It specifies the meaning of each field in each line of the remainder
of the CSV file. In the case of CSV files that contain weighted call graph information, each line will have a
caller function specification, followed by a callee function specification, followed by an unsigned integer that
provides the number of times a call was executed during run time.

» There may be instances where the caller and callee function specifications are identical on multiple lines
in the CSYV file. This will happen when a caller function has multiple call sites to the callee function. In the
merged weighted call graph that is created by the clt6x, the weights of each line that has the same caller and
callee function specifications will be added together.

» The CSV file that is generated by the compiler using the path profiling instrumentation will not include
information about indirect function calls or calls to runtime support helper functions (like _remi or _divi).
However, you may be able to gather information about such calls with another method (like the PC
discontinuity trace mentioned earlier).

» The format of these CSV files is in compliance with the RFC-4180 specification of Comma-Separated Values
(CSV) files. For more details on this specification, please see http://tools.ietf.org/html/rfc4180.

80 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

http://tools.ietf.org/html/rfc4180
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.11.7 Linker Command File Operator - unordered()

The unordered() operator can be used in a linker command file. The effect of this operator is to relax the
placement constraints placed on an output section specification in which the content of the output section is
explicitly stated.

Consider an example output section specification:

SECTIONS
{
.text:
{
file.obj (.text:func a
file.obj (.text:func_ b
file.obj (.text:func c
file.obj (.text:func d

()
()
()
()
file.obj (.text:func e)
()
()
()

file.obj (.text:func f
file.obj (.text:func g
file.obj (.text:func_h
*(.text)

} > PMEM

In this SECTIONS directive, the specification of .text explicitly dictates the order in which functions are laid out
in the output section. Thus by default, the linker will layout func_a through func_h in exactly the order that they
are specified, regardless of any other placement priority criteria (such as a preferred function order list that is
enumerated by --preferred_order options).

The unordered() operator can be used to relax this constraint on the placement of the functions in the ".text'
output section so that placement can be guided by other placement priority criteria.

The unordered() operator can be applied to an output section as in Example 4-2.

Example 4-2. Output Section for unordered() Operator

SECTIONS
{
.text: unordered()
{
file.obj (.text:func_a)
file.obj (.text:func b)
file.obj (.text:func c)
file.obj (.text:func d)
file.obj (.text:func_e)
file.obj (.text:func f)
file.obj (.text:func g)
file.obj (.text:func_h)
*(.text)
} > PMEM

So that, given this list of --preferred_order options:
» -preferred_order="func_g"

» -preferred_order="func_b"

» -preferred_order="func_d"

» -preferred_order="func_a"

» --preferred_order="func_c"

» -—preferred_order="func_f"

» --preferred_order="func_h"

» -preferred_order="func_e"

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 81
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

The placement of the functions in the .text output section is guided by this preferred function order list. This
placement will be reflected in a linker generated map file, as follows:

Example 4-3. Generated Linker Map File for Example 4-2

SECTION ALLOCATION MAP

output attributes/

section page origin length input sections

.text 0 00000020 00000120
00000020 00000020 file.obj (.text:func_g:func_g)
00000040 00000020 file.obj (.text:func b:func b)
00000060 00000020 file.obj (.text:func d:func d)
00000080 00000020 file.obj (.text:func_a:func_a)
000000a0 00000020 file.obj (.text:func c:func c)
000000cO 00000020 file.obj (.text:func f:func f)
000000e0 00000020 file.obj (.text:func_h:func_h)
00000100 00000020 file.obj (.text:func e:func_e)

4.11.7.1 About Dot (.) Expressions in the Presence of unordered()

Another aspect of the unordered() operator that should be taken into consideration is that even though the
operator causes the linker to relax constraints imposed by the explicit specification of an output section's
contents, the unordered() operator will still respect the position of a dot (.) expression within such a specification.

Consider the output section specification in Example 4-4.

Example 4-4. Respecting Position of a . Expression

SECTIONS
{
.text: unordered()
{
file.obj (.text:func_a)
file.obj (.text:func b)
file.obj (.text:func c)
file.obj (.text:func d)
. += 0x100;
file.obj (.text:func_e)
file.obj (.text:func f)
file.obj (.text:func g)
file.obj (.text:func_h)
*(.text)
} > PMEM

In Example 4-4, a dot (.) expression, ". += 0x100;", separates the explicit specification of two groups of functions
in the output section. In this case, the linker will honor the specified position of the dot (.) expression with

respect to the functions on either side of the expression. That is, the unordered() operator will allow the preferred
function order list to guide the placement of func_a through func_d relative to each other, but none of those
functions will be placed after the hole that is created by the dot (.) expression. Likewise, the unordered() operator
allows the preferred function order list to influence the placement of func_e through func_h relative to each other,
but none of those functions will be placed before the hole that is created by the dot (.) expression.

82 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.11.7.2 GROUPs and UNIONs

The unordered() operator can only be applied to an output section. This includes members of a GROUP or
UNION directive.

Example 4-5. Applying unordered() to GROUPs

SECTIONS
{
GROUP
{
.grpl: {
file.obj (.grpl:func_a)
file.obj (.grpl:func_b)
file.obj (.grpl:func c)
file.obj (.grpl:func_d)
} unordered()
.grp2: {
file.obj (.grp2:func_e)
file.obj (.grp2:func_f)
file.obj (.grp2:func g)
file.obj (.grp2:func_h)
}
.text: { *(.text) }
} > PMEM

The SECTIONS directive in Example 4-5 applies the unordered() operator to the first member of the GROUP.
The .grp1 output section layout can then be influenced by other placement priority criteria (like the preferred
function order list), whereas the .grp2 output section will be laid out as explicitly specified.

The unordered() operator cannot be applied to an entire GROUP or UNION. Attempts to do so will resultin a
linker command file syntax error and the link will be aborted.

4.11.8 Things to be Aware of

There are some behavioral characteristics and limitations of the program cache layout development flow that you
should bear in mind:

* Generation of Path Profiling Data File (.pdat). When running an application that has been instrumented
to collect path-profiling data (using --gen_profile_info compiler option during build), the application will use
functions in the run-time-support library to write out information to the path profiling data file (pprofout.pdat
in above tutorial). If there is a path profiling data file already in existence when the application starts to run,
then any new path profiling data generated will be appended to the existing file. To prevent combining path
profiling data from separate runs of an application, you need to either rename the path profiling data file from
the previous run of the application or remove it before running the application again.

* Indirect Calls Not Recognized by Path Profiling Mechanisms. When using available path profiling
mechanisms to collect weighted call graph information from the path profiling data, pprof6x does not
recognize indirect calls. An indirect call site will not be represented in the CSV output file that is generated
by pproféx. You can work around this limitation by introducing your own information about indirect call sites
into the relevant CSV file(s). If you take this approach, please be sure to follow the format of the callgraph
analysis CSV file ("caller", "callee","call frequency"). If you are able to get weighted call graph information
from a PC trace into a callgraph analysis CSV, this limitation will no longer apply (as the PC trace can always
identify the callee of an indirect call).

* Multiple --preferred_order Options Associated With Single Function. There may be cases in which you
might want to input more than one preferred function order command file to the linker during the link of an
application. For example, you may have developed or received a separate preferred function order command
file for one or more of the object libraries that are used by your application. In such cases, it is possible that
one function may be specified in multiple preferred function order command files. If this happens, the linker
will honor only the first instance of the --preferred_order option in which the function is specified.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 83
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.12 Indicating Whether Certain Aliasing Techniques Are Used

Aliasing occurs when you can access a single object in more than one way, such as when two pointers point
to the same object or when a pointer points to a named object. Aliasing can disrupt optimization, because any
indirect reference can refer to another object. The compiler analyzes the code to determine where aliasing can
and cannot occur, then optimizes as much as possible while preserving the correctness of the program. The
compiler behaves conservatively.

The following sections describe some aliasing techniques that may be used in your code. These techniques
are valid according to the ISO C standard and are accepted by the C6000 compiler; however, they prevent the
optimizer from fully optimizing your code.

4.12.1 Use the --aliased_variables Option When Certain Aliases are Used

The compiler, when invoked with optimization, assumes that if the address of a local variable is passed to a
function, the function changes the local variable by writing through the pointer. This makes the local variable's
address unavailable for use elsewhere after returning. For example, the called function cannot assign the local
variable's address to a global variable or return the local variable's address.

If your code uses aliases in this way and uses optimization, you must use the --aliased_variables option. For
example, suppose your code is similar to the following, in which the address of the local variable x is passed

to the function f(), which aliases glob_ptr to that address and returns the address. If this example were to be
compiled with optimization, the --aliased_variables option would be needed in order for the function f() to be able
to successfully perform its actions.

int *glob ptr;

g()

{
int x = 1;
int *p = f£(&x);
p = 5; / p aliases x */
glob ptr = 10; / glob_ptr aliases x */
h(x);

int *f(int *arg)

glob ptr = arg;
return arg;

4.12.2 Use the --no_bad_aliases Option to Indicate That These Techniques Are Not Used

The --no_bad_aliases option informs the compiler that it can make certain assumptions about how aliases are
used in your code. These assumptions allow the compiler to improve optimization. The --no_bad_aliases option
also specifies that loop-invariant counter increments and decrements are non-zero. Loop invariant means the
value of an expression does not change within the loop.

» The --no_bad_aliases option indicates that your code does not use the aliasing technique described in
Section 4.12.1. If your code uses that technique, do not use the --no_bad_aliases option. You must compile
with the --aliased_variables option.

Do not use the --aliased_variables option with the --no_bad_aliases option. If you do, the --no_bad_aliases
option overrides the --aliased_variables option.

* The --no_bad_aliases option indicates that a pointer to a character type does not alias (point to) an object
of another type. That is, the special exception to the general aliasing rule for these types given in Section
3.3 of the ISO specification is ignored. If you have code similar to the following example, do not use the
--no_bad_aliases option:

{
long 1;
char *p = (char *) &l;
pl2] = 5;
}
84 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

* The --no_bad_aliases option indicates that indirect references on two pointers, P and Q, are not aliases if P
and Q are distinct parameters of the same function activated by the same call at run time. If you have code
similar to the following example, do not use the --no_bad_aliases option:

g(int 3)

{
int a[20];
f(&a, &a) /* Bad */
f(&a+42, &a+j) /* Also Bad */

(int *ptrl, int *ptr2)

~ Hh —~—

}

* The --no_bad_aliases option indicates that each subscript expression in an array reference A[E1]..[En]
evaluates to a nonnegative value that is less than the corresponding declared array bound. Do not use
--no_bad_aliases if you have code similar to the following example:

static int ary[20][20];

int g()

{
return £(5, -4); /* -4 is a negative index */
return f£(0, 96); /* 96 exceeds 20 as an index */

return £ (4, 16); /* This one is OK */
int f(int I, int 3j)

return ary([i][j];

In this example, ary[5][-4], ary[0][96], and ary[4][16] access the same memory location. Only the reference
ary[4][16] is acceptable with the --no_bad_aliases option because both of its indices are within the bounds
(0..19).

* The --no_bad_aliases option indicates that loop-invariant counter increments and decrements of loop
counters are non-zero. Loop invariant means an expression value does not change within the loop.

If your code does not contain any of the aliasing techniques described above, you should use the --
no_bad_aliases option to improve the optimization of your code. However, you must use discretion with the
--no_bad_aliases option; unexpected results may occur if these aliasing techniques appear in your code and the
--no_bad_aliases option is used.

4.12.3 Using the --no_bad_aliases Option With the Assembly Optimizer

The --no_bad_aliases option allows the assembly optimizer to assume there are no memory aliases in your
linear assembly; i.e., no memory references ever depend on each other. However, the assembly optimizer
still recognizes any memory dependencies you point out with the .mdep directive. For more information about
the .mdep directive, see and .

4.13 Prevent Reordering of Associative Floating-Point Operations

The compiler freely reorders associative floating-point operations. If you do not wish to have the compiler reorder
associative floating point operations, use the --fp_not_associative option. Specifying the --fp_not_associative
option may decrease performance.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 85
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.14 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements in optimized code. The compiler
rearranges code segments, uses registers freely, and can completely remove variables or expressions.

Although the compiler never optimizes out an asm statement (except when it is unreachable), the surrounding
environment where the assembly code is inserted can differ significantly from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but

asm statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are correct
and maintain the integrity of the program.

4.15 Using Performance Advice to Optimize Your Code

You can use compiler generated Performance Advice to optimize your code. To get Performance Advice,
compile with the following options:

--advice:performance Instructs the compiler to emit advice to stdout (default).

--advice:performance_file Instructs the compiler to emit advice into a file.

--advice:performance_dir Instructs the compiler to emit advice into a file in a specific directory.
Note

If an Advice file is requested, but there is no advice, the advice file will not be created; rather
the compiler prints a message to stdout :

"filename.c": advice #27004: No Performance Advice is generated.

Example 1: The following example sends output advice sent to stdout (the default):

cléx -mv6400+ -02 -k --advice:performance func.c

"func.c", line 10: advice #30006: Loop at line 8 cannot be scheduled efficiently

as it contains a function call (" _init"). Try making " _init" an inline
function.

"func.c", line 12: advice #30000: Loop at line 8 cannot be scheduled efficiently
as it contains a function call (" _calculate"). Try to inline call or

consider rewriting loop.

Note that Advice to prevent Software Pipeline Disqualification (such as that presented above) will also be printed
in the .asm file. So, func.asm will contain :

K *
Hd SOFTWARE PIPELINE INFORMATION
Fad Disqualified loop: Loop contains a call
;* Loop at line 8 cannot be scheduled efficiently as it contains a
;* function call (" init"). Try making " init" an inline function.
Had Disqualified loop: Loop contains non-pipelinable instructions
Hl Disqualified loop: Loop contains a call
i Loop at line 8 cannot be scheduled efficiently as it contains a
P * function call ("_calculate"). Try to inline call or consider
Fd rewriting loop.
i Disqualified loop: Loop contains non-pipelinable instructions
S *
86 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

Example 2: The following example sends output advice to a file named filename.advice:

cl6ox -mv6400+ --advice:performance --advice:performance file=filename.advice func.c

IRk e kb b h E b 2k b b b b b b b b b b b b b b i

;* TMS320C6x C/C++ Codegen Unix v7.5.0P12047 (a0322878 - Feb 16 2012) *
;* Date/Time created: Thu Feb 16 10:26:02 2012 *
. K *
;* Warning: This file is auto generated by the compiler and can be *

*
. *

*

;* overwritten during the next compile.

*

;
,-***
;* User Options: --silicon_version=6400+

"func.c": advice #27000: Detecting compilation without optimization. Use
optimization option -02 or higher.

Example 3: The following examples send output advice to a file named myfile.adv in the mydir directory
using various options.

Using the --advice:performance_file and --advice:performance_dir options:

cl6ox -mv6400+ -o02 -k --advice:performance file=myfile.adv --advice:performance dir=mydir basicloop.c

Using only the --advice:performance_file option to specify the full path name:

cléx -mv6400+ -02 -k --advice:performance file=mydir/myfile.adv basicloop.c

If --advice_dir option and full pathname are specified together, the --advice:performance_dir option is ignored,
and the advice is generated in the full pathname advice file. Also, note that directory "mydir" must already exist
for an advice file to be created there.

4.15.1 Advice #27000

advice #27000: Detecting compilation without optimization. Use optimization option -02 or higher.

Your compilation is being done without any optimization options (-0o0 and above). This prevents the compiler
from using its most powerful optimization techniques, since the -o (--opt_level) options are the foundations

for most other optimizations. You could get substantially better performance using -02 (or above) optimization.
Optimization option -02 is required for the software pipelining loop optimization, which is crucial to getting good
performance.

The C/C++ compiler is able to perform various optimizations, but you need to specify optimization options on the
command line so that these optimizations are performed. The easiest way to invoke optimization is to specify
the --opt_level=n option on the compiler command line. You can use -On to alias the --opt_level option. The

n denotes the level of optimization (0, 1, 2, and 3), which controls the type and degree of optimization. See
"Invoking Optimization" in Section 4.1 for more information on Optimization Options.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 87
Submit Document Feedback v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.15.2 Advice #27001 Increase Optimization Level

advice #27001: Detecting compilation with low optimization level.
Use optimization option -02 or higher.

Your compilation uses low-level optimization options (-o1 and below), which prevents the compiler from using its
most powerful optimization techniques.

The C/C++ compiler is able to perform various optimizations, but you can control the level of these optimizations.
High-level optimizations are performed in the optimizer and low-level, target-specific optimizations occur in the
code generator. You must use high-level optimizations to achieve optimal code. You can invoke optimization by
specifying the --opt_level=n option on the compiler command line.

See "Invoking Optimization" in Section 4.1 for more information on Optimization Options. Also see information
for Advice #27000 in Section 4.15.1.

4.15.3 Advice #27002 Do not turn off software pipelining

advice #27002: Detecting compilation with "-mu" which turns off
software pipelining. To optimize, turn off this option.

Your compilation is being done using -mu, which turns off software-pipelining. Software-pipelining is a key
optimization for achieving good performance. This Advice is issued to alert you to NOT use compiler option -mu.
-mu is a good option for debugging, but it is recommended that this option not be used for production code
because of the negative performance implications.

In general, to achieve maximal performance, avoid using the following in production code :

» -g: Compiling with debug information no longer affects the ability to optimize code. However, high levels of
optimization do make it more difficult to debug code due to code restructuring and other transformations. If
you are still at the debugging stage, you may want to use a lower level of optimization. For production code,
you can use a high level of optimization with or without disabling the inclusion of debug information.

» -ss: Interlist source code into assembly file. As with -g, this option can negatively impact performance.

« -mu: Turns off software-pipelining, which is a key optimization for achieving good performance. This is a
good option for debugging, but is not recommended for use in production code due to negative performance
implications.

4.15.4 Advice #27003 Avoid compiling with debug options

advice #27003: Detecting compilation with debug option "-g",
which hinders optimization. To optimize, remove -g or
compile with --optimize with debug option.

This advice was provided in earlier versions in which the inclusion of debug information impacted the ability
to optimize code. Debug information no longer impacts optimization, and the --optimize_with_debug option has
been deprecated. Also see Advice #27002 in Section 4.15.3.

4.15.5 Advice #27004 No Performance Advice generated

advice #27004: No Performance Advice is generated.

The compiler detects that your compilation is being done using --advice:performance option, but the compiler
has no Advice to report. This Advice is issued to alert you to the fact that no Advice is being emitted, and an
Advice file will not be created (if one was requested).

88 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.15.6 Advice #30000 Prevent Loop Disqualification due to call

advice #30000: Loop at line 10 cannot be scheduled efficiently,
as it contains a function call ("function name") .
Try to inline call or consider rewriting loop.

The compiler attempts to perform the software pipeline loop optimization at optimization level --opt_level=3 (or
-03). If there is a call in the loop, the compiler will attempt to completely inline the called function, but sometimes
this is not possible. If the compiler cannot inline the called function, software pipelining cannot be performed.
This can severely reduce the performance of the loop.

In the test case below, the call to the function "func2" prevents software pipelining. Inlining function "func2" or
rewriting the loop to avoid a function call can avoid pipeline disqualification. If the loop pipelines successfully you
may see performance improvement.

void funcl (int *p, int *qg, int n)
{

unsigned int 1i;

for (1 = 0; i < n; i++)
{
int t = func2(i);
pli]l = qli] + t;

4.15.7 Advice #30001 Prevent Loop Disqualification due to rts-call

advice #30001: Loop at line 18 cannot be scheduled efficiently, as it
contains conversion from "type-a" to "type-b".
Try to use "suggested" type.

The compiler can insert calls to special functions in the run-time support library (RTS) to support operations

that are not natively supported by the ISA. For instance, while floating-point ISAs support instructions to convert
between floating-point and signed integer values, they don't support conversion between floating-point and
unsigned integer values. If you use unsigned variables in floating point expressions, the compiler will generate a
call to an RTS routine to carry out this function. Such a call will disable software pipelining.

You can change the unsigned variables in your code to signed variables and prevent this from happening. The
compiler will then be able to use the native hardware instead of adding the special function call, so you may get
better performance.

4.15.8 Advice #30002 Prevent Loop Disqualification due to asm statement

advice #30002: Loop at line 8 cannot be scheduled efficiently, as it
contains an asm() statement. Try to replace the asm()
statement with C or intrinsic statement.

An asm statement inserted in a C code loop will disqualify the loop for software pipelining. Software-pipelining
is a key optimization for achieving good performance. You may see reduced performance without software
pipelining.

Replace the asm() statement with native C, or an intrinsic function call to prevent this from happening.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 89
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.15.9 Advice #30003 Prevent Loop Disqualification due to complex condition

advice #30003: Loop at line 8 cannot be scheduled efficiently, as it
contains complex conditional expression. Try to simplify
condition.

Your code contains a complex conditional expression, possibly a large "if" clause, within a loop, which is
preventing optimization. The compiler will optimize small “if” statements (“if’ statements with “if” and “else” blocks
that are short or empty). The compiler will not optimize large "if" statements, and such large if statements within
the loop body will disqualify the loop for software pipelining. Software-pipelining is a key optimization; you may
see reduced performance without it.

In the examples below, Example 1 will pipeline, but Example 2 won't :

Example 1:

for (i=0; i < N; i++)
{
if (!flag) {
//statements
}
else {
x[1i] = yl[il;
}

Example 2:

for (i = 0; i < n; i++)
{
if (!flag) {
//statements
}
else {
if (flag == 1) x[i] = y[i];
}

Example 1 will have significantly better performance than Example 2 because it pipelines successfully. But
Example 2 can be pipelined if the code is modified to eliminate the nested "if" :

for (1 = 0; i < n; i++)
{
if (!flag) {
//statements
}
else {
p = (flag == 1);
x[1] = !p * x[1] + p * yI[i] ;

4.15.10 Advice #30004 Prevent Loop Disqualification due to switch statement

advice #30004: Loop at line 257 cannot be scheduled efficiently, as it
contains a switch statement. Try to rewrite loop.

There is a switch statement within the loop. A switch statement in a loop will disqualify the loop for software
pipelining. Software-pipelining is a key optimization; you may see reduced performance without it.

Try and rewrite the loop without a switch statement.

90 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.15.11 Advice #30005 Prevent Loop Disqualification due to arithmetic operation

advice #30005: Loop at line 5 cannot be scheduled efficiently, as it
contains a "division" operation. Rewrite using simpler
operations if possible.

The compiler can insert calls to special functions in the run-time support library (RTS) to support operations that
are not natively supported by the ISA. For example, the compiler calls __c6xabi_divi() function to perform 32-bit
integer divide operation. Such functions are called compiler helper functions, and result in a function call within

the loop body. In the example below, the compiler will accomplish the division operation by calling the compiler
helper function "_divi" :

void func(float *p, float n)
{

int i;

for (i 1
plil /

;1 < 1000; i++) {
= n;

}

However if we modify this loop, like below, the loop pipelines :

void func_adjusted(float *p, float n)
{

int i;
float inv = 1/n;
for (1 = 1; 1 < 1000; i++) {

pli] *= inv;

}

4.15.12 Advice #30006 Prevent Loop Disqualification due to call(2)

advice #30006: Loop at line 22 cannot be scheduled efficiently, as it

contains a function call ("function name"). Try making "function name" an
inline function.

For improved performance, at optimization levels --opt_level=2 (-O2) and --opt_level=3 (-O3), the compiler
attempts to software pipeline your loops. Sometimes the compiler may not be able to inline a function call that is

in a loop. Because the compiler could not inline the function call, the loop could not be software pipelined, and
the loop could not be efficiently scheduled.

For example, in the test case below, call to function "func2" prevents software pipelining:

void funcl (int *p, int *g, int n)
{

unsigned int i;

for (1 = 0; 1 < n; i++) {
int t = func2(i);

; other operations
}
}

int function func2() { . . . }

SPRUI0O4D — JULY 2015 — REVISED JANUARY 2022

TMS320C6000 Optimizing C/C++ Compiler 91
Submit Document Feedback

v8.3.x
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

However if function func2 is inlined, it saves the overhead of a function call. The compiler is free to optimize the
function in context with surrounding code. Automatic inlining is controlled by the "inline" keyword; use it to allow
inlining of specific functions :

inline int function func2() { . . . }

Also see #Advice 30000 in Section 4.15.6.
4.15.13 Advice #30007 Prevent Loop Disqualification due to rts-call(2)

advice #30007: Attempting to use floating-point operation " mpyd" on
fixed-point device, at line 5 (there may be other instances
of this). Such calls reduce loop performance; use fixed point
operation if possible.

The compiler inserts calls to special functions in the run-time support library (RTS) to support operations that
are not natively supported by the instruction set architecture (ISA). For example, fixed point ISAs do not support
floating-point instructions and the compiler will generate a call to an RTS routine to carry out the floating point
operation. In the test case below, the floating-point multiplication is unavailable for a fixed-point device :

void func(float *p, float *g, int n)
{

unsigned int 1i;

for (i = 1; i < n; i++)
{

pli]l = (qli] * 12.4) / pli - 1];
}

If compiled for C6400+ (compiler option -mv6400+) the compiler will use an RTS call to carry out the operation.
Such a call will disable software pipelining. You can rewrite the operation, or use a fixed point operation to
prevent this.

Also see Advice #30001 in Section 4.15.7.
4.15.14 Advice #30008 Improve Loop; Qualify with restrict

advice #30008: Consider adding the restrict qualifier to the definition
of inpl, inp2 if they don't access the same memory location.

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with the
restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references, and arrays.
Its use represents a guarantee by you, the programmer, that within the scope of the pointer declaration the
object pointed to can be accessed only by that pointer. Any violation of this guarantee renders the program
undefined.

To see more information on using restrict, refer to Section 7.5.6

92 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

4.15.15 Advice #30009 Improve Loop; Add MUST_ITERATE pragma

advice #30009: If you know that this loop will always execute at a
multiple of <2> and at least <2> times, try adding
"#pragma MUST_ ITERATE (2, ,2)" just before the loop.

The C6000 architecture is partitioned into two nearly symmetric halves. The resource breakdown displayed in
the software pipelining information in the asm file, is computed after the compiler has partitioned instructions to
either the A-side or the B-side. If the resources are imbalanced (i.e.; some resources on one side are used more
than resources on the other) software pipelining is resource-bound, and the loop cannot be efficiently scheduled.
If the compiler has information about the trip-count for the loop, it can unroll the loop to balance resource usage,
and get better pipelining. You can give loop trip-count information to the compiler using the "MUST _ITERATE"
pragma.

To see more information on using the MUST_ITERATE pragma, refer to Section 7.9.22
4.15.16 Advice #30010 Improve Loop; Add MUST_ITERATE pragma(2)

advice #30010: If you know that this loop will always execute at least
<2> times, try adding "#pragma MUST ITERATE (2)" just before the loop.

See Advice #30009 at Section 4.15.15.
4.15.17 Advice #30011 Improve Loop; Add _nasssert()

advice #30011: Consider adding assertions to indicate n-byte alignment
of variables inputl, input2, output if they are actually n-byte
aligned: nassert((int) (inputl) % 8 == 0).

Most loops have memory access instructions. The compiler attempts to use wider load instructions, and aligned
memory accesses instead of non-aligned memory accesses to reduce/balance out resources used for the
memory access instructions. One of the ways to let the compiler know that it is safe to use "wider" loads is to use
the keyword "_nassert".

To find out more on using the _nassert keyword, see Section 8.6.11.
4.16 Using the Interlist Feature With Optimization

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On option)
with the --optimizer_interlist and --c_src_interlist options.

* The --optimizer_interlist option interlists compiler comments with assembly source statements.
» The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the original
C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does notf run as a separate
pass. Instead, the compiler inserts comments into the code, indicating how the compiler has rearranged and
optimized the code. These comments appear in the assembly language file as comments starting with ;**. The
C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the compiler
extensively rearranges your program. Therefore, when you use the --optimizer_interlist option, the compiler
writes reconstructed C/C++ statements.

Note
Impact on Performance and Code Size: The --c_src_interlist option can have a negative effect on
performance and code size.

SPRUI04D — JULY 2015 — REVISED JANUARY 2022 TMS320C6000 Optimizing C/C++ Compiler 93
Submit Document Feedback v8.3.x

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts its
comments and the interlist feature runs before the assembler, merging the original C/C++ source into the
assembly file.

For example, suppose the following C code is compiled with optimization (--opt_level=2) and --optimizer_interlist
options:

int copy (char *str, const char *s, int n)
{
int i;
for (i = 0; 1 < n; 1 ++4)
*str++ = *s++;
}
The assembily file contains compiler comments interlisted with assembly code.
_main:
JFF Dmmmm e printf ("Hello, world\n");
R e e return 0;
STW .D2 B3, *SP-- (12)
.line3
B .51 _printf
NOP 2
MVKL .S1 SL1+0,A0
MVKH .S1 SL1+0,A0
Il MVKL .52 RLO, B3
STW .D2 AQ, *+SP (4)
I MVKH .52 RLO, B3
RLO: ; CALL OCCURS
.line4
ZERO .L1 A4
.lineb
LDW .D2 *++SP(12),B3
NOP 4
B .82 B3
NOP 5
; BRANCH OCCURS

If you add the --c_src_interlist option (compile with --opt_level=2, --c_src_interlist, and --optimizer_interlist), the
assembly file contains compiler comments and C source interlisted with assembly code.

_main
JFF B printf ("Hello, world\n");
O return 0;
STW .D2 B3, *SP--(12)
; 5 | printf("Hello, world\n")
B S1 printf
NOP 2
MVKL .S1 SL1+0,A0
MVKH .S1 SL1+0,A0
|| MVKL .S2 RLO, B3
STW .D2 AQ, *+SP (4)
|| MVKH .S2 RLO, B3
RLO: ; CALL OCCURS
; 6 | return O;
ZERO L1 A4
LDW .D2 *+4+3P(12),B3
NOP 4
B .82 B3
NOP 5
; BRANCH OCCURS
94 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS

INSTRUMENTS

www.ti.com

Optimizing Your Code

4.17 Debugging and Profiling Optimized Code

The compiler generates symbolic debugging information by default at all optimization levels. Generating debug
information does not affect compiler optimization or generated code. However, higher levels of optimization
negatively impact the debugging experience due to the code transformations that are done. For the best
debugging experience use --opt_level=off.

The default optimization level is off.

Debug information increases the size of object files, but it does not affect the size of code or data on the target.
If object file size is a concern and debugging is not needed, use --symdebug:none to disable the generation of
debug information.

If you are having trouble debugging loops in your code, you can use the --disable_software_pipeline option to

turn off software pipelining. See Section 4.6.1 for more information.

4.17.1 Profiling Optimized Code

To profile optimized code, use optimization (--opt_level=0 through --opt_level=3).

If you have a breakpoint-based profiler, use the --profile:breakpt option with the --opt_level option. The --
profile:breakpt option disables optimizations that would cause incorrect behavior when using a breakpoint-based

profiler.

4.18 What Kind of Optimization Is Being Performed?

The TMS320C6000 C/C++ compiler uses a variety of optimization techniques to improve the execution speed
of your C/C++ programs and to reduce their size. Following are some of the optimizations performed by the

compiler:

Optimization

See

Cost-based register allocation

Alias disambiguation

Branch optimizations and control-flow simplification
Data flow optimizations

» Copy propagation

* Common subexpression elimination

* Redundant assignment elimination

Expression simplification

Inline expansion of functions

Function Symbol Aliasing

Induction variable optimizations and strength reduction
Loop-invariant code motion

Loop rotation

Instruction scheduling

Section 4.18.1
Section 4.18.1
Section 4.18.3
Section 4.18.4

Section 4.18.5
Section 4.18.6
Section 4.18.7
Section 4.18.8
Section 4.18.9
Section 4.18.10
Section 4.18.12

C6000-Specific Optimization

See

Register variables
Register tracking/targeting

Software pipelining

Section 4.18.13
Section 4.18.14
Section 4.18.15

SPRUI04D — JULY 2015 — REVISED JANUARY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

TMS320C6000 Optimizing C/C++ Compiler 95

v8.3.x

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUI04
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUI04D&partnum=TMS320C6000

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

4.18.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary values
according to their type, use, and frequency. Variables used within loops are weighted to have priority over others,
and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a simple
counting loop and software pipeline, unroll or eliminate the loop. Strength reduction turns the array references
into efficient pointer references with autoincrements.

4.18.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine

whether or not two or more | values (lowercase L: symbols, pointer references, or structure references) refer to
the same memory location. This aliasing of memory locations often prevents the compiler from retaining values
in registers because it cannot be sure that the register and memory continue to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the same
location, allowing the compiler to freely optimize such expressions.

4.18.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of operations
(basic blocks) to remove branches or redundant conditions. Unreachable code is deleted, branches to branches
are bypassed, and conditional branches over unconditional branches are simplified to a single conditional
branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are reduced to
conditional instructions, totally eliminating the need for branches.

4.18.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and remove
unnecessary assignments, and avoid operations that produce values that are already computed. The compiler
with optimization enabled performs these data flow optimizations both locally (within basic blocks) and globally
(across entire functions).

» Copy propagation. Following an assignment to a variable, the compiler replaces references to the variable
with its value. The value can be another variable, a constant, or a common subexpression. This can result in
increased opportunities for constant folding, common subexpression elimination, or even total elimination of
the variable.

« Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

* Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference before
another assignment or before the end of the function). The compiler removes these dead assignments.

4.18.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer instructions or
registers. Operations between constants are folded into single constants. For example,a= (b +4)-(c + 1)
becomesa=b-c+ 3.

4.18.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a function
call as well as providing increased opportunities to apply other optimizations. For information about interactions
between command-line options, pragmas, and keywords that affect inlining, see Section 3.11.

96 TMS320C6000 Optimizing C/C++ Compiler SPRUI04D — JULY 2015 — REVISED JANUARY 2022
v8.3.x