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About This Manual
The C7000 Optimizing C/C++ Compiler User's Guide explains how to use the following Texas Instruments Code 
Generation compiler tools:

• Compiler
• Library build utility
• C++ name demangler

The TI compiler accepts C and C++ code conforming to the International Organization for Standardization (ISO) 
standards for these languages. The compiler supports the 1989, 1999, and 2011 versions of the C language and 
the 2014 version of the C++ language.

This user's guide discusses the characteristics of the TI C/C++ compiler. It assumes that you already know how 
to write C/C++ programs. The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. 
Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie (hereafter referred to 
as K&R) book as a supplement to this manual. References to K&R C (as opposed to ISO C) in this manual refer 
to the C language as defined in the first edition of Kernighan and Ritchie's The C Programming Language.

This document describes support for the C7100 variant of the C7000™ processor series.

Notational Conventions
This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface. 
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from 
items that the system displays (such as prompts, command output, error messages, etc.). Here is a sample 
of C code:

     #include <stdio.h>
     main()
     {    printf("Hello World\n");
     }

• In syntax descriptions, instructions, commands, and directives are in a bold typeface and parameters are in 
an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that 
are in italics describe the type of information that should be entered.

• Square brackets ( [ and ] ) identify an optional parameter. If you use an optional parameter, you specify 
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter the 
brackets themselves. The following is an example of a command that has an optional parameter:
cl7x [options] [filenames] [--run_linker [link_options] [object files]]

• Braces ( { and } ) indicate that you must choose one of the parameters within the braces; you do not enter the 
braces themselves. This is an example of a command with braces that are not included in the actual syntax 
but indicate that you must specify either the --rom_model or --ram_model option:
cl7x --run_linker  {--rom_model | --ram_model} filenames [--output_file= name.out]

--library= libraryname

Preface
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Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American 
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard), 
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The 1999 C Standard), 
International Organization for Standardization

ISO/IEC 9899:2011, International Standard - Programming Languages - C (The 2011 C Standard), 
International Organization for Standardization

ISO/IEC 14882-2014, International Standard - Programming Languages - C++ (The 2014 C++ Standard), 
International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie, published by 
Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by Prentice 
Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by O'Reilly 
& Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley 
Publishing Company, Reading, Massachusetts, 1990

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup, Free 
Standards Group, 2005 (http://dwarfstd.org)

DWARF Debugging Information Format Version 4, DWARF Debugging Information Format Workgroup, Free 
Standards Group, 2010 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)

OpenCL™ Specification version 1.2 (https://www.khronos.org/opencl/)
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Related Documentation From Texas Instruments
See the following resources for further information about the TI Code Generation Tools:

• Code Composer Studio Documentation Overview
• Texas Instruments E2E Software Tools Forum

You can use the following documents to supplement this user's guide:

SPRUIG5 C6000-to-C7000 Migration Users Guide
SPRUIG4 C7000 Embedded Application Binary Interface (EABI) Users Guide
SPRUIV4 C7000 C/C++ Optimization Guide
SPRUIG3 C7000 VCOP Kernel-C Translation Functional Specification
SPRUIG6 C7000 Host Emulation Users Guide
SPRUIU4 C7x Instruction Guide

(available through your TI Field Application Engineer)

SPRUIP0 C71x DSP CPU, Instruction Set, and Matrix Multiply Accelerator Technical Reference Manual

(available through your TI Field Application Engineer)

SPRUIQ3 C71x DSP Corepac Technical Reference Manual

(available through your TI Field Application Engineer)

SPRAAB5 The Impact of DWARF on TI Object Files.

Trademarks
C7000™, TMS320C6000™, and Code Composer Studio™ are trademarks of Texas Instruments.
OpenCL™ is a trademark of Apple Inc. used by permission by Khronos.
All trademarks are the property of their respective owners.
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The C7000™ is supported by a set of software development tools, which includes an optimizing C/C++ compiler, 
a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++ compiler.

The C7000™ Code Generation Tools are similar to those provided for the TMS320C6000™. See the C6000-to-
C7000 Migration Users Guide (SPRUIG5) for information about differences and migration.

1.1 Software Development Tools Overview....................................................................................................................16
1.2 Compiler Interface...................................................................................................................................................... 17
1.3 ANSI/ISO Standard..................................................................................................................................................... 18
1.4 Output Files.................................................................................................................................................................18

Chapter 1 
Introduction to the Software Development Tools
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1.1 Software Development Tools Overview
Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most 
common path of software development for C language programs. The other portions are peripheral functions 
that enhance the development process.

Figure 1-1. C7000 Software Development Flow

The following list describes the tools that are shown in Figure 1-1:

• The compiler accepts C/C++ source code and produces C7000 assembly language source code, which it 
automatically translates into machine language relocatable object files. See Chapter 3.
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• The linker combines relocatable object files into a single absolute executable object file. As it creates the 
executable file, it performs relocation and resolves external references. The linker accepts relocatable object 
files and object libraries as input. See Chapter 11 for an overview of the linker.

• The archiver allows you to collect a group of files into a single archive file, called a library. The archiver 
allows you to modify such libraries by deleting, replacing, extracting, or adding members. One of the most 
useful applications of the archiver is building a library of object files.

• The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility 
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler. See 
Chapter 7.

The library-build utility automatically builds the run-time-support library if compiler and linker options require 
a custom version of the library. See Section 7.4. Source code for the standard run-time-support library 
functions for C and C++ is provided in the lib\src subdirectory of the directory where the compiler is installed.

• The C++ name demangler is a debugging aid that converts names mangled by the compiler back to their 
original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++ name 
demangler on the assembly file that is output by the compiler; you can also use this utility on the assembler 
listing file and the linker map file. See Chapter 14.

• The main product of this development process is an executable object file that can be executed on a C7000 
CPU that is part of a larger device.

In addition, the following utilities are provided to help examine or manage the content of a given object file:

• The object file display utility prints the contents of object files and object libraries in either human readable 
or XML formats. See Section 13.1.

• The disassembler decodes the machine code from object modules to show the assembly instructions that it 
represents. See Section 13.2.

• The name utility prints a list of symbol names for objects and functions defined or referenced in an object file 
or object archive. See Section 13.3.

• The strip utility removes symbol table and debugging information from object files and object libraries. See 
Section 13.4.

1.2 Compiler Interface
The compiler is a command-line program named cl7x. This program can compile, optimize, assemble, and link 
programs in a single step. Within Code Composer Studio™, the compiler is run automatically to perform the 
steps needed to build a project.

For more information about compiling a program, see Section 3.1.

The compiler has straightforward calling conventions, so you can write C functions that call each other. For more 
information about calling conventions, see Chapter 6.
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1.3 ANSI/ISO Standard
The compiler supports the 1989, 1999, and 2011 versions of the C language and the 2014 version of the C++ 
language. The C and C++ language features in the compiler are implemented in conformance with the following 
ISO standards:

• ISO-standard C: The C compiler supports the 1989, 1999, and 2011 versions of the C language.
– C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C 

standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the 
same programming language. "C89" is used in this document.

– C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C 
standard.

– C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C 
standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming 
Language (K&R).

• ISO-standard C++: The compiler uses the C++14 version of the C++ standard. See the C++ Standard 
ISO/IEC 14882:2014. For a description of unsupported C++ features, see Section 5.2.

• ISO-standard run-time support: The compiler tools come with an extensive run-time library. Library 
functions conform to the ISO C/C++ library standard unless otherwise stated. The library includes functions 
for standard input and output, string manipulation, dynamic memory allocation, data conversion, timekeeping, 
trigonometry, and exponential and hyperbolic functions. Functions for signal handling are not included, 
because these are target-system specific. For more information, see Chapter 7.

See Section 5.12 for command line options to select the C or C++ standard your code uses.

1.4 Output Files
The following type of output file is created by the compiler:

• ELF object files. Executable and Linking Format (ELF) enables supporting modern language features like 
early template instantiation and exporting inline functions. ELF is part of the System V Application Binary 
Interface (ABI). The ELF format used for C7000 is extended by the C7000 Embedded Application Binary 
Interface (EABI), which is documented in SPRUIG4.
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This chapter provides an overview of the procedure for creating a Code Composer Studio project that uses the 
Code Generation Tools. In addition, it provides an introduction to the command-line for the compiler and linker.

2.1 How Code Composer Studio Projects Use the Compiler....................................................................................... 20
2.2 Compiling from the Command Line..........................................................................................................................21

Chapter 2 
Getting Started with the Code Generation Tools
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2.1 How Code Composer Studio Projects Use the Compiler
If you use Code Composer Studio (CCS) as your development environment, the compiler and linker options are 
automatically set for you when you create a project. The project settings you make determine which compiler 
and linker command line options are used to build the project. Follow these steps to create and build a project in 
CCS v6.0. The exact steps may vary somewhat in other versions of CCS.

Table 2-1. Steps for Creating a CCS Project
Step Effects on Use of the Compiler
1. Choose File > New > CCS Project from the menus.
2. In the New CCS Project wizard, first select the Target. You can use the 
drop-down on the left to filter the list of specific targets on the right.

Sets the --silicon_version (-mv) compiler option. See Section 
3.3.5. In addition, a preprocessor symbol matching the target is 
defined using the --define compiler option. See Section 3.3.2.

3. In the Connection field, select the method you will use to connect to the 
device.

Generates a target configuration file for use when running the 
project.

4. In the Project name field, type a name for the project. Determines the folder where the project is stored.
5. Expand the Advanced settings area.
6. Make sure the Compiler version you want to use is selected. Sets the --include_path compiler option to the include directory 

for that version of the Code Generation Tools. See Section 
3.5.2.1.

7. By default, C7000 applications are compiled to be little-endian. In the 
Device endianness field, you can choose big-endian if needed.

Sets the --big_endian compiler option if the default is not used. 
See Section 3.3.4.

8. The linker command file and runtime support library are selected 
automatically based on your choices in the other fields.
9. Expand the Project templates and examples area.
10. Select a template for your project. The project templates you can 
choose from include a completely empty project with no source files, 
a project containing only main.c, and a Hello World example. Other 
examples that use plug-in software components you have installed are 
available in the TI Resource Explorer window.
11. Click Finish.

After you have created a CCS project, you can use the Properties dialog for the project to see how the compiler 
and linker will be used and modify the command-line options used when compiling and linking. To open this 
dialog, select the project in the Project Explorer and choose Project > Properties from the menus. Expand the 
category tree to select Build > C7000 Compiler and Build > C7000 Linker. You can learn more about any 
command-line options you see in this dialog in Chapter 3.

Getting Started with the Code Generation Tools www.ti.com

20 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


 

2.2 Compiling from the Command Line
If you are developing your project outside of an IDE such as Code Composer Studio, you will need to use the 
command-line interface to the compiler and linker.

The compiler and linker are run using the same executable. This executable is the cl7x.exe file, which is located 
in the bin subdirectory of your TI Code Generation Tools installation.

You can use a single command line to both compile your code to create object files and link the object files 
to create an executable. All the command-line options that occur before the --run_linker (or -z for short) option 
apply to the compiler. All the command-line options that occur after the --run_linker (-z) option apply to the linker. 
In the following command-line, the -mv7100, --c99, --opt_level, --define, and --include_path options are compiler 
options. The --library, --heap_size, and --output_file options are linker options.

cl7x -mv7100 --c99 --opt_level=1 --define=c7000 --include_path="C:/ti/ti-cgt-c7000/include" 
    hello.c objects.cpp 
    --run_linker --library=lnk.cmd --heap_size=0x800 --output_file=myprogram.out
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The compiler translates your source program into machine language object code that the C7000 can execute. 
Source code must be compiled, assembled, and linked to create an executable file. All of these steps are 
executed at once by using the compiler.

3.1 About the Compiler.................................................................................................................................................... 24
3.2 Invoking the C/C++ Compiler.....................................................................................................................................24
3.3 Changing the Compiler's Behavior with Options.................................................................................................... 25
3.4 Controlling the Compiler Through Environment Variables.................................................................................... 37
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3.9 Generating a Raw Listing File (--gen_preprocessor_listing Option).....................................................................45
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3.11 Using Interlist............................................................................................................................................................50
3.12 Generating and Using Performance Advice.......................................................................................................... 51
3.13 About the Application Binary Interface.................................................................................................................. 52
3.14 Enabling Entry Hook and Exit Hook Functions..................................................................................................... 52
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3.1 About the Compiler
The compiler lets you compile, optimize, assemble, and optionally link in one step. The compiler performs the 
following steps on one or more source modules:

• The compiler accepts C/C++ source code. It produces object code.

You can compile C and C++ files in a single command. The compiler uses the filename extensions to 
distinguish between different file types. See Section 3.3.10 for more information.

• The linker combines object files to create a static executable file. The link step is optional, so you can 
compile many modules independently and link them later. See Chapter 11 for information about linking the 
files.

Note
Invoking the Linker

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker 
(-z) compiler option. See Section 11.1.1 for details.

3.2 Invoking the C/C++ Compiler
To invoke the compiler, enter:

cl7x [options] [filenames] [--run_linker [link_options] object files]]

cl7x Command that runs the compiler.
options Options that affect the way the compiler processes input files. The options are listed in Table 3-6 through Table 

3-27.
filenames One or more C/C++ source files.
--run_linker (-z) Option that invokes the linker. The --run_linker option's short form is -z. See Chapter 11 for more information.
link_options Options that control the linking process.
object files Names of the object files for the linking process.

The arguments to the compiler are of three types:

• Compiler options
• Link options
• Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler 
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can be 
placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, and link to create an executable 
program called myprogram.out, you will enter:

cl7x symtab.c file.c --run_linker --library=lnk.cmd
       --output_file=myprogram.out
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3.3 Changing the Compiler's Behavior with Options
Options control the operation of the compiler. This section provides a description of option conventions and 
an option summary table. It also provides detailed descriptions of the most frequently used options, including 
options used for type-checking.

For a help screen summary of the options, enter cl7x with no parameters on the command line.

The following apply to the compiler options:

• There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is 
usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters 
and numbers that are not always intuitive.

• Options are usually case sensitive.
• Individual options cannot be combined.
• An option with a parameter should be specified with an equal sign before the parameter to clearly associate 

the parameter with the option. For example, the option to undefine a constant can be expressed as 
--undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed 
as -O=3. You can also specify a parameter directly after certain options, for example -O3 is the same as 
-O=3. No space is allowed between the option and the optional parameter, so -O 3 is not accepted.

• Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all 
compiler options and precede any linker options.

You can define default options for the compiler by using the C7X_C_OPTION environment variable. For a 
detailed description of the environment variable, see Section 3.4.1.

Table 3-6 through Table 3-27 summarize all options (including link options). Use the references in the tables for 
more complete descriptions of the options.

Table 3-1. Processor Options
Option Alias Effect Section
--silicon_version=id -mv Selects target version. Defaults to 7100. Section 3.3.5
--big_endian -me Produces object code in big-endian format. The default format is 

little-endian.
Section 3.3.4

--mma_version={ 1 | 2 | 2_256 | 
disallow }

Specify the version of the Matrix Multiply Accelerator (MMA) to be 
used on the target device.

Section 3.3.4

Table 3-2. Optimization Options(1) 

Option Alias Effect Section
--opt_level=off Disables all optimization (default if option not used and --

vectypes=off).
Section 4.1

--opt_level=n -On Level 0 (-O0) optimizes register usage only (default if option not used 
and --vectypes=on).
Level 1 (-O1) uses Level 0 optimizations and optimizes locally.
Level 2 (-O2) uses Level 1 optimizations and optimizes globally 
(default if option used with no setting).
Level 3 (-O3) uses Level 2 optimizations and optimizes the file. 
Level 4 (-O4) uses Level 3 optimizations and performs link-time 
optimization.

Section 4.1, 
Section 4.3

--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this 
option is not specified or is specified without n, the default value is 4.

Section 4.2

(1) Note: Machine-specific options (see Table 3-12) can also affect optimization.
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Table 3-3. Advanced Optimization Options(1) 

Option Alias Effect Section
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not 

specified, the default is 1.
Section 4.5

--call_assumptions=n -opn Level 0 (-op0) specifies that the module contains functions and 
variables that are called or modified from outside the source code 
provided to the compiler.
Level 1 (-op1) specifies that the module contains variables modified 
from outside the source code provided to the compiler but does not 
use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or 
variables that are called or modified from outside the source code 
provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are 
called from outside the source code provided to the compiler but 
does not use variables modified from outside the source code.

Section 4.4.1

--disable_inlining Prevents any inlining from occurring. Section 3.10
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 3.3.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 3.3.3
--fp_single_precision_constant Causes all unsuffixed floating-point constants to be treated as 

single precision values instead of as double-precision constants.
Section 3.3.3

--gen_opt_info=n -onn Level 0 (-on0) disables the optimization information file.
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.

Section 4.3.1

--optimizer_interlist -os Interlists optimizer comments with assembly statements. Section 4.11
--program_level_compile -pm Combines source files to perform program-level optimization. Section 4.4
--src_interlist -s Interlists optimizer comments (if available) and assembly source 

statements; otherwise interlists C and assembly source statements.
Section 3.3.2

--aliased_variables -ma Notifies the compiler that addresses passed to functions may be 
modified by an alias in the called function.

Section 4.9.1

(1) Note: Machine-specific options (see Table 3-12) can also affect optimization.

Table 3-4. Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation 

of debug information does not impact optimization. Therefore, 
generating debug information is enabled by default.

Section 3.3.6
Section 4.12

--symdebug:dwarf_version=3|4 Specifies the DWARF format version. The default version is 4. Section 3.3.6
--symdebug:none Disables all symbolic debugging. Section 3.3.6

Section 4.12

Table 3-5. Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 3.5.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 3.3.3

Table 3-6. Control Options
Option Alias Effect Section
--compile_only -c Disables linking (negates --run_linker). Section 11.1.3
--help -h Prints (on the standard output device) a description of the options 

understood by the compiler.
Section 3.3.2

--run_linker -z Causes the linker to be invoked from the compiler command line. Section 3.3.2
--skip_assembler -n Compiles C/C++ source file , producing an assembly language 

output file. The assembler is not run and no object file is produced.
Section 3.3.2
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Table 3-6. Control Options (continued)
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file.

Table 3-7. Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 5.12
--c99 Processes C files according to the ISO C99 standard. Section 5.12
--c11 Processes C files according to the ISO C11 standard. Section 5.12
--c++14 Processes C++ files according to the ISO C++14 standard. Section 5.12
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 3.3.8
--exceptions Enables C++ exception handling. Section 5.6
--extern_c_can_throw Allow extern C functions to propagate exceptions. --
--float_operations_allowed
={none|all|32|64}

Restricts the types of floating point operations allowed. Section 3.3.3

--pending_instantiations=# Specify the number of template instantiations that may be in 
progress at any given time. Use 0 to specify an unlimited number.

Section 3.3.4

--printf_support={nofloat|full|
minimal}

Enables support for smaller, limited versions of the printf function 
family (sprintf, fprintf, etc.) and the scanf function family (sscanf, 
fscanf, etc.) run-time-support functions.

Section 3.3.3

--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by 
default. To disable this mode, use the --strict_ansi option.

Section 5.12.3

--rtti -rtti Enables C++ run-time type information (RTTI). –-
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this 

mode, language extensions that conflict with ANSI/ISO C/C++ are 
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are 
reported as errors. Violations that are considered discretionary may 
be reported as warnings instead.

Section 5.12.3

--vectypes={on|off} Enable support for TI vector data types. On by default. Section 5.3.2

Table 3-8. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed 

output, writes a list of dependency lines suitable for input to a 
standard make utility.

Section 3.5.8

--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed 
output, writes a list of files included with the #include directive.

Section 3.5.9

--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user-
defined macros to a file with the same name as the input but with 
a .pp extension.

Section 3.5.10

--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file 
with the same name as the input but with a .pp extension.

Section 3.5.4

--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping 
the comments, to a file with the same name as the input but with 
a .pp extension.

Section 3.5.6

--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> 
options that normally disable compilation.

Section 3.5.5

--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line-
control information (#line directives) to a file with the same name as 
the input but with a .pp extension.

Section 3.5.7

Table 3-9. Predefined Macro Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 3.3.2
--undefine=name -U Undefines name. Section 3.3.2
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Table 3-10. Diagnostic Message Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. --
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 3.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 3.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 3.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 3.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-

line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this 

command-line option cannot be used within the Code Composer 
Studio IDE.

Section 3.7.1

--emit_warnings_as_errors -pdew Treat warnings as errors. Section 3.7.1
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 3.7.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 3.7.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after 

this number of errors. (The default is 100.)
Section 3.7.1

--super_quiet -qq Super quiet mode. --
--tool_version -version Displays version number for each tool. --
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original 

source with line-wrap. Note that this command-line option cannot be 
used within the Code Composer Studio IDE.

Section 3.7.1

--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only 
option. Note that this command-line option cannot be used within 
the Code Composer Studio IDE.

Section 3.7.1

Table 3-11. Supplemental Information Options
Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 3.9
--section_sizes={on|off} Generates section size information, including sizes for sections 

containing executable code and constants, constant or initialized 
data (global and static variables), and uninitialized data. (Default is 
off if this option is not included on the command line. Default is on if 
this option is used with no value specified.)

Section 3.7.1

Table 3-12. Run-Time Model Options
Option Alias Effect Section
--common={on|off} On by default. When on, uninitialized file scope variables are emitted 

as common symbols. When off, common symbols are not created.
Section 3.3.4

--debug_software_pipeline -mw Produce verbose software pipelining report. Section 4.7.2
--disable_software_pipeline -mu Turns off software pipelining. Section 4.7.1
--fp_not_associative -mc Prevents reordering of associative floating-point operations. Section 4.10
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into 

subsections. This gives the linker more control over removing 
unused data during the final link step. See the link to the right for 
details about the default setting.

Section 11.2.3

--gen_func_subsections={on|off} -mo Puts each function in a separate subsection in the object file. If this 
option is not used, the default is off. See the link to the right for 
details about the default setting.

Section 11.2.2
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Table 3-12. Run-Time Model Options (continued)
Option Alias Effect Section
--ramfunc={on|off} If set to on, indicates that each function will be run from RAM. 

Functions will be placed in RAM and optimized for RAM execution. 
Equivalent to specifying __attribute__((ram_func)) on all functions in 
the translation unit.

Section 3.3.4

Table 3-13. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 3.14
--entry_parm={none|name|
address}

Specifies the parameters to the function to the --entry_hook option. Section 3.14

--exit_hook[=name] Enables exit hooks. Section 3.14
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 3.14
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 3.14

Table 3-14. Assembly Options
Option Alias Effect Section
--c_src_interlist -ss Interlists C source and assembly statements. Section 3.11

Section 4.11

Table 3-15. File Type Specifier Options
Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its 

extension. By default, the compiler and assembler treat .asm files 
as assembly source files.

Section 3.3.8

--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By 
default, the compiler treats .c files as C source files.

Section 3.3.8

--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By 
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.

Section 3.3.8

--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. 
By default, the compiler and linker treat .obj files as object code files, 
including both *.c.obj and *.cpp.obj files.

Section 3.3.8

Table 3-16. Directory Specifier Options
Option Alias Effect Section
--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the 

current directory.
Section 3.3.11

--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the 
current directory.

Section 3.3.11

--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 3.3.11
--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses 

the current directory.
Section 3.3.11

--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the 
current directory.

Section 3.3.11

Table 3-17. Default File Extensions Options
Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files. Section 3.3.10
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 3.3.10
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files. Section 3.3.10
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 3.3.10
--obj_extension=[.]extension -eo Sets a default extension for object files. Section 3.3.10
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Table 3-18. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. 

Multiple -@ instances can be used.
Section 3.3.2

Table 3-19. Performance Advisor Options
Option Alias Effect Section
--advice:performance[={all|none}] Generates compiler optimization advice. Default is all. Section 3.12
--advice:performance_file={stdout|
    stderr|user_specified_filename}

Specifies that advice be written to stdout, stderr, or a file. Section 3.12

--advice:performance_dir=
    {user_specified_directory_name}

Specifies that advice file be created in the named directory. Section 3.12

3.3.1 Linker Options

The following tables list the linker options. See Chapter 11 of this document and Chapter 12 for details on these 
options.

Table 3-20. Linker Basic Options
Option Alias Description
--run_linker -z Enables linking.
--output_file=file -o Names the executable output file. The default filename is a .out file.
--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places 

the listing in file.
--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the 

stack size. Default = 1K bytes.
--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a 

global symbol that specifies the heap size. Default = 1K bytes.

Table 3-21. File Search Path Options
Option Alias Description
--library=file -l Names an archive library or link command file as linker input.
--disable_auto_rts Disables the automatic selection of a run-time-support library. See Section 11.3.1.1.
--priority -priority Satisfies unresolved references by the first library that contains a definition for that 

symbol.
--reread_libs -x Forces rereading of libraries, which resolves back references.
--search_path=pathname -I Alters library-search algorithms to look in a directory named with pathname before 

looking in the default location. This option must appear before the --library option.

Table 3-22. Command File Preprocessing Options
Option Alias Description
--define=name=value Predefines name as a preprocessor macro.
--undefine=name Removes the preprocessor macro name.
--disable_pp Disables preprocessing for command files.

Table 3-23. Diagnostic Message Options
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error.
--diag_remark=num Categorizes the diagnostic identified by num as a remark.
--diag_suppress=num Suppresses the diagnostic identified by num.
--diag_warning=num Categorizes the diagnostic identified by num as a warning.
--display_error_number Displays a diagnostic's identifiers along with its text.
--emit_references:file[=file] Emits a file containing section information. The information includes section size, 

symbols defined, and references to symbols.
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Table 3-23. Diagnostic Message Options (continued)
Option Alias Description
--emit_warnings_as_errors -pdew Treat warnings as errors.
--issue_remarks Issues remarks (non-serious warnings).
--no_demangle Disables demangling of symbol names in diagnostic messages.
--no_warnings Suppresses diagnostic warnings (errors are still issued).
--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The 

default is 100.)
--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap.

Table 3-24. Linker Output Options
Option Alias Description
--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --

absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe were 
specified.

--mapfile_contents=attribute Controls the information that appears in the map file.
--relocatable -r Produces a nonexecutable, relocatable output object file.
--xml_link_info=file Generates a well-formed XML file containing detailed information about the result of a 

link.

Table 3-25. Symbol Management Options
Option Alias Description
--entry_point=symbol -e Defines a global symbol that specifies the primary entry point for the executable object 

file.
--globalize=pattern Changes the symbol linkage to global for symbols that match pattern.
--hide=pattern Hides symbols that match the specified pattern.
--localize=pattern Make the symbols that match the specified pattern local.
--make_global=symbol -g Makes symbol global (overrides -h).
--make_static -h Makes all global symbols static.
--no_symtable -s Strips symbol table information and line number entries from the executable object file.
--retain={symbol|
    section specification}

Specifies a symbol or section to be retained by the linker.

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions.
--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with 

references to the defname symbol.
--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol.
--unhide=pattern Excludes symbols that match the specified pattern from being hidden.

Table 3-26. Run-Time Environment Options
Option Alias Description
--arg_size=size --args Reserve size bytes for the argc/argv memory area.
--cinit_compression[=type] Specifies the type of compression to apply to the C auto initialization data. The 

default if this option is specified with no type is lzss for Lempel-Ziv-Storer-Szymanski 
compression.

--copy_compression[=type] Compresses data copied by linker copy tables. The default if this option is specified with 
no type is lzss for Lempel-Ziv-Storer-Szymanski compression.

--fill_value=value -f Sets default fill value for holes within output sections
--ram_model -cr Initializes variables at load time. See Section 11.3.4 for details.
--rom_model -c Autoinitializes variables at run time. See Section 11.3.4 for details.
--trampolines[=off|on] Generates far call trampolines. Default is on.
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Table 3-27. Miscellaneous Options
Option Alias Description
--compress_dwarf[=off|on] Aggressively reduces the size of DWARF information from input object files. Default is 

on.
--linker_help [-]-help Displays information about syntax and available options.
--minimize_trampolines[=off | 
postorder]

Places sections to minimize number of far trampolines required. Default is postorder.

--preferred_order=function Prioritizes placement of functions.
--zero_init=[off|on] Controls preinitialization of uninitialized variables. Default is on. Always off if --

ram_model is used.

3.3.2 Frequently Used Options

Following are detailed descriptions of options that you will probably use frequently:

--c_src_interlist Invokes the interlist feature, which interweaves original C/C++ source with compiler-generated assembly 
language. The interlisted C statements may appear to be out of sequence. You can use the interlist feature 
with the optimizer by combining the --optimizer_interlist and --c_src_interlist options. See Section 4.11. The 
--c_src_interlist option can have a negative performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. Use this option to avoid limitations on command line 
length or C style comments imposed by the operating system. Use a # or ; at the beginning of a line in the 
command file to include comments. You can add comments by surrounded by /* and */. To specify options, 
surround hyphens with quotation marks. For example, "--"quiet. You can use the --cmd_file option multiple 
times to specify multiple files. For example, the following indicates file3 should be compiled as source and 
file1 and file2 are --cmd_file files:
cl7x --cmd_file=file1 --cmd_file=file2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which specifies linking. The --compile_only 
option's short form is -c. Use this option when you have --run_linker specified in the C7X_C_OPTION 
environment variable and you do not want to link. See Section 11.1.3.

--define=name[=def] Predefines the constant name for the preprocessor. This is equivalent to inserting #define name def at the 
top of each C source file. If the optional[=def] is omitted, the name is set to 1. The --define option's short form 
is -D.
If you want to define a quoted string and keep the quotation marks, do one of the following:
• For Windows, use --define=name="\"string def\"". For example, --define=car="\"sedan\""
• For UNIX, use --define=name='"string def"'. For example, --define=car='"sedan"'
• For CCS, enter the definition in a file and include that file with the --cmd_file option.

--help Displays the syntax for invoking the compiler and lists available options. If the --help option is followed by 
another option or phrase, detailed information about the option or phrase is displayed. For example, to see 
information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for #include files. The --include_path 
option's short form is -I. You can use this option several times to define several directories; be sure to 
separate the --include_path options with spaces. If you do not specify a directory name, the preprocessor 
ignores the --include_path option. See Section 3.5.2.1.

--keep_asm Retains the assembly language output from the compiler or assembly optimizer. Normally, the compiler 
deletes the output assembly language file after assembly is complete. The --keep_asm option's short form is 
-k.

--quiet Suppresses banners and progress information from all the tools. Only source filenames and error messages 
are output. The --quiet option's short form is -q.

--run_linker Runs the linker on the specified object files. The --run_linker option and its parameters follow all other 
options on the command line. All arguments that follow --run_linker are passed to the linker. The --run_linker 
option's short form is -z. See Section 11.1.

--skip_assembler Compiles only. The specified source files are compiled but not assembled or linked. The --skip_assembler 
option's short form is -n. This option overrides --run_linker. The output is assembly language output from the 
compiler.
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--src_interlist Invokes the interlist feature, which interweaves optimizer comments or C/C++ source with assembly source. 
If the optimizer is invoked (--opt_level=n option), optimizer comments are interlisted with the assembly 
language output of the compiler, which may rearrange code significantly. If the optimizer is not invoked, 
C/C++ source statements are interlisted with the assembly language output of the compiler, which allows you 
to inspect the code generated for each C/C++ statement. The --src_interlist option implies the --keep_asm 
option. The --src_interlist option's short form is -s.

--tool_version Prints the version number for each tool in the compiler. No compiling occurs.
--undefine=name Undefines the predefined constant name. This option overrides any --define options for the specified 

constant. The --undefine option's short form is -U.
--verbose Displays progress information and toolset version while compiling. Resets the --quiet option.

3.3.3 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--float_operations_allowed= 
{none|all|32|64}

Restricts the type of floating point operations allowed in the application. The default is all. If set 
to none, 32, or 64, the application is checked for operations that will be performed at runtime. For 
example, if --float_operations_allowed=32 is specified on the command line, the compiler issues an 
error if a double precision operation will be generated. This can be used to ensure that double precision 
operations are not accidentally introduced into an application. The checks are performed after relaxed 
mode optimizations have been performed, so illegal operations that are completely removed result in no 
diagnostic messages.

--fp_mode={relaxed|strict} The default floating-point mode is strict. To enable relaxed floating-point mode use the 
--fp_mode=relaxed option. Relaxed floating-point mode causes double-precision floating-point 
computations and storage to be converted to single-precision floating-point where possible. This 
behavior does not conform with ISO, but it results in faster code, with some loss in accuracy. The 
following specific changes occur in relaxed mode:
• If the result of a double-precision floating-point expression is assigned to a single-precision 

floating-point or an integer or immediately used in a single-precision context, the computations 
in the expression are converted to single-precision computations. Double-precision constants in 
the expression are also converted to single-precision if they can be correctly represented as single-
precision constants.

• Calls to double-precision functions in math.h are converted to their single-precision counterparts if 
all arguments are single-precision and the result is used in a single-precision context. The math.h 
header file must be included for this optimization to work.

• Division by a constant is converted to inverse multiplication.

In the following examples, iN=integer variable, fN=float variable, and dN=double variable:
il = f1 + f2 * 5.0 -> +, * are float, 5.0 is converted to 5.0f
il = d1 + d2 * d3 -> +, * are float
f1 = f2 + f3 * 1.1; -> +, * are float, 1.1 is converted to 1.1f

To enable relaxed floating-point mode use --fp_mode=relaxed, which also sets --fp_reassoc=on. To 
disable relaxed floating-point mode use --fp_mode=strict, which also sets --fp_reassoc=off.
If --strict_ansi is specified, --fp_mode=strict is set automatically. You can enable the relaxed floating-
point mode with strict ANSI mode by specifying --fp_mode=relaxed after --strict_ansi.

--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. If --strict_ansi is set, --fp_reassoc=off 
is set since reassociation of floating-point arithmetic is an ANSI violation.
Because floating-point values are of limited precision, and because floating-point operations round, 
floating-point arithmetic is neither associative nor distributive. For instance, (1 + 3e100) - 3e100 is 
not equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the compiler cannot, in general, 
reassociate floating-point operations. Using --fp_reassoc=on allows the compiler to perform the 
algebraic reassociation, at the cost of a small amount of precision for some operations.

--fp_single_precision_constant Causes all unsuffixed floating-point constants to be treated as single precision values. By default, if this 
option is not used, such constants are implicitly converted to double-precision constants as expected 
for EABI output. If your floating-point constants always fit within the range supported for 32-bit floats, 
treating them as such can improve performance.
This option may be used with any settings for the --fp_mode and --float_support options.

--preinclude=filename Includes the source code of filename at the beginning of the compilation. This can be used to establish 
standard macro definitions. The filename is searched for in the directories on the include search list. 
The files are processed in the order in which they were specified.
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--printf_support={full|
nofloat|minimal}

Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.) and the 
scanf function family (sscanf, fscanf, etc.) run-time-support functions. The valid values are:
• full: Supports all format specifiers. This is the default.
• nofloat: Excludes support for printing and scanning floating-point values. Supports all format 

specifiers except %a, %A, %f, %F, %g, %G, %e, and %E.
• minimal: Supports the printing and scanning of integer, char, or string values without width or 

precision flags. Specifically, only the %%, %d, %o, %c, %s, and %x format specifiers are supported

There is no run-time error checking to detect if a format specifier is used for which support is 
not included. The --printf_support option precedes the --run_linker option, and must be used when 
performing the final link.

3.3.4 Run-Time Model Options

These options are specific to the C7000 toolset. See the referenced sections for more information.

--big_endian Produces code in big-endian format. By default, little-endian code is produced.
--advice:performance Generates compile-time optimization advice. See Section 3.12.
--common={on|off} When on (the default ), uninitialized file scope variables are emitted as common symbols. 

When off, common symbols are not created. The benefit of allowing common symbols 
to be created is that generated code can remove unused variables that would otherwise 
increase the size of the .bss section. (Uninitialized variables of a size larger than 32 bytes are 
separately optimized through placement in separate subsections that can be omitted from a 
link.) Variables cannot be common symbols if they are assigned to a section other than .bss 
or have a specified memory bank.

--debug_software_pipeline Produces verbose software pipelining report. See Section 4.7.2.
--disable_software_pipeline Turns off software pipelining. See Section 4.7.1.
--fp_not_associative Compiler does not reorder floating-point operations. See Section 4.10.
--mma_version={ 1 | 2 | 2_256 | disallow } Specifies the Matrix Multiply Accelerator (MMA) revision on the device to be used. For a 

specific C7000 silicon version, the setting of --mma_version may be the MMA version that 
corresponds to the silicon version (which is the default) or disallow. Specifying an MMA 
version that does not match the silicon version is prohibited and causes an error.
• For --silicon_version=7100, the default is --mma_version=1.
• For --silicon_version=7120, the default is --mma_version=2.
• For --silicon_version=7504, the default is --mma_version=2_256.

The compiler places appropriate MMA build attributes in object files it generates.
Object files specify that the MMA is not used (UNUSED) if either the --mma_version=disallow 
option was used to disable use of the MMA or if the code in the application performs no 
actions that could make use of the MMA.
MMA build attributes ensure that linking is disallowed for object files that use incompatible 
versions of the MMA. Versions 1, 2, and 2_256 of the MMA are all incompatible with each 
other. Object files with the MMA version set to UNUSED may be linked with files that use 
any MMA version (but not more than one version). For more details, see the C7000 EABI 
Technical Reference Guide (SPRUIG4).

--pending_instantiations=# Specify the number of template instantiations that may be in progress at any given time. Use 
0 to specify an unlimited number.

--ramfunc={on|off} If set to on, indicates that each function will be run from RAM. Functions will be placed in 
RAM and optimized for RAM execution. Equivalent to specifying __attribute__((ram_func)) 
on all functions in the translation unit. If set to off, only functions with the ramfunc function 
attribute are treated this way. See Section 5.13.2.

--silicon_version=num Selects the target CPU version. See Section 3.3.5.
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3.3.5 Selecting Target CPU Version (--silicon_version Option)

The --silicon_version option controls the use of target-specific instructions and alignment. The alias for this 
option is -mv. If this option is not used, the compiler generates code for the C7100 parts by default. Currently, the 
available settings for this option are:

• --silicon_version=7100 (or its alias, -mv7100)
• --silicon_version=7120 (or its alias, -mv7120)
• --silicon_version=7504 (or its alias, -mv7504)

3.3.6 Symbolic Debugging and Profiling Options

The following options are used to select symbolic debugging :

--symdebug:dwarf (Default) Generates directives that are used by the C/C++ source-level debugger . The --
symdebug:dwarf option's short form is -g. See Section 4.12. For details on the DWARF format, 
see The DWARF Debugging Standard.

--symdebug:dwarf_
version={3|4}

Specifies the DWARF debugging format version (3 or 4) to be generated when --symdebug:dwarf 
(the default) is specified. By default, the compiler generates DWARF version 4 debug information. 
For more information on TI extensions to the DWARF language, see The Impact of DWARF on TI 
Object Files (SPRAAB5).

--symdebug:none Disables all symbolic debugging output. This option is not recommended; it prevents debugging 
and most performance analysis capabilities.

3.3.7 Specifying Filenames

The input files that you specify on the command line can be C source files, C++ source files, or object files. The 
compiler uses filename extensions to determine the file type.

Extension File Type
.c C source
.C Depends on operating system
.cpp, .cxx, .cc C++ source
.obj .c.obj .cpp.obj .o* .dll .so Object

Note

Case Sensitivity in Filename Extensions: Case sensitivity in filename extensions is determined 
by your operating system. If your operating system is not case sensitive, a file with a .C extension 
is interpreted as a C file. If your operating system is case sensitive, a file with a .C extension is 
interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see Section 
3.3.8. For information about how you can alter the way that the compiler interprets and names the extensions of 
files, see Section 3.3.11.

You can use wildcard characters to compile multiple files. Wildcard specifications vary by system; use the 
appropriate form listed in your operating system manual. For example, to compile all of the files in a directory 
with the extension .cpp, enter the following:

cl7x *.cpp

Note

No Default Extension for Source Files is Assumed: If you list a filename called example on the 
command line, the compiler assumes that the entire filename is example not example.c. No default 
extensions are added onto files that do not contain an extension.
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3.3.8 Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use are 
different from those recognized by the compiler, you can use the filename options to specify the type of file. You 
can insert an optional space between the option and the filename. Select the appropriate option for the type of 
file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and a C++ file called objects.cp, use the --cpp_file and 
--c_file options to force the correct interpretation:

cl7x --c_file=file.s --cpp_file=objects.cp

You cannot use the filename options with wildcard specifications.

Note

The default file extensions for object files created by the compiler have been changed in order 
to prevent conflicts when C and C++ files have the same names. Object files generated from C 
source files have the .c.obj extension. Object files generated from C++ source files have the .cpp.obj 
extension.

3.3.9 Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler treats files 
with a .c extension as C files. See Section 3.3.10 for more information about filename extension conventions.

3.3.10 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the 
extensions of the files that it creates. The filename extension options must precede the filenames they apply to 
on the command line. You can use wildcard specifications with these options. An extension can be up to nine 
characters in length. Select the appropriate option for the type of extension you want to specify:

--asm_extension=new extension for an assembly language file
--c_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--obj_extension=new extension for an object file

The following example compiles the file fit.rrr and creates an object file named fit.o:

cl7x --cpp_extension=.rrr --obj_extension=.o fit.rrr

The period (.) in the extension is optional. You can also write the example above as:

cl7x --cpp_extension=rrr --obj_extension=o fit.rrr

3.3.11 Specifying Directories

By default, the compiler program places the object and temporary files that it creates into the current directory. If 
you want the compiler program to place these files in different directories, use the following options:
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--asm_directory=directory Specifies a directory for assembly files. For example:
cl7x --asm_directory=d:\assembly

--obj_directory=directory Specifies a directory for object files. For example:
cl7x --obj_directory=d:\object

--output_file=filename Specifies a compilation output file name; can override --obj_directory. For example:
cl7x --output_file=transfer

--pp_directory=directory Specifies a preprocessor file directory for object files (default is .). For example:
cl7x --pp_directory=d:\preproc

--temp_directory=directory Specifies a directory for temporary intermediate files. For example:
cl7x --temp_directory=d:\temp

3.4 Controlling the Compiler Through Environment Variables
An environment variable is a system symbol you define and assign a string to. Setting environment variables is 
useful if you want to run the compiler repeatedly without re-entering options, input filenames, or pathnames.

Note

C_OPTION and C_DIR -- The C_OPTION and C_DIR environment variables are deprecated. Use 
device-specific environment variables instead.

3.4.1 Setting Default Compiler Options (C7X_C_OPTION)

You might find it useful to set the compiler and linker default options using the C7X_C_OPTION environment 
variable. If you do this, the compiler uses the default options and/or input filenames that you name 
C7X_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler 
repeatedly with the same set of options and/or input files. After the compiler reads the command line and the 
input filenames, it looks for the C7X_C_OPTION environment variable and processes it.

The table below shows how to set the C7X_C_OPTION environment variable. Select the command for your 
operating system:

Operating System Enter
UNIX (Bourne shell) C7X_C_OPTION=" option1 [option2 . . .]"; export C7X_C_OPTION
Windows set C7X_C_OPTION= option1 [option2 . . .]

Environment variable options are specified in the same way and have the same meaning as they do on 
the command line. For example, if you want to always run quietly (the --quiet option), enable C/C++ source 
interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the C7X_C_OPTION 
environment variable as follows:

set C7X_C_OPTION=--quiet --src_interlist --run_linker

Any options following --run_linker on the command line or in C7X_C_OPTION are passed to the linker. Thus, 
you can use the C7X_C_OPTION environment variable to specify default compiler and linker options and 
then specify additional compiler and linker options on the command line. If you have set --run_linker in the 
environment variable and want to compile only, use the compiler --compile_only option. These additional 
examples assume C7X_C_OPTION is set as shown above:

cl7x *c                         ; compiles and links
cl7x --compile_only *.c         ; only compiles
cl7x *.c --run_linker lnk.cmd   ; compiles and links using a command file
cl7x --compile_only *.c --run_linker lnk.cmd ; only compiles (--compile_only overrides --run_linker)

For details on compiler options, see Section 3.3. For details on linker options, see Section 12.4.
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3.4.2 Naming One or More Alternate Directories (C7X_C_DIR)

The linker uses the C7X_C_DIR environment variable to name alternate directories that contain object libraries. 
The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C7X_C_DIR=" pathname1 ; pathname2 ;..."; export C7X_C_DIR
Windows set C7X_C_DIR= pathname1 ; pathname2 ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:

• Pathnames must be separated with a semicolon.
• Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after the 

semicolon in the following is ignored:

    set C7X_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For 
example, the pathnames in the following are valid:

    set C7X_C_DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C7X_C_DIR
Windows set C7X_C_DIR=

3.5 Controlling the Preprocessor
This section describes features that control the preprocessor, which is part of the parser. A general description 
of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard C/C++ preprocessing 
functions, which are built into the first pass of the compiler. The preprocessor handles:
• Macro definitions and expansions
• #include files
• Conditional compilation
• Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the error 
occurred are printed along with a diagnostic message.

3.5.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in Table 3-28.

Table 3-28. Predefined C7000 Macro Names
Macro Name Description
__C7000__ Defined to 1 for all C7000 subtargets.
__C7100__ Defined to 1 for the C7100 subtarget.
__C7120__ Defined to 1 for the C7120 subtarget.
__C7504__ Defined to 1 for the C7504 subtarget.
__DATE__(1) Expands to the compilation date in the form mmm dd yyyy

__FILE__(1) Expands to the current source filename
__LINE__(1) Expands to the current line number
__STDC__(1) Defined to 1 to indicate that compiler conforms to ISO C Standard. See Section 5.1 for 

exceptions to ISO C conformance.
__STDC_VERSION__ C standard macro.
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Table 3-28. Predefined C7000 Macro Names (continued)
Macro Name Description
__STDC_HOSTED__ C standard macro. Always defined to 1.
__STDC_NO_THREADS__ C standard macro. Always defined to 1.
__TI_C99_COMPLEX_ENABLED__ Defined to 1 if complex data types are enabled. This is always the case, though math 

operations are available only if complex.h is included.
__TI_COMPILER_VERSION__ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not 

contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros 
are dropped to prevent the number being interpreted as an octal.

__TI_EABI__ Always defined to 1.
__TI_GNU_ATTRIBUTE_SUPPORT__ Defined to 1 if GCC extensions are enabled (which is the default)
__TI_STRICT_ANSI_MODE__ Defined to 1 if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it is 

defined as 0.
__TI_STRICT_FP_MODE__ Defined to 1 if --fp_mode=strict is used (default); otherwise, it is defined as 0.
__TIME__(1) Expands to the compilation time in the form "hh:mm:ss"
__big_endian__ Defined to 1 if big-endian mode is selected (the --endian=big option is used); otherwise, it is 

undefined.
_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.
__little_endian__ Defined to 1 if little-endian mode is selected (the --big_endian option is not used); otherwise, it 

is undefined.

(1) Specified by the ISO standard

You can use the names listed in Table 3-28 in the same manner as any other defined name. For example,

printf ( "%s %s" , __TIME__ , __DATE__);

translates to a line such as:

printf ("%s %s" , "13:58:17", "Jan 14 1997");

3.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When 
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can be a 
complete pathname, partial path information, or a filename with no path information.

• If you enclose the filename in double quotes (" "), the compiler searches for the file in this order:
1. The directory of the file that contains the #include directive and in the directories of any files that contain 

that file.
2. Directories named with the --include_path option.
3. Directories set with the C7X_C_DIR environment variable.

• If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following 
directories in this order:
1. Directories named with the --include_path option.
2. Directories set with the C7X_C_DIR environment variable.

See Section 3.5.2.1 for information on using the --include_path option. See Section 3.4.2 for more information on 
input file directories.
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3.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path option's 
short form is -I. The format of the --include_path option is:

--include_path=directory1 [--include_path= directory2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --include_path 
option names one directory. In C source, you can use the #include directive without specifying any directory 
information for the file; instead, you can specify the directory information with the --include_path option.

For example, assume that a file called source.c is in the current directory. The file source.c contains the following 
directive statement:

   #include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX /tools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter
UNIX cl7x --include_path=/tools/files source.c
Windows cl7x --include_path=c:\tools\files source.c

Note

Specifying Path Information in Angle Brackets: If you specify the path information in angle 
brackets, the compiler applies that information relative to the path information specified with --
include_path options and the C7X_C_DIR environment variable.

For example, if you set up C7X_C_DIR with the following command:

C7X_C_DIR "/usr/include;/usr/ucb"; export C7X_C_DIR

or invoke the compiler with the following command:

cl7x --include_path=/usr/include file.c

and file.c contains this line:

#include <sys/proc.h>

the result is that the included file is in the following path:

/usr/include/sys/proc.h

3.5.3 Support for the #warning and #warn Directives

In strict ANSI mode, the TI preprocessor allows you to use the #warn directive to cause the preprocessor 
to issue a warning and continue preprocessing. The #warn directive is equivalent to the #warning directive 
supported by GCC, IAR, and other compilers.

If you use the --relaxed_ansi option (on by default), both the #warn and #warning preprocessor directives are 
supported.
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3.5.4 Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an extension 
of .pp. The compiler's preprocessing functions perform the following operations on the source file:

• Each source line ending in a backslash (\) is joined with the following line.
• Trigraph sequences are expanded.
• Comments are removed.
• #include files are copied into the file.
• Macro definitions are processed.
• All macros are expanded.
• All other preprocessing directives, including #line directives and conditional compilation, are expanded.

The --preproc_only option is useful when creating a source file for a technical support case or to ask a question 
about your code. It allows you to reduce the test case to a single source file, because #include files are 
incorporated when the preprocessor runs.

3.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your 
source code. To override this feature and continue to compile after your source code is preprocessed, 
use the --preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file with 
a .pp extension, and compile your source code.

3.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing comments and 
generates a preprocessed version of your source file with a .pp extension. Use the --preproc_with_comment 
option instead of the --preproc_only option if you want to keep the comments.

3.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line directives, 
use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only and writes 
preprocessed output with line-control information (#line directives) to a file named as the source file but with 
a .pp extension.

3.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only. Instead of writing preprocessed output, it writes 
a list of dependency lines suitable for input to a standard make utility. If you do not supply an optional filename, 
the list is written to a file with the same name as the source file but a .pp extension.

3.5.9 Generating a List of Files Included with #include (--preproc_includes Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output, writes a 
list of files included with the #include directive. If you do not supply an optional filename, the list is written to a file 
with the same name as the source file but with a .pp extension.

3.5.10 Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not supply an 
optional filename, the list is written to a file with the same name as the source file but with a .pp extension.

The output includes only those files directly included by the source file. Predefined macros are listed first and 
indicated by the comment /* Predefined */. User-defined macros are listed next and indicated by the source 
filename.
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3.6 Passing Arguments to main()
Some programs pass arguments to main() via argc and argv. This presents special challenges in an embedded 
program that is not run from the command line. In general, argc and argv are made available to your program 
through the .args section. There are various ways to populate this section for use by your program.

To cause the linker to allocate an .args section of the appropriate size, use the --arg_size=size linker option. 
This option tells the linker to allocate an uninitialized section named .args, which can be used by the loader to 
pass arguments from the command line of the loader to the program. The size is the number of bytes to be 
allocated. When you use the --arg_size option, the linker defines the __c_args__ symbol to contain the address 
of the .args section.

It is the responsibility of the loader to populate the .args section. The loader and the target boot code can use 
the .args section and the __c_args__ symbol to determine whether and how to pass arguments from the host to 
the target program. The format of the arguments is an array of pointers to char on the target. Due to variations in 
loaders, it is not specified how the loader determines which arguments to pass to the target.

If you are using Code Composer Studio to run your application, you can use the Scripting Console tool to 
populate the .args section. To open this tool, choose View > Scripting Console from the CCS menus. You can 
use the loadProg command to load an object file and its associated symbol table into memory and pass an array 
of arguments to main(). These arguments are automatically written to the allocated .args section.

The loadProg syntax is as follows, where file is an executable file and args is an object array of arguments. Use 
JavaScript to declare the array of arguments before using this command.

loadProg(file, args)

The .args section is loaded with the following data for non-SYS/BIOS-based executables, where each element in 
the argv[] array contains a string corresponding to that argument:

Int argc;
Char * argv[0];
Char * argv[1];
...
Char * argv[n];

For SYS/BIOS-based executables, the elements in the .args section are as follows:

Int argc;
Char ** argv;    /* points to argv[0] */
Char * envp;     /* ignored by loadProg command */
Char * argv[0];
Char * argv[1];
...
Char * argv[n];

For more details, see the "Scripting Console" page.

3.7 Understanding Diagnostic Messages
One of the primary functions of the compiler and linker is to report diagnostic messages for the source program. 
A diagnostic message indicates that something may be wrong with the program. When the compiler or linker 
detects a suspect condition, it displays a message in the following format:

" file.c ", line n : diagnostic severity : diagnostic message

" file.c " The name of the file involved
line n : The line number where the diagnostic applies
diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem
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Diagnostic messages have a severity, as follows:

• A fatal error indicates a problem so severe that the compilation cannot continue. Examples of such problems 
include command-line errors, internal errors, and missing include files. If multiple source files are being 
compiled, any source files after the current one will not be compiled.

• An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may 
continue, but object code is not generated.

• A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For 
example, the compiler emits a warning for an unused variable. An unused variable does not affect program 
execution, but its existence suggests that you might have meant to use it. Compilation continues and object 
code is generated (if no errors are detected).

• A remark is less serious than a warning. It may indicate something that is a potential problem in rare 
cases, or the remark may be strictly informational. Compilation continues and object code is generated (if no 
errors are detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable 
remarks.

Diagnostic messages are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch
    break; 
    ^

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display the 
source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the position 
indicated by the ^ character) follows the message. If several diagnostic messages apply to one source line, each 
diagnostic has the form shown; the text of the source line is displayed several times, with an appropriate position 
indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric identifier 
be included in the diagnostic message. When displayed, the diagnostic identifier also indicates whether the 
diagnostic can have its severity overridden on the command line. If the severity can be overridden, the 
diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is present. For example:

"Test_name.c", line 7: error #64-D: declaration does not declare anything
    struct {};
      ^
"Test_name.c", line 9: error #77: this declaration has no storage class or type specifier 
    xxxxx;
    ^

Because errors are determined to be discretionary based on the severity in a specific context, an error can be 
discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are listed 
following the initial error message:

"test.c", line 4: error: more than one instance of overloaded function "f" 
            matches the argument list:
            function "f(int)"
            function "f(float)"
            argument types are: (double)
   f(1.5);
   ^
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In some cases, additional context information is provided. Specifically, the context information is useful when the 
front end issues a diagnostic while doing a template instantiation or while generating a constructor, destructor, or 
assignment operator function. For example:

"test.c", line 7: error: "A::A()" is inaccessible
   B x;
   ^
          detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

3.7.1 Controlling Diagnostic Messages

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostic messages. 
The diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the numeric identifier of a 
diagnostic message, use the --display_error_number option first in a separate compile. Then use 
--diag_error=num to recategorize the diagnostic as an error. You can only alter the severity of 
discretionary diagnostic messages.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the numeric identifier of a 
diagnostic message, use the --display_error_number option first in a separate compile. Then use 
--diag_remark=num to recategorize the diagnostic as a remark. You can only alter the severity of 
discretionary diagnostic messages.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric identifier of a diagnostic 
message, use the --display_error_number option first in a separate compile. Then use --
diag_suppress=num to suppress the diagnostic. You can only suppress discretionary diagnostic 
messages.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the numeric identifier of 
a diagnostic message, use the --display_error_number option first in a separate compile. Then use 
--diag_warning=num to recategorize the diagnostic as a warning. You can only alter the severity of 
discretionary diagnostic messages.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in determining which 
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error, 
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A 
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes the 
suffix -D; otherwise, no suffix is present. See Section 3.7.

--emit_warnings_as_
    errors

Treats all warnings as errors. This option cannot be used with the --no_warnings option. The 
--diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.

--issue_remarks Issues remarks (non-serious warnings), which are suppressed by default.
--no_warnings Suppresses diagnostic warnings (errors are still issued).
--section_sizes={on|off} Generates section size information, including sizes for sections containing executable code and 

constants, constant or initialized data (global and static variables), and uninitialized data. Section size 
information is output during the linking phase. This option should be placed on the command line with 
the compiler options (that is, before the --run_linker or --z option).

--set_error_limit=num Sets the error limit to num, which can be any decimal value. The compiler abandons compiling after this 
number of errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap and indicate the 
position of the error in the source line. Note that this command-line option cannot be used within the 
Code Composer Studio IDE.

--write_diagnostics_file Produces a diagnostic message information file with the same source file name with an .err extension. 
(The --write_diagnostics_file option is not supported by the linker.) Note that this command-line option 
cannot be used within the Code Composer Studio IDE.
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3.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler. You 
control the linker diagnostic messages in a similar manner.

int one();
int I;
int main()
{
   switch (I){
   case  1;
      return one ();
      break;
   default:
      return 0;
   break;
   }
}

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 9: warning: statement is unreachable
"err.c", line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at the end of each case arm to avoid 
the fall-through condition, these warnings can be ignored. Using the --display_error_number option, you can find 
out the diagnostic identifier for these warnings. Here is the result:

[err.c]
"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this 
warning as a remark. This compilation produces no diagnostic messages (because remarks are disabled by 
default).

Note

You can suppress any non-fatal errors, but be careful to make sure you only suppress diagnostic 
messages that you understand and are known not to affect the correctness of your program.

3.8 Other Messages
Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability to find 
specified files, are usually fatal. They are identified by the symbol >> preceding the message.

3.9 Generating a Raw Listing File (--gen_preprocessor_listing Option)
The --gen_preprocessor_listing option generates a raw listing file that can help you understand how the 
compiler is preprocessing your source file. Whereas the preprocessed listing file (generated with the --
preproc_only, --preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options) 
shows a preprocessed version of your source file, a raw listing file provides a comparison between the original 
source line and the preprocessed output. The raw listing file has the same name as the corresponding source 
file with an .rl extension.

The raw listing file contains the following information:

• Each original source line
• Transitions into and out of include files
• Diagnostic messages
• Preprocessed source line if nontrivial processing was performed (comment removal is considered trivial; 

other preprocessing is nontrivial)
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Each source line in the raw listing file begins with one of the identifiers listed in Table 3-29.

Table 3-29. Raw Listing File Identifiers
Identifier Definition

N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source 

if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only 
when the change is due to entry/exit of an include file. Possible values of key are:
1 = entry into an include file
2 = exit from an include file

The --gen_preprocessor_listing option also includes diagnostic identifiers as defined in Table 3-30.

Table 3-30. Raw Listing File Diagnostic Identifiers
Diagnostic Identifier Definition

E Error
F Fatal
R Remark
W Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 3-30 that indicates the severity of the diagnostic
filename The source file
line number The line number in the source file
column number The column number in the source file
diagnostic The message text for the diagnostic

Diagnostic messages after the end of file are indicated as the last line of the file with a column number of 0. When diagnostic message text 
requires more than one line, each subsequent line contains the same file, line, and column information but uses a lowercase version of the 
diagnostic identifier. For more information about diagnostic messages, see Section 3.7.

3.10 Using Inline Function Expansion
When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point 
of the call. This is known as inline function expansion, commonly called function inlining or just inlining. Inline 
function expansion can speed up execution by eliminating function call overhead. This is particularly beneficial 
for very small functions that are called frequently. Function inlining involves a tradeoff between execution speed 
and code size, because the code is duplicated at each function call site. Large functions that are called in many 
places are poor candidates for inlining.

Note

Excessive Inlining Can Degrade Performance: Excessive inlining can make the compiler 
dramatically slower and degrade the performance of generated code.

Function inlining is triggered by the following situations:

• The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined 
automatically, even though no function body exists.
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• Use of the inline keyword or the equivalent __inline keyword. Functions declared with the inline 
keyword may be inlined by the compiler if you set --opt_level=0 or greater. The inline keyword is a suggestion 
from the programmer to the compiler. Even if your optimization level is high, inlining is still optional for the 
compiler. The compiler decides whether to inline a function based on the length of the function, the number 
of times it is called, your --opt_for_speed setting, and any contents of the function that disqualify it from 
inlining (see Section 3.10.2). Functions can be inlined at --opt_level=0 or above if the function body is visible 
in the same module or if -pm is also used and the function is visible in one of the modules being compiled. 
Functions may be inlined at link time if the file containing the definition and the call site were both compiled 
with --opt_level=4. Functions defined as both static and inline are more likely to be inlined.

• When --opt_level=3 or greater is used, the compiler may automatically inline eligible functions even if they are 
not declared as inline functions. The same list of decision factors listed for functions explicitly defined with the 
inline keyword is used. For more about automatic function inlining, see Section 4.5.

• The pragma FUNC_ALWAYS_INLINE (Section 5.8.12) and the equivalent always_inline attribute 
(Section 5.13.2) force a function to be inlined (where it is legal to do so) unless --opt_level=off. That is, 
the pragma FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline and 
the --opt_level=0 or --opt_level=1.

• The FORCEINLINE pragma (Section 5.8.10) forces functions to be inlined in the annotated statement. 
That is, it has no effect on those functions in general, only on function calls in a single statement. The 
FORCEINLINE_RECURSIVE pragma forces inlining not only of calls visible in the statement, but also in the 
inlined bodies of calls from that statement.

• The --disable_inlining option prevents any inlining. The pragma FUNC_CANNOT_INLINE prevents a function 
from being inlined. The NOINLINE pragma prevents calls within a single statement from being inlined. 
(NOINLINE is the inverse of the FORCEINLINE pragma.)

Note

Function Inlining Can Greatly Increase Code Size: Function inlining increases code size, especially 
inlining a function that is called in a number of places. Function inlining is optimal for functions that are 
called only from a small number of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline 
keyword in C++ code follow the C++ standard.

The inline keyword is supported in all C++ modes, in relaxed ANSI mode for all C standards, and in strict 
ANSI mode for C99. It is disabled in strict ANSI mode for C89, because it is a language extension that could 
conflict with a strictly conforming program. If you want to define inline functions while in strict ANSI C89 mode, 
use the alternate keyword __inline.

Compiler options that affect inlining are: --opt_level, --auto_inline, --remove_hooks_when_inlining, --
opt_for_speed, and --disable_inlining.

3.10.1 Inlining Intrinsic Operators

The compiler has a number of built-in function-like operations called intrinsics. The implementation of an intrinsic 
function is handled by the compiler, which substitutes a sequence of instructions for the function call. This is 
similar to the way inline functions are handled; however, because the compiler knows the code of the intrinsic 
function, it can perform better optimization.

Intrinsics are inlined whether or not you use the optimizer.

For details about intrinsics, and a list of the intrinsics, see Section 5.15. In addition to those listed, abs and 
memcpy are implemented as intrinsics.

3.10.2 Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in Section 3.10. 
In addition, there are several restrictions that can disqualify a function from being inlined by automatic inlining or 
inline keyword-based inlining.
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The compiler will leave calls as they are if the function:

• Has a different number of arguments than the call site
• Has an argument whose type is incompatible with the corresponding call site argument
• Is not declared inline and returns void but its return value is needed

The compiler will also not inline a call if the function has features that create difficult situations for the compiler:

• Has a variable-length argument list
• Never returns
• Is a recursive or non-leaf function that exceeds the depth limit
• Is not declared inline and contains an asm() statement that is not a comment
• Is an interrupt function
• Is the main() function
• Is not declared inline and will require too much stack space for local array or structure variables
• Contains a volatile local variable or argument
• Is a C++ function that contains a catch
• Is not defined in the current compilation unit and -O4 optimization is not used

A call in a statement that is annotated with a NOINLINE pragma will not be inlined, regardless of other 
indications (including a FUNC_ALWAYS_INLINE pragma or always_inline attribute on the called function).

A call in a statement that is annotated with a FORCEINLINE pragma will always be inlined, if it is not 
disqualified for one of the reasons above, even if the called function has a FUNC_CANNOT_INLINE pragma 
or cannot_inline attribute.

In other words, a statement-level pragma overrides a function-level pragma or attribute. If both NOINLINE and 
FORCEINLINE apply to the same statement, the one that appears first is used and the rest are ignored.

3.10.3 Unguarded Definition-Controlled Inlining

The inline keyword causes a function to be expanded inline at the point where it is called rather than using 
standard calling procedures. The compiler performs inline expansion of functions declared with the inline 
keyword.

You must invoke the optimizer with any --opt_level option to turn on definition-controlled inlining. Automatic 
inlining is also turned on when using --opt_level=3.

Example 3-1 uses the inline keyword. The function call is replaced by the code in the called function.

Example 3-1. Using the Inline Keyword

inline float volume_sphere(float r)
{
   return 4.0/3.0 * PI * r * r * r;
} 
int foo(...) 
{ 
   ... 
   volume = volume_sphere(radius); 
   ... 
}

3.10.4 Guarded Inlining and the _INLINE Preprocessor Symbol

When declaring a function in a header file as static inline, you must follow additional procedures to avoid a 
potential code size increase in case the optimizer is not run.

To prevent a static inline function in a header file from causing an increase in code size when inlining gets turned 
off, use the following procedure. This allows external-linkage when inlining is turned off; thus, only one function 
definition will exist throughout the object files.
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• Prototype a static inline version of the function. Then, prototype an alternative, nonstatic, externally-linked 
version of the function. Conditionally preprocess these two prototypes with the _INLINE preprocessor symbol, 
as shown in Example 3-2.

• Create an identical version of the function definition in a .c or .cpp file, as shown in Example 3-3.

In the following examples there are two definitions of the strlen function. The first (Example 3-2), in the header 
file, is an inline definition. This definition is enabled and the prototype is declared as static inline only if _INLINE 
is true (_INLINE is automatically defined for you when the optimizer is used ).

The second definition (see Example 3-3) for the library, ensures that the callable version of strlen exists when 
inlining is disabled. Since this is not an inline function, the _INLINE preprocessor symbol is undefined (#undef) 
before string.h is included to generate a non-inline version of strlen's prototype.

Example 3-2. Header File string.h

/*****************************************************************************/
/* string.h  vx.xx   (Excerpted)                                             */
/*****************************************************************************/
#ifdef _INLINE
#define _IDECL static inline
#else
#define _IDECL extern _CODE_ACCESS
#endif
_IDECL size_t  strlen(const char *_string);
#ifdef _INLINE
/****************************************************************************/
/*  strlen                                                                  */
/****************************************************************************/
static inline size_t strlen(const char *string)
{
   size_t      n = (size_t)-1;
   const char *s = string - 1;
   do n++; while (*++s);
   return n
}
#endif

Example 3-3. Library Definition File

/****************************************************************************/
/*  strlen                                                                  */
/****************************************************************************/
#undef _INLINE
#include <string.h>
{
_CODE_ACCESS size_t strlen(cont char * string)
   size_t      n = (size_t)-1;
   const char *s = string - 1;
   do n++; while (*++s);
   return n;
}
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3.11 Using Interlist
The compiler tools include a feature that interlists C/C++ source statements into the assembly language output 
of the compiler. The interlist feature enables you to inspect the assembly code generated for each C statement. 
The interlist behaves differently, depending on whether or not the optimizer is used, and depending on which 
options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the interlist 
on a program called function.c, enter:

cl7x --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output file. The 
output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between the 
code generator and the assembler. It reads both the assembly and C/C++ source files, merges them, and writes 
the C/C++ statements into the assembly file as comments.

For information about using the interlist feature with the optimizer, see Section 4.11. Using the --c_src_interlist 
option can cause performance and/or code size degradation.

The C code for the foo() function in foo.c:

int foo(int a, int b, int 
c)                                                                                                  
       
{                                                                                
    int d = a + b;                                                               
    int e = d - c;                                                               
    return e;                                                                    
}

Is compiled with the following command:

cl7x foo.c --c_src_interlist --symdebug:none
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Generates an assembly file, foo.asm, that contains in part:

;----------------------------------------------------------------------          
;   1 | int foo(int a, int b, int c)                                             
;----------------------------------------------------------------------          
                                                                                 
;******************************************************************************  
;* FUNCTION NAME: foo                                                         *  
;*                                                                            *  
;*   Regs Modified     : A4,A8,D0,SP                                          *  
;*   Regs Used         : A4,A5,A6,A8,D0,SP                                    *  
;*   Local Frame Size  : 0 Args + 0 Auto + 8 Save = 8 byte                    *  
;******************************************************************************  
||foo||:                                                                         
;** --------------------------------------------------------------------------*  
                                                                                 
           MVC     .S1     RP,A8             ; [A_S1]                            
||         STD     .D1     A8,*SP(8)         ; [A_D1]                            
                                                                                 
           ADDD    .D1     SP,0xfffffff8,SP  ; [A_D1]                            
;----------------------------------------------------------------------          
;   3 | int d = a + b;                                                           
;----------------------------------------------------------------------          
           ADDW    .D1     A5,A4,D0          ; [A_D1] |3|                        
;----------------------------------------------------------------------          
;   4 | int e = d - c;                                                           
;----------------------------------------------------------------------          
           SUBW    .D1     D0,A6,A4          ; [A_D1] |4|                        
;----------------------------------------------------------------------          
;   5 | return e;                                                                
;----------------------------------------------------------------------          
           MVC     .S1     A8,RP             ; [A_S1] BARRIER                    
           LDD     .D1     *SP(16),A8        ; [A_D1]                            
                                                                                 
           RET     .B1     ; [A_B]                                               
||         ADDD    .D1     SP,0x8,SP         ; [A_D1]                            
                                                                                 
           ; RETURN OCCURS {RP}              ; [] 

3.12 Generating and Using Performance Advice
The compiler can do better optimization in some cases, if the user aids the compiler by providing additional 
information in the code. The compiler can prompt you to take certain actions to improve performance, by emitting 
"Advice". To get this Advice, use the --advice:performance option:

cl7x --advice:performance -o3 filename.c

This Performance Advice is of 3 different types :

• Advice to use correct compiler options
• Advice to prevent software pipeline disqualification
• Advice to improve loop performance
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3.13 About the Application Binary Interface
An Application Binary Interface (ABI) defines the low level interface between object files, and between an 
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together, 
regardless of their origin, and allows the resulting executable to run on any system that supports that ABI.

The C7000 compiler supports only the Embedded Application Binary Interface (EABI) ABI, which works only with 
object files that use the ELF object file format and the DWARF debug format.

3.14 Enabling Entry Hook and Exit Hook Functions
An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a routine that 
is called upon exit of each function. Applications for hooks include debugging, trace, profiling, and stack overflow 
checking. Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise, the default entry hook 
function name is __entry_hook.

--entry_parm{=name|
address|none}

Specify the parameters to the hook function. The name parameter specifies that the name of the calling 
function is passed to the hook function as an argument. In this case the signature for the hook function 
is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function. 
In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case 
the signature for the hook function is: void hook(void);

--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise, the default exit hook 
function name is __exit_hook.

--exit_parm{=name|
address|none}

Specify the parameters to the hook function. The name parameter specifies that the name of the calling 
function is passed to the hook function as an argument. In this case the signature for the hook function 
is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function. 
In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case 
the signature for the hook function is: void hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given signature. If 
a declaration or definition of the hook function appears in the compilation unit compiled with the options, it must 
agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C without being concerned with name 
mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as other 
inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same function 
can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any function 
which itself has hook calls inserted. To help prevent this, hooks are not generated for inline functions, or for the 
hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are auto-
inlined by the optimizer.

See Section 5.8.27 for information about the NO_HOOKS pragma.
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The compiler tools can perform many optimizations to improve the execution speed and reduce the size of C and 
C++ programs by simplifying loops, software pipelining, rearranging statements and expressions, and allocating 
variables into registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are 
performed at each level. This chapter also describes how you can use the Interlist feature when performing 
optimization and how you can debug optimized code.

4.1 Invoking Optimization................................................................................................................................................ 54
4.2 Controlling Code Size Versus Speed........................................................................................................................55
4.3 Performing File-Level Optimization (--opt_level=3 option).....................................................................................55
4.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)........................................... 56
4.5 Automatic Inline Expansion (--auto_inline Option)................................................................................................. 57
4.6 Link-Time Optimization (--opt_level=4 Option)........................................................................................................59
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4.9 Indicating Whether Certain Aliasing Techniques Are Used................................................................................... 67
4.10 Prevent Reordering of Associative Floating-Point Operations............................................................................67
4.11 Using the Interlist Feature With Optimization........................................................................................................68
4.12 Debugging and Profiling Optimized Code..............................................................................................................68
4.13 What Kind of Optimization Is Being Performed?...................................................................................................69
4.14 Streaming Engine and Streaming Address Generator......................................................................................... 73
4.15 Nested Loop Controller (NLC).................................................................................................................................81
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4.1 Invoking Optimization
The C/C++ compiler is able to perform various optimizations, which are performed by the optimizer and the code 
generator:

The optimizer performs high-level optimizations in the stand-alone optimization pass. Use higher optimization 
levels, such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The code generator performs several additional optimizations. These are low-level, target-specific optimizations. 
It performs these regardless of whether you invoke the optimizer and are always enabled, though they are more 
effective when the optimizer is used.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option on 
the compiler command line. You can use -On as an alias for the --opt_level option. The n denotes the level of 
optimization (0, 1, 2, 3), which controls the type and degree of optimization.

• --opt_level=off or -Ooff (default if --opt_level option not used and --vectypes=off)
– Performs no optimization

• --opt_level=0 or -O0 (default if --opt_level option not used and --vectypes=on)
– Performs control-flow-graph simplification (Section 4.13.3)
– Allocates variables to registers (Section 4.13.14)
– Performs loop rotation (Section 4.13.10)
– Eliminates unused code
– Simplifies expressions and statements (Section 4.13.5)
– Expands calls to functions declared as inline (Section 4.13.6)

• --opt_level=1 or -O1 Performs all --opt_level=0 (-O0) optimizations, plus:
– Performs local copy/constant propagation (Section 4.13.4)
– Removes unused assignments (Section 4.13.4)
– Eliminates local common expressions

• --opt_level=2 or -O2 (default if --opt_level option used with no setting) Performs all --opt_level=1 (-O1) 
optimizations, plus:
– Performs software pipelining (Section 4.7)
– Performs loop optimizations
– Eliminates global common subexpressions (Section 4.13.4)
– Eliminates global unused assignments (Section 4.13.4)
– Converts array references in loops to incremented pointer form (Section 4.13.8)
– Performs loop unrolling (Section 5.8.34)

• --opt_level=3 or -O3 Performs all --opt_level=2 (-O2) optimizations, plus:
– Removes all functions that are never called (Section 4.4)
– Simplifies functions with return values that are never used (Section 4.4)
– Inlines calls to small functions (Section 3.10 and Section 4.5)
– Reorders function declarations; the called functions attributes are known when the caller is optimized
– Propagates arguments into function bodies when all calls pass the same value in the same argument 

position
– Identifies file-level variable characteristics (Section 4.4)
– Performs other optimizations (Section 4.3 and Section 4.4)

• --opt_level=4 or -O4
– Performs link-time optimization. (Section 4.6)

For details about how the --opt_level and --opt_for_speed options and various pragmas affect inlining, see 
Section 3.10.

Debugging is enabled by default, and the optimization level is unaffected by the generation of debug information.
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Note
Do Not Lower the Optimization Level to Control Code Size: To reduce code size, do not lower 
the --opt_level optimization level. Instead, use the --opt_for_speed option to control the code size/
performance tradeoff. Higher optimization levels (--opt_level or -O) combined with low --opt_for_speed 
levels (0, 1 or 2) result in smaller code sizes.

4.2 Controlling Code Size Versus Speed
To balance the tradeoff between code size and speed, use the --opt_for_speed option. The level of optimization 
(0-5) controls the type and degree of code size or code speed optimization:

• --opt_for_speed=0

Optimizes code size with a high risk of worsening or impacting performance.
• --opt_for_speed=1

Optimizes code size with a medium risk of worsening or impacting performance.
• --opt_for_speed=2

Optimizes code size with a low risk of worsening or impacting performance.
• --opt_for_speed=3

Optimizes code performance/speed with a low risk of worsening or impacting code size.
• --opt_for_speed=4

Optimizes code performance/speed with a medium risk of worsening or impacting code size.
• --opt_for_speed=5

Optimizes code performance/speed with a high risk of worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If you do 
not specify the --opt_for_speed option, the default setting is 4

4.3 Performing File-Level Optimization (--opt_level=3 option)
The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level optimization. You 
can use the --opt_level=3 option alone to perform general file-level optimization, or you can combine it with other 
options to perform more specific optimizations. The options listed in Table 4-1 work with --opt_level=3 to perform 
the indicated optimization:

Table 4-1. Options That You Can Use With --opt_level=3
If You ... Use this Option See
Want to create an optimization information file --gen_opt_level=n Section 4.3.1
Want to compile multiple source files --program_level_compile Section 4.4

Note
Do Not Lower the Optimization Level to Control Code Size

When trying to reduce code size, do not lower the level of optimization, as you might see an increase 
in code size. Instead, set the --opt_for_speed option to 0, 1, or 2 to reduce the code size.
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4.3.1 Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option , you can use the --gen_opt_info option to create an 
optimization information file that you can read. The number following the option denotes the level (0, 1, or 2). 
The resulting file has an .nfo extension. Use Table 4-2 to select the appropriate level to append to the option.

Table 4-2. Selecting a Level for the --gen_opt_info Option
If you... Use this option
Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 option 
in a command file or an environment variable. The --gen_opt_level=0 option restores the default behavior of 
the optimizer.

--gen_opt_info=0

Want to produce an optimization information file --gen_opt_info=1
Want to produce a verbose optimization information file --gen_opt_info=2

4.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)
You can specify program-level optimization by using the --program_level_compile option with the --opt_level=3 
option (aliased as -O3). (If you use --opt_level=4 (-O4), the --program_level_compile option cannot be used, 
because link-time optimization provides the same optimization opportunities as program level optimization.)

With program-level optimization, all of your source files are compiled into one intermediate file called a module. 
The module moves to the optimization and code generation passes of the compiler. Because the compiler can 
see the entire program, it performs several optimizations that are rarely applied during file-level optimization:

• If a particular argument in a function always has the same value, the compiler replaces the argument with the 
value and passes the value instead of the argument.

• If a return value of a function is never used, the compiler deletes the return code in the function.
• If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 in order to perform these optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to generate 
an information file. See Section 4.3.1 for more information.

In Code Composer Studio, when the --program_level_compile option is used, C and C++ files that have the 
same options are compiled together. However, if any file has a file-specific option that is not selected as a 
project-wide option, that file is compiled separately. For example, if every C and C++ file in your project has 
a different set of file-specific options, each is compiled separately, even though program-level optimization has 
been specified. To compile all C and C++ files together, make sure the files do not have file-specific options. Be 
aware that compiling C and C++ files together may not be safe if previously you used a file-specific option.

Note
Compiling Files With the --program_level_compile and --keep_asm Options

If you compile all files with the --program_level_compile and --keep_asm options, the compiler 
produces only one .asm file, not one for each corresponding source file.
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4.4.1 Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3, by 
using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in other 
modules can call a module's external functions or modify a module's external variables. The number following 
--call_assumptions indicates the level you set for the module that you are allowing to be called or modified. 
The --opt_level=3 option combines this information with its own file-level analysis to decide whether to treat this 
module's external function and variable declarations as if they had been declared static. Use Table 4-3 to select 
the appropriate level to append to the --call_assumptions option.

Table 4-3. Selecting a Level for the --call_assumptions Option
If Your Module … Use this Option
Has functions that are called from other modules and global variables that are modified in other modules --call_assumptions=0
Does not have functions that are called by other modules but has global variables that are modified in other 
modules

--call_assumptions=1

Does not have functions that are called by other modules or global variables that are modified in other 
modules

--call_assumptions=2

Has functions that are called from other modules but does not have global variables that are modified in 
other modules

--call_assumptions=3

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you specified, 
or it might disable program-level optimization altogether. Table 4-4 lists the combinations of --call_assumptions 
levels and conditions that cause the compiler to revert to other --call_assumptions levels.

Table 4-4. Special Considerations When Using the --call_assumptions Option

If --call_assumptions is... Under these Conditions...
Then the --call_assumptions 
Level...

Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2
Not specified The compiler sees calls to outside functions under the --opt_level=3 

optimization level
Reverts to --call_assumptions=0

Not specified Main is not defined Reverts to --call_assumptions=0
--call_assumptions=1 or
--call_assumptions=2

No function has main defined as an entry point, and no interrupt 
functions are defined, and no functions are identified by the 
FUNC_EXT_CALLED pragma

Reverts to --call_assumptions=0

--call_assumptions=1 or
--call_assumptions=2

A main function is defined, or, an interrupt function is defined, or a 
function is identified by the FUNC_EXT_CALLED pragma

Remains --call_assumptions=1 or 
--call_assumptions=2

--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a --call_assumptions 
option or the FUNC_EXT_CALLED pragma.

4.5 Automatic Inline Expansion (--auto_inline Option)
When optimizing with the --opt_level=3 option (aliased as -O3), the compiler automatically inlines small 
functions. A command-line option, --auto_inline=size, specifies the size threshold for automatic inlining. This 
option controls only the inlining of functions that are not explicitly declared as inline.

When the --auto_inline option is not used, the compiler sets the size limit based on the optimization level and the 
optimization goal (performance versus code size). If the -auto_inline size parameter is set to 0, automatic inline 
expansion is disabled. If the --auto_inline size parameter is set to a non-zero integer, the compiler automatically 
inlines any function smaller than size. (This is a change from previous releases, which inlined functions for which 
the product of the function size and the number of calls to it was less than size. The new scheme is simpler, but 
will usually lead to more inlining for a given value of size.)

The compiler measures the size of a function in arbitrary units; however the optimizer information file (created 
with the --gen_opt_info=1 or --gen_opt_info=2 option) reports the size of each function in the same units that 
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the --auto_inline option uses. When --auto_inline is used, the compiler does not attempt to prevent inlining that 
causes excessive growth in compile time or size; use with care.

When --auto_inline option is not used, the decision to inline a function at a particular call-site is based on an 
algorithm that attempts to optimize benefit and cost. The compiler inlines eligible functions at call-sites until a 
limit on size or compilation time is reached.

Inlining behavior varies, depending on which compile-time options are specified:

• The code size limit is smaller when compiling for code size rather than performance. The --auto_inline option 
overrides this size limit.

• At --opt_level=3, the compiler automatically inlines small functions.

For information about interactions between command-line options, pragmas, and keywords that affect inlining, 
see Section 3.10.

Note
Some Functions Cannot Be Inlined: For a call-site to be considered for inlining, it must be legal 
to inline the function and inlining must not be disabled in some way. See the inlining restrictions in 
Section 3.10.2.

Note
Optimization Level 3 and Inlining: In order to turn on automatic inlining, you must use the 
--opt_level=3 option. If you desire the --opt_level=3 optimizations, but not automatic inlining, use 
--auto_inline=0 with the --opt_level=3 option.

Note
Inlining and Code Size: Expanding functions inline increases code size, especially inlining a function 
that is called in a number of places. Function inlining is optimal for functions that are called only from a 
small number of places and for small functions. To prevent increases in code size because of inlining, 
use the --auto_inline=0 option. This option causes the compiler to inline intrinsics only.
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4.6 Link-Time Optimization (--opt_level=4 Option)
Link-time optimization is an optimization mode that allows the compiler to have visibility of the entire program. 
The optimization occurs at link-time instead of compile-time like other optimization levels.

Link-time optimization is invoked using the --opt_level=4 option. This option must be placed before the 
--run_linker (-z) option on the command line, because both the compiler and linker are involved in link-time 
optimization. At compile time, the compiler embeds an intermediate representation of the file being compiled into 
the resulting object file. At link-time this representation is extracted from every object file which contains it, and is 
used to optimize the entire program.

If you use --opt_level=4 (-O4), the --program_level_compile option cannot also be used, because link-time 
optimization provides the same optimization opportunities as program level optimization (Section 4.4). Link-time 
optimization provides the following benefits:

• Each source file can be compiled separately. One issue with program-level compilation is that it requires 
all source files to be passed to the compiler at one time. This often requires significant modification of a 
customer's build process. With link-time optimization, all files can be compiled separately.

• Third party object files can participate in optimization. If a third party vendor provides object files that were 
compiled with the --opt_level=4 option, those files participate in optimization along with user-generated files. 
This includes object files supplied as part of the TI run-time support. Object files that were not compiled with 
–opt_level=4 can still be used in a link that is performing link-time optimization. Those files that were not 
compiled with –opt_level=4 do not participate in the optimization.

• Source files can be compiled with different option sets, with some exceptions (see below). With program-level 
compilation, all source files must be compiled with the same option set. With link-time optimization, files can 
be compiled with different options. If the compiler determines that two options are incompatible, it issues an 
error.

When using link-time optimization (--opt_level=4) for the C7000, link only source and object files that were 
compiled with the same --silicon_version and --mma_version options. Linking source and/or object files compiled 
with different --silicon_version or --mma_version options may cause the link to fail.

4.6.1 Option Handling

When performing link-time optimization, source files can be compiled with different options. When possible, the 
options that were used during compilation are used during link-time optimization. For options which apply at the 
program level, --auto_inline for instance, the options used to compile the main function are used. If main is not 
included in link-time optimization, the option set used for the first object file specified on the command line is 
used. Some options, --opt_for_speed for instance, can affect a wide range of optimizations. For these options, 
the program-level behavior is derived from main, and the local optimizations are obtained from the original option 
set.

Some options are incompatible when performing link-time optimization. These are usually that which conflict 
on the command line as well, but can also be options that cannot be handled during link-time optimization. 
Notably, when using link-time optimization with the C7000 compiler, use only source and/or object files that were 
compiled with the same --silicon_version and --mma_version options.

4.6.2 Incompatible Types

During a normal link, the linker does not check to make sure that each symbol was declared with the same type 
in different files. This is not necessary during a normal link. When performing link-time optimization, however, 
the linker must ensure that all symbols are declared with compatible types in different source files. If a symbol 
is found which has incompatible types, an error is issued. The rules for compatible types are derived from the C 
and C++ standards.
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4.7 Optimizing Software Pipelining
Software pipelining schedules instructions from a loop so that multiple iterations of the loop execute in parallel. 
At optimization levels --opt_level=2 (or -O2) and --opt_level=3 (or -O3), the compiler usually attempts to software 
pipeline your loops. The --opt_for_speed option also affects the compiler's decision to attempt to software 
pipeline loops. In general, code size and performance are better when you use the --opt_level=2 or --opt_level=3 
options. (See Section 4.1.)

Figure 4-1 illustrates a software-pipelined loop. The stages of the loop are represented by A, B, C, D, and E. In 
this figure, a maximum of five iterations of the loop can execute at one time. The shaded area represents the 
loop kernel. In the loop kernel, all five stages execute in parallel. The area above the kernel is known as the 
pipelined loop prolog, and the area below the kernel is known as the pipelined loop epilog.

A1

B1
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D1

E1
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B2

C2

D2

E2

A3

B3

C3

D3

E3

A4

B4

C4

D4

E4

A5

B5

C5

D5

E5

Kernel

Pipelined-loop epilog

Pipelined-loop prolog

Figure 4-1. Software-Pipelined Loop

4.7.1 Turn Off Software Pipelining (--disable_software_pipeline Option)

At optimization levels --opt_level=2 (or -O2) and -O3, the compiler attempts to software pipeline your loops. 
You might not want your loops to be software pipelined for debugging reasons. Software-pipelined loops are 
sometimes difficult to debug because the code is not presented serially.

4.7.2 Software Pipelining Information

The compiler embeds software pipelined loop information in the .asm file. This information is used to optimize 
C/C++ code .

The software pipelining information appears as a comment in the .asm file before a loop and for the assembly 
optimizer the information is displayed as the tool is running. Example 4-1 illustrates the information that is 
generated for each loop.

The --debug_software_pipeline option adds additional information displaying the register usage at each cycle of 
the loop kernel and displays the instruction ordering of a single iteration of the software pipelined loop.
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Example 4-1. Software Pipelining Information

;*   SOFTWARE PIPELINE INFORMATION
;*
;*      Loop found in file               : file_name.c
;*      Loop source line                 : 68
;*      Loop opening brace source line   : 69
;*      Loop closing brace source line   : 79
;*      Loop Unroll Multiple             : 2x
;*      Known Minimum Trip Count         : 2                    
;*      Known Max Trip Count Factor      : 2
;*      Loop Carried Dependency Bound(^) : 2
;*      Unpartitioned Resource Bound     : 3
;*      Partitioned Resource Bound       : 3 (pre-sched)
;*
;*      Searching for software pipeline schedule at ...
;*         ii = 3  Did not find schedule
;*         ii = 4  Schedule found with 3 iterations in parallel
;*
;*      Partitioned Resource Bound(*)    : 4 (post-sched)
;*
;*      Constant Extension #0 Used [C0]  : 1
;*      Constant Extension #1 Used [C1]  : 1
;*
;*      Resource Partition (may include "post-sched" split/spill moves):
;*
;*                                                A-side   B-side
;*      .L units                                     2        2     
;*      .S units                                     0        0     
;*      .M units                                     0        0     
;*      .N units                                     0        0     
;*      .D units                                     6        -     
;*      .B units                                     1        -     
;*      .C units                                     -        0     
;*      .P units                                     -        0     
;*
;*      .M/.N units                                  0        0     
;*      .L/.S units                                  2        2     
;*      .L/.S/.C units                               0        0     
;*      .L/.S/.C/.M units                            2        2     
;*      .L/.S/.C/.M/.D units                         3        2     
;*
;*      .X cross paths                               2        2     
;*
;*      Bound(.D1 .D2)                               3        -     
;*      Bound(.M .N .MN)                             0        0     
;*      Bound(.L .S .LS)                             2        2     
;*      Bound(.L .S .C .LS .LSC)                     2        2     
;*      Bound(.L .S .C .M .LS .LSC .LSCM)            2        2     
;*      Bound(.L .S .C .M .D .LS .LSC .LSCM .LSCMD)  3        2
;*      Done
;*
;*      Epilog not entirely removed
;*      Collapsed epilog stages       : 1
;*      Prolog not removed
;*      Collapsed prolog stages       : 0
;*      Max amt of load speculation   : 6 bytes
;*      Minimum safe trip count       : 2 (after unrolling)
;*      Mem bank conflicts/iter(est.) : { min 0.000, est 0.000, max 0.000 }
;*      Mem bank perf. penalty (est.) : 0.0%
;*
;*      Total cycles (est.)         : 8 + trip_cnt * 4        
;*----------------------------------------------------------------------------*

4.7.2.1 Software Pipelining Information Terms

The terms defined below appear in the software pipelining information.

• Loop unroll factor. The number of times the loop was unrolled specifically to increase performance.
• Known minimum trip count. The minimum number of times the loop will be executed.
• Known maximum trip count. The maximum number of times the loop will be executed.
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• Known max trip count factor. Factor that would always evenly divide the loops trip count. This information 
can be used to possibly unroll the loop.

• Loop carried dependency bound. The distance of the largest loop carry path. A loop carry path occurs 
when one iteration of a loop writes a value that must be read in a future iteration. Instructions that are part of 
the loop carry bound are marked with the ^ symbol.

• Initiation interval (ii). The number of cycles between the initiation of successive iterations of the loop. The 
smaller the initiation interval, the fewer cycles it takes to execute a loop.

• Resource bound. The most used resource constrains the minimum initiation interval. If four instructions 
require a .D unit, they require at least two cycles to execute (4 instructions/2 parallel .D units).

• Unpartitioned resource bound. The best possible resource bound values before the instructions in the loop 
are partitioned to a particular side.

• Partitioned resource bound (*). The resource bound values after the instructions are partitioned.
• Resource partition. This table summarizes how the instructions have been partitioned. This information can 

be used to help assign functional units when writing linear assembly. Each table entry has values for the 
A-side and B-side functional units. An asterisk is used to mark those entries that determine the resource 
bound value. The table entries represent the following terms:
– .L units is the total number of instructions that require .L units only.
– .S units is the total number of instructions that require .S units only.
– .M units is the total number of instructions that require .M units only.
– .N units is the total number of instructions that require .N units only.
– .D units is the total number of instructions that require .D units only.
– .B units is the total number of instructions that require the .B unit only.
– .C units is the total number of instructions that require the .C unit only.
– .P units is the total number of instructions that require the .P unit only.
– .M/.N units is the total number of instructions that can use either the .M or .N unit.
– .L/.S units is the total number of instructions that can use either the .L or .S unit.
– .L/.S/.C units is the total number of instructions that can use either the .L, .S, or .C unit.
– .L/.S/.C/.M units is the total number of instructions that can use either the .L, .S, .C, or .M unit.
– .L/.S/.C/.M/.D units is the total number of instructions that can use the .L, .S, .C, .M, or .D unit.
– .X cross paths is the total number of cross paths needed.

• Bound(.D1 .D2 .D). The resource bound as determined by the number of instructions that can use the .D1 
and .D2 units.

• Bound(.M .N .MN). The resource bound as determined by the number of instructions that can use the .M 
and .N units.

• Bound(.L .S .LS). The resource bound as determined by the number of instructions that can use the .L 
and .S units.

• Bound(.L .S .C .LS .LSC). The resource bound as determined by the number of instructions that can use 
the .L, .S, and .C units.

• Bound(.L .S .C .M .LS .LSC .LSCM). The resource bound as determined by the number of instructions that 
can use the .L, .S, .C, and .M units.

• Bound(.L .S .C .M .D .LS .LSC .LSCM .LSCMD). The resource bound as determined by the number of 
instructions that can use the .L, .S, .C, .M, and .D units.

• Max amt of load speculation. The maximum number of bytes that loads in this loop will speculate beyond 
the end of an array (behind or ahead). No user action is required here as the compiler will use load 
instructions that are safe to speculate.
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4.7.2.2 Loop Disqualified for Software Pipelining Messages

The following messages appear if the loop is completely disqualified for software pipelining:

• Bad loop structure. This error is very rare and can stem from the following:
– An asm statement inserted in the C code inner loop
– Complex control flow such as GOTO statements and breaks

• Loop contains a call. Sometimes the compiler may not be able to inline a function call that is in a loop. 
Because the compiler could not inline the function call, the loop could not be software pipelined.

• Too many instructions. There are too many instructions in the loop to software pipeline.
• Software pipelining disabled. Software pipelining has been disabled by a command-line option, such as 

when using the --disable_software_pipeline option, not using the --opt_level=2 (or -O2) or --opt_level=3 (or 
-O3) option, or using the --opt_for_speed=0 or --opt_for_speed=1 option.

• Uninitialized trip counter. The trip counter may not have been set to an initial value.
• Suppressed to prevent code expansion. Software pipelining may be suppressed because of the --

opt_for_speed=2 option. When the --opt_for_speed=2 option is used, software pipelining is disabled in less 
promising cases to reduce code size. To enable pipelining, use --opt_for_speed=4 or --opt_for_speed=5.

• Cannot identify trip counter. The loop trip counter could not be identified or was used incorrectly in the loop 
body.

4.7.2.3 Pipeline Failure Messages

The following messages can appear when the compiler or assembly optimizer is processing a software pipeline 
and it fails:

• Address increment is too large. An address register's offset must be adjusted because the offset is out of 
range of the offset addressing mode. You must minimize address register offsets.

• Cannot allocate machine registers. A software pipeline schedule was found, but it cannot allocate machine 
registers for the schedule. Simplification of the loop may help.

The register usage for the schedule found at the given ii is displayed.

– Regs Live Always. The number of values that must be assigned a register for the duration of the whole 
loop body. This means that these values must always be allocated registers for any given schedule found 
for the loop.

– Max Regs Live. Maximum number of values live at any given cycle in the loop that must be allocated to a 
register. This indicates the maximum number of registers required by the schedule found.

– Max Cond Regs Live. Maximum number of registers live at any given cycle in the loop kernel that must 
be allocated to a condition register.

• Cycle count too high. Never profitable. With the schedule that the compiler found for the loop, it is more 
efficient to use a non-software-pipelined version.

• Did not find schedule. The compiler was unable to find a schedule for the software pipeline at the given ii 
(iteration interval). You should simplify the loop and/or eliminate loop carried dependencies.

• Iterations in parallel > minimum or maximum trip count. A software pipeline schedule was found, but 
the schedule has more iterations in parallel than the minimum or maximum loop trip count. You must enable 
redundant loops or communicate the trip information.

• Register is live too long. A register must have a value that exists (is live) for more than ii cycles. The 
compiler tries to insert move instructions to split register lifetimes that are longer than ii cycles , but may not 
always be successful.

• Too many predicates live on one side. The C7000 has predicate, or conditional, registers available for use 
with conditional instructions. There are six predicate registers. There are three on the A side and three on 
the B side. Sometimes the particular partition and schedule combination requires more than these available 
registers.

• Schedule found with N iterations in parallel. (This is not a failure message.) A software pipeline schedule 
was found with N iterations executing in parallel.

• Trip variable used in loop - Cannot adjust trip count. The loop trip counter has a use in the loop other 
than as a loop trip counter.
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• Unsafe schedule for irregular loop. "Irregular" loops are non-downcounting loops with a known number 
of iterations, such as a while loop. Irregular loops may require transformations that execute instructions 
more times than called for by the loop. This error means the compiler was unable to find a schedule with 
instructions that are safe to over-execute, are guarded with a predicate, or have their effects undone after the 
loop. Try to rewrite the loop as a down-counting loop.

4.7.2.4 Register Usage Table Generated by the --debug_software_pipeline Option

The --debug_software_pipeline option places additional software pipeline feedback in the generated assembly 
file. This information includes a single scheduled iteration view of the software pipelined loop.

If software pipelining succeeds for a given loop, and the --debug_software_pipeline option was used during the 
compilation process, a register usage table is added to the software pipelining information comment block in the 
generated assembly code.

The numbers on each row represent the cycle number within the loop kernel.

Each column represents one register on the C7000. The registers are labeled in the first three rows of the 
register usage table and should be read columnwise.

An * in a table entry indicates that the register indicated by the column header is live on the kernel execute 
packet indicated by the cycle number labeling each row.

An example of the register usage table follows:

;*      Register Usage Tables:
;*
;*      +----------------------------------+----------------------------------+ 
;*      |              ASIDE               |              BSIDE               | 
;*      +----------------+--------+--------+----------------+--------+--------+ 
;*      |      "Axx"     |  "ALx" |  "AMx" |     "VBxx"     | "VBLx" | "VBMx" | 
;*      +----------------|--------|--------|----------------|--------|--------+ 
;*      |0000000000111111|00000000|00000000|0000000000111111|00000000|00000000| 
;*      |0123456789012345|01234567|01234567|0123456789012345|01234567|01234567| 
;*      +----------------|--------|--------|----------------|--------|--------+ 
;*   0: |*  ***          |*       |***     |     *          |***     |******* | 
;*   1: |*  ***          |**      | **     |    **          |***     |* ***** | 
;*   2: |* ****          |*       |***     |  * **          |***     |*  **** | 
;*   3: |******          |*       | **     | ** **          |**      |*  **** | 
;*   4: |** ***          |*       | **     |******          |***     |   **** | 
;*   5: |** ***          |*       | **     |*** **          |**      |** **** | 
;*   6: |*  ***          |*       | **     |*** **          |*       |******* | 
;*   7: |*  ***          |*       |***     |*   **          |**      |******* | 
;*      +----------------+--------+--------+----------------+--------+--------+ 
;*
;*      +----------------+                 +--------+       +-------+
;*      |      "Dxx"     |                 |  "Px"  |       |"CUCRx"|
;*      +----------------+                 +--------+       +-------+
;*      |0000000000111111|                 |00000000|       |0000   |
;*      |0123456789012345|                 |01234567|       |0123   |
;*      +----------------+                 +--------+       +-------+
;*   0: |*               |                 |        |       |       |
;*   1: |*               |                 |        |       |       |
;*   2: |*               |                 |        |       |       |
;*   3: |*               |                 |        |       |       |
;*   4: |*               |                 |        |       |       |
;*   5: |*               |                 |        |       |       |
;*   6: |*               |                 |        |       |       |
;*   7: |*               |                 |        |       |       |
;*      +----------------+                 +--------+       +-------+

This example shows that on cycle 0 (the first execute packet) of the loop kernel, registers A0, A3, A4, A5, A6, 
AL0, AM0, AM1, AM2, VB5, VBL0, VBL1, VBL2, VBM0, VBM1, VBM2, VBM3, VBM4, VBM5, VBM6, and D0 are 
all live during this cycle.
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4.7.3 Collapsing Prologs and Epilogs for Improved Performance and Code Size

When a loop is software pipelined, a prolog and epilog are generally required. The prolog is used to pipe up the 
loop and epilog is used to pipe down the loop.

In general, a loop must execute a minimum number of iterations before the software-pipelined version can be 
safely executed. If the minimum known trip count is too small, either a redundant loop is added or software 
pipelining is disabled. Collapsing the prolog and epilog of a loop can reduce the minimum trip count necessary to 
safely execute the pipelined loop.

Collapsing can also substantially reduce code size. Some of this code size growth is due to the redundant loop. 
The remainder is due to the prolog and epilog.

The prolog and epilog of a software-pipelined loop consists of up to p-1 stages of length ii, where p is the 
number of iterations that are executed in parallel during the steady state and ii is the cycle time for the 
pipelined loop body. During prolog and epilog collapsing the compiler tries to collapse as many stages as 
possible. However, over-collapsing can have a negative performance impact. Thus, by default, the compiler 
attempts to collapse as many stages as possible without sacrificing performance. When the --opt_for_speed=2 
or --opt_for_speed=1 options are invoked, the compiler increasingly favors code size over performance.

4.7.3.1 Speculative Execution

Collapsing of the prolog and epilog can usually reduce the minimum safe trip count. If the minimum known trip 
count is less than the minimum safe trip count, a redundant loop is required. Otherwise, pipelining must be 
suppressed. Both these values can be found in the comment block preceding a software pipelined loop.

;*Known Minimum Trip Count: 1 
.... 
;*Minimum safe trip count: 7 
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4.8 Redundant Loops
A loop iterates some number of times before the loop terminates. The number of iterations is called the trip 
count. The variable that counts iterations is the trip counter. When the trip counter reaches a limit equal to the 
trip count, the loop terminates. The Code Generation Tools use the trip count to determine whether or not a loop 
can be pipelined. The structure of a software pipelined loop requires the execution of a minimum number of loop 
iterations (a minimum trip count) in order to fill or prime the pipeline.

The minimum trip count for a software pipelined loop is set by the number of iterations executing in parallel. In 
Figure 4-1, the minimum trip count is five. In the following example A, B, and C are instructions in a software 
pipeline, so the minimum trip count for this single-cycle software pipelined loop is three.

A
B A
C B A ←Three iterations in parallel = minimum trip count

C B
C

When the Code Generation Tools cannot determine the trip count for a loop, then by default two loops and 
control logic are generated. The first loop is not pipelined, and it executes if the run-time trip count is less than 
the loop's minimum safe trip count. The second loop is the software pipelined loop, and it executes when the 
run-time trip count is greater than or equal to the minimum trip count. At any given time, one of the loops is a 
redundant loop. For example:

foo(N)  /* N is the trip count */
{
   for (I=0; I < N; I++) /* I is the trip counter */
}

After finding a software pipeline for the loop, the compiler transforms foo() as below, assuming the minimum trip 
count for the loop is 3. Two versions of the loop would be generated and the following comparison would be 
used to determine which version should be executed:

foo(N) 
{
   if (N < 3)
   {
      for (I=0; I < N; I++)   /* Unpipelined version */
   }
   else 
   }
      for (I=0; I < N; I++)   /* Pipelined version   */ 
   }
}
foo(50); /* Execute software pipelined loop          */
foo(2);  /* Execute loop (unpipelined)*/

You may be able to help the compiler avoid producing redundant loops with the use of --program_level_compile 
--opt_level=3 (see Section 4.4) or the use of the MUST_ITERATE pragma (see Section 5.8.23).
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4.9 Indicating Whether Certain Aliasing Techniques Are Used
Aliasing occurs when you can access a single object in more than one way, such as when two pointers point 
to the same object or when a pointer points to a named object. Aliasing can disrupt optimization, because any 
indirect reference can refer to another object. The compiler analyzes the code to determine where aliasing can 
and cannot occur, then optimizes as much as possible while preserving the correctness of the program. The 
compiler behaves conservatively.

The following sections describe some aliasing techniques that may be used in your code. These techniques 
are valid according to the ISO C standard and are accepted by the C7000 compiler; however, they prevent the 
optimizer from fully optimizing your code.

4.9.1 Use the --aliased_variables Option When Certain Aliases are Used

The compiler, when invoked with optimization, assumes that if the address of a local variable is passed to a 
function, the function changes the local variable by writing through the pointer. This makes the local variable's 
address unavailable for use elsewhere after returning. For example, the called function cannot assign the local 
variable's address to a global variable or return the local variable's address.

If your code uses aliases in this way and uses optimization, you must use the --aliased_variables option. For 
example, suppose your code is similar to the following, in which the address of the local variable x is passed 
to the function f(), which aliases glob_ptr to that address and returns the address. If this example were to be 
compiled with optimization, the --aliased_variables option would be needed in order for the function f() to be able 
to successfully perform its actions.

int *glob_ptr;
g()
{
    int  x = 1; 
    int *p = f(&x);
    *p        = 5;    /* p aliases x    */
    *glob_ptr = 10;   /* glob_ptr aliases x */
    h(x);
}
int *f(int *arg) 
{ 
    glob_ptr = arg;
    return arg; 
}

4.10 Prevent Reordering of Associative Floating-Point Operations
The compiler freely reorders associative floating-point operations. If you do not wish to have the compiler reorder 
associative floating point operations, use the --fp_not_associative option. Specifying the --fp_not_associative 
option may decrease performance.

www.ti.com Optimizing Your Code

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 67

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


 

4.11 Using the Interlist Feature With Optimization
You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On option) 
with the --optimizer_interlist and --c_src_interlist options.

• The --optimizer_interlist option interlists compiler comments with assembly source statements.
• The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the original 

C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a separate 
pass. Instead, the compiler inserts comments into the code, indicating how the compiler has rearranged and 
optimized the code. These comments appear in the assembly language file as comments starting with ;**. The 
C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing 
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the compiler 
extensively rearranges your program. Therefore, when you use the --optimizer_interlist option, the compiler 
writes reconstructed C/C++ statements.

Note
Impact on Performance and Code Size: The --c_src_interlist option can have a negative effect on 
performance and code size.

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts its 
comments and the interlist feature runs before the assembler, merging the original C/C++ source into the 
assembly file.

4.12 Debugging and Profiling Optimized Code
The compiler generates symbolic debugging information by default at all optimization levels. Generating debug 
information does not affect compiler optimization or generated code. However, higher levels of optimization 
negatively impact the debugging experience due to the code transformations that are done. For the best 
debugging experience use --opt_level=off.

The default optimization level is off.

Debug information increases the size of object files, but it does not affect the size of code or data on the target. 
If object file size is a concern and debugging is not needed, use --symdebug:none to disable the generation of 
debug information.

If you are having trouble debugging loops in your code, you can use the --disable_software_pipeline option to 
turn off software pipelining. See Section 4.7.1 for more information.

4.12.1 Profiling Optimized Code

To profile optimized code, use optimization (--opt_level=0 through --opt_level=3).
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4.13 What Kind of Optimization Is Being Performed?
The C7000 C/C++ compiler uses a variety of optimization techniques to improve the execution speed of your 
C/C++ programs and to reduce their size. Following are some of the optimizations performed by the compiler:

Optimization See
Cost-based register allocation Section 4.13.1
Alias disambiguation Section 4.13.2
Branch optimizations and control-flow simplification Section 4.13.3
Data flow optimizations
• Copy propagation
• Common subexpression elimination
• Redundant assignment elimination

Section 4.13.4

Expression simplification Section 4.13.5
Inline expansion of functions Section 4.13.6
Function symbol aliasing Section 4.13.7
Induction variables and strength reduction Section 4.13.8
Loop-invariant code motion Section 4.13.9
Loop rotation Section 4.13.10
Loop collapsing and loop coalescing Section 4.13.11
Vectorization Section 4.13.12
Instruction scheduling Section 4.13.13

C7000-Specific Optimization See
Register variables Section 4.13.14
Register tracking/targeting Section 4.13.15
Software pipelining Section 4.13.16

4.13.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary values 
according to their type, use, and frequency. Variables used within loops are weighted to have priority over others, 
and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a simple 
counting loop and software pipeline, unroll or eliminate the loop. Strength reduction turns the array references 
into efficient pointer references with autoincrements.

4.13.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine 
whether or not two or more I values (lowercase L: symbols, pointer references, or structure references) refer to 
the same memory location. This aliasing of memory locations often prevents the compiler from retaining values 
in registers because it cannot be sure that the register and memory continue to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the same 
location, allowing the compiler to freely optimize such expressions.
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4.13.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of operations 
(basic blocks) to remove branches or redundant conditions. Unreachable code is deleted, branches to branches 
are bypassed, and conditional branches over unconditional branches are simplified to a single conditional 
branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow 
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as 
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are reduced to 
conditional instructions, totally eliminating the need for branches.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.

4.13.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and remove 
unnecessary assignments, and avoid operations that produce values that are already computed. The compiler 
with optimization enabled performs these data flow optimizations both locally (within basic blocks) and globally 
(across entire functions).

• Copy propagation. Following an assignment to a variable, the compiler replaces references to the variable 
with its value. The value can be another variable, a constant, or a common subexpression. This can result in 
increased opportunities for constant folding, common subexpression elimination, or even total elimination of 
the variable. This type of optimization is enabled by the --opt_level=1 and higher optimization settings.

• Common subexpression elimination. When two or more expressions produce the same value, the 
compiler computes the value once, saves it, and reuses it. This type of optimization is enabled by the 
--opt_level=2 and higher optimization settings.

• Redundant assignment elimination. Often, copy propagation and common subexpression elimination 
optimizations result in unnecessary assignments to variables (variables with no subsequent reference before 
another assignment or before the end of the function). The compiler removes these dead assignments. 
This type of optimization is enabled by the --opt_level=1 for local assignments and --opt_level=2 for global 
assignments.

4.13.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer instructions or 
registers. Operations between constants are folded into single constants. For example, a = (b + 4) - (c + 1) 
becomes a = b - c + 3.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.

4.13.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a function 
call as well as providing increased opportunities to apply other optimizations. For information about interactions 
between command-line options, pragmas, and keywords that affect inlining, see Section 3.10.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.
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4.13.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two functions 
have the same signature (same return value and same number of parameters with the same type, in the same 
order), then the compiler can make the calling function an alias of the called function.

For example, consider the following:

int bbb(int arg1, char *arg2);
int aaa(int n, char *str)
{
   return bbb(n, str);
} 

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa should be 
redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of function aaa can 
be removed and the symbol aaa is defined at the same address as bbb.

For information about using the GCC function attribute syntax to declare function aliases, see Section 5.13.2

4.13.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions of the 
loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with more 
efficient expressions. For example, code that indexes into a sequence of array elements is replaced with code 
that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your loop-control 
variable, allowing its elimination.

This type of optimization is enabled by the --opt_level=2 and higher optimization settings.

4.13.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The computation is 
moved in front of the loop, and each occurrence of the expression in the loop is replaced by a reference to the 
precomputed value.

4.13.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In many 
cases, the initial entry conditional check and the branch are optimized out.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.

4.13.11 Loop Collapsing and Loop Coalescing

Under certain circumstances, the compiler combines a loop nest (for example, a "for" loop inside a "for" loop) 
when the compiler thinks this will lead to faster performance.

4.13.12 Vectorization (SIMD)

The compiler may convert a loop such that it uses instructions that operate on more than one piece of data at a 
time, increasing the performance dramatically.
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4.13.13 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a way 
that improves performance while maintaining the semantics of the original order. Instruction scheduling is used 
to improve instruction parallelism and hide latencies. It can also be used to reduce code size.

4.13.14 Register Variables

The compiler helps maximize the use of registers for storing local variables, parameters, and temporary values. 
Accessing variables stored in registers is more efficient than accessing variables in memory. Register variables 
are particularly effective for pointers.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.

4.13.15 Register Tracking/Targeting

The compiler tracks the contents of registers to avoid reloading values if they are used again soon. Variables, 
constants, and structure references such as (a.b) are tracked through straight-line code. Register targeting also 
computes expressions directly into specific registers when required, as in the case of assigning to register 
variables or returning values from functions.

4.13.16 Software Pipelining

Software pipelining is a technique use to schedule from a loop so that multiple iterations of a loop execute in 
parallel. See Section 4.7 for more information.

This type of optimization is enabled by the --opt_level=2 and higher optimization settings.
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4.14 Streaming Engine and Streaming Address Generator
The Streaming Engine (SE) and Streaming Address Generator (SA) intrinsic interface is defined in 
c7x_strm.h, which is included as part of the C7000 runtime support and is included automatically by c7x.h.

As described below, basic utilization of the SE and SA relies on parameter templates and flags that must be 
pre-configured before the SE or SA can be opened and used. For both the SE and the SA, the vector length is 
configured as part of the setup flags. The advancement mechanism is based on this as well as the dimensions 
and counts that are configured as part of the parameter template.

For the SE, the element size is also configured directly into the setup flags and is then used in the SE address 
calculation. However, the SA does not work this way. For the SA, the advancement mechanism is abstracted 
based on its configuration, but the actual hardware offset is calculated and scaled based on the element size, 
which is derived not from the flags but from the load or store instruction being used with the SA. This allows the 
same SA to be effectively used by different load or store instructions that have different element sizes.

4.14.1 Parameter Template Configuration

A parameter template is a variable of type __SE_TEMPLATE_v1 or __SA_TEMPLATE_v1 that is used to specify 
counters, sizes, and flags that control the behavior of the Streaming Engine (SE) and Streaming Address 
Generator (SA). The iteration counters (ICNT) and dimension sizes (DIM) for up to six levels of nesting apply 
to both the SE and SA. Functional flags are specific to either the SE or the SA. The parameter templates are 
effectively vectors of 64-bit values.

Note that __SE_TEMPLATE_v1 and __SA_TEMPLATE_v1 are defined as separate types. Previously, a shared 
type was used.

To initialize parameters for the __SE_TEMPLATE_v1 type, call __gen_SE_TEMPLATE_v1().

__SE_TEMPLATE_v1 se_params = __gen_SE_TEMPLATE_v1();

To initialize parameters for the __SA_TEMPLATE_v1 type, call __gen_SA_TEMPLATE_v1().

__SA_TEMPLATE_v1 sa_params = __gen_SA_TEMPLATE_v1();

After initialization, configure the parameter template using assignments like the following:

• Set Iteration Counter for Level 0 (Dimension is always implied to be the element width)

    p.ICNT0 = <value>;

• Set Iteration Counter and Dimension Size for Level 1-5

    p.ICNT<n> = <value>;
    p.DIMn> = <value>;

• Set DECDIM width

    p.DECDIM<n>.WIDTH = <value>;

• Set LEZR Count

    p.LEZR_CN = <value>;
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For example, to configure a parameter vector for an SE with four dimensions:

// Setup Template Vector Based on Settings and Open the Stream         
// Based on Iteration Counters and Dimensions (in Terms of # of Elems) 
__SE_TEMPLATE_v1 params = __gen_SE_TEMPLATE_v1();
params.ICNT0 = 4;
params.ICNT1 = 2;
params.DIM1  = 4;
params.ICNT2 = 2;
params.DIM2  = 8;
params.ICNT3 = 4;
params.DIM3  = -16;

The counters and dimension sizes for unused dimensions do not need to be configured as long as the DIMFMT 
flag is set to the proper format flag. This flag tells the hardware to ignore uninitialized data in these unused fields.

For the Streaming Engine, the following additional flags can be configured within a variable defined with the 
__SE_TEMPLATE_v1 type. These flags are documented in the c7x_strm.h file.

ELETYPE
TRANSPOSE
PROMOTE
GRPDUP
VECLEN
ELDUP
DECIM
DIR
DIMFMT
DECDIM1
DECDIM2
LEZR

For example, the following statements configure SE parameters using constants provided in c7x_strm.h.

se_params.DIMFMT    = __SE_DIMFMT_4D;
se_params.DIR       = __SE_DIR_INC;  
se_params.TRANSPOSE = __SE_TRANSPOSE_OFF;
se_params.DECIM     = __SE_DECIM_OFF;
se_params.VECLEN    = __SE_VECLEN_4ELEMS; // 4 ELEMENTS
se_params.ELETYPE   = __SE_ELETYPE_32BIT; 
se_params.PROMOTE   = __SE_PROMOTE_OFF;
se_params.GRPDUP    = __SE_GRPDUP_OFF;
se_params.ELDUP     = __SE_ELEDUP_OFF;
se_params.DECDIM1   = __SE_DECDIM0;
se_params.DECDIM2   = __SE_DECDIM0;
se_params.LEZR      = __SE_LEZR_OFF;

For the Streaming Address Generator, the following additional flags can be configured within a variable defined 
with the __SA_TEMPLATE_v1 type.

VECLEN
DIMFMT
DECDIM1
DECDIM1SD
DECDIM2
DECDIM2SD

For example, the following statements configure SA parameters using constants provided in c7x_strm.h.

sa_params.VECLEN    = __SA_VECLEN_4ELEMS; // 4 ELEMENTS 
sa_params.DIMFMT    = __SA_DIMFMT_4D;                                         
sa_params.DECDIM1   = __SA_DECDIM0;
sa_params.DECDIM2   = __SA_DECDIM0;
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4.14.2 Using the Streaming Engine

Once the streaming engine has been configured, a corresponding stream can be opened and used. The 
following API is provided to facilitate this, which take the parameter template as well as the starting memory 
address from which the hardware should fetch the stream data:

• Open Streaming Engine 0: __SE0_OPEN(void *addr, __SE_TEMPLATE_v1 param); 
• Open Streaming Engine 1: __SE1_OPEN(void *addr, __SE_TEMPLATE_v1 param); 
The streaming engines are accessed using the following API, which will return a vector of data according to the 
given type, which is used to cast the type of the data being fetched by the stream:

• Read Streaming Engine 0 (and advance): __SE0(type), __SE0ADV(type) 
• Read Streaming Engine 1 (and advance): __SE1(type), __SE1ADV(type) 
Streaming Engines are closed using the corresponding close API:

• Close Streaming Engine 0: __SE0_CLOSE(); 
• Close Streaming Engine 1: __SE1_CLOSE(); 
Example for a stream with four dimensions:

// OPEN STREAMING ENGINE 1 AT startaddr WITH PARAMETER TEMPLATE params
__SE1_OPEN((void*)startaddr, params);                                  
// READ THE STREAM AND ADVANCE THE COUNTERS                            
for (I0 = 0; I0 < 8; I0++)                                             
{                                                                      
    uint8 Vout;                                                        
    Vout.lo = __SE1ADV(uint4);                                         
    Vout.hi = __SE1ADV(uint4);                                         
    Vresult += Vout;                                                   
}                                                                      
// CLOSE THE STREAM                                                    
__SE1_CLOSE();

  

Note

Streaming from the provided memory address implies a contract in which the program promises never 
or modify the data in any area of memory that can be reached by that streaming engine during its 
lifetime.
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4.14.2.1 Hard-Coded Intrinsic Operands with the Streaming Engine

A small handful of C7000 instructions, specifically some VFIR and VMATMPY instructions, can only accept 
streaming engine operands because they are hard-wired to the SE. This includes accesses of a single SE (e.g. 
SE0) as well as accesses of a pair of SE streams together (e.g. SE1:SE0). These instructions have a special 
intrinsic interface that is defined using an enumeration called SE_REG or SE_REG_PAIR that must be used with 
the intrinsic. Because of this special interface, these instructions can only be accessed using direct-mapped, 
low-level intrinsics.

• SE_REG

/*----------------------------------------------------------------------------*/
/* Use the following for SE_REG operands.                                     */
/*----------------------------------------------------------------------------*/
enum SE_REG
{
    SE_REG_0     = 0, // READ SE0
    SE_REG_0_ADV = 1, // READ SE0 AND ADVANCE
    SE_REG_1     = 2, // READ SE1
    SE_REG_1_ADV = 3  // READ SE1 AND ADVANCE
};

• SE_REG_PAIR

/*----------------------------------------------------------------------------*/
/* Use the following for SE_REG_PAIR operands.                                */
/*----------------------------------------------------------------------------*/
enum SE_REG_PAIR
{
    SE_REG_PAIR_0     = 0, // READ SE0 AND SE1
    SE_REG_PAIR_0_ADV = 1  // READ SE0 AND SE1 AND ADVANCE BOTH STREAMS
};

4.14.3 Using the Streaming Address Generator

Similar to the SE, once the Streaming Address generator (SA) has been configured, a corresponding SA can be 
opened and used. The following API is provided to facilitate this, which takes the parameter template as input:

• Open Streaming Address Generator 0 (SA0): __SA0_OPEN(__SA_TEMPLATE_v1 param); 
• Open Streaming Address Generator 1 (SA1): __SA1_OPEN(__SA_TEMPLATE_v1 param); 
• Open Streaming Address Generator 2 (SA2): __SA2_OPEN(__SA_TEMPLATE_v1 param); 
• Open Streaming Address Generator 3 (SA3): __SA3_OPEN(__SA_TEMPLATE_v1 param); 
The Streaming Address Generators are accessed using the following API. Note that for Streaming Address 
Generators, the base address is given as an input to the read operation, and the return value is a pointer to the 
location that is then used by a memory load or memory store operation. This is because, unlike the SE, an SA 
simply provides an offset added to the given base address. The given type is used to cast the type of the data 
loaded or stored through the SA.

• Read SA0 (and advance): __SA0(type, baseptr), __SA0ADV(type, baseptr) 
• Read SA1 (and advance): __SA1(type, baseptr), __SA1ADV(type, baseptr) 
• Read SA2 (and advance): __SA2(type, baseptr), __SA2ADV(type, baseptr) 
• Read SA3 (and advance): __SA3(type, baseptr), __SA3ADV(type, baseptr) 
Streaming Address Generators are closed using the corresponding close API:

• Close SA0: __SA0_CLOSE(); 
• Close SA1: __SA1_CLOSE(); 
• Close SA2: __SA2_CLOSE(); 
• Close SA3: __SA3_CLOSE(); 
When the accessor APIs shown above are used by themselves, the compiler will match a basic load or store 
operation for them, depending on whether they are on the left-hand-side (LHS) or right-hand-side (RHS) of an 
assignment operator.
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The following is an example of an SA-returned pointer dereferenced by itself on both the LHS and RHS to copy 
data from one location to another. Because the SA returns a pointer, dereferencing it on the RHS generates a 
load, and dereferencing it on the LHS generates a store.

// OPEN THE STREAMS, SA0 AND SA1
__SA0_OPEN(params); 
__SA1_OPEN(params);  
// COPY DATA FROM *(src_addr+SA1) TO *(dst_addr+SA0)
for (I0 = 0; I0 < 8; I0++)                                             
{                                                                      
    // COMPILER MATCHES VECTOR LOAD AND STORE FOR FOUR WORD 
DATA                                                     
    *__SA0ADV(uint8, dst_addr) = *__SA1ADV(uint8, src_addr);
}                                                                      
// CLOSE THE STREAMS                   
__SA0_CLOSE();
__SA1_CLOSE();

However, the SA accessor APIs can also be given as input to a load or store intrinsic, as in the following 
example. In this case, since the SA simply returns a pointer that is not dereferenced, the compiler will not 
attempt to match a corresponding basic vector load or store and will instead use the load or store indicated by 
the intrinsic.

// OPEN THE STREAMS, SA0 AND SA1
__SA0_OPEN(params); 
__SA1_OPEN(params);  
// COPY DATA (WITH UNPACK + PACK) FROM *(src_addr+SA1) TO *(dst_addr+SA0)
for (I0 = 0; I0 < 8; I0++)                                             
{                                                                      
   ulong8 data = __vload_unpack_long(__SA1ADV(uint8, src_addr));
   __vstore_packl(__SA0ADV(uint8, dst_addr), data);
}                                                                      
// CLOSE THE STREAMS                   
__SA0_CLOSE();
__SA1_CLOSE();

Note

If the Streaming Address Generator is used with a base pointer that is flagged as restrict, then 
derivations based on that pointer (base + offset), as calculated by the SA, are also assumed to be 
restrict. This means that SA-generated pointers, and all loads and stores that use them, are not 
assumed to alias other memory pointers.

Therefore, using the SA based on restrict base pointers implies a contract in which the program 
promises never or modify the data in any area of memory that can be reached by that Streaming 
Address generator during its lifetime.
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4.14.3.1 Vector Predication for Streaming Address Generators

Each Streaming Address Generator (SA) has an implicit predicate that is set when storing to memory based on 
the number of valid vector elements. However, expressing this behavior using C semantics is not possible, 
because the compiler does not see or track how or when the hardware does the predication, since the 
predication is based upon the SA configuration and may vary for each invocation of the store.

Note
SAs on all C7000 ISAs may be configured to allow predicated SA stores. Predicated SA loads are 
not supported by the C7100 ISA. However, for C7120 and later ISAs, SAs may be configured to allow 
predicated SA loads.

In order to express this functionality in C, the compiler provides an explicit semantic framework that you 
can leverage. The framework explicitly predicates a store operation with a predicate value extracted from the 
corresponding SA. If the compiler detects that the extracted predicate type matches the SA accessor (and 
corresponding memory operation), the compiler then attempts to collapse this down in order to leverage the SA’s 
implicit predication capability.

The API to extract the predicate value into a value of type __vpred includes the following:

• Extract VPRED from SA0 and scale according to specified type: __SA0_VPRED(type) 
• Extract VPRED from SA1 and scale according to specified type: __SA1_VPRED(type) 
• Extract VPRED from SA2 and scale according to specified type: __SA2_VPRED(type) 
• Extract VPRED from SA3 and scale according to specified type: __SA3_VPRED(type) 
The following is an example of this use:

__SA0_OPEN(params);
for (I = 0; I < ((ROW * COL) / SIMD); I++)
{
    vpred sa0_vp = __SA0_VPRED(int16);             // EXTRACT SA0 PREDICATE
    int16 *addr  = __SA0ADV(int16, (int16 *)data); // EXTRACT SA0 ADDRESS
    __vstore_pred(sa0_vp, addr, data);             // USE PREDICATED INTRINSIC
}
__SA0_CLOSE();

Note

As indicated in the example, extracts of the vector predicate associated with a particular Streaming 
Address generator must be done outside of the call to the store intrinsic. If this weren’t the case, 
according to C rules, the order in which parameters of a call are evaluated would be unspecified. 
Therefore doing this:

__vstore_pred(__SA0_VPRED(int16), __SA0ADV(int16, (int16 *)data);

results in undefined behavior because SA0ADV modifies the value returned by SA0_VPRED().

Note

Regardless of the type used in the predicate extraction API or the SA access, an SA advance will 
always increment based on its preconfigured state. The given typename does not impact how an SA 
advance is done.
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4.14.3.2 Predicated vs. Unpredicated Streaming Address Stores and Loads

The Streaming Address Generators (SA) may be configured to cause the generation of SA vector predicates 
containing 0s that may be used to mask part of a load or store. When the SA is configured this way and a load 
or store is based on the SA, it is unspecified whether vector predication will be applied to the operation unless 
vector predication is explicitly specified in the program source code.

The following definitions apply to the code examples for SA and memory operations in this section:

• Predicated: Part of an operation may be masked out, as determined by the SA configuration.
• Unpredicated: Part of an operation will not be masked out, as determined by the SA configuration.

Given these definitions, predicated operations are actually a super-set of unpredicated operations, because all 
unpredicated operations can be represented as predicated operations.

A pointer P1 is defined as based on another pointer P2 if the value of P1 is derived from P2. For example, if ptr 
= __SA0(), then ptr is based on SA0. Similarly, if ptr1 = __SA0() and ptr2 = (ptr1 + 0), both ptr1 
and ptr2 are based on SA0.

The following C examples show various store and load operations. For each operation type, examples that 
produce well-defined or unspecified behavior are shown for SA configurations that either require unpredicated 
operations or allow predicated operations.

Store operations

• SA is configured to require unpredicated stores. (Parts of an operation will not be masked out.)
– Well-defined examples:

• *__SA0ADV(int16, baseptr) = data;              // Normal store

• __vstore_packl(__SA0ADV(int8, baseptr), data); // Specialized store

• int16 *ptr = __SA0ADV(int16, baseptr); 
*ptr = data;

– Examples that result in unspecified behavior:

None, because the SA is configured for unpredicated operations only. The predicated store operations 
shown below are also well-defined with this configuration, although they may be slower.

• SA is configured to allow predicated stores. (Parts of an operation may be masked out.)
– Well-defined examples:

• __vpred vp = __SA0_VPRED(int16);
int16 *ptr = __SA0ADV(int16, baseptr);
__vstore_pred(vp, ptr, data);           // Normal store with explicit predication

• __vpred vp = __SA0_VPRED(int8);
int8 *ptr = __SA0ADV(int8, baseptr);
__vstore_pred_packl(vp, ptr, data);     // Specialized store with explicit predication

– Examples that invoke unspecified behavior:
• *__SA0ADV(int16, baseptr) = data;              // May be predicated

• __vstore_packl(__SA0ADV(int8, baseptr), data); // May be predicated

• int16 *ptr = __SA0ADV(int16, baseptr);
*ptr = data;                                   // May be predicated
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Load operations

• SA is configured to require unpredicated loads. (Parts of an operation will not be masked out.)
– Well-defined examples:

• int16 x = *__SA0ADV(int16, baseptr);                          // Normal load 

• ushort32 x = __vload_unpack_short(__SA0ADV(uchar32, baseptr); // Specialized load

• int16 *ptr = __SA0ADV(int16, baseptr);
int16 x    = *ptr;

– Examples that invoke unspecified behavior:

None, because the SA is configured for unpredicated operations. The predicated load operations shown 
below are also well-defined with this configuration, although they may be slower.

• SA is configured to allow predicated loads. (Parts of an operation may be masked out.)
– Well-defined examples:

• __vpred vp = __SA0_VPRED(int16);
int16 x = *__SA0ADV(int16, baseptr);                            // Normal load
x = select(vp, x, (int16)(0));                                  // Apply predication

• __vpred vp = __SA0_VPRED(int16);
int16 *ptr = __SA0ADV(int16, baseptr);
int16 x    = __vload_pred(vp, ptr);              // Normal load, explicit predication

• __vpred vp = __SA0_VPRED(uchar32);
uchar32 *ptr = __SA0ADV(uchar32, baseptr);
ushort32 x = __vload_pred_unpack_short(vp, ptr); // Specialized load, explicit predication

– Examples that invoke unspecified behavior:
• int16 x = *__SA0ADV(int16, baseptr);                          // May be predicated

• ushort32 x = __vload_unpack_short(__SA0ADV(uchar32, baseptr); // May be predicated

• int16 *ptr = __SA0ADV(int16, baseptr);
int16 x = *ptr // May be predicated
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4.15 Nested Loop Controller (NLC)
In order to better facilitate nested loop coalescing, in which an outer loop level containing instructions is merged 
into an inner loop level, the C7000 architecture provides a feature known as the Nested Loop Controller (NLC). 
This feature implements hardware loop control for no more than one level of loop nesting. This allows the 
compiler to coalesce loop levels while predicating the execution of outer loop instructions in the inner loop. This 
reduces loop control overhead and provides for better function unit resource utilization for software pipelined 
loops. Loop coalescing is something that the compiler attempts to do automatically if the operation is both legal 
and profitable. Profitability is determined by a heuristic.

There are two pragmas that allow you to explicitly enable or disable coalescing of specific nested loops. These 
pragmas can only be applied to loops and must appear immediately before a loop construct in C/C++:

#pragma COALESCE_LOOP
#pragma NO_COALESCE LOOP

4.15.1 Obstacles That May Inhibit Use of NLC

As stated above, the compiler must check for legality before attempting to coalesce the loop. If the compiler 
cannot guarantee that an inner loop is executed at least one time, then it will not coalesce the loop, even if you 
have disabled the profitability heuristic.

To inform the compiler that a loop will always be executed, use a MUST_ITERATE pragma just prior to the loop 
body:

#pragma MUST_ITERATE(1,65535,) 

This pragma tells the compiler that the loop executes at least once and no more than 65,535 times.
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The C language supported by the C7000 was developed by a committee of the American National Standards 
Institute (ANSI) and subsequently adopted by the International Standards Organization (ISO).

The C++ language supported by the C7000 is defined by the ANSI/ISO/IEC 14882:2014 standard with certain 
exceptions.

5.1 Characteristics of C7000 C........................................................................................................................................ 84
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5.1 Characteristics of C7000 C
The C compiler supports the 1989, 1999, and 2011 versions of the C language:

• C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C standard, 
which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the same 
programming language. "C89" is used in this document.

• C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C standard.
• C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming 
Language (K&R). The compiler can also accept many of the language extensions found in the GNU C compiler 
(see Section 5.13).

The compiler supports some features of C99 in the default relaxed ANSI mode with C89 support. It supports all 
language features of C99 in C99 mode. See Section 5.12.

The atomic operations described in the C11 standard are not supported.

The ANSI/ISO standard identifies some features of the C language that may be affected by characteristics of 
the target processor, run-time environment, or host environment. This set of features can differ among standard 
compilers.

Unsupported features of the C library are:

• The run-time library has minimal support for wide characters. The type wchar_t is implemented as unsigned 
int (32 bits). The wide character set is equivalent to the set of values of type char. The library includes the 
header files <wchar.h> and <wctype.h>, but does not include all the functions specified in the standard. See 
Section 5.4 for information about extended and multibyte character sets.

• The run-time library includes the header file <locale.h>, but with a minimal implementation. The only 
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded 
to the behavior of the C locale, and attempting to install a different locale by way of a call to setlocale() will 
return NULL.

• Some run-time functions and features in the C99 specification are not supported. See Section 5.12.

5.1.1 Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the compiler handles 
instances of implementation-defined behavior.

The TI compiler officially supports a freestanding environment. The C standard does not require a freestanding 
environment to supply every C feature; in particular the library need not be complete. However, the TI compiler 
strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the C99 standard. 
The numbers in parentheses at the end of each item are sections in the C99 standard that discuss the topic. 
Certain items listed in Appendix J of the C99 standard have been omitted from this list.

J.3.1 Translation

• The compiler and related tools emit diagnostic messages with several distinct formats. Diagnostic messages 
are emitted to stderr; any text on stderr may be assumed to be a diagnostic. If any errors are present, the tool 
will exit with an exit status indicating failure (non-zero). (3.10, 5.1.1.3)

• Nonempty sequences of white-space characters are preserved and are not replaced by a single space 
character in translation phase 3. (5.1.1.2)

J.3.2 Environment

• The compiler does not support multibyte characters in identifiers, string literals, or character constants. There 
is no mapping from multibyte characters to the source character set. However, the compiler accepts multibyte 
characters in comments. See Section 5.4 for details (5.1.1.2)

• The name of the function called at program startup is "main". (5.1.2.1)
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• Program termination does not affect the environment; there is no way to return an exit code to the 
environment. By default, the program is known to have halted when execution reaches the special C$$EXIT 
label. (5.1.2.1)

• In relaxed ANSI mode, the compiler accepts "void main(void)" and "void main(int argc, char *argv[])" as 
alternate definitions of main. The alternate definitions are rejected in strict ANSI mode. (5.1.2.2.1)

• If space is provided for program arguments at link time with the --args option and the program is run under a 
system that can populate the .args section (such as CCS), argv[0] will contain the filename of the executable, 
argv[1] through argv[argc-1] will contain the command-line arguments to the program, and argv[argc] will be 
NULL. Otherwise, the value of argv and argc are undefined. (5.1.2.2.1)

• Interactive devices include stdin, stdout, and stderr (when attached to a system that honors CIO requests). 
Interactive devices are not limited to those output locations; the program may access hardware peripherals 
that interact with the external state. (5.1.2.3)

• Signals are not supported. The function signal is not supported. (7.14, 7.14.1.1)
• The library function getenv is implemented through the CIO interface. If the program is run under a system 

that supports CIO, the system performs getenv calls on the host system and passes the result back to the 
program. Otherwise the operation of getenv is undefined. No method of changing the environment from 
inside the target program is provided. (7.20.4.5)

• The system function is not supported. (7.20.4.6)

J.3.3. Identifiers

• The compiler does not support multibyte characters in identifiers. See Section 5.4 for details. (6.4.2)
• The number of significant initial characters in an identifier is unlimited. (5.2.4.1, 6.4.2)

J.3.4 Characters

• The number of bits in a byte (CHAR_BIT) is 8. See Section 5.3 for details about data types. (3.6)
• The execution character set is the same as the basic execution character set: plain ASCII. (5.2.1)
• The values produced for the standard alphabetic escape sequences are as follows. (5.2.2):

Escape 
Sequence

ASCII Meaning Integer Value

\a BEL (bell) 7

\b BS (backspace) 8

\f FF (form feed) 12

\n LF (line feed) 10

\r CR (carriage 
return)

13

\t HT (horizontal tab) 9

\v VT (vertical tab) 11

• The value of a char object into which any character other than a member of the basic execution character set 
has been stored is the ASCII value of that character. (6.2.5)

• Plain char is identical to signed char. (6.2.5, 6.3.1.1)
• The source character set and execution character set are both plain ASCII, so the mapping between them 

is one-to-one. The compiler accepts multibyte characters in comments. See Section 5.4 for details. (6.4.4.4, 
5.1.1.2)

• The compiler currently supports only one locale, "C". (6.4.4.4)
• The compiler currently supports only one locale, "C". (6.4.5)

J.3.5 Integers

• No extended integer types are provided. (6.2.5)
• Negative values for signed integer types are represented as two's complement, and there are no trap 

representations. (6.2.6.2)
• No extended integer types are provided, so there is no change to the integer ranks. (6.3.1.1)
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• When an integer is converted to a signed integer type which cannot represent the value, the value is 
truncated (without raising a signal) by discarding the bits which cannot be stored in the destination type; the 
lowest bits are not modified. (6.3.1.3)

• Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise operations other than 
right shift operate on the bits in exactly the same way as on an unsigned value. That is, after the usual 
arithmetic conversions, the bitwise operation is performed without regard to the format of the integer type, in 
particular the sign bit. (6.5)

J.3.6 Floating point

• The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library functions that return 
floating-point results is not specified. (5.2.4.2.2)

• The compiler does not provide non-standard values for FLT_ROUNDS. (5.2.4.2.2)
• The compiler does not provide non-standard negative values of FLT_EVAL_METHOD. (5.2.4.2.2)
• The rounding direction when an integer is converted to a floating-point number is IEEE-754 "round to 

nearest". (6.3.1.4)
• The rounding direction when a floating-point number is converted to a narrower floating-point number is 

IEEE-754 "round to even". (6.3.1.5)
• For floating-point constants that are not exactly representable, the implementation uses the nearest 

representable value. (6.4.4.2)
• The compiler does not contract float expressions. (6.5)
• The default state for the FENV_ACCESS pragma is off. (7.6.1)
• The TI compiler does not define any additional float exceptions. (7.6, 7.12)
• The default state for the FP_CONTRACT pragma is off. (7.12.2)
• The "inexact" floating-point exception cannot be raised if the rounded result equals the mathematical result. 

(F.9)
• The "underflow" and "inexact" floating-point exceptions cannot be raised if the result is tiny but not inexact. 

(F.9)

J.3.7 Arrays and pointers

• When converting a 64-bit pointer to a 32-bit integer, the pointer is truncated. When converting a pointer to a 
long, the pointer is considered an unsigned long of the same size, and the normal conversion rules apply.

• When converting a pointer to a long or vice versa, if the bitwise representation of the destination can hold all 
of the bits in the bitwise representation of the source, the bits are copied exactly. (6.3.2.3)

• The size of the result of subtracting two pointers to elements of the same array is the size of ptrdiff_t, which is 
defined in Section 5.3. (6.5.6)

J.3.8 Hints

• When the optimizer is used, the register storage-class specifier is ignored. When the optimizer is not used, 
the compiler will preferentially place register storage class objects into registers to the extent possible. The 
compiler reserves the right to place any register storage class object somewhere other than a register. (6.7.1)

• The inline function specifier is ignored unless the optimizer is used. For other restrictions on inlining, see 
Section 3.10.2. (6.7.4)

J.3.9 Structures, unions, enumerations, and bit-fields

• A "plain" int bit-field is treated as a signed int bit-field. (6.7.2, 6.7.2.1)
• In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char, unsigned char, 

signed short, unsigned shot, signed long, unsigned long, and enum types as bit-field types. (6.7.2.1)
• Bit-fields may not straddle a storage-unit boundary. (6.7.2.1)
• Bit-fields are allocated in endianness order within a unit. See Section 6.2.2. (6.7.2.1)
• Non-bit-field members of structures are aligned as specified in Section 6.2.1. (6.7.2.1)
• The integer type underlying each enumerated type is described in Section 5.3.1. (6.7.2.2)
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J.3.10 Qualifiers

• The TI compiler does not shrink or grow volatile accesses. It is the user's responsibility to make sure the 
access size is appropriate for devices that only tolerate accesses of certain widths. The TI compiler does 
not change the number of accesses to a volatile variable unless absolutely necessary. This is significant 
for read-modify-write expressions such as += ; for an architecture which does not have a corresponding 
read-modify-write instruction, the compiler will be forced to use two accesses, one for the read and one for 
the write. Even for architectures with such instructions, it is not guaranteed that the compiler will be able to 
map such expressions to an instruction with a single memory operand. It is not guaranteed that the memory 
system will lock that memory location for the duration of the instruction. In a multi-core system, some other 
core may write the location after a RMW instruction reads it, but before it writes the result. The TI compiler 
will not reorder two volatile accesses, but it may reorder a volatile and a non-volatile access, so volatile 
cannot be used to create a critical section. Use some sort of lock if you need to create a critical section. 
(6.7.3)

J.3.11 Preprocessing directives

• Include directives may have one of two forms, " " or < >. For both forms, the compiler will look for a real file 
on-disk by that name using the include file search path. See Section 3.5.2. (6.4.7)

• The value of a character constant in a constant expression that controls conditional inclusion matches the 
value of the same character constant in the execution character set (both are ASCII). (6.10.1)

• The compiler uses the file search path to search for an included < > delimited header file. See Section 3.5.2. 
(6.10.2)

• The compiler uses the file search path to search for an included " " delimited header file. See Section 3.5.2. 
(6.10.2)

• There is no arbitrary nesting limit for #include processing. (6.10.2)
• See Section 5.8 for a description of the recognized non-standard pragmas. (6.10.6)
• The date and time of translation are always available from the host. (6.10.8)

J.3.12 Library functions

• Almost all of the library functions required for a hosted implementation are provided by the TI library, with 
exceptions noted in Section 5.12.1. (5.1.2.1)

• The format of the diagnostic printed by the assert macro is "Assertion failed, (assertion macro argument), file 
file, line line". (7.2.1.1)

• No strings other than "C" and "" may be passed as the second argument to the setlocale function. (7.11.1.1)
• No signal handling is supported. (7.14.1.1)
• The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (7.19.6.1, 7.24.2.1)
• The output for %p conversion in the fprintf or fwprintf function is the same as %x of the appropriate size. 

(7.19.6.1, 7.24.2.1)
• The termination status returned to the host environment by the abort, exit, or _Exit function is not returned to 

the host environment. (7.20.4.1, 7.20.4.3, 7.20.4.4)
• The system function is not supported. (7.20.4.6)

J.3.13 Architecture

• The values or expressions assigned to the macros specified in the headers float.h, limits.h, and stdint.h are 
described along with the sizes and format of integer types are described in Section 5.3. (5.2.4.2, 7.18.2, 
7.18.3)

• The number, order, and encoding of bytes in any object are described in Section 6.2.1. (6.2.6.1)
• The value of the result of the sizeof operator is the storage size for each type, in terms of bytes. See Section 

6.2.1. (6.5.3.4)
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5.2 Characteristics of C7000 C++
The C7000 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2014 standard (C++14), including 
these features:

• Complete C++ standard library support, with exceptions noted below.
• Templates
• Exceptions, which are enabled with the --exceptions option; see Section 5.6.
• Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The compiler supports the 2014 standard of C++ as standardized by the ISO. However, the following features 
are not implemented or fully supported:

• The compiler does not support embedded C++ run-time-support libraries.
• The library supports wide chars (wchar_t), in that template functions and classes that are defined for char are 

also available for wchar_t. For example, wide char stream classes wios, wiostream, wstreambuf and so on 
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file 
I/O for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and 
<cwctype>) is limited as described above in the C library.

• No support for bad_cast or bad_type_id is included in the typeinfo header.
• Constant expressions for target-specific types are only partially supported.
• New character types (introduced in the C++11 standard) are not supported.
• Unicode string literals (introduced in the C++11 standard) are not supported.
• Universal character names in literals (introduced in the C++11 standard) are not supported.
• Atomic operations (introduced in the C++11 standard) are not supported.
• Data-dependency ordering for atomics and memory model (introduced in the C++11 standard) is not 

supported.
• Allowing atomics in signal handlers (introduced in the C++11 standard) is not supported.
• Strong compare and exchange (introduced in the C++11 standard) are not supported.
• Bidirectional fences (introduced in the C++11 standard) are not supported.
• Memory model (introduced in the C++11 standard) is not supported.
• Propagating exceptions (introduced in the C++11 standard) is not supported.
• Thread-local storage (introduced in the C++11 standard) is not supported.
• Dynamic initialization and destruction with concurrency (introduced in the C++11 standard) is not supported.
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5.3 Data Types
Table 5-1 lists the size, representation, and range of each scalar data type for the C7000 compiler. Many of the 
range values are available as standard macros in the header file limits.h.

The storage and alignment of data types is described in Section 6.2.1.

Table 5-1. C7000 C/C++ Data Types
Range

Type Size Representation Minimum Maximum
char, signed char 8 bits ASCII -128 127
unsigned char 8 bits ASCII 0 255
_Bool, bool 8 bits ASCII 0 (false) 1 (true)
short 16 bits Binary -32 768 32 767
unsigned short 16 bits Binary 0 65 535
int, signed int 32 bits Binary -2 147 483 648 2 147 483 647
unsigned int, wchar_t 32 bits Binary 0 4 294 967 295
long, signed long 64 bits Binary -9 223 372 036 854 775 808 9 223 372 036 854 775 808
unsigned long 64 bits Binary 0 18 446 744 073 709 551 615
long long, signed long long 64 bits Binary -9 223 372 036 854 775 808 9 223 372 036 854 775 807
unsigned long long 64 bits Binary 0 18 446 744 073 709 551 615
enum (1) varies Binary varies varies
float 32 bits IEEE 32-bit 1.175 494e-38(2) 3.40 282 346e+38
float complex 64 bits Array of 2 IEEE 32-

bit
1.175 494e-38 for real and 
imaginary portions separately

3.40 282 346e+38 for real and 
imaginary portions separately

double 64 bits IEEE 64-bit 2.22 507 385e-308(2) 1.79 769 313e+308
double complex 128 bits Array of 2 IEEE 64-

bit
2.22 507 385e-308 for real and 
imaginary portions separately

1.79 769 313e+308 for real and 
imaginary portions separately

long double 64 bits IEEE 64-bit 2.22 507 385e-308(2) 1.79 769 313e+308
long double complex 128 bits Array of 2 IEEE 64-

bit
2.22 507 385e-308 for real and 
imaginary portions separately

1.79 769 313e+308 for real and 
imaginary portions separately

pointers, references, pointer to 
data members

64 bits Binary 0 0xFFFFFFFFFFFFFFFF

(1) For details about the size of an enum type, see Section 5.3.1.
(2) Figures are minimum precision.

Negative values for signed types are represented using two's complement.

Note

We recommend that your code use the C standard integer types int64_t and int32_t (et al.) 
when specific data type sizes are needed for portability across different devices and compilers. These 
standard integer types are defined in stdint.h , which is included as part of the C standard library 
support included the Runtime Support Library.

The C7000 adopts the LP64 representational convention. That is, the type int is 32 bits, while long and 
pointer types are 64 bits.

These additional types from C, C99 and C++ are defined as synonyms for standard types:

Table 5-2. C Language Standard Types
Type Definition
size_t unsigned long

ptrdiff_t long
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Table 5-2. C Language Standard Types (continued)
Type Definition
wchar_t unsigned int

wint_t int

va_list char *

5.3.1 Size of Enum Types

In the following declaration, enum e is an enumerated type. Each of a and b are enumeration constants.

enum e { a, b=N };

Each enumerated type is assigned an integer type that can hold all of the enumeration constants. This integer 
type is the "underlying type." The type of each enumeration constant is also an integer type, and in C might not 
be the same type. Be careful to note the difference between the underlying type of an enumerated type and the 
type of an enumeration constant.

The size and signedness chosen for the enumerated type and each enumeration constant depend on the values 
of the enumeration constants and whether you are compiling for C or C++. C++11 allows you to specify a 
specific type for an enumeration type; if such a type is provided, it will be used and the rest of this section does 
not apply.

In C++ mode, the compiler allows enumeration constants up to the largest integral type (64 bits). The C standard 
says that all enumeration constants in strictly conforming C code (C89/C99) must have a value that fits into the 
type "int;" however, as an extension, you may use enumeration constants larger than "int" even in C mode.

For the enumerated type, the compiler selects first type in the following list that is big enough and of the correct 
sign to represent all the values of the enumeration constants:

• unsigned char
• signed char
• unsigned short
• signed short
• unsigned int
• signed int
• unsigned long
• signed long

The "long long" type is skipped because it is the same size as "long."

For example, this enumerated type will have "unsigned char" as its underlying type:

 enum uc { a, b, c };

But this one will have "signed char" as its underlying type:

 enum sc { a, b, c, d = -1 };

And this one will have "signed short" as its underlying type:

 enum ss { a, b, c, d = -1, e = UCHAR_MAX };

For C++, the enumeration constants are all of the same type as the enumerated type.

For C, the enumeration constants are assigned types depending on their value. All enumeration constants with 
values that can fit into "int" are given type "int," even if the underlying type of the enumerated type is smaller 
than "int." All enumeration constants that don't fit in an "int" are given the same type as the underlying type of the 
enumerated type. This means that some enumeration constants may have a different size and signedness than 
the enumeration type.
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5.3.2 Vector Data Types

The C/C++ compiler supports the use of TI vector data types in C/C++ source files. Vector data types are useful 
because they can make use of the natural vector width within the processing cores. Vector data types provide a 
straightforward way to utilize the SIMD instructions that are available on that architecture. Vector data types also 
provide a more direct mapping from the abstract model of a vector data object to the physical representation of 
that data object in a register.

Vector data types are similar to an array, in that a vector contains a specified number of elements of a specified 
type. However, the vector length can only be one of 2, 3, 4, 8, 16, 32, or 64. Wherever possible, intrinsics that 
act upon vectors are optimized to make use of efficient single instruction, multiple data (SIMD) instructions on 
the device.

Support for vector data types is enabled by default. You can use the --vectypes=off compiler option if you want 
to disable the vector data type names that are not prefixed with a double-underscore. For example, the __int4 
type is always available, but the --vectypes=off option disables the int4 type. Note that the tables and examples 
that follow use type names without the double-underscore prefix.

All of the vector data types and related built-in functions that are supported in the C7000 programming model are 
specified in the "c7x.h" header file.

A vector type name concatenates an element type name and a number representing the vector length. The 
resulting vector consists of the specified number of elements of the specified type.

The C7000 implementation of vector data types and operations is somewhat similar to the OpenCL C language 
specification. The C7000 programming model provides the following built-in vector data types:

Table 5-3. Vector Data Types
Type Description Maximum Elements
charn A vector of n 8-bit signed integer values. 64

ucharn A vector of n 8-bit unsigned integer values. 64

shortn A vector of n 16-bit signed integer values. 32

ushortn A vector of n 16-bit unsigned integer values. 32

intn A vector of n 32-bit signed integer values. 16

uintn A vector of n 32-bit unsigned integer values. 16

longn A vector of n 64-bit signed integer values. 8

ulongn A vector of n 64-bit unsigned integer values. 8

floatn A vector of n 32-bit single-precision floating-point values. 16

doublen A vector of n 64-bit double-precision floating-point values. 8

booln A vector of n 8-bit unsigned integer Boolean values. 64

where n can be a vector length of 2, 3, 4, 8, 16, 32, or 64.

For example, a "uchar8" is a vector of 8 unsigned chars; its length is 8 and its size is 64 bits. A "float4" is a 
vector of 4 float elements; its length is 4 and its size is 128 bits.

Vectors types are aligned on a boundary equal to the total size of the vector's elements up to 64 bits. Any vector 
type with a total size of more than 64 bits is aligned to a 64-bit boundary (8 bytes). For example, a short2 has a 
total size of 32 bits and is aligned on a 4-byte boundary. A long2 has a total size of 128 bits and is aligned on an 
8-byte boundary.

The Code Generation Tools also provide an extension for representing vectors of complex types. A prefix of 'c' is 
used to indicate a complex type name. Each complex type vector element contains a real part and an imaginary 
part with the real part occupying the lower address in memory. Thus, the complex vector types are as follows:
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Table 5-4. Complex Vector Data Types
Type Description Maximum Elements
ccharn A vector of n pairs of 8-bit signed integer values. 32

cshortn A vector of n pairs of 16-bit signed integer values. 16

cintn A vector of n pairs of 32-bit signed integer values. 8

clongn A vector of n pairs of 64-bit signed integer values. 4

cfloatn A vector of n pairs of 32-bit floating-point values. 8

cdoublen A vector of n pairs of 64-bit floating-point values. 4

where n can be a vector length of 1, 2, 4, 8, 16, or 32. Note that 64 is not a valid vector length for complex 
vector types. For example, a "cfloat2" is a vector of 2 complex floats. Its length is 2 and its size is 128 bits. Each 
"cfloat2" vector element contains a real float and an imaginary float.

Note

Vectors cannot be passed to variadic functions (stdarg.h) and cannot be passed to printf().

For information about operators and built-in functions used with vector data types, see Section 5.14.

5.4 File Encodings and Character Sets
The compiler accepts source files with one of two distinct encodings:

• UTF-8 with Byte Order Mark (BOM). These files may contain extended (multibyte) characters in C/C++ 
comments. In all other contexts—including string constants, identifiers, assembly files, and linker command 
files—only 7-bit ASCII characters are supported.

• Plain ASCII files. These files must contain only 7-bit ASCII characters.

To choose the UTF-8 encoding in Code Composer Studio, open the Preferences dialog, select General > 
Workspace, and set the Text File Encoding to UTF-8.

If you use an editor that does not have a "plain ASCII" encoding mode, you can use Windows-1252 (also called 
CP-1252) or ISO-8859-1 (also called Latin 1), both of which accept all 7-bit ASCII characters. However, the 
compiler may not accept extended characters in these encodings, so you should not use extended characters, 
even in comments.

Wide character (wchar_t) types and operations are supported by the compiler. However, wide character strings 
may not contain characters beyond 7-bit ASCII. The encoding of wide characters is 7-bit ASCII, 0 extended to 
the width of the wchar_t type.
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5.5 Keywords
The C7000 C/C++ compiler supports all of the standard C89 keywords, including const, volatile, and register. 
It supports all of the standard C99 keywords, including inline and restrict. It supports all of the standard C11 
keywords. It also supports TI extension keyword __cregister. Some keywords are not available in strict ANSI 
mode.

The following keywords may appear in other target documentation and require the same treatment as the 
interrupt and restrict keywords:

• trap
• reentrant
• cregister

5.5.1 The complex Keyword

To use complex data types, you must include the <complex.h> header file. If this header file is included, complex 
support is available for all C/C++ modes, including relaxed and strict ANSI modes and C89 and C99. The 
<complex.h> header file implements math operation and function support for complex data types.

Complex types are implemented as an array of two elements. For example, for the following declaration, the 
variable is stored as an array of two floats. The real portion of the number is stored in x._Vals[0] and the 
imaginary portion of the number is stored in x._Vals[1].

float complex x;

5.5.2 The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const in all modes. This keyword gives you 
greater optimization and control over allocation for certain data objects. You can apply the const qualifier to the 
definition of any variable or array to ensure that its value is not altered.

Global objects qualified as const are placed in the .const section. The linker allocates the .const section from 
ROM or FLASH, which are typically more plentiful than RAM. The const data storage allocation rule has the 
following exceptions:

• If volatile is also specified in the object definition. For example, volatile const int x. Volatile keywords 
are assumed to be allocated to RAM. (The program is not allowed to modify a const volatile object, but 
something external to the program might.)

• If the object has automatic storage (allocated on the stack).
• If the object is a C++ object with a "mutable" member.
• If the object is initialized with a value that is not known at compile time (such as the value of another 

variable).

In these cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword is important. For example, the first statement below defines a constant 
pointer p to a modifiable int. The second statement defines a modifiable pointer q to a constant int:

int * const p = &x;
const int * q = &x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For 
example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};
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5.5.3 The __cregister Keyword

The compiler extends the C/C++ language by adding the __cregister keyword to allow high level language 
access to control registers.

When you use the __cregister keyword on an object, the compiler compares the name of the object to a list of 
standard control registers (see Table 5-5). If the name matches, the compiler generates the code to reference 
the control register. If the name does not match, the compiler issues an error.

The following control registers are declared in the c7x.h header file. In addition, a large number of Extended 
Control Registers (ECRs) are declared in c7x_ecr.h.

Table 5-5. Control Registers for C7000
Category Register Description
General Control 
Registers

CPUID CPU ID register

PMR Power management register
DNUM DSP core number register
TSC Time-stamp counter register
TSR Task state register
RP Return pointer register
BPCR Branch predictor control register
STSC Shadow time stamp counter register

Computation Control 
Registers

FPCR Floating-point control register

FSR Flag status register
GPLY Galois polynomial register
GFPGFR Galois field polynomial generator function register

Event Control 
Registers

DEPR Debug event priority register

IESET Internal exception event set register
ESTP_SS Event service table pointer register, secure supervisor
ESTP_S Event service table pointer register, supervisor
ESTP_GS Event service table pointer register, guest supervisor
ECSP_SS Event context save pointer register, secure supervisor
ECSP_S Event context save pointer register, supervisor
ECSP_GS Event context save pointer register, guest supervisor
TCSP Task context save pointer
RXMR_SS Returning execution mode register, secure supervisor
RXMR_S Returning execution mode register, supervisor
AHPEE Highest priority enabled event register, currently in service
PHPEE Highest priority enabled event register, pending
IEBER Internal event broadcast enable register
IERR Internal exception report register
IEAR Internal exception address register
IESR Internal exception status register
IEDR Internal exception data register
TCR Test count register
TCCR Test count config register
GMER Guest mode enable register
UMER User mask enable register
SPBR Stack pointer boundary register
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Table 5-5. Control Registers for C7000 (continued)
Category Register Description

UFCMR User flag clear mask register
IPE Inter-processor event register

Lookup Table and 
Histogram Control 
Registers

LTBR0 to LTBR3 Lookup table base address registers

LTCR0 to 
LTCR3

Lookup table configuration registers

LTER Lookup table enable register
Debug Control 
Registers

DBGCTXT Debug context (overlay) register

ILCNT Inner loop counter register
OLCNT Outer loop counter initial value register
LCNTFLG 16-bit predicate flags register
SCRB Scoreboard bits register

The __cregister keyword can be used only in file scope. The __cregister keyword is not allowed on any 
declaration within the boundaries of a function. It can only be used on objects of type integer or pointer. The 
__cregister keyword is not allowed on objects of any floating-point type or on any structure or union objects.

The __cregister keyword does not imply that the object is volatile. If the control register being referenced is 
volatile (that is, can be modified by some external control), then the object must be declared with the volatile 
keyword also.

To use the control registers in Table 5-5, you must declare each register as follows. The c7x.h include file defines 
all the control registers through this syntax:

extern __cregister volatile unsigned int register ;

Once you have declared the register, you can use the register name directly.

Example 5-1. Define and Use Control Registers

extern __cregister volatile unsigned long __CPUID;
int main()
{
    printf("__CPUID = 0x%lx\n", __CPUID);
}
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5.5.3.1 Evaluating Flags in the Flag Status Register (FSR) After Floating Point Operations

The Flag Status Register (FSR), which contains bits representing floating point status, can be accessed using 
the __get_FSR(type) API, which is defined in c7x.h. The API takes a type argument, which refers to a valid 
scalar or vector floating point type (except for "float3") that is being used with the floating point operation.

The API returns an "OR" of the data bits for all pertinent vector lanes. The result is an 8-bit value containing the 
following fields:

• Bit 7: SAT - NOT SUPPORTED FOR C7000 OPERATIONS
• Bit 6: UNORD - Compare result is unordered Floating Point Flag
• Bit 5: DEN - Source is a Denorm Floating Point Flag
• Bit 4: INEX - Result is inexact Floating Point Flag
• Bit 3: UNDER - Result is underflow Floating Point Flag
• Bit 2: OVER - Result is overflow Floating Point Flag
• Bit 1: DIV0 - Divide by zero Floating Point Flag
• Bit 0: INVAL - Invalid Operations Floating Point Flag

For example:

    float4 a = ... ;                                             
    float4 b = ... ;                                             
    float4 c = a * b;                                            
    uint8_t fsr_val = __get_FSR(float4);

The __get_FSR(type) API is provided to make accessing the FSR easier. The actual hardware register is a 
64-bit value that is divided into eight 8-bit chunks. Each 8-bit chunk corresponds to a 64-bit vector slice of data 
in either the input or output data, depending on the operation being performed. A 64-bit slice may consist of a 
64-bit double or two 32-bit float values that are OR'd together by the hardware.

However, for vector operations, while this "OR" is done for every 64-bit slice, the results for all 64-bit slices are 
not OR'd together by the hardware. The reason for this is that when partial vectors are used (less than 512 bits), 
the upper lanes of a vector are considered invalid and are ignored and therefore shouldn't be reflected in the 
final FSR result. To ensure that only the information pertinent to the valid lanes of a vector are reflected, the API 
allows users to specify the scalar or vector type of the data they are working with. The API will then ensure that 
only the valid 64-bit vector slices are OR'd together through a sequence of instructions to produce a final 8-bit 
result. All invalid lanes are therefore ignored.

Note

Using the __get_FSR(type) API results in performance degradations. This is because the API 
inserts a sequence of instructions to ensure that only the valid vector lanes are reflected in the final 
result. The API also prevents loop vectorization throughout a function in which it is used because 
vectorization would change the number of valid vector lanes in ways the user isn't able to track.
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5.5.4 The restrict Keyword

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with the 
restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references, and arrays. 
Its use represents a guarantee by you, the programmer, that within the scope of the pointer declaration the 
object pointed to can be accessed only by that pointer. Any violation of this guarantee renders the program 
undefined. This practice helps the compiler optimize certain sections of code because aliasing information can 
be more easily determined.

The "restrict" keyword is a C99 keyword, and cannot be accepted in strict ANSI C89 mode. Use the "__restrict" 
keyword if the strict ANSI C89 mode must be used. See Section 5.12.

In the following example, the restrict keyword is used to tell the compiler that the function func1 is never called 
with the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through a 
and b will never conflict; therefore, a write through one pointer cannot affect a read from any other pointers. The 
precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO C Standard.

void func1(int * restrict a, int * restrict b)
{
  /* func1's code here */
}

The following example uses the restrict keyword when passing arrays to a function. Here, the arrays c and d 
must not overlap, nor may c and d point to the same array.

void func2(int c[restrict], int d[restrict])
{
  int i;
  for(i = 0; i < 64; i++)
  {
    c[i] += d[i];
    d[i] += 1;
  }
}

5.5.5 The volatile Keyword

The C/C++ compiler supports the volatile keyword in all modes. In addition, the __volatile keyword is supported 
in relaxed ANSI mode for C89, C99, and C++.

The volatile keyword indicates to the compiler that there is something about how the variable is accessed that 
requires that the compiler not use overly-clever optimization on expressions involving that variable. For example, 
the variable may also be accessed by an external program, another thread, or a peripheral device.

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis to figure out 
when it is legal. However, some memory accesses may be special in some way that the compiler cannot see, 
and in such cases you should use the volatile keyword to prevent the compiler from optimizing away something 
important. The compiler does not optimize out any accesses to variables declared volatile. The number of 
volatile reads and writes will be exactly as they appear in the C/C++ code, no more and no less and in the same 
order.

Any variable which might be modified by something external to the obvious control flow of the program (such 
as an interrupt service routine) must be declared volatile. This tells the compiler that an interrupt function might 
modify the value at any time, so the compiler should not perform optimizations which will change the number or 
order of accesses of that variable. This is the primary purpose of the volatile keyword. In the following example, 
the loop intends to wait for a location to be read as 0xFF:

   unsigned int *ctrl;
   while (*ctrl !=0xFF);
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However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-memory 
read. To get the desired result, define ctrl as:

   volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

The volatile keyword must also be used when accessing memory locations that represent memory-mapped 
peripheral devices. Such memory locations might change value in ways that the compiler cannot predict. These 
locations might change if accessed, or when some other memory location is accessed, or when some signal 
occurs.

Volatile must also be used for local variables in a function which calls setjmp, if the value of the local variables 
needs to remain valid if a longjmp occurs.

#include <stdlib.h>
jmp_buf context;
void function()
{
    volatile int x = 3;
    switch(setjmp(context))
    {
        case 0: setup(); break;
        default:
        {
           /* We only reach here if longjmp occurs. Because x's lifetime begins before setjmp  
              and lasts through longjmp, the C standard requires x be declared "volatile". */
           printf("x == %d\n", x); 
           break;
        }
    }
}

5.6 C++ Exception Handling
The compiler supports the C++ exception handling features defined by the ANSI/ISO 14882 C++ Standard. 
See The C++ Programming Language, Third Edition by Bjarne Stroustrup. The compiler's --exceptions option 
enables exception handling. The compiler’s default is no exception handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions option, 
regardless of whether exceptions occur in that file. Mixing exception-enabled and exception-disabled object files 
and libraries can lead to undefined behavior.

Exception handling requires support in the run-time-support library, which come in exception-enabled and 
exception-disabled forms; you must link with the correct form. When using automatic library selection (the 
default), the linker automatically selects the correct library Section 11.3.1.1. If you select the library manually, you 
must use run-time-support libraries whose name contains _eh if you enable exceptions.

Using the --exceptions option causes the compiler to insert exception handling code. This code will increase the 
size of the program somewhat. In addition, there is a minimal execution time cost even if exceptions are never 
thrown, and a slight increase in the data size for the exception-handling tables.

See Section 7.1 for details on the run-time libraries.
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5.7 Register Variables and Parameters
The C/C++ compiler treats register variables (variables defined with the register keyword) differently, depending 
on whether you use the --opt_level (-O) option.

• Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values by 
using an algorithm that makes the most efficient use of registers.

• Compiling without optimization

If you use the register keyword, you can suggest variables as candidates for allocation into registers. The 
compiler uses the same set of registers for allocating temporary expression results as it uses for allocating 
register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it frees 
a register by moving its contents to memory. If you define too many objects as register variables, you limit the 
number of registers the compiler has for temporary expression results. This limit causes excessive movement of 
register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The 
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function, some 
of the parameters are copied to a location on the stack where they are referenced during the function body. The 
compiler copies a register parameter to a register instead of the stack, which speeds access to the parameter 
within the function.

For more information about register conventions, see Section 6.3.
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5.8 Pragma Directives
The following pragma directives tell the compiler how to treat a certain function, object, or section of code.

• CALLS (See Section 5.8.1)
• CLINK (See Section 5.8.2)
• CODE_ALIGN (See Section 5.8.4)
• CODE_SECTION (See Section 5.8.5)
• COALESCE_LOOP (See Section 5.8.3)
• DATA_ALIGN (See Section 5.8.6)
• DATA_MEM_BANK (See Section 5.8.7)
• DATA_SECTION (See Section 5.8.8)
• diag_suppress, diag_remark, diag_warning, diag_error, diag_default, diag_push, diag_pop (See Section 

5.8.9)
• FORCEINLINE (See Section 5.8.10)
• FORCEINLINE_RECURSIVE (See Section 5.8.11)
• FUNC_ALWAYS_INLINE (See Section 5.8.12)
• FUNC_CANNOT_INLINE (See Section 5.8.13)
• FUNC_EXT_CALLED (See Section 5.8.14)
• FUNC_IS_PURE (See Section 5.8.15)
• FUNC_IS_SYSTEM (See Section 5.8.16)
• FUNC_NEVER_RETURNS (See Section 5.8.17)
• FUNC_NO_GLOBAL_ASG (See Section 5.8.18)
• FUNC_NO_IND_ASG (See Section 5.8.19)
• FUNCTION_OPTIONS (See Section 5.8.20)
• INTERRUPT (See Section 5.8.21)
• LOCATION (See Section 5.8.22)
• MUST_ITERATE (See Section 5.8.23)
• NOINIT (See Section 5.8.24)
• NOINLINE (See Section 5.8.25)
• NO_COALESCE_LOOP (See Section 5.8.26)
• NO_HOOKS (See Section 5.8.27)
• once (See Section 5.8.28)
• pack (See Section 5.8.29)
• PERSISTENT (See Section 5.8.24)
• PROB_ITERATE (See Section 5.8.30)
• RETAIN (See Section 5.8.31)
• SET_CODE_SECTION (See Section 5.8.32)
• SET_DATA_SECTION (See Section 5.8.32)
• STRUCT_ALIGN (See Section 5.8.33)
• UNROLL (See Section 5.8.34)
• WEAK (See Section 5.8.35)

Most pragmas apply to functions. Except for the DATA_MEM_BANK pragma, the arguments func and symbol 
cannot be defined or declared inside the body of a function. You must specify the pragma outside the body of 
a function, and pragma specifications must occur before any declaration, definition, or reference to the func or 
symbol argument. If you do not follow these rules, the compiler issues a warning and may ignore the pragma.

For pragmas that apply to functions or symbols, the syntax differs between C and C++.

• In C, you must supply the name of the object or function to which you are applying the pragma as the first 
argument. Because the entity operated on is specified, a pragma in C can appear some distance way from 
the definition of that entity.

• In C++, pragmas are positional. They do not name the entity on which they operate as an argument. Instead, 
they always operate on the next entity defined after the pragma.
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5.8.1 The CALLS Pragma

The CALLS pragma specifies a set of functions that can be called indirectly from a specified calling function.

The CALLS pragma is used by the compiler to embed debug information about indirect calls in object files. Using 
the CALLS pragma on functions that make indirect calls enables such indirect calls to be included in calculations 
for such functions' inclusive stack sizes. For more information on generating function stack usage information, 
see the -cg option of the Object File Display Utility in Section 13.1.

The CALLS pragma can precede either the calling function's definition or its declaration. In C, the pragma must 
have at least 2 arguments—the first argument is the calling function, followed by at least one function that will 
be indirectly called from the calling function. In C++, the pragma applies to the next function declared or defined, 
and the pragma must have at least one argument.

The syntax for the CALLS pragma in C is as follows. This indicates that calling_function can indirectly call 
function_1 through function_n.
#pragma CALLS ( calling_function, function_1, function_2, ..., function_n )

The syntax for the CALLS pragma in C++ is:
#pragma CALLS ( function_1_mangled_name, ..., function_n_mangled_name )

Note that in C++, the arguments to the CALLS pragma must be the full mangled names for the functions that can 
be indirectly called from the calling function.

The GCC-style "calls" function attribute (see Section 5.13.2), which has the same effect as the CALLS pragma, 
has the following syntax:

__attribute__((calls("function_1","function_2",..., "function_n")))

5.8.2 The CLINK Pragma

The CLINK pragma can be applied to a code or data symbol. It causes a .clink directive to be generated into the 
section that contains the definition of the symbol. The .clink directive tells the linker that a section is eligible for 
removal during conditional linking. Thus, if the section is not referenced by any other section in the application 
being compiled and linked, it will not be included in the resulting output file.

The syntax of the pragma in C is:
#pragma CLINK ( symbol )

The syntax of the pragma in C++ is:
#pragma CLINK

The RETAIN pragma has the opposite effect of the CLINK pragma. See Section 5.8.31 for more details.
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5.8.3 The COALESCE_LOOP Pragma

In order to facilitate nested loop coalescing, in which an outer loop level containing instructions is merged into 
an inner loop level, the C7000 architecture provides a feature known as the Nested Loop Controller (NLC). This 
feature implements hardware loop control for no more than one level of loop nesting. This allows the compiler 
to coalesce loop levels while predicating the execution of outer loop instructions in the inner loop. This reduces 
loop control overhead and provides for better function unit resource utilization for software pipelined loops. 
Loop coalescing is something that the compiler attempts to do automatically if the operation is both legal and 
profitable. Profitability is determined by a heuristic.

The COALESCE_LOOP pragma explicitly enables coalescing of the nested loop construct that follows the 
pragma. The pragma can only be applied to loops and must appear immediately before a loop construct in 
C/C++.

The syntax of the pragma in C and C++ is:
#pragma COALESCE_LOOP

If the compiler cannot guarantee that an inner loop is executed at least one time, then it will not coalesce the 
loop, even if you have used the COALESCE_LOOP pragma. To inform the compiler that a loop will always be 
executed, use a MUST_ITERATE pragma just prior to the loop body. For example, the following pragma tells the 
compiler that the loop executes at least once and no more than 65,535 times.

#pragma MUST_ITERATE(1,65535,)

5.8.4 The CODE_ALIGN Pragma

The CODE_ALIGN pragma aligns func along the specified alignment. The alignment constant must be a power 
of 2. The CODE_ALIGN pragma is useful if you have functions that you want to start at a certain boundary.

The CODE_ALIGN pragma has the same effect as using the GCC-style aligned function attribute. See 
Section 5.13.2.

The syntax of the pragma in C is:
#pragma CODE_ALIGN ( func , constant )

The syntax of the pragma in C++ is:
#pragma CODE_ALIGN ( constant )
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5.8.5 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a 
section named section name. The CODE_SECTION pragma is useful if you have code objects that you want to 
link into an area separate from the .text section. The CODE_SECTION pragma has the same effect as using the 
GCC-style section function attribute. See Section 5.13.2.

The syntax of the pragma in C is:

#pragma CODE_SECTION ( symbol , " section name ")

The syntax of the pragma in C++ is:

#pragma CODE_SECTION (" section name ")

The following example demonstrates the use of the CODE_SECTION pragma.

Using the CODE_SECTION Pragma in C

#pragma CODE_SECTION(fn, "my_sect")
int fn(int x)
{
    return x;
}
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5.8.6 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment 
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of 
the constant in bytes. The constant must be a power of 2. The maximum alignment is 32768.

The DATA_ALIGN pragma cannot be used to reduce an object's natural alignment.

Using the DATA_ALIGN pragma has the same effect as using the GCC-style aligned variable attribute. See 
Section 5.13.4.

The syntax of the pragma in C is:

#pragma DATA_ALIGN ( symbol , constant )

The syntax of the pragma in C++ is:

#pragma DATA_ALIGN ( constant )

5.8.7 The DATA_MEM_BANK Pragma

The DATA_MEM_BANK pragma aligns a symbol or variable to a specified internal data memory bank boundary. 
The constant specifies a specific memory bank to start your variables on. C7000 devices contain 16 64-bit 
memory banks. The value of constant can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.

The syntax of the pragma in C is:

#pragma DATA_MEM_BANK ( symbol , constant )

The syntax of the pragma in C++ is:

#pragma DATA_MEM_BANK ( constant )

Only global variables can be aligned with the DATA_MEM_BANK pragma.

The DATA_MEM_BANK pragma allows you to align data on any data memory bank that can hold data of the 
type size of the symbol. This is useful if you need to align data in a particular way to avoid memory bank 
conflicts.

This pragma increases the amount of space used in data memory by a small amount as padding is used to align 
data onto the correct bank.

A value of 'n' for the constant argument to the DATA_MEM_BANK pragma causes the last seven bits of the 
starting address to be a value equal to 'n*8'. For example, for a value of 1, the last seven bits of the starting 
address will be 0x08. For a value of 14, the last seven bits of the starting address will be 0x70.
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The code in Example 5-2 uses the DATA_MEM_BANK pragma to specify the alignment of the x, y, z, w, and zz 
arrays. It then assigns values to all the array elements and prints the starting address of each array.

Example 5-2. Using the DATA_MEM_BANK Pragma

#include <stdio.h>
#pragma DATA_MEM_BANK (x, 2)
short x[100];
#pragma DATA_MEM_BANK (z, 0)
#pragma DATA_SECTION (z, ".z_sect")
short z[100];
#pragma DATA_MEM_BANK (w, 4)
#pragma DATA_SECTION (w, ".w_sect")
short w[100];
#pragma DATA_MEM_BANK (zz, 6)
#pragma DATA_SECTION (zz, ".zz_sect")
short zz[100];
static short my_count = 0;
void main()
{
   int i;
   for (i = 0; i < 100; i++)
   {
      w[i] = my_count++;
      x[i] = my_count++;
      z[i] = my_count++;
      zz[i] = my_count++;
   }
   printf("address of  w: 0x%08lx\n", (unsigned long)w);
   printf("address of  x: 0x%08lx\n", (unsigned long)x);
   printf("address of  z: 0x%08lx\n", (unsigned long)z);
   printf("address of zz: 0x%08lx\n", (unsigned long)zz);
}

Sample output is as follows:

address of w:  0x0000cba0
address of x:  0x0000c610
address of z:  0x0000cc80
address of zz: 0x0000cab0

5.8.8 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a 
section named section name. This pragma is useful if you have data objects that you want to link into an area 
separate from the .bss or .data section.

Using the DATA_SECTION pragma has the same effect as using the GCC-style section variable attribute. 
See Section 5.13.4.

The syntax of the pragma in C is:

#pragma DATA_SECTION ( symbol , " section name ")

The syntax of the pragma in C++ is:

#pragma DATA_SECTION (" section name ")

Example 5-3. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTION(bufferB, "my_sect")
char bufferA[512];
char bufferB[512];
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Example 5-4. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA_SECTION("my_sect")
char bufferB[512];

5.8.9 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the corresponding 
command line options:

Pragma Option Description
diag_suppress num -pds=num[, num2, num3...] Suppress diagnostic num

diag_remark num -pdsr=num[, num2, num3...] Treat diagnostic num as a remark
diag_warning num -pdsw=num[, num2, num3...] Treat diagnostic num as a warning
diag_error num -pdse=num[, num2, num3...] Treat diagnostic num as an error
diag_default num n/a Use default severity of the diagnostic
diag_push n/a Push the current diagnostics severity state to store it for later use.
diag_pop n/a Pop the most recent diagnostic severity state stored with #pragma diag_push to 

be the current setting.

The syntax of the diag_suppress, diag_remark, diag_warning, and diag_error pragmas in C is:

#pragma diag_ xxx [=]num[, num2, num3...]

Notice that the names of these pragmas are in lowercase.

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal sign 
(=) is optional. Any diagnostic can be overridden to be an error, but only diagnostic messages with a severity 
of discretionary error or below can have their severity reduced to a warning or below, or be suppressed. The 
diag_default pragma is used to return the severity of a diagnostic to the one that was in effect before any 
pragmas were issued (i.e., the normal severity of the message as modified by any command-line options).

The diagnostic identifier number is output with the message when you use the -pden command line option.
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5.8.10 The FORCEINLINE Pragma

The FORCEINLINE pragma can be placed before a statement to force any function calls made in that statement 
to be inlined. It has no effect on other calls to the same functions.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler 
is invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the 
inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line 
option.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE

For example, in the following example, the mytest() and getname() functions are inlined, but the error() function 
is not.

#pragma FORCEINLINE
if (!mytest(getname(myvar))) {
    error();         
}

Placing the FORCEINLINE pragma before the call to error() would inline that function but not the others.

For information about interactions between command-line options, pragmas, and keywords that affect inlining, 
see Section 3.10.

Notice that the FORCEINLINE, FORCEINLINE_RECURSIVE, and NOINLINE pragmas affect only the C/C++ 
statement that follows the pragma. The FUNC_ALWAYS_INLINE and FUNC_CANNOT_INLINE pragmas affect 
an entire function.

5.8.11 The FORCEINLINE_RECURSIVE Pragma

The FORCEINLINE_RECURSIVE can be placed before a statement to force any function calls made in that 
statement to be inlined along with any calls made from those functions. That is, calls that are not visible in the 
statement but are called as a result of the statement will be inlined.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE_RECURSIVE

For information about interactions between command-line options, pragmas, and keywords that affect inlining, 
see Section 3.10.

www.ti.com C/C++ Language Implementation

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 107

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


 

5.8.12 The FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler 
is invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the 
inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line 
option. See Section 3.10 for details about interaction between various types of inlining.

This pragma must appear before any declaration or reference to the function that you want to inline. In C, the 
argument func is the name of the function that will be inlined. In C++, the pragma applies to the next function 
declared.

The FUNC_ALWAYS_INLINE pragma has the same effect as using the GCC-style always_inline function 
attribute. See Section 5.13.2.

The syntax of the pragma in C is:

#pragma FUNC_ALWAYS_INLINE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_ALWAYS_INLINE

The following example uses this pragma:

#pragma FUNC_ALWAYS_INLINE(functionThatMustGetInlined)
static inline void functionThatMustGetInlined(void) {
    P1OUT |= 0x01;
    P1OUT &= ~0x01;
}

Note
Use Caution with the FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse of this 
pragma could result in increased compilation times or memory usage, potentially enough to consume 
all available memory and result in compilation tool failures.

5.8.13 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded inline. 
Any function named with this pragma overrides any inlining you designate in any other way, such as using the 
inline keyword. Automatic inlining is also overridden with this pragma; see Section 3.10.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the 
argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the next function 
declared.

The FUNC_CANNOT_INLINE pragma has the same effect as using the GCC-style noinline function 
attribute. See Section 5.13.2.

The syntax of the pragma in C is:

#pragma FUNC_CANNOT_INLINE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_CANNOT_INLINE
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5.8.14 The FUNC_EXT_CALLED Pragma

When you use the --program_level_compile option, the compiler uses program-level optimization. When you use 
this type of optimization, the compiler removes any function that is not called, directly or indirectly, by main(). You 
might have C/C++ functions that are called externally instead of main().

The FUNC_EXT_CALLED pragma specifies that the optimizer should keep these C functions or any functions 
these C/C++ functions call. These functions act as entry points into C/C++. The pragma must appear before any 
declaration or reference to the function to keep. In C, the argument func is the name of the function to keep. In 
C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_EXT_CALLED ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_EXT_CALLED

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the name of 
the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with certain 
options.

5.8.15 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This allows 
the compiler to do the following:

• Delete the call to the function if the function's value is not needed
• Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is the 
name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_IS_PURE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_IS_PURE

5.8.16 The FUNC_IS_SYSTEM Pragma

The FUNC_IS_SYSTEM pragma specifies to the compiler that the named function has the behavior defined by 
the ANSI/ISO standard for a function with that name.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the 
argument func is the name of the function to treat as an ANSI/ISO standard function. In C++, the pragma applies 
to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_IS_SYSTEM ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_IS_SYSTEM
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5.8.17 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the 
argument func is the name of the function that does not return. In C++, the pragma applies to the next function 
declared.

The syntax of the pragma in C is:

#pragma FUNC_NEVER_RETURNS ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NEVER_RETURNS

5.8.18 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments to 
named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the 
argument func is the name of the function that makes no assignments. In C++, the pragma applies to the next 
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_GLOBAL_ASG ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NO_GLOBAL_ASG

5.8.19 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments through 
pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the 
argument func is the name of the function that makes no assignments. In C++, the pragma applies to the next 
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_IND_ASG ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NO_IND_ASG

5.8.20 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with additional 
command-line compiler options. The affected function will be compiled as if the specified list of options appeared 
on the command line after all other compiler options. In C, the pragma is applied to the function specified. In 
C++, the pragma is applied to the next function.

The syntax of the pragma in C is:

#pragma FUNCTION_OPTIONS ( func , " additional options " )
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The syntax of the pragma in C++ is:

#pragma FUNCTION_OPTIONS( " additional options " )

Supported options for this pragma are --opt_level, --auto_inline, --code_state, and --opt_for_speed.

In order to use --opt_level and --auto_inline with the FUNCTION_OPTIONS pragma, the compiler must be 
invoked with some optimization level (that is, at least --opt_level=0). The FUNCTION_OPTIONS pragma 
is ignored if --opt_level=off. The FUNCTION_OPTIONS pragma cannot be used to completely disable the 
optimizer for the compilation of a function; the lowest optimization level that can be specified is --opt_level=0.

5.8.21 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code.

The syntax of the pragma in C is:

#pragma INTERRUPT ( func )

The syntax of the pragma in C++ is:

#pragma INTERRUPT
void func ( void )

__attribute__((interrupt )) void func ( void )

The code for the function will return via the IRP (interrupt return pointer).

#pragma INTERRUPT ( func , {HPI|LPI} )

#pragma INTERRUPT ( {HPI|LPI} )

Note
Hwi Objects and the INTERRUPT Pragma: The INTERRUPT pragma must not be used when SYS/
BIOS Hwi objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the 
Hwi dispatcher contain this functionality, and the use of the C modifier can cause negative results.

5.8.22 The LOCATION Pragma

The compiler supports the ability to specify the run-time address of a variable at the source level. This can be 
accomplished with the LOCATION pragma or the GCC-style location attribute. The LOCATION pragma has the 
same effect as using the GCC-style location function attribute. See Section 5.13.2.

The syntax of the pragma in C is:

#pragma LOCATION( x , address )
int x

The syntax of the pragmas in C++ is:

#pragma LOCATION( address )
int x

The syntax of the GCC-style attribute (see Section 5.13.4) is:

int x __attribute__((location( address )))
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The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special 
memory locations; see Section 5.8.24.

5.8.23 The MUST_ITERATE Pragma

The MUST_ITERATE pragma specifies to the compiler certain properties of a loop. When you use this pragma, 
you are guaranteeing to the compiler that a loop executes a specific number of times or a number of times within 
a specified range.

Any time the UNROLL pragma is applied to a loop, MUST_ITERATE should be applied to the same loop. 
For loops the MUST_ITERATE pragma's third argument, multiple, is the most important and should always be 
specified.

Furthermore, the MUST_ITERATE pragma should be applied to any other loops as often as possible. This 
is because the information provided via the pragma (especially the minimum number of iterations) aids the 
compiler in choosing the best loops and loop transformations (that is, software pipelining and nested loop 
transformations). It also helps the compiler reduce code size.

No statements are allowed between the MUST_ITERATE pragma and the for, while, or do-while loop to 
which it applies. However, other pragmas, such as UNROLL and PROB_ITERATE, can appear between the 
MUST_ITERATE pragma and the loop.

5.8.23.1 The MUST_ITERATE Pragma Syntax

The syntax of the pragma for C and C++ is:

#pragma MUST_ITERATE ( min, max, multiple )

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available.

[[TI::must_iterate( min, max, multiple )]]

The arguments min and max are programmer-guaranteed minimum and maximum trip counts. The trip count is 
the number of times a loop iterates. The trip count of the loop must be evenly divisible by multiple. All arguments 
are optional. For example, if the trip count could be 5 or greater, you can specify the argument list as follows:

#pragma MUST_ITERATE(5)

However, if the trip count could be any nonzero multiple of 5, the pragma would look like this:

#pragma MUST_ITERATE(5, , 5) /* Note the blank field for max */

It is sometimes necessary for you to provide min and multiple in order for the compiler to perform unrolling. This 
is especially the case when the compiler cannot easily determine how many iterations the loop will perform (that 
is, the loop has a complex exit condition).

When specifying a multiple via the MUST_ITERATE pragma, results of the program are undefined if the trip 
count is not evenly divisible by multiple. Also, results of the program are undefined if the trip count is less than 
the minimum or greater than the maximum specified.

If no min is specified, zero is used. If no max is specified, the largest possible number is used. If multiple 
MUST_ITERATE pragmas are specified for the same loop, the smallest max and largest min are used.
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The following example uses the must_iterate C++ attribute syntax:

void myFunc (int *a, int *b, int * restrict c, int n)
{
    ...
    [[TI::must_iterate(32, 1024, 16)]]
    for (int i = 0; i < n; i++)
    {
        c[i] = a[i] + b[i];
    }
    ...
}

5.8.23.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops

Through the use of the MUST_ITERATE pragma, you can guarantee that a loop executes a certain number of 
times. The example below tells the compiler that the loop is guaranteed to run exactly 10 times:

#pragma MUST_ITERATE(10,10)
for(i = 0; i < trip_count; i++)  { ...

In this example, the compiler attempts to generate a software pipelined loop even without the pragma. However, 
if MUST_ITERATE is not specified for a loop such as this, the compiler generates code to bypass the loop, to 
account for the possibility of 0 iterations. With the pragma specification, the compiler knows that the loop iterates 
at least once and can eliminate the loop-bypassing code.

MUST_ITERATE can specify a range for the trip count as well as a factor of the trip count. The following 
example tells the compiler that the loop executes between 8 and 48 times and the trip_count variable is a 
multiple of 8 (8, 16, 24, 32, 40, 48). The multiple argument allows the compiler to unroll the loop.

#pragma MUST_ITERATE(8, 48, 8)
for(i = 0; i < trip_count; i++)  { ...

You should consider using MUST_ITERATE for loops with complicated bounds. In the following example, the 
compiler would have to generate a divide function call to determine, at run time, the number of iterations 
performed.

for(i2 = ipos[2]; i2 < 40; i2 += 5)  { ...

The compiler will not do the above. In this case, using MUST_ITERATE to specify that the loop always executes 
eight times allows the compiler to attempt to generate a software pipelined loop:

#pragma MUST_ITERATE(8, 8)
for(i2 = ipos[2]; i2 < 40; i2 += 5)  { ...

Typically, if the MUST_ITERATE pragma is used to optimize loop execution, a DINT instruction is prepended 
to the optimized code, the loop code is executed, and then an RINT instruction is executed when the loop is 
terminated.
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5.8.24 The NOINIT and PERSISTENT Pragmas

Global and static variables are zero-initialized by default. However, in applications that use non-volatile memory, 
it may be desirable to have variables that are not initialized. Noinit variables are global or static variables that are 
not zero-initialized at startup or reset.

Variables can be declared as noinit or persistent using either pragmas or variable attributes. See Section 5.13.4 
for information about using variable attributes in declarations.

Noinit and persistent variables behave identically with the exception of whether or not they are initialized at load 
time.

• The NOINIT pragma may be used only with uninitialized variables. It prevents such variables from being set 
to 0 during a reset. It may be used in conjunction with the LOCATION pragma to map variables to special 
memory locations, like memory-mapped registers, without generating unwanted writes.

• The PERSISTENT pragma may be used only with statically-initialized variables. It prevents such variables 
from being initialized during a reset. Persistent variables disable startup initialization; they are given an initial 
value when the code is loaded, but are never again initialized.

By default, noinit or persistent variables are placed in sections named .TI.noinit and .TI.persistent , 
respectively. The location of these sections is controlled by the linker command file. Typically .TI.persistent 
sections are placed in FRAM for devices that support FRAM and .TI.noinit sections are placed in RAM.

Note

When using these pragmas in non-volatile FRAM memory, the memory region could be protected 
against unintended writes through the device's Memory Protection Unit. Some devices have memory 
protection enabled by default. Please see the information about memory protection in the datasheet 
for your device. If the Memory Protection Unit is enabled, it first needs to be disabled before modifying 
the variables.

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero loaded into 
RAM. The program can increment that variable over time as a counter, and that count will not disappear if the 
device loses power and restarts, because the memory is non-volatile and the boot routines do not initialize it 
back to zero. For example:

#pragma PERSISTENT(x)
#pragma location = 0xC200   // memory address in RAM
int x = 0; 
void main() {
    run_init();
    while (1) {
        run_actions(x); 
        __delay_cycles(1000000); 
        x++;
    }
}

The syntax of the pragmas in C is:

#pragma NOINIT ( x )
int x ;
#pragma PERSISTENT ( x )
int x =10;
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The syntax of the pragmas in C++ is:

#pragma NOINIT
int x ;
#pragma PERSISTENT
int x =10;

The syntax of the GCC attributes is:

int x __attribute__((noinit));
int x __attribute__((persistent)) = 0;

5.8.25 The NOINLINE Pragma

The NOINLINE pragma can be placed before a statement to prevent any function calls made in that statement 
from being inlined. It has no effect on other calls to the same functions.

The syntax of the pragma in C/C++ is:

#pragma NOINLINE

For information about interactions between command-line options, pragmas, and keywords that affect inlining, 
see Section 3.10.

5.8.26 The NO_COALESCE_LOOP Pragma

In order to facilitate nested loop coalescing, in which an outer loop level containing instructions is merged into 
an inner loop level, the C7000 architecture provides a feature known as the Nested Loop Controller (NLC). This 
feature implements hardware loop control for no more than one level of loop nesting. This allows the compiler 
to coalesce loop levels while predicating the execution of outer loop instructions in the inner loop. This reduces 
loop control overhead and provides for better function unit resource utilization for software pipelined loops. 
Loop coalescing is something that the compiler attempts to do automatically if the operation is both legal and 
profitable. Profitability is determined by a heuristic.

The NO_COALESCE_LOOP pragma explicitly disables coalescing of the nested loop construct that follows the 
pragma. The pragma can only be applied to loops and must appear immediately before a loop construct in 
C/C++.

The syntax of the pragma in C and C++ is:
#pragma NO_COALESCE_LOOP

5.8.27 The NO_HOOKS Pragma

The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

#pragma NO_HOOKS ( func )

The syntax of the pragma in C++ is:

#pragma NO_HOOKS

See Section 3.14 for details on entry and exit hooks.
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5.8.28 The once Pragma

The once pragma tells the C preprocessor to ignore a #include directive if that header file has already been 
included. For example, this pragma may be used if header files contain definitions, such as struct definitions, that 
would cause a compilation error if they were executed more than once.

This pragma should be used at the beginning of a header file that should only be included once. For example:

// hdr.h
#pragma once
#warn You will only see this message one time
struct foo 
{
    int member;
};

This pragma is not part of the C or C++ standard, but it is a widely-supported preprocessor directive. Note that 
this pragma does not protect against the inclusion of a header file with the same contents that has been copied 
to another directory.

5.8.29 The pack Pragma

The pack pragma can be used to control the alignment of fields within a class, struct, or union type. The syntax 
of the pragma in C/C++ can be any of the following.
#pragma pack ( n )

The above form of the pack pragma affects all class, struct, or union type declarations that follow this pragma in 
a file. It forces the maximum alignment of each field to be the value specified by n. Valid values for n are 1, 2, 4, 
8, and 16 bytes.

#pragma pack ( push, n )
#pragma pack ( pop )

The above form of the pack pragma affects only class, struct, and union type declarations between push and 
pop directives. (A pop directive with no prior push results in a warning diagnostic from the compiler.) The 
maximum alignment of all fields declared is n. Valid values for n are 1, 2, 4, 8, and 16 bytes.

#pragma pack ( show )

The above form of the pack pragma sends a warning diagnostic to stderr to record the current state of the pack 
pragma stack. You can use this form while debugging.

For more about packed fields, see Section 5.13.5.
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5.8.30 The PROB_ITERATE Pragma

The PROB_ITERATE pragma specifies to the compiler certain properties of a loop. You assert that these 
properties are true in the common case. The PROB_ITERATE pragma aids the compiler in choosing the best 
loops and loop transformations (that is, software pipelining and nested loop transformations). PROB_ITERATE 
is useful only when the MUST_ITERATE pragma is not used or the PROB_ITERATE parameters are more 
constraining than the MUST_ITERATE parameters.

No statements are allowed between the PROB_ITERATE pragma and the for, while, or do-while loop to 
which it applies. However, other pragmas, such as UNROLL and MUST_ITERATE, may appear between the 
PROB_ITERATE pragma and the loop. The syntax of the pragma for C and C++ is:

#pragma PROB_ITERATE( min , max )

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available. See Section 
5.8.23.1 for an example that uses similar syntax.

[[TI::prob_iterate( min, max )]]

Where min and max are the minimum and maximum trip counts of the loop in the common case. The trip count 
is the number of times a loop iterates. Both arguments are optional.

For example, PROB_ITERATE could be applied to a loop that executes for eight iterations in the majority of 
cases (but sometimes may execute more or less than eight iterations):

#pragma PROB_ITERATE(8, 8)

If only the minimum expected trip count is known (say it is 5), the pragma would look like this:

#pragma PROB_ITERATE(5)

If only the maximum expected trip count is known (say it is 10), the pragma would look like this:

#pragma PROB_ITERATE(, 10)  /* Note the blank field for min */

5.8.31 The RETAIN Pragma

The RETAIN pragma can be applied to a code or data symbol.

It causes a .retain directive to be generated into the section that contains the definition of the symbol. The .retain 
directive indicates to the linker that the section is ineligible for removal during conditional linking. Therefore, 
regardless whether or not the section is referenced by another section in the application that is being compiled 
and linked, it will be included in the output file result of the link.

The RETAIN pragma has the same effect as using the retain function or variable attribute. See Section 5.13.2 
and Section 5.13.4, respectively.

The syntax of the pragma in C is:
#pragma RETAIN ( symbol )

The syntax of the pragma in C++ is:
#pragma RETAIN
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5.8.32 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas

These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

#pragma SET_CODE_SECTION (" section name ")

#pragma SET_DATA_SECTION (" section name ")

In the Setting Section With SET_DATA_SECTION Pragma example, x and y are put in the section mydata. To 
reset the current section to the default used by the compiler, a blank parameter should be passed to the pragma. 
An easy way to think of the pragma is that it is like applying the CODE_SECTION or DATA_SECTION pragma to 
all symbols below it.

Setting Section With SET_DATA_SECTION Pragma

#pragma SET_DATA_SECTION("mydata")
int x;
int y;
#pragma SET_DATA_SECTION()

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition, the 
pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Setting a Section With SET_CODE_SECTION Pragma

#pragma SET_CODE_SECTION("func1")
extern void func1();
#pragma SET_CODE_SECTION()
...
void func1() { ... }

In the Setting a Section With SET_CODE_SECTION Pragma example, func1 is placed in section func1. If 
conflicting sections are specified at the declaration and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override the 
SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Overriding SET_DATA_SECTION Setting

#pragma DATA_SECTION(x, "x_data")
#pragma SET_DATA_SECTION("mydata")
int x;
int y;
#pragma SET_DATA_SECTION()

In the Overriding SET_DATA_SECTION Setting example, x is placed in x_data and y is placed in mydata. No 
diagnostic is issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implicitly created 
objects, such as implicit constructors and virtual function tables.

The SET_DATA_SECTION pragma takes precedence over the --gen_data_subsections=on option if it is used.
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5.8.33 The STRUCT_ALIGN Pragma

The STRUCT_ALIGN pragma is similar to DATA_ALIGN, but it can be applied to a structure or union type or 
typedef. It is inherited by any symbol created from that type. The STRUCT_ALIGN pragma is supported only in 
C.

The syntax of the pragma is:

#pragma STRUCT_ALIGN( type , constant expression )

This pragma guarantees that the alignment of the named type or the base type of the named typedef is at least 
equal to that of the expression. (The alignment may be greater as required by the compiler.) The alignment must 
be a power of 2. The type must be a type or a typedef name. If a type, it must be either a structure tag or a union 
tag. If a typedef, its base type must be either a structure tag or a union tag.

Note that while the top-level object of a type (or a typedef of that type) will be aligned as requested, the type 
will not be padded to the alignment (as is usual for a struct), nor does the alignment propagate to derived 
types such as arrays and parent structs. If you want to pad a structure or union so that individual elements are 
also aligned and/or cause the alignment to apply to derived types, use the "aligned" type attribute described in 
Section 5.13.5.

Since ANSI/ISO C declares that a typedef is simply an alias for a type (i.e. a struct) this pragma can be applied 
to the struct, the typedef of the struct, or any typedef derived from them, and affects all aliases of the base type.

This example aligns any st_tag structure variables on a page boundary:

typedef struct st_tag
{
   int   a;
   short b;
} st_typedef;
#pragma STRUCT_ALIGN (st_tag, 128) 
#pragma STRUCT_ALIGN (st_typedef, 128)

Any use of STRUCT_ALIGN with a basic type (int, short, float) or a variable results in an error.

5.8.34 The UNROLL Pragma

The UNROLL pragma specifies to the compiler how many times a loop should be unrolled. The UNROLL 
pragma is useful for helping the compiler utilize SIMD instructions. It is also useful in cases where better 
utilization of software pipeline resources are needed over a non-unrolled loop.

The optimizer must be invoked (use --opt_level=[1|2|3] or -O1, -O2, or -O3) in order for pragma-specified loop 
unrolling to take place. The compiler has the option of ignoring this pragma.

No statements are allowed between the UNROLL pragma and the for, while, or do-while loop to which it applies. 
However, other pragmas, such as MUST_ITERATE and PROB_ITERATE, can appear between the UNROLL 
pragma and the loop.

The syntax of the pragma for C and C++ is:

#pragma UNROLL( n )

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available. See Section 
5.8.23.1 for an example that uses similar syntax.

[[TI::unroll( n )]]

If possible, the compiler unrolls the loop so there are n copies of the original loop. The compiler only unrolls if 
it can determine that unrolling by a factor of n is safe. In order to increase the chances the loop is unrolled, the 
compiler needs to know certain properties:
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• The loop iterates a multiple of n times. This information can be specified to the compiler via the multiple 
argument in the MUST_ITERATE pragma.

• The smallest possible number of iterations of the loop
• The largest possible number of iterations of the loop

The compiler can sometimes obtain this information itself by analyzing the code. However, sometimes the 
compiler can be overly conservative in its assumptions and therefore generates more code than is necessary 
when unrolling. This can also lead to not unrolling at all. Furthermore, if the mechanism that determines when 
the loop should exit is complex, the compiler may not be able to determine these properties of the loop. In these 
cases, you must tell the compiler the properties of the loop by using the MUST_ITERATE pragma.

Specifying #pragma UNROLL(1) asks that the loop not be unrolled. Automatic loop unrolling also is not 
performed in this case.

If multiple UNROLL pragmas are specified for the same loop, it is undefined which pragma is used, if any.

5.8.35 The WEAK Pragma

The WEAK pragma gives weak binding to a symbol.

The syntax of the pragma in C is:

#pragma WEAK ( symbol )

The syntax of the pragma in C++ is:

#pragma WEAK

The WEAK pragma makes symbol a weak reference if it is a reference, or a weak definition, if it is a definition. 
The symbol can be a data or function variable. In effect, unresolved weak references do not cause linker errors 
and do not have any effect at run time. The following apply for weak references:

• Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain 
unresolved.

• During linking, the value of an undefined weak reference is:
– Zero if the relocation type is absolute
– The address of the place if the relocation type is PC-relative
– The address of the nominal base address if the relocation type is base-relative.

A weak definition does not change the rules by which object files are selected from libraries. However, if a link 
set contains both a weak definition and a non-weak definition, the non-weak definition is always used.

The WEAK pragma has the same effect as using the weak function or variable attribute. See Section 5.13.2 and 
Section 5.13.4, respectively.
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5.9 The _Pragma Operator
The C7000 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor operator is 
similar to #pragma directives. However, _Pragma can be used in preprocessing macros (#defines).

The syntax of the operator is:

_Pragma (" string_literal ");

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are 
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal 
must be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the DATA_SECTION 
syntax:

#pragma DATA_SECTION( func ," section ")

Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION( func ,\" section \")")

The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:

...
#define EMIT_PRAGMA(x) _Pragma(#x)
#define COLLECT_DATA(var) EMIT_PRAGMA(DATA_SECTION(var,"mysection"))
COLLECT_DATA(x)
int x;
...

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the section 
argument to the DATA_SECTION pragma.
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5.10 Application Binary Interface
An Application Binary Interface (ABI) defines how functions that are written separately, and compiled separately 
can work together. This involves standardizing the data type representation, register conventions, and function 
structure and calling conventions. An ABI allows ABI-compliant object files to be linked together, regardless 
of their source, and allows the resulting executable to run on any system that supports that ABI. It defines 
linkname generation from C symbol names. It also defines the object file format and the debug format, along 
with documenting how the system is initialized. In the case of C++, it defines C++ name mangling and exception 
handling support.

The C7000 compiler and linker support only the Embedded Application Binary Interface (EABI) ABI, which works 
only with object files that use the ELF object file format and the DWARF debug format.

EABI uses the ELF object file format which enables supporting modern language features like early template 
instantiation and export inline functions support. TI-specific information on EABI mode is described in Section 
6.7.2.

For details about the C7000 EABI, see the C7000 Embedded Application Binary Interface (EABI) Reference 
Guide (SPRUIG4).

5.11 Object File Symbol Naming Conventions (Linknames)
Each externally visible identifier is assigned a unique symbol name to be used in the object file, a so-called 
linkname. This name is assigned by the compiler according to an algorithm which depends on the name, type, 
and source language of the symbol. This algorithm may add a prefix to the identifier (typically an underscore), 
and it may mangle the name.

User-defined symbols in C code and in assembly code are stored in the same namespace, which means you 
are responsible for making sure that your C identifiers do not collide with your assembly code identifiers. You 
may have identifiers that collide with assembly keywords (for instance, register names); in this case, the compiler 
automatically uses an escape sequence to prevent the collision. The compiler escapes the identifier with double 
parallel bars, which instructs the assembler not to treat the identifier as a keyword. You are responsible for 
making sure that C identifiers do not collide with user-defined assembly code identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name mangling 
only occurs for C++ functions which are not declared 'extern "C"'. Mangling allows function overloading, operator 
overloading, and type-safe linking. Be aware that the return value of the function is not encoded in the mangled 
name, as C++ functions cannot be overloaded based on the return value.

For example, the general form of a C++ linkname for a function named func is:

_func__F parmcodes

Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:

int foo(int i){ }   //global C++ function

This is the resulting assembly code:

_foo__Fi

The linkname of foo is _foo__Fi, indicating that foo is a function that takes a single argument of type int. To aid 
inspection and debugging, a name demangling utility is provided that demangles names into those found in the 
original C++ source. See Chapter 14 for more information.

The mangling algorithm follows that described in the Itanium C++ ABI (http://www.codesourcery.com/cxx-abi/
abi.html).

int foo(int i) { } would be mangled "_Z3fooi"
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5.12 Changing the ANSI/ISO C/C++ Language Mode
The language mode command-line options determine how the compiler interprets your source code. You specify 
one option to identify which language standard your code follows. You can also specify a separate option to 
specify how strictly the compiler should expect your code to conform to the standard.

Specify one of the following language options to control the language standard that the compiler expects the 
source to follow. The options are:

• ANSI/ISO C89 (--c89, default for C files)
• ANSI/ISO C99 (--c99, see Section 5.12.1.)
• ANSI/ISO C11 (--c11, see Section 5.12.2)
• ISO C++14 (--c++14 , used for all C++ files , see Section 5.2.)

Use one of the following options to specify how strictly the code conforms to the standard:

• Relaxed ANSI/ISO (--relaxed_ansi or -pr) This is the default.
• Strict ANSI/ISO (--strict_ansi or -ps)

The default is relaxed ANSI/ISO mode. Under relaxed ANSI/ISO mode, the compiler accepts language 
extensions that could potentially conflict with ANSI/ISO C/C++. Under strict ANSI mode, these language 
extensions are suppressed so that the compiler will accept all strictly conforming programs. (See Section 
5.12.3.)

5.12.1 C99 Support (--c99)

The compiler supports the 1999 standard of C as standardized by the ISO. However, the following list of run-time 
functions and features are not implemented or fully supported:

• inttypes.h
– wcstoimax() / wcstoumax()

• math.h
– FP_ILOGB0 / FP_ILOGBNAN macros
– MATH_ERRNO macro
– copysign()
– float_t / double_t types
– math_errhandling()
– signbit()
– The following sets of C99 functions do not support the "long double" type. C89 math functions using float 

and long double types are supported. (Section numbers are from the C99 standard.)
• 7.12.4: Trigonometric functions
• 7.12.5: Hyperbolic functions
• 7.12.6: Exponential and logarithmic functions
• 7.12.7: Power and absolute value functions
• 7.12.9: Nearest integer functions
• 7.12.10: Remainder functions

– expm1()
– ilogb() / log1p() / logb()
– scalbn() / scalbln()
– cbrt()
– hypot()
– erf() / erfc()
– lgamma() / tgamma()
– nearbyint()
– rint() / lrint() / llrint()
– lround() / llround()
– remainder() / remquo()
– nan()
– nextafter() / nexttoward()
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– fdim() / fmax() / fmin() / fma()
– isgreater() / isgreaterequal() / isless() / islessequal() / islessgreater() / isunordered()

• stdio.h
– The %e specifier may produce "-0" when "0" is expected by the standard
– snprintf() does not properly pad with spaces when writing to a wide character array

• stdlib.h
– vfscanf() / vscanf() / vsscanf() return value on floating point matching failure is incorrect

• wchar.h
– getws() / fputws()
– mbrlen()
– mbsrtowcs()
– wcscat()
– wcschr()
– wcscmp() / wcsncmp()
– wcscpy() / wcsncpy()
– wcsftime()
– wcsrtombs()
– wcsstr()
– wcstok()
– wcsxfrm()
– Wide character print / scan functions
– Wide character conversion functions

5.12.2 C11 Support (--c11)

The compiler supports the 2011 standard of C as standardized by the ISO. However, in addition to the list 
in Section 5.12.1, the following run-time functions and features are not implemented or fully supported in C11 
mode:

• threads.h
• atomic operations
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5.12.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

Under relaxed ANSI/ISO mode (the default), the compiler accepts language extensions that could potentially 
conflict with a strictly conforming ANSI/ISO C/C++ program. Under strict ANSI mode, these language extensions 
are suppressed so that the compiler will accept all strictly conforming programs.

Use the --strict_ansi option when you know your program is a conforming program and it will not compile 
in relaxed mode. In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled and the 
compiler will emit error messages where the standard requires it to do so. Violations that are considered 
discretionary by the standard may be emitted as warnings instead.

Examples:

The following is strictly conforming C code, but will not be accepted by the compiler in the default relaxed mode. 
To get the compiler to accept this code, use strict ANSI mode. The compiler will suppress the inline keyword 
language exception, and inline may then be used as an identifier in the code.

int main()
{
    int inline = 0;
    return 0;
}

The following is not strictly conforming code. The compiler will not accept this code in strict ANSI mode. To get 
the compiler to accept it, use relaxed ANSI mode. The compiler will provide the int16 type extension and will 
accept the code.

extern int16 myFunc(void);
int main()
{
    return 0;
}

The following code is accepted in all modes. The __int16 type does not conflict with the ANSI/ISO C standard, 
so it is always available as a language extension.

extern __int16 myFunc(void);
int main()
{
    return 0;
}

The default mode is relaxed ANSI. This mode can be selected with the --relaxed_ansi (or -pr) option. Relaxed 
ANSI mode accepts the broadest range of programs. It accepts all TI language extensions, even those which 
conflict with ANSI/ISO, and ignores some ANSI/ISO violations for which the compiler can do something 
reasonable. Some GCC language extensions described in Section 5.13 may conflict with strict ANSI/ISO 
standards, but many do not conflict with the standards.
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5.13 GNU and Clang Language Extensions
The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C and 
C++ standards. The definition and examples of these extensions (for GCC version 4.7) can be found at the GNU 
web site, http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions. Most of these extensions 
are also available for C++ source code.

The compiler also supports the following Clang macro extensions, which are described in the Clang 6 
Documentation:

• __has_feature (up to tests described for Clang 3.5)
• __has_extension (up to tests described for Clang 3.5)
• __has_include
• __has_include_next
• __has_builtin (see Section 5.13.6)
• __has_attribute

5.13.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI mode 
(--relaxed_ansi).

The extensions that the TI compiler supports are listed in Table 5-6, which is based on the list of extensions 
found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 5-6. GCC Language Extensions
Extensions Descriptions
Statement expressions Putting statements and declarations inside expressions (useful for creating smart 'safe' macros)

Local labels Labels local to a statement expression

Labels as values Pointers to labels and computed gotos

Nested functions As in Algol and Pascal, lexical scoping of functions

Constructing calls Dispatching a call to another function

Naming types(1) Giving a name to the type of an expression

typeof operator typeof referring to the type of an expression

Generalized lvalues Using question mark (?) and comma (,) and casts in lvalues

Conditionals Omitting the middle operand of a ?: expression

long long Double long word integers and long long int type

Hex floats Hexadecimal floating-point constants

Complex Data types for complex number

Zero length Zero-length arrays

Variadic macros Macros with a variable number of arguments

Variable length Arrays whose length is computed at run time

Empty structures Structures with no members

Subscripting Any array can be subscripted, even if it is not an lvalue.

Escaped newlines Slightly looser rules for escaped newlines

Multi-line strings(1) String literals with embedded newlines

Pointer arithmetic Arithmetic on void pointers and function pointers

Initializers Non-constant initializers

Compound literals Compound literals give structures, unions, or arrays as values

Designated initializers Labeling elements of initializers

Cast to union Casting to union type from any member of the union

Case ranges 'Case 1 ... 9' and such
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Table 5-6. GCC Language Extensions (continued)
Extensions Descriptions
Mixed declarations Mixing declarations and code

Function attributes Declaring that functions have no side effects, or that they can never return

Attribute syntax Formal syntax for attributes

Function prototypes Prototype declarations and old-style definitions

C++ comments C++ comments are recognized.

Dollar signs A dollar sign is allowed in identifiers.

Character escapes The character ESC is represented as \e

Variable attributes Specifying the attributes of variables

Type attributes Specifying the attributes of types

Alignment Inquiring about the alignment of a type or variable

Inline Defining inline functions (as fast as macros)

Assembly labels Specifying the assembler name to use for a C symbol

Extended asm Assembler instructions with C operands

Constraints Constraints for asm operands

Wrapper headers Wrapper header files can include another version of the header file using #include_next

Alternate keywords Header files can use __const__ etc

Explicit reg vars Defining variables residing in specified registers

Incomplete enum types Define an enum tag without specifying its possible values

Function names Printable strings which are the name of the current function

Return address Getting the return or frame address of a function (limited support)

Other built-ins Other built-in functions (see Section 5.13.6)

Vector extensions Using vector operations (see Section 5.14)

Target built-ins Built-in functions specific to particular targets

Pragmas Pragmas accepted by GCC

Unnamed fields Unnamed struct/union fields within structs/unions

Thread-local Per-thread variables

Binary constants Binary constants using the '0b' prefix.

(1) Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
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5.13.2 Function Attributes

The following GCC function attributes are supported:

• alias
• aligned
• always_inline
• calls
• const
• constructor
• deprecated
• format
• format_arg
• malloc
• noinline
• noreturn
• pure
• section
• unused
• used
• visibility
• warn_unused_result
• weak

The following additional TI-specific function attribute is supported:

• retain

For example, this function declaration uses the alias attribute to make "my_alias" a function alias for the 
"myFunc" function:

void my_alias() __attribute__((alias("myFunc")));

The aligned function attribute has the same effect as the CODE_ALIGN pragma. See Section 5.8.4

The always_inline function attribute has the same effect as the FUNC_ALWAYS_INLINE pragma. See Section 
5.8.12

The calls attribute has the same effect as the CALLS pragma, which is described in Section 5.8.1.

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, 
vsnprintf, scanf, fscanf, vfscanf, vscanf, vsscanf, and sscanf in stdio.h. Thus when GCC extensions are enabled, 
the data arguments of these functions are type checked against the format specifiers in the format string 
argument and warnings are issued when there is a mismatch. These warnings can be suppressed in the usual 
ways if they are not desired.

The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

The noinline function attribute has the same effect as the FUNC_CANNOT_INLINE pragma. See Section 5.8.13

The retain attribute has the same effect as the RETAIN pragma (Section 5.8.31). That is, the section that 
contains the function will not be omitted from conditionally linked output even if it is not referenced elsewhere in 
the application.

The section attribute when used on a function has the same effect as the CODE_SECTION pragma. See 
Section 5.8.5

The weak attribute has the same effect as the WEAK pragma (Section 5.8.35).
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5.13.3 For Loop Attributes

If you are using C++, there are several TI-specific attributes that can be applied to loops. No corresponding 
syntax is available in C. The following TI-specific attributes have the same function as their corresponding 
pragmas:

• TI::must_iterate
• TI::prob_iterate
• TI::unroll

See Section 5.8.23.1 for an example that uses a for loop attribute.

5.13.4 Variable Attributes

The following variable attributes are supported:

• aligned
• deprecated
• location
• mode
• noinit
• packed
• persistent
• retain
• section
• transparent_union
• unused
• used
• weak

The aligned attribute used on a variable has the same effect as the DATA_ALIGN pragma. See Section 5.8.6

The location attribute has the same effect as the LOCATION pragma. See Section 5.8.22. For example:

__attribute__((location(0x100))) extern struct PERIPH peripheral;

The noinit and persistent attributes apply to the ROM initialization model and allow an application to avoid 
initializing certain global variables during a reset. The alternative RAM initialization model initializes variables 
only when the image is loaded; no variables are initialized during a reset. See the "RAM Model vs. ROM Model" 
section and its subsections in the

The noinit attribute can be used on uninitialized variables; it prevents those variables from being set to 0 
during a reset. The persistent attribute can be used on initialized variables; it prevents those variables from 
being initialized during a reset. By default, variables marked noinit or persistent will be placed in sections 
named .TI.noinit and .TI.persistent , respectively. The location of these sections is controlled by 
the linker command file. Typically .TI.persistent sections are placed in FRAM for devices that support FRAM 
and .TI.noinit sections are placed in RAM. Also see Section 5.8.24.

The packed attribute may be applied to individual fields within a struct or union. The packed attribute for 
structure and union fields is available only when there is hardware support for unaligned accesses.

The retain attribute has the same effect as the RETAIN pragma (Section 5.8.31). That is, the section that 
contains the variable will not be omitted from conditionally linked output even if it is not referenced elsewhere in 
the application.

The section attribute when used on a variable has the same effect as the DATA_SECTION pragma. See 
Section 5.8.8

The used attribute is defined in GCC 4.2 (see http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-
Attributes.html#Variable-Attributes).

The weak attribute has the same effect as the WEAK pragma (Section 5.8.35).
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5.13.5 Type Attributes

The following type attributes are supported:

• aligned
• deprecated
• packed
• transparent_union
• unused
• visibility

Using the aligned type attribute causes the individual elements of a structure, union, or other type to be padded 
(as is usual for a struct) as needed to achieve the specified alignment for all elements. In addition, any derived 
types have the same alignment. For example:

    struct __attribute__((aligned(32))) myStruct { char c1; int i; char c2; };

The packed attribute is supported for struct and union types. It is available only for target architectures that have 
hardware support for unaligned access if the --relaxed_ansi option is used.

Members of a packed structure are stored as closely to each other as possible, omitting additional bytes of 
padding usually added to preserve word-alignment. For example, assuming a word-size of 4 bytes ordinarily has 
3 bytes of padding between members c1 and i, and another 3 bytes of trailing padding after member c2, leading 
to a total size of 12 bytes:

    struct unpacked_struct { char c1; int i; char c2;}; 

However, the members of a packed struct are byte-aligned. Thus the following does not have any bytes of 
padding between or after members and totals 6 bytes:

   struct __attribute__((__packed__)) packed_struct { char c1; int i; char c2; };

Subsequently, packed structures in an array are packed together without trailing padding between array 
elements.

Using "packed" on a bit-field overrides the EABI requirements for bit-fields. For non-packed bit-fields, the 
declared type of a bit-field is used for the container type. For packed bit-fields, the smallest integral type (except 
bool) is used, regardless of the declared type. For non-packed volatile bit-fields, the bit-field must be accessed 
using one access of the same size as the declared type. For packed volatile bit-fields, the access must be of 
the same size as the actual container type, and may not be the same as the declared type; additionally, the 
actual container might not be aligned, and might span more than one aligned container boundary, so accessing 
a packed volatile bit-field may require more than one memory access. This can also affect the overall size of the 
struct; for instance, if the struct contains only the bit-field, the struct might not be as large as the declared type 
of the bit-field. For both packed and unpacked bit-fields, bit-fields are bit-aligned and are packed together with 
adjacent bit-fields with no padding, are entirely contained within an integer container that is at least byte-aligned; 
and do not alter the alignment of adjacent non-bitfield struct members.

The "packed" attribute can be applied only to the original definition of a structure or union type. It cannot be 
applied with a typedef to a non-packed structure that has already been defined, nor can it be applied to the 
declaration of a struct or union object. Therefore, any given structure or union type can only be packed or 
non-packed, and all objects of that type will inherit its packed or non-packed attribute.

The "packed" attribute is not applied recursively to structure types that are contained within a packed structure. 
Thus, in the following example the member s retains the same internal layout as in the first example above. 
There is no padding between c and s, so s falls on an unaligned boundary:

   struct __attribute__((__packed__)) outer_packed_struct { char c; struct unpacked_struct s; };
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It is illegal to implicitly or explicitly cast the address of a packed struct member as a pointer to any non-packed 
type except an unsigned char. In the following example, p1, p2, and the call to foo are all illegal.

   void foo(int *param);
   struct packed_struct ps;
   int *p1 = &ps.i;
   int *p2 = (int *)&ps.i;
   foo(&ps.i);

However, it is legal to explicitly cast the address of a packed struct member as a pointer to an unsigned char:

   unsigned char *pc = (unsigned char *)&ps.i;

The TI compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that the 
representation is to be an integer type that is no smaller than int; in other words, it is not packed.

5.13.6 Built-In Functions

The following built-in functions are supported:

• __builtin_abs()
• __builtin_constant_p()
• __builtin_expect()
• __builtin_fabs()
• __builtin_fabsf()
• __builtin_frame_address()
• __builtin_labs()
• __builtin_memcpy()
• __builtin_return_address()

The __builtin_frame_address() function always returns zero.

The __builtin_return_address() function always returns zero.
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5.14 Operations and Functions for Vector Data Types
The C/C++ compiler supports the use of TI vector data types in C/C++ source files. Vector data types are 
described in Section 5.3.2. These vector data types are useful for parallel programming applications. Vector 
data types are enabled by default. You can disable the vector data type names that are not prefixed with a 
double-underscore using the --vectypes compiler option.

Various types of operations can be performed on vectors. These include vector literals and concatenation 
(Section 5.14.1), unary and binary operators (Section 5.14.2), and swizzle operators for component access 
(Section 5.14.4).

Note

Vectors cannot be passed to variadic functions (stdarg.h) and cannot be passed to printf().

5.14.1 Vector Literals and Concatenation

You can specify the values to use for vector initialization or assignment using literals or scalar variables. When 
all of the components assigned to a vector are constants, the result is a vector literal. Otherwise, the vector's 
value is determined at run-time. When initializing a vector where each element does not have the same initial 
value, the constructor initialization idiom should be used as in the example below.

For example, the values assigned to vec_a and vec_b in the following declarations are vector literals and are 
known during compilation:

short4 vec_a = short4(1, 2, 3, 4);
float2 vec_b = float2(3.2, -2.3);

The following statements initialize all elements of a vector to the same value. In this case, either the 
"constructor" idiom or the "cast/scalar-widening" idiom can be used.

ushort4 myushort4a = ushort4(1); // constructor syntax (preferred)
ushort4 myushort4b = (ushort4)1; // cast/scalar-widening syntax

Shorter vectors can be concatenated together to form longer vectors. In the following example, two int variables 
are concatenated into an int2 variable. The value of myvec in the following function is not resolved until run-time:

void foo(int a, int b)
{
    int2 myvec = int2(a, b); 
    . . .
}

The following example concatenates two int2 variables into an int4 variable, which is passed to an external 
function:

extern void bar(int4 v4);
void foo(int a, int b)
{
    int2 myv2_a = int2(a, 1);
    int2 myv2_b = int2(b, 2);
    int4 myv4 = int4(myv2_a, myv2_b);
    bar(myv4);
}
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5.14.2 Unary and Binary Operators for Vectors

When unary operators (such as negate: -) and binary operators (such as +) are applied to a vector, the operator 
is applied to each element in the vector. That is, each element in the resulting vector is the result of applying the 
operator to the corresponding elements in the source vector(s).

Note
Currently only the assignment operator (=) is supported for Boolean vectors.

Table 5-7. Unary Operators Supported for Vector Types
Operator Description
- negate

~ bitwise complement

! logical not (integer vectors only)

The following example declares an int4 vector called pos_i4 and initializes it to the values 1, 2, 3, and 4. It then 
uses the negate operator to initialize the values of another int4 vector, neg_i4, to the values -1, -2, -3, and -4.

int4 pos_i4 = int4(1, 2, 3, 4);
int4 neg_i4 = -pos_i4;

Table 5-8. Binary Operators Supported for Vector Types
Operator Description
+, - , *, / arithmetic operators (also supported for complex vectors)

=, +=, -=, *=, /=, assignment operators

% modulo operator (integer vectors only)

&, |, ^, <<, >> bitwise operators

>, >=, ==, !=, <=, < relational operators

++, -- increment / decrement operators (prefix and postfix; integer vectors only; also 
supported for the real portion of complex vectors)

&&, || logical operators (integer vectors only)

When binary operators are used with TI vector types, the element type and number of elements in each operand 
vector type must be the same. For arithmetic binary operators (e.g. +, -), the resulting type is equivalent to the 
operands' type.

Vector binary logical operators result in a vector type of the same number of elements as the vector operands 
with signed integer elements. For example, if an == operator compares two float4 types, the resulting type will be 
an int4. Comparing two double8 types results in a long8 type. A vector binary logical operator results in -1 (for 
true) or 0 (for false) in each result vector lane.

The following example uses the =, ++, and + operators on vectors of type int4. Assume that the iv4 argument 
initially contains (1, 2, 3, 4). On exit from foo(), iv4 will contain (3, 4, 5, 6).

void foo(int4 iv4)
{
    int4 local_iva = iv4++;                 /* local_iva = (1, 2, 3, 4) */
    int4 local_ivb = iv4++;                 /* local_ivb = (2, 3, 4, 5) */
   
    int4 local_ivc = local_iva + local_ivb; /* local_ivc = (3, 5, 7, 9) */
}

The arithmetic operators and increment / decrement operators can be used with complex vector types. The 
increment / decrement operators add or subtract by 1+0i.
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The following example multiplies and divides complex vectors of type cfloat2. For details about the rules for 
complex multiplication and division, please see Annex G of the C99 C language specification.

void foo()
{
    cfloat2 va = cfloat2 (1.0, -2.0,  3.0, -4.0);
    cfloat2 vb = cfloat2 (4.0, -2.0, -4.0,  2.0);
   /* vc = (0.0, -10.0), (-4.0, 22.0) */
    cfloat2 vc = va * vb;
   /* vd = (0.4, -0.3), (-1.0, 0.5) */
    cfloat2 vd = va / vb;
    ...
}

5.14.3 Ternary Operators for Vectors (?:)

Ternary operators are supported for vector types by the C7000 compiler, however the code that is generated will 
not be optimal and the results will be evaluated lane-by-lane. Consider the following example if src1 and src2 
are vectors:

int16 ex_ternary(int16 src1, int16 src2) 
{ 
    return (src1 > src2) ? (src1 - src2) : (src2 - src1); 
} 

To generate more optimal code, you should instead use the vector comparison intrinsics listed in the 
c7x.h runtime support header file to construct a vector predicate as well as the vector select intrinsic 
__select(vpred, ...). Vector predicates are described in Section 5.14.8.

Or, use conditional operations, such as __add(vpred, ...) and __sub_cond(vpred, ...), to implement 
the same behavior as shown in the following example.

int16 ex_ternary_supported(int16 src1, int16 src2) 
{ 
    vpred condition =__cmp_gt_pred(src1, src2); 
    int16 result1 = src1 - src2; // if-clause 
    int16 result2 = src2 - src1; // else-clause 
    return __select(condition, result1, result2); // Lane-dependent select operation 
}

5.14.4 Swizzle Operators for Vectors

The programming model implementation supports the following "swizzle" operators. These operators are used 
as suffixes to a variable name. They can be used on either side (left or right) of an assignment operator. When 
used on the left hand side of an assignment, each component must be uniquely identifiable.

.x(), .y(), .z(), or .w() Access an element of a vector whose length is <= 4.

char4 my_c4 = char4(1, 2, 3, 4);
char  tmp   = my_c4.y() * my_c4.w(); 
/* ".y()" accesses 2nd element; ".w()" accesses 4th element
 * tmp = 2 * 4 = 8;   */

.s0(), .s1(), ..., .s9(), .sa(), ..., .sf() Access one of up to 16 elements in a vector.

uchar16 ucvec16 = uchar16(1, 2, 3, 4, 5, 6, 7, 8, 
                          9, 10, 11, 12, 13, 14, 15, 16 );
uchar8  ucvec8  = uchar8(2, 4, 6, 8, 10, 12, 14, 16);
int tmp = ucvec16.sa() * ucvec8.s7(); 
/* ".sa()" is 11th element of ucvec16; 
 * ".s7()" is 8th element of ucvec8
 *  tmp = 11 * 16 = 176;   */
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.s[0], .s[1], ..., .s[63] Access one of up to 64 elements in a vector.

uchar16 ucvec16 = uchar16(1, 2, 3, 4, 5, 6, 7, 8, 
                          9, 10, 11, 12, 13, 14, 15, 16 );
uchar8 ucvec8 = uchar8(2, 4, 6, 8, 10, 12, 14, 16);
int tmp = ucvec16.s[10] * ucvec8.s[7];
/* ".s[10]" is 11th element of ucvec16; 
 * ".s[7]" is 8th element of ucvec8
 * tmp = 11 * 16 = 176; */

.even(), .odd() Access the even or odd elements of a vector, where the zeroth element is 
even.

ushort4 usvec4 = ushort4(1, 2, 3, 4);
ushort2 usvecodd  = usvec4.odd();  /* usvecodd  = ushort2(2, 4); */
ushort2 usveceven = usvec4.even(); /* usveceven = ushort2(1, 3); */

.hi(), .lo() Access the elements in the upper half of a vector with .hi or the elements in 
the lower half of a vector with .lo.

ushort8 usvec8 = ushort8(1, 2, 3, 4, 5, 6, 7, 8); 
ushort4 usvechi = usvec8.hi(); /* usvechi = ushort4(5, 6, 7, 8);*/ 
ushort4 usveclo = usvec8.lo(); /* usveclo = ushort4(1, 2, 3, 4); */

.r() Access the real parts of each of the elements in a complex type vector.

cfloat2 cfa = cfloat2(1.0, -2.0, 3.0, -4.0); 
float2 rfa = cfa.r();    /* rfa = float2(1.0, 3.0); */

.i() Access the imaginary parts of each of the elements in a complex type vector.

cfloat2 cfa = cfloat2(1.0, -2.0, 3.0, -4.0); 
float2 ifa = cfa.i();    /* ifa = float2(-2.0, -4.0); */

Swizzle operators can be combined to access a subset of the subset of elements. The result of the combination 
must be well-defined. For example, after the following code runs, usvec4 contains (1, 2, 5, 4).

ushort4 usvec4 = ushort4(1, 2, 3, 4); 
 
usvec4.hi().even() = 5;

5.14.5 Unsupported Vector Comparison Operators

Comparisons of vectors as conditions in if -statements are not supported by the C7000 compiler. For example 
if src1 and src2 are vectors, the following would be an unsupported use:

int ex_compare_unsupported(short16 src1, short16 src2) 
{ 
    if (src1 > src2) { return 1; } // Unsupported, will not work properly 
    else             { return 2; } 
}

You should instead use the vector comparison intrinsics listed in the c7x.h runtime support header file to 
construct a vector predicate. Vector predicates are described in Section 5.14.8.

5.14.6 Conversion Functions for Vectors

You cannot use standard type casting on vector data types. Instead, convert_<destination type>(<source type>) 
functions are provided to convert the elements of one vector type object into another vector type object. This is 
done on an element-by-element basis, and the source vector type and the destination vector type must be of the 
same length. That is, 4-element vectors can only be converted to other types of 4-element vectors.
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The following example initializes a short2 vector using two ints concatenated to form an int2 vector:

void foo(int a, int b) 
{
    short2 svec2 = convert_short2(int2(a, b)); 
    ... 
}

5.14.7 Re-Interpretation Functions for Vectors

The as_<destination type>(<source type object>) functions are provided to re-interpret the original type of an 
object as another vector type. The source type and destination type must be the same size in number of bits. An 
error is returned if the sizes are different.

Reinterpretations of Boolean vectors that do not result in each element containing exactly 0x0 or 0x1 are 
undefined. The following shows examples where the result is define or undefined:

ushort2 myshort2_0 = ushort2(0,1);
bool4 mybool4_0 = as_bool4(myshort2_0); // Defined

ushort2 myshort2_1 = ushort2(2,3);
bool4 mybool4_1 = as_bool4(myshort2_1); // Undefined

bool8 mybool8_0 = bool8(0,1,0,1,0,1,0,1);
float2 myfloat2_0 = as_float2(mybool8_0); // Defined

float2 myfloat2_1 = float2(1.0,2.0);
bool8 mybool8_1 = as_bool8(myfloat2_1); // Undefined

While arithmetic conversion is performed by the conversion functions described in the previous section, no 
arithmetic conversion is performed by the re-interpretation functions. For example, suppose a float value of 1.0 is 
re-interpreted as an int value. Since the float value of 1.0 is represented in hex as 0x3f800000, the value in the 
resulting int is 1,065,353,216.

The following example reinterprets a non-vector variable of the long type (64 bits) to a float2 vector (2 elements 
of 32 bits each). The least significant 32-bits of mylong are placed in fltvec2.s0 and the most significant 32-bits of 
mylong are placed in fltvec2.s1. No arithmetic conversion is performed.

extern long mylong; 
float2 fltvec2 = as_float2(mylong); 

If the sizes of the source and destination types are different, an error occurs.

If vector data types are enabled, you can also use the as_<type>() functions for scalar (non-vector) types. The 
types must have the same number of bits. The following example re-interprets a float value as an int value. 
Since the float value of 1.0 is represented in hex as 0x3f800000, the value in the resulting int is 1,065,353,216.

float myfloat = 1.0f;
myint = as_int(myfloat);

5.14.8 Vector Predicate Type

The vector predicate capability is managed through a special, opaque type named __vpred . Each bit of a 
vector predicate value corresponds to one byte lane in a TI vector type. Because the maximum vector size is 64 
bytes, a vector predicate value is 64 bits in size.

5.14.8.1 Constructing a Vector Predicate Type

Values of type __vpred can only be constructed using intrinsics that produce a vector predicate, which are 
listed in the c7x_vpred.h runtime support header file, including:

• Vector Comparison intrinsics: __cmp_{eq, ge, gt, le, lt}_pred(…) 
Note: Comparisons between partial vectors (less than 512 bits in size) will produce a vector predicate value 
in which the upper, invalid lanes are masked to false.
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• Vector Predicate Mask intrinsics: __mask_{char, short, int, long} 
• Vector Predicate Instructions that operate on other vector predicates: __negate(__vpred src) 
5.14.8.2 Using a Vector Predicate Type

A constructed vector predicate value of type __vpred can be used in any intrinsic shown to accept this value as 
an operand. Intrinsics that rely on vector predicate types are listed in c7x_vpred.h. Other operations on vector 
predicates—predicated add, predicated subtract, predicated shift, and predicated store—can be performed. Most 
operations can be made vector predicatable using the vector select __select(vpred, ...) intrinsic:

int16 ex_compare_and_select(int16 src1, int16 src2) 
{ 
    vpred condition = __cmp_gt_pred(src1, src2); 
    int16 result1 = src1 - src2; // if-clause 
    int16 result2 = src2 - src1; // else-clause 
    return __select(condition, result1, result2); 
}

5.14.8.3 Boolean Vector Types

Boolean vectors are a vector data type in C/C++ source files. Vector data types are described in Section 5.3.2. 
Currently, Boolean vectors allow literals and concatenation (Section 5.14.1), the assignment operator (Section 
5.14.2), swizzle operators for vectors (Section 5.14.4), conversion functions for vectors (Section 5.14.6), and 
re-interpretation functions for vectors (Section 5.14.7).

Unlike other integral vector types, Boolean vectors cannot be used as the condition of the vector ternary 
operator. Standard Boolean operations such as &&, ||, &, &=, |, |=, ^, ^=,!, ~, ==, !=, <=, <, >=, >, <=, <, >=, > are 
not currently supported for the Boolean vector type.

Boolean vectors may be used as an abstract alternative to the low-level vector predicate type (Section 5.14.8) 
on most predicated intrinsics on the C7000. The use of Boolean vectors as vector predicates is encouraged. 
However, the Boolean vector type is not fully interchangeable with the low-level vector predicate type.

When using a vector predicate type, you should perform proper scaling on predicates. Vector predicates 
can be scaled up or down by a factor k={0-63} through the intrinsics __expand_vpred(__vpred, k) and 
__pack_vpred(__vpred, k).

The two functions in the following example achieve the same result, one with a Boolean vector and the other 
with a low-level vector predicate type. This shows differences in the capabilities of vector predicates vs. Boolean 
vectors. Boolean vectors predicate input data by lane regardless of the element type.

// Boolean vector example
void foo(int4 *ptr, int4 data, char4 *ptr2, char4 data2)
{
    bool4 pred = bool4(0,1,1,0);
    __vstore_pred(pred, ptr, data);   // Word-based store
    __vstore_pred(pred, ptr2, data2); // Byte-based store
}

// Vector predicate example
void bar(int4 *ptr, int4 data, char4 *ptr2, char4 data2)
{
    __vpred pred = _mvrp(0x0000000000000ff0); // Word-scaled predicate
    __vstore_pred(pred, ptr, data);

    pred = __pack_vpred(pred, 2); // Byte-scaled predicate
    __vstore_pred(pred, ptr2, data2);
}
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5.15 C7000 Intrinsics
The C7000 compiler provides intrinsics to provide functionality for ISA instructions and routines that cannot be 
leveraged by way of a simple C/C++ operator.

Most instructions defined for the C7000 ISA are available via intrinsics, which are listed in the c7x.h runtime-
support header file. These intrinsics are subdivided into the following usage categories:

• High-level overloaded intrinsics (Section 5.15.1)
• Intrinsics defined for special load or store instructions (Section 5.15.2)
• Low-level, direct-mapped intrinsics (Section 5.15.3)
• Intrinsics used to perform lookup table and histogram operations (Section 5.15.4)
• Legacy intrinsics used to migrate code written for the C6000 compiler (Section 5.15.6)
• Intrinsics to control the Streaming Engine and Streaming Address Generator (see the Section 4.14)

5.15.1 High-Level Overloaded Intrinsics

The first set of intrinsics provided by the C7000 compiler pertains to operations for which multiple scalar and 
vector types apply. As such, for each operation to which they apply, these intrinsics have the same name and 
are overloaded based on the input type(s). Because they are overloaded, these intrinsics are the most abstract 
and high-level of all of the supported intrinsics.

For example, the C7000 ISA defines a set of absolute value instructions for vectors of bytes (VABSB for 
up to 64 elements), vectors of half-words (VABSH for up to 32 elements), vectors of words (VABSW for up 
to 16 elements), vectors of double-words (VABSD for up to 8 elements), vectors of single-precision floating 
point (VABSSP for up to 16 elements), and vectors of double-precision floating point (VABSDP for up to 8 
elements). In spite of this variability, the same intrinsic name is used to access all operations, and the operation 
is distinguished solely based upon input operand type. This is contained in c7x.h as follows:

/*-----------------------------------------------------------------------------
 * ID: __abs
 *-----------------------------------------------------------------------------*/
VABSB
char = __abs(char);
char2 = __abs(char2);
char3 = __abs(char3);
char4 = __abs(char4);
char8 = __abs(char8);
char16 = __abs(char16);
char32 = __abs(char32);
char64 = __abs(char64);
VABSH
short = __abs(short);
short2 = __abs(short2);
short3 = __abs(short3);
short4 = __abs(short4);
short8 = __abs(short8);
short16 = __abs(short16);
short32 = __abs(short32);
VABSW
int = __abs(int);
int2 = __abs(int2);
int3 = __abs(int3);
int4 = __abs(int4);
int8 = __abs(int8);
int16 = __abs(int16);
VABSD
long = __abs(long);
long2 = __abs(long2);
long3 = __abs(long3);
long4 = __abs(long4);
long8 = __abs(long8);
VABSSP
float = __abs(float);
float2 = __abs(float2);
float3 = __abs(float3);
float4 = __abs(float4);
float8 = __abs(float8);
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float16 = __abs(float16);
VABSDP
double = __abs(double);
double2 = __abs(double2);
double3 = __abs(double3);
double4 = __abs(double4);
double8 = __abs(double8);

As long as the intrinsic name is used ( __abs(…) in this case), the compiler generates the correct 
corresponding instruction for the input type used. See c7x.h for a complete list.

5.15.2 Intrinsics Defined for Special Load and Store Instructions

The C7000 ISA supports several load and store operations that cannot be leveraged using simple C/C++ 
operators. Instead, an overloaded intrinsic is provided for those operations using prefixes “__vload_” and 
“__vstore_” for loads and stores, respectively. Overloaded intrinsics are provided for the following load and 
store operations:

• Vector Load and Duplicate: __vload_dup(…) 
• Vector Load and Duplicate Group: __vload_dup_vec(…) 
• Vector Load and Unpack: __vload_unpack_{short, int, long}(…) 
• Vector Load and Deinterleave: __vload_deinterleave_{int, long}(...) 
• Vector Interleave and Store: __vstore_interleave(…) 
• Vector Packing Store: __vstore_{packl, packh, packhs1, pack_byte}(…) 
• Vector Reverse Bit Store: __vstore_reverse_bit(…) 
• Vector Predicated Store: __vstore_pred(vpred, …) 
• Vector Interleave, Predicated Store: __vstore_pred_interleave(vpred, …) 
• Vector Predicated Packing Store:

__vstore_pred_{packl, packh, packhs1, pack_byte}(vpred, ...) 
• Vector Predicated Reverse Bit Store: __vstore_pred_reverse_bit(vpred, …) 
• Vector Constant Store: __vstore_const_{2word, 4word, 8word, 16word}(…) 
• Store of Vector Predicate: __store_predicate_{char, short, int, long}(…) 
• Atomic Swap: __atomic_swap(…) 
• Atomic Compare and Swap: __atomic_compare_swap(…) 
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5.15.3 Direct-Mapped Intrinsics

Intrinsics are also provided to facilitate a direct-map between an intrinsic and a corresponding C7000 instruction. 
As such, these intrinsics are not overloaded; they are therefore the least abstracted from the hardware and 
are therefore considered low-level. The primary purpose of these low-level intrinsics is to ensure that no other 
instructions are generated other than those desired by the programmer. This is particularly useful for operations 
that require operand interleaving on input or operand deinterleaving on output.

All direct-mapped intrinsics are listed in c7x_direct.h , which is included by the top-level c7x.h file.

For example, the C7000 instruction VCMATMPYHW (vector complex matrix multiply) requires that its second 
source operand be interleaved along 64-bit boundaries. It also requires that its output also be deinterleaved 
along 64-bit boundaries. As listed in c7x.h and c7x_direct.h , the C7000 compiler provides two interfaces 
into this instruction:

• High-level intrinsic:

/*-----------------------------------------------------------------------------
 * ID: __cmatmpy_ext
 *----------------------------------------------------------------------------*/
/*
VCMATMPYHW
cint2 = __cmatmpy_ext(cshort2, cshort4);
cint4 = __cmatmpy_ext(cshort4, cshort8);
cint8 = __cmatmpy_ext(cshort8, cshort16);
*/

• Low-level intrinsic:

/*-----------------------------------------------------------------------------
 * ID: __vcmatmpyhw_vww
 *----------------------------------------------------------------------------*/
/*
VCMATMPYHW
__vcmatmpyhw_vww(cshort16, cshort16, cshort16, cint8&, cint8&);
*/

If you choose to use the overloaded “__cmatmpy_ext(…)” intrinsic, the compiler will assume that both the input 
and output data is not interleaved and will attempt to abstract this. Therefore, the compiler will insert special 
instructions to interleave the input prior to instruction execution, and it will also insert special instructions to 
deinterleave the output after instruction execution. This method leans toward programmer ease-of-use at the 
expense of instruction cycles.

More advanced programmers may instead opt to use the direct-mapped, low-level “__vcmatmpyhw_vww(…)” 
intrinsic and manage the interleaving and deinterleaving themselves. In this case, the interleaved input is shown 
as a pair of cshort16 vectors, and the output is given as a pair of cint8 vectors, each of which are 
determined by the maximum width and basic type supported by the VCMATMPYHW instruction.

5.15.4 Lookup Table and Histogram Intrinsics

The intrinsics used to configure and use the C7000 lookup table and histogram features are listed in 
c7x_luthist.h , which is included as part of C7000 runtime support.

5.15.5 Matrix-Multiply Accelerator (MMA) Intrinsics

The intrinsics used to configure and use the Matrix-Multiply Accelerator (MMA) are listed in c7x_mma.h , which 
is included as part of C7000 runtime support.

5.15.6 Legacy Intrinsics

The C7000 runtime support defines C6000 legacy intrinsics that can be used to compile C6000 source 
code using the C7000 compiler. Compiling source code containing these intrinsics should be done 
according to information provided in the C6000-to-C7000 Migration User's Guide (SPRUIG5) as well as the 
c6x_migration.h runtime support header file.
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5.16 C7000 Scalable Vector Programming
A set of utilities are provided in the compiler library for writing vector-width independent code for C7000. To use 
these utilities, #include c7x_scalable.h in source code.

These utilities are available for use in C++ code only due to use of C++ language features in their 
implementation.

These utilities are available when using the TI C7000 compiler or when compiling with TI C7000 Host Emulation.

Note
The MMA portion of these scalable vector programming utilities are under development and can 
change in the future. As such, the MMA portions are not accessible by default in this version of 
the compiler until development is completed. To use the MMA portion of these utilities, define the 
__C7X_UNSTABLE_API macro in source code (in addition to including c7x_scalable.h in source 
code). When the MMA scalable vector programming utilities are ready for general use in a future 
release, defining __C7X_UNSTABLE_API will no longer be required.

The following APIs are available, all of which are described in further detail in the c7x_scalable.h file:

• Vector type query and construction

c7x::max_simd<T>::value
c7x::element_count_of<T>::value
c7x::element_type_of<T>::type
c7x::component_type_of<T>::type
c7x::make_vector<T,N>::type
c7x::make_full_vector<T>::type
c7x::is_target_vector<T>::value

• Full vector types

c7x::char_vec
 c7x::short_vec
 etc

• Half vector types

c7x::char_hvec
c7x::short_hvec
etc

• Quarter vector types

c7x::char_qvec
c7x::short_qvec
etc

• Host emulation compatible types for pointers

c7x::char_vec_ptr
c7x::const_short_vec_ptr
etc

• Templated vector reinterprets and conversions

c7x::reinterpret<T>(v)
c7x::convert<T>(v)

• Vector reinterprets and conversions

c7x::as_char_vec(v)
c7x::convert_short_vec(v)etc
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• Streaming engine and streaming address generator helpers

c7x::se_veclen<T>::value
c7x::se_eletype<T>::value
c7x::sa_veclen<T>::value
c7x::strm_eng<I,T>::get()
c7x::strm_eng<I,T>::get_adv()
c7x::strm_agen<I,T>::get(p)
c7x::strm_agen<I,T>::get_adv(p)
c7x::strm_agen<I,T>::get_vpred()

As a moderate complexity example, the following is an implementation of a C++ function template for memcpy 
that uses the input type as a template. This example uses a streaming engine and a streaming address 
generator:

#include <c7x_scalable.h>

using namespace c7x;

/* memcpy_scalable_strm<typename S>(const S*in, S *out, int len)
 *
 * S   - A basic data type such as short or float.
 * in  - The input buffer.
 * out - The output buffer.
 * len - The number of elements to copy.
 *
 * Defaulted template arguments:
 * V   - A full vector type of S
 */
template<typename S,
         typename V  = typename make_full_vector<S>::type>
void memcpy_scalable_strm(const S *restrict in, S *restrict out, int len)
{
    /*
     * Find the maximum number of vector loads/stores needed to copy the buffer,
     * including any remainder.
     */
    int cnt = len / element_count_of<V>::value;
    cnt += (len % element_count_of<V>::value > 0);

    /* Initialize the SE for a linear read in and the SA for a linear write out. */
    __SE_TEMPLATE_v1 in_tmplt = __gen_SE_TEMPLATE_v1();
    __SA_TEMPLATE_v1 out_tmplt = __gen_SA_TEMPLATE_v1();

    in_tmplt.VECLEN = se_veclen<V>::value;
    in_tmplt.ELETYPE = se_eletype<V>::value;
    in_tmplt.ICNT0 = len;

    out_tmplt.VECLEN = sa_veclen<V>::value;
    out_tmplt.ICNT0 = len;

    __SE0_OPEN(in, in_tmplt);
    __SA0_OPEN(out_tmplt);

    /* Perform the copy. If there is remainder, the last store will be predicated. */
    int i;
    for (i = 0; i < cnt; i++)
    {
        V tmp = strm_eng<0, V>::get_adv();
        __vpred pred = strm_agen<0, V>::get_vpred();
        V *addr = strm_agen<0, V>::get_adv(out);
        __vstore_pred(pred, addr, tmp);
    }

    __SE0_CLOSE();
    __SA0_CLOSE();
}
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This chapter describes the C7000 C/C++ run-time environment. To ensure successful execution of C/C++ 
programs, it is critical that all run-time code maintain this environment.

6.1 Memory .....................................................................................................................................................................144
6.2 Object Representation............................................................................................................................................. 147
6.3 Register Conventions...............................................................................................................................................154
6.4 Function Structure and Calling Conventions........................................................................................................ 156
6.5 Accessing Linker Symbols in C and C++...............................................................................................................158
6.6 Run-Time-Support Arithmetic Routines.................................................................................................................158
6.7 System Initialization................................................................................................................................................. 160
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6.1 Memory
The C7000 compiler treats memory as a single linear block that is partitioned into subblocks of code and data. 
Each subblock of code or data generated by a C program is placed in its own continuous memory space. The 
compiler assumes that a full 48-bit address space is available in target memory.

Note
The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and data into target memory. 
The compiler assumes nothing about the types of memory available, about any locations not available 
for code or data (holes), or about any locations reserved for I/O or control purposes. The compiler 
produces relocatable code that allows the linker to allocate code and data into the appropriate 
memory spaces. For example, you can use the linker to allocate global variables into on-chip RAM 
or to allocate executable code into external ROM. You can allocate each block of code or data 
individually into memory, but this is not a general practice (an exception to this is memory-mapped I/O, 
although you can access physical memory locations with C/C++ pointer types).

The C7000 compiler requires that all code and data lie within 2 GB of virtual address space. Use a linker 
command file to place your code and data within this 2 GB virtual address region. The C7000 compiler produces 
code that uses position-independent addressing to obtain the addresses of functions (in some cases) and to 
access statically allocated data in memory. Instructions that use position-independent addressing have limited 
reach.

Information about linker command files can be found in Section 12.5. For further information, see the C7000 
Embedded Application Binary Interface (EABI) Reference Guide (SPRUIG4), specifically the sections on 
“Computing Code Addresses” and “Data Allocation and Addressing”.

6.1.1 Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allocated into 
memory in a variety of ways to conform to a variety of system configurations. For more information about 
sections and allocating them, see the introductory object file information in Chapter 8. For details about C7000 
section names, see the C7000 Embedded Application Binary Interface (EABI) Reference Guide (SPRUIG4).

There are two basic types of sections:

• Initialized sections contain data or executable code. Initialized sections are usually read-only; exceptions 
are noted below. The C/C++ compiler creates the following initialized sections:
– The .args section contains the command argument for a host-based loader. See the --arg_size option.
– The .binit section contains boot time copy tables. For details on BINIT, see Section 12.8.4.2.
– The .cinit section is created only if you are using the --rom_model option. It contains tables for explicitly 

initialized global and static variables.
– The .got section contains the global offset table. This section is writable.
– The .init_array section contains the table for calling global constructors.
– The .ovly section contains copy tables for unions in which different sections have the same run address.
– The .data section reserves space for non-const, initialized global and static variables. This section is 

writable.
– The .c7xabi.exidx section contains the index table for exception handling. The .c7xabi.extab section 

contains stack unwinding instructions for exception handling. See the --exceptions option for details.
– The . name .load section contains the compressed image of section name.See Section 12.8 for 

information on copy tables.
– The .const section contains string literals, floating-point constants, and data defined with the C/C++ 

qualifier const (provided the constant is not also defined as volatile or one of the exceptions described 
in Section 5.5.2). String literals are placed in the .const:.string subsection to enable greater link-time 
placement control.

– The .text section contains all the executable code and compiler-generated constants. This section is 
usually read-only.
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– The .TI.crctab section contains CRC checking tables.
• Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run time to 

create and store variables. The compiler creates the following uninitialized sections:
– The .bss section reserves space for uninitialized global and static variables. These variables are 

allocated by the assembler.
– The .common section reserves space for uninitialized global and static variables. These variables are 

allocated by the linker. Unused uninitialized variables are usually created as common symbols (unless you 
specify --common=off), so that they can be excluded from the resulting application.

– The .stack section reserves memory for the system stack.
– The .sysmem section reserves space for dynamic memory allocation. This space is used by dynamic 

memory allocation routines, such as malloc(), calloc(), realloc(), or new(). If a C/C++ program does not 
use these functions, the compiler does not create the .sysmem section.

Note
Use Only Code in Program Memory

With the exception of code sections, the initialized and uninitialized sections cannot be allocated into 
internal program memory.

The assembler creates the default sections .text, , and .data. You can instruct the compiler to create additional 
sections by using the CODE_SECTION and DATA_SECTION pragmas (see Section 5.8.5 and Section 5.8.8).

6.1.2 C/C++ System Stack

The C/C++ compiler uses a stack to:

• Save function return addresses
• Allocate local variables
• Pass arguments to functions
• Save temporary results

The run-time stack grows from the high addresses to the low addresses. The compiler uses the D15 register to 
manage this stack. D15 is the stack pointer (SP), which points to the next unused location on the stack.

The linker sets the stack size, creates a global symbol, __TI_STACK_SIZE, and assigns it a value equal to the 
stack size in bytes. The default stack size is 0x2000 bytes. You can change the stack size at link time by using 
the --stack_size option with the linker command. For more information on the --stack_size option, see Section 
12.4.

At system initialization, SP is set to the first 8-byte (64-bit) aligned address that is 16 bytes before the end 
(highest numerical address) of the .stack section. The SP is 8-byte aligned so that most 64-bit and smaller 
objects do not cross memory bank boundaries, which are 64-bits in size, and by convention, SP will always point 
to a free 16-byte location to optimize stack usage on function calls.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space 
necessary for the execution of that function when the space required is greater than the 16 bytes reserved 
for each stack frame.

For more information about the stack and stack pointer, see Section 6.4.

Note
Stack Overflow: The compiler provides no means to check for stack overflow during compilation or 
at run time. A stack overflow disrupts the run-time environment, causing your program to fail. Be sure 
to allow enough space for the stack to grow. You can use the --entry_hook option to add code to the 
beginning of each function to check for stack overflow; see Section 3.14.

6.1.3 Dynamic Memory Allocation

The run-time-support library supplied with the C7000 compiler contains several functions (such as malloc, calloc, 
and realloc) that allow you to allocate memory dynamically for variables at run time.
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Memory is allocated from a global pool, or heap, that is defined in the section. You can set the size of 
the .sysmem section by using the --heap_size=size option with the linker command. The linker also creates 
a global symbol, __TI_SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes. The default 
size is 1K bytes. For more information on the --heap_size option, see Section 12.4.

If you use any C I/O function, the RTS library allocates an I/O buffer for each file you access. This buffer will be 
a bit larger than BUFSIZ, which is defined in stdio.h and defaults to 256. Make sure you allocate a heap large 
enough for these buffers or use setvbuf to change the buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the 
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size limited 
only by the amount of available memory in your system. To conserve space in the .bss section, you can allocate 
large arrays from the heap instead of defining them as global or static. For example, instead of a definition such 
as:

struct big table[100];

Use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

When allocating from a heap, make sure the size of the heap is large enough for the allocation. This is 
particularly important when allocating variable-length arrays.
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6.2 Object Representation
This section explains how various data objects are sized, aligned, and accessed.

6.2.1 Data Type Storage

For basic (scalar) types, the minimum alignment of an object is the size of its type. The minimum alignment for 
an object with an array type is that specified by the type of its elements.

For general information about data types, see Section 5.3. Table 6-1 lists register and memory storage for 
various data types:

Table 6-1. Data Representation in Registers and Memory
Data Type Register Storage Memory Storage
char Bits 0-7 of register 8 bits aligned to 8-bit boundary
unsigned char Bits 0-7 of register 8 bits aligned to 8-bit boundary
short Bits 0-15 of register 16 bits aligned to 16-bit boundary
unsigned short Bits 0-15 of register 16 bits aligned to 16-bit boundary
int Bits 0-31 of register 32 bits aligned to 32-bit boundary
unsigned int Bits 0-31 of register 32 bits aligned to 32-bit boundary
long Entire scalar register or bits 0-63 of vector register 64 bits aligned to 64-bit boundary
unsigned long Entire scalar register or bits 0-63 of vector register. 64 bits aligned to 64-bit boundary
enum (1) Bits 0-31 of register or entire register 32 bits aligned to 32-bit boundary or 64 bits aligned 

to 64-bit boundary
float Bits 0-31 of register 32 bits aligned to 32-bit boundary
double Entire scalar register or bits 0-63 of vector register. 64 bits aligned to 64-bit boundary
long double Entire scalar register or bits 0-63 of vector register. 64 bits aligned to 64-bit boundary
struct Members are stored as their individual types 

require.
Storage is a multiple of the alignment to the 
boundary of largest member type; members are 
stored and aligned as their individual types require.

array Members are stored as their individual types 
require.

Members are stored as their individual types 
require. All arrays inside a structure are aligned 
according to the type of each element in the array.

pointer to data member Entire scalar register or bits 0-63 of vector register. 64 bits aligned to 64-bit boundary
pointer to member function Components stored as their individual types require 64 bits aligned to 64-bit boundary
cchar Bits 0-15 of register 8 bits aligned to 8-bit boundary
cshort Bits 0-31 of register 16 bits aligned to 16-bit boundary
cint Entire scalar register or bits 0-63 of vector register 64 bits aligned to 32-bit boundary
cfloat Entire scalar register or bits 0-63 of vector register 64 bits aligned to 32-bit boundary
clong Bits 0-127 of vector register 128 bits aligned to 64-bit boundary
cdouble Bits 0-127 of vector register 128 bits aligned to 64-bit boundary

(1) For details about the size of an enum type, see Section 5.3.1.

For vector data types, the minimum alignment of an object is specified by the type of its elements.
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6.2.1.1 char and short Data Types (signed and unsigned)

The char and unsigned char data types are stored in memory as a single byte and are loaded to and 
stored from bits 0-7 of a register (see Figure 6-1). By default, the char type is signed.

The bool type is also stored as an 8-bit type in bits 0-7 of a register.

Objects defined as short or unsigned short are stored in memory as two bytes at a halfword (2 byte) 
aligned address. They are loaded to and stored from bits 0-15 of a register (see Figure 6-1).

In big-endian mode, 2-byte objects are loaded to registers by moving the first byte (that is, the lower address) 
of memory to bits 8-15 of the register and moving the second byte of memory to bits 0-7. In little-endian mode, 
2-byte objects are loaded to registers by moving the first byte (that is, the lower address) of memory to bits 0-7 of 
the register and moving the second byte of memory to bits 8-15.

Figure 6-1. Char and Short Data Storage Format
Signed 8-bit char

MS LS

S S S S S S S S S S S S S S S S S S S S S S S S S S I I I I I I

31 7 0

Unsigned 8-bit char

MS LS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U U U U U U

31 7 0

Signed 16-bit short

MS LS

S S S S S S S S S S S S S S S S S I I I I I I I I I I I I I I I

31 15 0

Unsigned 16-bit short

MS LS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U U U U U U U U U U U U U U U

31 15 0

LEGEND: S = sign, I = signed integer, U = unsigned integer, MS = most significant, LS = least significant
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6.2.1.2 enum, int, and long Data Types (signed and unsigned)

The int and unsigned int data types are stored in memory as 32-bit objects (see Figure 6-2). Objects 
of these types are loaded to and stored from bits 0-31 of a register. In big-endian mode, 4-byte objects are 
loaded to registers by moving the first byte (that is, the lower address) of memory to bits 24-31 of the register, 
moving the second byte of memory to bits 16-23, moving the third byte to bits 8-15, and moving the fourth byte 
to bits 0-7. In little-endian mode, 4-byte objects are loaded to registers by moving the first byte (that is, the lower 
address) of memory to bits 0-7 of the register, moving the second byte to bits 8-15, moving the third byte to bits 
16-23, and moving the fourth byte to bits 24-31.

For details about the size of an enum type, see Section 5.3.1.

Figure 6-2. 32-Bit Data Storage Format
Signed 32-bit integer

MS LS

S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

31 0

Unsigned 32-bit integer

MS LS

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U

31 0

LEGEND: S = sign, U = unsigned integer, I = signed integer, MS = most significant, LS = least significant
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6.2.1.3 long Data Types (signed and unsigned)

The long and unsigned long data types are stored in a full 64-bit register (see Figure 6-3). In big-endian 
mode, the lower address is loaded into bits 32-63 of the register and the higher address is loaded into bits 0-31 
of the register. In little-endian mode, the lower address is loaded into bits 0-31 of the register and the higher 
address is loaded into bits 32-63s of the register.

Figure 6-3. 64-Bit Data Storage Format Signed 64-bit long
Upper half of the register

MS

S I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

63 32

Lower half of the register

LS

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

31 0

LEGEND: S = sign, U = unsigned integer, I = signed integer, X = unused, MS = most significant, LS = least significant

Figure 6-4. Unsigned 64-bit long
Upper half of the register

MS

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U

63 32

Lower half of the register

LS

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U

31 0

LEGEND: S = sign, U = unsigned integer, I = signed integer, X = unused, MS = most significant, LS = least significant

Run-Time Environment www.ti.com

150 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


 

6.2.1.4 float Data Type

The float data type is stored in memory as 32-bit objects. The value is stored in the single-precision floating-point 
format (binary32) defined by the IEEE 754 standard.

Figure 6-5. Single-Precision Floating-Point Char Data Storage Format
MS LS

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

31 23 0

LEGEND: S = sign, M = mantissa, E = exponent, MS = most significant, LS = least significant

6.2.1.5 double and long double Data Types

The double and long double data types are stored in a full 64-bit register. The value is stored in the 
double-precision floating-point format (binary64) defined by the IEEE 754 standard. That is, the exponent is 11 
bits long, and the mantissa is 52 bits long.

6.2.1.6 Pointer to Data Member Types

Pointer to data member objects are stored in memory like an unsigned int (64-bit) integral type. Its value is the 
byte offset to the data member in the class, plus 1. The zero value is reserved to represent the NULL pointer.

6.2.1.7 Pointer to Member Function Types

Pointer to member function objects have a layout equivalent to:

struct __mptr { 
   __vptp f; 
   ptrdiff_t d; 
};

where _vptp is the following union:

union {
   void (*f) ();
   int 0; 
}

The parameter f is the pointer to the member function if it is nonvirtual. The 0 is the offset to the virtual function 
pointer within the class object. The parameter d is the offset to be added to the beginning of the class object for 
this pointer.

6.2.1.8 Structures and Arrays

A struct is aligned to a boundary required by the member it contains with the strictest alignment requirement. For 
example, if the largest alignment required by a member of the struct is 16-bit alignment (for example, a short), 
then the entire struct is aligned to a 16-bit boundary. If the struct contains a type that requires 64-bit alignment 
(such as a double or long), then the struct is aligned to a 64-bit boundary.

If a struct member is itself a struct, the size and alignment of the inner struct must be determined before the size 
and alignment of the outer struct may be determined.

Members of structs have sizes and alignments equal to those they would have as independent objects, unless 
the packed attribute is used. An array member of a struct is aligned to the alignment of its element type; this may 
differ from the alignment the element would have if it were an independent top-level (static) object.

Structs always have size equal to a multiple of the struct alignment. This sometimes requires padding after the 
last member to round the size up to a multiple of the struct alignment. The size of a structure includes any 
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necessary padding between members. For example, if the largest member of a struct is of type float, the size of 
the struct will be a multiple of 32 bits.

Static scope arrays (sometimes called top-level arrays) are aligned on an 8-byte (64-bit) boundary.

6.2.2 Bit Fields

Bit fields are the only objects that are packed within a byte. That is, two bit fields can be stored in the same byte. 
Bit fields can range in size from 1 to 64 bits in C or larger in C++.

For big-endian mode, bit fields are packed into registers from most significant bit (MSB) to least significant bit 
(LSB) in the order in which they are defined. Bit fields are packed in memory from most significant byte (MSbyte) 
to least significant byte (LSbyte). For little-endian mode, bit fields are packed into registers from the LSB to the 
MSB in the order in which they are defined, and packed in memory from LSbyte to MSbyte.

The size, alignment, and type of bit fields adhere to these rules:

• Bit fields up to long are supported.
• Bit fields are treated as the declared signed or unsigned type.
• The size and alignment of the struct containing a bit field depends on the declared type of the bit field. For 

example, consider the struct:

   struct st 
   {
      int a:4
   };

This struct uses up 4 bytes and is aligned at 4 bytes.
• Unnamed bit fields do affect the alignment of the struct or union. For example, consider the struct:

   struct st
   {
      char a:4;
      int :22;
   };

This struct uses 4 bytes and is aligned at a 4-byte boundary.
• Bit fields declared volatile are accessed according to the bit field's declared type. A volatile bit field reference 

generates exactly one reference to its storage; multiple volatile bit field accesses are not merged.

Figure 6-6 illustrates bit-field packing, using the following bit field definitions:

struct{
int A:7
int B:10
int C:3
int D:2
int E:9
}x;

A0 represents the least significant bit of the field A; A1 represents the next least significant bit, etc. Again, 
storage of bit fields in memory is done with a byte-by-byte, rather than bit-by-bit, transfer.

Figure 6-6. Bit-Field Packing in Big-Endian and Little-Endian Formats
Big-endian register

MS LS

A A A A A A A B B B B B B B B B B C C C D D E E E E E E E E E X
6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 2 1 0 1 0 8 7 6 5 4 3 2 1 0 X

31 0

Run-Time Environment www.ti.com

152 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


Big-endian memory

Byte 0 Byte 1 Byte 2 Byte 3

A A A A A A A B B B B B B B B B B C C C D D E E E E E E E E E X
6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 2 1 0 1 0 8 7 6 5 4 3 2 1 0 X

Little-endian register

MS LS

X E E E E E E E E E D D C C C B B B B B B B B B B A A A A A A A
X 8 7 6 5 4 3 2 1 0 1 0 2 1 0 9 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0

31 0

Little-endian memory

Byte 0 Byte 1 Byte 2 Byte 3

B A A A A A A A B B B B B B B B E E D D C C C B X E E E E E E E
0 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 1 0 1 0 2 1 0 9 X 8 7 6 5 4 3 2

LEGEND: X = not used, MS = most significant, LS = least significant

6.2.3 Character String Constants

In C, a character string constant is used in one of the following ways:

• To initialize an array of characters. For example:

   char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is a separate 
initializer. For more information about initialization, see Section 6.7.

• In an expression. For example:

   strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const:string section, along with a 
unique label that points to the string; the terminating 0 byte is explicitly added by the compiler.

String labels have the form $C$SLn, where $C$ is the compiler-generated symbol prefix and n is a number 
assigned by the compiler to make the label unique. The number begins at 0 and is increased by 1 for each 
string defined.

The label $C$SLn represents the address of the string constant. The compiler uses this label to reference the 
string expression.

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a 
program to modify a string constant. The following code is an example of incorrect string use:

   const char   *a = "abc"
   a[1] = 'x';             /* Incorrect! undefined behavior */
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6.3 Register Conventions
Strict conventions associate specific registers with specific operations in the C/C++ environment.

The register conventions dictate how the compiler uses registers and how values are preserved across function 
calls.

The registers in Table 6-2 are available to the compiler for allocation to register variables and temporary 
expression results. If the compiler cannot allocate a register of a required type, spilling occurs. Spilling is the 
process of moving a register's contents to memory to free the register for another purpose.

The C7000 has two datapaths: an A-side datapath with 64-bit “scalar” registers, and a B-side datapath with 
512-bit “vector” registers. The lower 64-bits of any B-side vector register can also be accessed as a scalar 
register by removing the ‘V’ from its name. Scalar registers are not limited to storing scalar values; a vector can 
be stored in a scalar register if it fits.

D15 is the Stack Pointer (SP). The stack pointer must always remain aligned on a 2-word (8-byte) boundary. The 
SP points at the first aligned address below (less than) the currently allocated stack.

RP, D15 (SP), A8-A15, B14/VB14, and B15/VB15 are callee-save registers. That is, a called function is required 
to preserve them so they have the same value on return from a function as they had at the point of the call.

All other registers are caller-save; that is, they are not preserved across a call, so if their value is needed 
following the call, the caller is responsible for saving and restoring their contents.

Table 6-2. Register Usage
Register File Preserved by Callee? Role in Calling Convention
A0 A side scalar no

A1 no Pointer to return-by-reference value

A2 no

A3 no

A4 no 1st scalar argument

A5 no 2nd scalar argument

A6 no 3rd scalar argument

A7 no 4th scalar argument

A8 yes 5th scalar argument

A9 yes 6th scalar argument

A10 yes 7th scalar argument

A11 yes 8th scalar argument

A12 yes 9th scalar argument

A13 yes

A14 yes

A15 yes

AL0-AL7 A side local L no

AM0-AM7 A side local M no
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Table 6-2. Register Usage (continued)
Register File Preserved by Callee? Role in Calling Convention
VB0 B side vector no 1st vector argument

VB1 no 2nd vector argument

VB2 no 3rd vector argument

VB3 no 4th vector argument

VB4 no 5th vector argument

VB5 no 6th vector argument

VB6 no 7th vector argument

VB7 no 8th vector argument

VB8 no 9th vector argument

VB9 no 10th vector argument

VB10 no 11th vector argument

VB11 no 12th vector argument

VB12 no 13th vector argument

VB13 no 14th vector argument

VB14 yes 15th vector argument

VB15 yes 16th vector argument

VBL0-VBL7 B side local L no

VBM-VBM7 B side local M no

D0-D14 D unit local no

D15 yes Stack Pointer

RP Control yes Return Pointer

P0 Vector predicates no 1st vector predicate argument

P1 no 2nd vector predicate argument

P2 no 3rd vector predicate argument

P3 no 4th vector predicate argument

P4 no 5th vector predicate argument

P5 no 6th vector predicate argument

P6 no 7th vector predicate argument

P7 no 8th vector predicate argument

CUCR0-CUCR3 C-unit Control Register no

All other control registers are not saved or restored by the compiler.

The compiler assumes that control registers not listed in Table 6-2 that can have an effect on compiled code 
have default values.
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6.4 Function Structure and Calling Conventions
The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support functions, 
any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere to these rules 
can disrupt the C/C++ environment and cause a program to fail.

For details on the calling conventions, refer to the C7000 Embedded Application Binary Interface (EABI) 
Reference Guide (SPRUIG4).

6.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another function (child function).

The C7000 has dedicated instructions and registers to manage call and return operations. The CALL instruction 
saves the return address in the Return Pointer (RP) register and transfers control to the called function. The RET 
instruction restores the PC from the RP, thereby returning control to the callee.

The C7000 CPU has a pipeline model that can function in both a protected or unprotected state. The CPU must 
be in the protected state. not unprotected state, when a call or return is made.

A function (parent function) performs the following tasks when it calls another function (child function):

• Arguments passed to a function are placed in registers or on the stack.
– If arguments are passed to a function, as many as can fit are placed in the nine "scalar" and sixteen 

"vector" registers that are available for argument passing.
– Arguments whose declared type is 64 bits or less are assigned to scalar registers A4 through A12.
– Arguments whose declared is between 64 and 512 bits in size are passed in vector registers VB0-VB15.
– Arguments that are declared as vector predicates are passed in vector predicate registers P0-P7.
– Arguments larger than 512 bits are passed by reference. See the "Values Passed and Returned 

by Reference" section in the C7000 Embedded Application Binary Interface (EABI) Reference Guide 
(SPRUIG4).

– Any remaining arguments are placed on the stack at increasing addresses, such that the first one will be 
at address SP+16 upon entry to the callee.

– Each argument with a scalar or vector type is placed at the next available address correctly aligned for its 
type.

– Structures are aligned to the next power of two greater than or equal to their size, up to a maximum of 8 
bytes.

– Each argument reserves an amount of stack space equal to its size rounded up to the next multiple of its 
alignment.

– For a variadic C function (declared with an ellipsis indicating that it is called with varying numbers of 
arguments), the last explicitly declared argument and all remaining arguments are passed on the stack, so 
that its stack address can act as a reference for accessing the undeclared arguments.

– An argument that is not declared in a prototype and whose size is less than the size of int is passed as an 
int, in accordance with the C language.

• The calling function must save register RP so that it is not overwritten by the CALL instruction. It must 
also save any live local or global registers that are not preserved by the called function (as part of the 
save-on-entry register set). The save-on-entry register set includes A8-A15, B14/VB14, and B15/VB15.

• The caller (parent) calls the function (child).

See the "Calling Conventions" chapter in the C7000 Embedded Application Binary Interface (EABI) Reference 
Guide (SPRUIG4) for more information.
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6.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1. The called function (child) already has 16 bytes of reserved stack frame space available, but if the space 
required to store its local variables, temporary storage areas, and arguments to functions is larger than 16 
bytes, then the called function allocates additional space on the stack.

2. If the called function calls any other functions, it must make sure that 16 bytes of unused space is also 
allocated on the stack and reserved for its called functions. The called function must also save its return 
address on the stack. Otherwise, it is left in the return register (RP) and is overwritten by the next function 
call.

3. If the called function modifies any save-on-entry registers (A8-A15, VB14-VB15), it must save them, either 
in other registers or on the stack. The called function can modify any other registers without saving them 
because they will have been saved by a caller function prior to the call if they were used.

4. If the called function expects a structure argument, effort is made to pass the structure by value if its value 
can fit into a 64-bit or 512-bit argument register. Otherwise, the called function receives a pointer to the 
structure instead. If writes are made to the structure from within the called function, space for a local copy of 
the structure must be allocated on the stack and the local structure must be copied from the passed pointer 
to the structure. If no writes are made to the structure, it can be referenced in the called function indirectly 
through the pointer argument.

You must be careful to declare functions properly that accept structure arguments, both at the point where 
they are called (so that the structure argument is passed as an address) and at the point where they are 
declared (so the function knows to copy the structure to a local copy).

5. The called function executes the code for the function.
6. The return value is handled as follows:

• If the called function returns any integer, pointer, float, double, long double, long type, or vector data type 
less than or equal to 64 bits in size, the return value is placed in register A4.

• If the called function returns a vector data type greater than 64 bits in size, the return value is placed in 
register VB0.

• If the called function returns a vector predicate type, the return value is placed in register P0.
• If the called function returns a structure, it is returned by value if it is small enough to fit into register A4 or 

register VB0. Otherwise, the caller allocates space for the structure and passes the address of the return 
space to the called function in register A1. To return a structure, the called function copies the structure to 
the memory block pointer to by the extra argument.

 In this way, the caller can be smart about telling the called function where to return the structure. For 
example, in the statement s = f(x), where s is a structure and f is a function that returns a structure, the 
caller can actually make the call as f(&s, x). The function f then copies the return structure directly into s, 
performing the assignment automatically.

If the caller does not use the return structure value, an address value of 0 can be passed as the first 
argument. This directs the called function not to copy the return structure.

You must be careful to declare functions properly that return structures, both at the point where they are 
called (so that the extra argument is passed) and at the point where they are declared (so the function 
knows to copy the result).

7. Any save-on-entry register (A8-A15, B14/VB14, B15/VB15) that was saved in Step 3 is restored.
8. The value of the return register (RP) is also restored if it was saved.
9. Any space that was allocated during this call sequence is reclaimed.
10. The function returns by invoking the RET instruction, which returns to the location contained in the return 

register (RP).
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6.4.3 Accessing Arguments and Local Variables

A function accesses its stack arguments and local nonregister variables indirectly through register D15 (SP), 
which points to the top of the stack. Since the stack grows toward smaller addresses, the local and argument 
data for a function are accessed with a positive offset from SP. Local variables, temporary storage, and the area 
reserved for stack arguments to functions called by this function are accessed with offsets from the SP.

For more information, see Section 6.4.2. For more information on the C/C++ System stack, see Section 6.1.2.

6.5 Accessing Linker Symbols in C and C++
See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

6.6 Run-Time-Support Arithmetic Routines
The run-time-support library contains a number of assembly language functions that provide arithmetic routines 
for C/C++ math operations that the C7000 instruction set does not provide, such as integer division, integer 
remainder, and floating-point operations.

These routines follow the standard C/C++ calling sequence. The compiler automatically adds these routines 
when appropriate; they are not intended to be called directly by your programs.

The source code for these functions is provided in the lib/src source directory. The source code has 
comments that describe the operation of the functions. You can extract, inspect, and modify any of the math 
functions. Be sure, however, that you follow the calling conventions and register-saving rules outlined in this 
chapter. Table 6-3 summarizes the run-time-support functions used for arithmetic.
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Table 6-3. C7000 Run-Time-Support Arithmetic Functions
Return Type C Function Description
void __c7xabi_abort_msg (const char *) Report failed assertion. (See notes below.)

double __c7xabi_divd (double, double) Divide two double-precision floats.

float __c7xabi_divf (float, float) Divide two single-precision floats.

long long __c7xabi_divlli (long long, long long) 64-bit signed integer division.

unsigned long long __c7xabi_divull (unsigned long long, unsigned long long) 64-bit unsigned integer division.

long long __c7xabi_fixdlli (double) Convert double-precision float to 64-bit integer.

unsigned __c7xabi_fixdu (double) Convert double-precision float to 32-bit unsigned 
integer.

unsigned long long __c7xabi_fixdull (double) Convert double-precision float to 64-bit unsigned 
integer.

long long __c7xabi_fixflli (float) Convert single-precision float to 64-bit integer.

unsigned __c7xabi_fixfu (float) Convert single-precision float to 32-bit unsigned 
integer.

unsigned long long __c7xabi_fixfull (float) Convert single-precision float to 64-bit unsigned 
integer.

double __c7xabi_fltllid (long long) Convert 64-bit integer to double-precision float.

float __c7xabi_fltllif (long long) Convert 64-bit integer to single-precision float.

double __c7xabi_fltulld (unsigned long long) Convert 64-bit unsigned integer to double-precision 
float.

float __c7xabi_fltullf (unsigned long long) Convert 64-bit unsigned integer to single-precision 
float.

long long __c7xabi_remlli (long long, long long) 64-bit integer modulo.

unsigned long long __c7xabi_remull (unsigned long long, unsigned long long) 64-bit unsigned integer modulo.

void __c7xabi_strasg (int*, const int*, unsigned) Block copy. (See notes below.)

__c7xabi_unwind_cpp_pr0 Short frame unwinding, 16-bit scope.

__c7xabi_unwind_cpp_pr1 Long frame unwinding, 16-bit scope.

__c7xabi_unwind_cpp_pr2 Long frame unwinding, 32-bit scope.

__c7xabi_unwind_cpp_pr3 Unwinding, 24-bit encoding, 16-bit scope.

__c7xabi_abort_msg() Function:

void __c7xabi_abort_msg(const char *msg)

The function __c7xabi_abort_msg() is generated to print a diagnostic message when a run-time assertion 
(for example, the C assert macro) fails. It must not return. That is, it must call abort or terminate the program by 
other means.

__c7xabi_strasg() Function:

void __c7xabi_strasg(int* dst, const int* src, unsigned  cnt)

The function __c7xabi_strasg() is generated by the compiler for efficient out-of-line structure or array copy 
operations. The cnt argument is the size in bytes.
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6.7 System Initialization
Before you can run a C/C++ program, you must create the C/C++ run-time environment. The C/C++ boot routine 
performs this task using a function called c_int00 (or _c_int00). The run-time-support source library, rts.src, 
contains the source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the c_int00 function can be branched to or called, but it is usually vectored to by 
reset hardware. You must link the c_int00 function with the other object files. This occurs automatically when you 
use the --rom_model or --ram_model link option and include a standard run-time-support library as one of the 
linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file to the symbol 
c_int00.

The c_int00 function performs the following tasks to initialize the environment:

1. Defines a section called .stack for the system stack and sets up the initial stack pointers
2. Performs C autoinitialization of global/static variables. For more information, see Section 6.7.2.
3. Initializes global variables by copying the data from the initialization tables to the storage allocated for the 

variables in the .bss section. If you are initializing variables at load time (--ram_model option), a loader 
performs this step before the program runs (it is not performed by the boot routine).

4. Calls C++ initialization routines for file scope construction from the global constructor table. For more 
information, see Section 6.7.2.6.

5. Calls the main() function to run the C/C++ program

You can replace or modify the boot routine to meet your system requirements. However, the boot routine must 
perform the operations listed above to correctly initialize the C/C++ environment.

6.7.1 Boot Hook Functions for System Pre-Initialization

Boot hooks are points at which you may insert application functions into the C/C++ boot process. Default boot 
hook functions are provided with the run-time support (RTS) library. However, you can implement customized 
versions of these boot hook functions, which override the default boot hook functions in the RTS library if they 
are linked before the run-time library. Such functions can perform any application-specific initialization before 
continuing with the C/C++ environment setup.

The following boot hook functions are available:

_system_pre_init(): This function provides a place to perform application-specific initialization. It is invoked 
after the stack pointer is initialized but before any C/C++ environment setup is performed. By default, 
_system_pre_init() should return a non-zero value. The default C/C++ environment setup is bypassed if 
_system_pre_init() returns 0.

_system_post_cinit(): This function is invoked during C/C++ environment setup, after C/C++ global data is 
initialized but before any C++ constructors are called. This function should not return a value.

6.7.2 Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++ program 
starts running. The process of retrieving these variables' data and initializing the variables with the data is called 
autoinitialization. Internally, the compiler and linker coordinate to produce compressed initialization tables. Your 
code should not access the initialization table.

6.7.2.1 Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program execution. 
The C/C++ compiler supports preinitialization of uninitialized variables by default. This can be turned off by 
specifying the linker option --zero_init=off.

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur, is 
used. If you use the --ram_model option for linking, the linker does not generate initialization records, and the 
loader must handle both data and zero initialization.
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6.7.2.2 Direct Initialization

The compiler uses direct initialization to initialize global variables. For example, consider the following C code:

int i    = 23;
int a[5] = { 1, 2, 3, 4, 5 };

The compiler allocates the variables 'i' and 'a[] to .data section and the initial values are placed directly.

        .global i
        .data
        .align  4
i:
        .field          23,32                   ; i @ 0
        .global a
        .data
        .align  4
a:
        .field          1,32                    ; a[0] @ 0
        .field          2,32                    ; a[1] @ 32
        .field          3,32                    ; a[2] @ 64
        .field          4,32                    ; a[3] @ 96
        .field          5,32                    ; a[4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The linker treats 
the .data section like any other initialized section and creates an output section. In the load-time initialization 
model, the sections are loaded into memory and used by the program. See Section 6.7.2.5.

In the run-time initialization model, the linker uses the data in these sections to create initialization data and an 
additional compressed initialization table. The boot routine processes the initialization table to copy data from 
load addresses to run addresses. See Section 6.7.2.3.

6.7.2.3 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the 
linker with the --rom_model option.

Using this method, the linker creates a compressed initialization table and initialization data from the direct 
initialized sections in the compiled module. The table and data are used by the C/C++ boot routine to initialize 
variables in RAM using the table and data in ROM.

Figure 6-7 illustrates autoinitialization at run time. Use this method in any system where your application runs 
from code burned into ROM.

C auto init
table and data

(ROM)

.data
uninitialized

(RAM)

Boot
routine

Loader

Object file Memory

C auto init
table and data

(ROM)
(.cinit section)

Figure 6-7. Autoinitialization at Run Time
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6.7.2.4 Autoinitialization Tables

The compiled object files do not have initialization tables. The variables are initialized directly. The linker, when 
the --rom_model option is specified, creates C auto initialization table and the initialization data. The linker 
creates both the table and the initialization data in an output section named .cinit.

The autoinitialization table has the following format:

The linker defined symbols __TI_CINIT_Base and __TI_CINIT_Limit point to the start and end of the table, 
respectively. Each entry in this table corresponds to one output section that needs to be initialized. The 
initialization data for each output section could be encoded using different encoding.

The load address in the C auto initialization record points to initialization data with the following format:

8-bit index Encoded data

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get the address of a 
handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

The encoded data that follows the 8-bit index can be in one of the following format types. For clarity the 8-bit 
index is also depicted for each format.

6.7.2.4.1 Length Followed by Data Format

8-bit index 24-bit padding 32-bit length (N) N byte initialization data (not compressed)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes 
the length of the initialization data in bytes (N). N byte initialization data is not compressed and is copied to the 
run address as is.

The run-time support library has a function __TI_zero_init() to process this type of initialization data. The first 
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is the run 
address from the C auto initialization record.

6.7.2.4.2 Zero Initialization Format

8-bit index 24-bit padding 32-bit length (N)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes 
the number of bytes to be zero initialized.
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The run-time support library has a function __TI_zero_init() to process the zero initialization. The first argument 
to this function is the address pointing to the byte after the 8-bit index. The second argument is the run address 
from the C auto initialization record.

6.7.2.4.3 Run Length Encoded (RLE) Format

8-bit index Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses a simple run 
length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).
2. Read the next byte (B).
3. If B != D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

a. If L == 0, then length is either a 16-bit, a 24-bit value, or we’ve reached the end of the data, read next 
byte (L).
i. If L == 0, length is a 24-bit value or the end of the data is reached, read next byte (L).

1. If L == 0, the end of the data is reached, go to step 7.
2. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.

ii. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. Else if L > 0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).

5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.

The run-time support library has a routine __TI_decompress_rle24() to decompress data compressed using 
RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The second 
argument is the run address from the C auto initialization record.

Note
RLE Decompression Routine

The previous decompression routine, __TI_decompress_rle(), is included in the run-time-support 
library for decompressing RLE encodings generated by older versions of the linker.

6.7.2.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

8-bit index Initialization data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The run-time support library has 
the routine __TI_decompress_lzss() to decompress the data compressed using LZSS. The first argument to this 
function is the address pointing to the byte after the 8-bit index. The second argument is the run address from 
the C auto initialization record.
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6.7.2.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the memory 
used by the initialization tables. To use this method, invoke the linker with the --ram_model option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables and data. The 
direct initialized sections (.data) in the compiled object files are combined according to the linker command file to 
generate initialized output sections. The loader loads the initialized output sections into memory. After the load, 
the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is performed.

Figure 6-8 illustrates the initialization of variables at load time.

.data section
(initialized)

(RAM)

.data
section

Loader

Object file Memory

Figure 6-8. Initialization at Load Time

6.7.2.6 Global Constructors

All global C++ variables that have constructors must have their constructor called before main(). The compiler 
builds a table of global constructor addresses that must be called, in order, before main() in a section 
called .init_array. The linker combines the .init_array section form each input file to form a single table in 
the .init_array section. The boot routine uses this table to execute the constructors. The linker defines two 
symbols to identify the combined .init_array table as shown below. This table is not null terminated by the linker.

Address of constructor 1

Address of constructor 2

Address of constructor n

__TI_INITARRAY_Base:

__TI_INITARRAY_Limit:

Figure 6-9. Constructor Table
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Some of the features of C/C++ (such as I/O, dynamic memory allocation, string operations, and trigonometric 
functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part of the compiler itself. The 
TI implementation of this library is the run-time-support library (RTS). The C/C++ compiler implements the ISO 
standard library except for those facilities that handle signal and locale issues (properties that depend on local 
language, nationality, or culture). Using the ANSI/ISO standard library ensures a consistent set of functions that 
provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you 
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and Section 
7.2.

A library-build utility is provided with the code generation tools that lets you create customized run-time-support 
libraries. This process is described in Section 7.4.

7.1 C and C++ Run-Time Support Libraries................................................................................................................. 166
7.2 The C I/O Functions..................................................................................................................................................169
7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)........................................................182
7.4 Library-Build Process.............................................................................................................................................. 183

Chapter 7 
Using Run-Time-Support Functions and Building 
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www.ti.com Using Run-Time-Support Functions and Building Libraries

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 165

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


7.1 C and C++ Run-Time Support Libraries
C7000 compiler releases include pre-built run-time support (RTS) libraries that provide all the standard 
capabilities. Separate libraries are provided for each target CPU version, big and little endian support, and 
C++ exception support. See Section 7.1.8 for information on the library-naming conventions.

The run-time-support library contains the following:
• ANSI/ISO C/C++ standard library
• C I/O library
• Low-level support functions that provide I/O to the host operating system
• Fundamental arithmetic routines
• System startup routine, _c_int00
• Compiler helper functions (to support language features that are not directly efficiently expressible in C/C++)

The run-time-support libraries do not contain functions involving signals and locale issues.

The C++ library supports wide chars, in that template functions and classes that are defined for char are 
also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and so on 
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file 
I/O for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and 
<cwctype>) is limited as described in Section 5.1.

TI does not provide documentation that covers the functionality of the C++ library. TI suggests referring to one of 
the following sources:

• The Standard C++ Library: A Tutorial and Reference, Nicolai M. Josuttis, Addison-Wesley, ISBN 
0-201-37926-0

• The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley, ISBN 
0-201-88954-4 or 0-201-70073-5

7.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the linker input files so that references 
to the I/O and run-time-support functions can be resolved. You can either specify the library or allow the compiler 
to select one for you. See Section 11.3.1 for further information.

When a library is linked, the linker includes only those library members required to resolve undefined references. 
For more information about linking, see Chapter 12.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support functions 
and variables that can be called and referenced from both C and C++ will have the same linkage.

7.1.2 Header Files

You must use the header files provided with the compiler run-time support when using functions from C/C++ 
standard library. Set the C7X_C_DIR environment variable to the include directory where the tools are installed.

The following header files provide TI extensions to the C standard:

• c7x.h -- Provides intrinsic definitions.
• c7x_direct.h -- Provides low-level "direct-mapped" intrinsic definitions. Automatically included by c7x.h.
• c7x_vpred.h -- Provides low-level vector predication intrinsic definitions. Automatically included by c7x.h.
• c7x_mma.h -- Provides MMA intrinsic definitions. Automatically included by c7x.h.
• c6x_migration.h -- Provides definitions of legacy C6000 intrinsics.
• c7x_luthist.h -- Defines intrinsics for lookup table and histogram features. Automatically included by c7x.h.
• c7x_scalable.h -- Utilities for vector-width independent code. Not included automatically. See Section 5.16.
• c7x_strm.h -- Defines intrinsics for the Streaming Engine (SE) and Streaming Address Generator (SA). (See 

Section 4.14.) Automatically included by c7x.h.
• cpy_tbl.h -- Declares the copy_in() RTS function, which is used to move code or data from a load location to 

a separate run location at run-time. This function helps manage overlays.
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• _data_synch.h -- Declares functions used by the RTS library to help with shared data synchronization. For 
example, these functions are used when flushing the local data cache to global shared memory.

• file.h -- Declares functions used by low-level I/O functions in the RTS library.
• gsm.h -- Provides basic DSP operations and GSM math operations defined by the European 

Telecommunications Standards Institute (ETSI).
• _lock.h -- Used when declaring system-wide mutex locks. This header file is deprecated; use 

_reg_mutex_api.h and _mutex.h instead.
• memory.h -- Provides the memalign() function, which is not required by the C standard.
• _mutex.h -- Declares functions used by the RTS library to help facilitate mutexes for specific resources that 

are owned by the RTS. For example, these functions are used for heap or file table allocation.
• _pthread.h -- Declares low-level mutex infrastructure functions and provides support for recursive mutexes.
• _reg_mutex_api.h -- Declares a function that can be used by an RTOS to register an underlying lock 

mechanism and/or thread ID mechanism that is implemented in the RTOS but is called indirectly by the RTS’ 
_mutex.h functions.

• _reg_synch_api.h -- Declares a function that can be used by an RTOS to register an underlying 
cache synchronization mechanism that is implemented in the RTOS but is called indirectly by the RTS’ 
_data_synch.h functions.

• strings.h -- Provides additional string functions, including bcmp(), bcopy(), bzero(), ffs(), index(), rindex(), 
strcasecmp(), and strncasecmp(). See the v7.6 release notes for details on these functions.

The following standard C header files are provided with the compiler: assert.h, complex.h, ctype.h, errno.h, 
float.h, inttypes.h, iso646.h, limits.h, locale.h, math.h, setjmp.h, signal.h, stdarg.h, stdbool.h, stddef.h, stdint.h, 
stdio.h, stdlib.h, string.h, time.h, wchar.h, and wctype.h.

The following standard C++ header files are provided with the compiler: algorithm, bitset, cassert, cctype, cerrno, 
cfloat, ciso646, climits, clocale, cmath, complex, csetjmp, csignal, cstdarg, cstddef, cstdio, cstdlib, cstring, ctime, 
cwchar, cwctype, deque, exception, fstream, functional, hash_map, hash_set, iomanip, ios, iosfwd, iostream, 
istream, iterator, limits, list, locale, map, memory, new, numeric, ostream, queue, rope, set, sstream, stack, 
stdexcept, streambuf, string, strstream, typeinfo, utility, valarray, and vector.

The following header files are for use with older C++ code: fstream.h, iomanip.h, iostream.h, new.h, 
stdiostream.h, stl.h, and strstream.h.

The following header files are for internal use by TI components and should not be directly included by 
your applications: _data_synch.h, _fmt_specifier.h, _isfuncdcl.h, _isfuncdef.h, _mutex.h, _pthread.h, access.h, 
c60asm.i, cpp_inline_math.h, elf_linkage.h, elfnames.h, linkage.h, mathf.h, mathl.h, pprof.h, unaccess.h, 
wchar.hx, xcomplex, xdebug, xhash, xiosbase, xlocale, xlocinfo, xlocinfo.h, xlocmes, xlocmon, xlocnum, 
xloctime, xmemory, xstddef, xstring, xtree, xutility, xwcc.h, ymath.h, and yvals.h,

7.1.3 Modifying a Library Function

You can inspect or modify library functions by examining the source code in the lib/src subdirectory of the 
compiler installation. For example, C:\ti\ccsv7\tools\compiler\c7000_#.#.#\lib\src.

One you have located the relevant source code, change the specific function file and rebuild the library.

You can use this source tree to rebuild the rts7100_le.lib, rts7100_le_eh.lib, rts7100_be.lib, or rts7100_be_eh.lib 
library or to build a new library. See Section 7.1.8 for details on library naming and Section 7.4 for details on 
building
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7.1.4 Support for String Handling

The RTS library provides the standard C header file <string.h> as well as the POSIX header file <strings.h>, 
which provides additional functions not required by the C standard. The POSIX header file <strings.h> provides:

• bcmp(), which is equivalent to memcmp()
• bcopy(), which is equivalent to memmove()
• bzero(), which is equivalent to memset(.., 0, ...);
• ffs(), which finds the first bit set and returns the index of that bit
• index(), which is equivalent to strchr()
• rindex(), which is equivalent to strrchr()
• strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

In addition, the header file <string.h> provides one additional function not required by the C standard.

• strdup(), which duplicates a string by dynamically allocating memory (as if by using malloc) and copying the 
string to this allocated memory

7.1.5 Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to support 
non-ASCII character sets and conventions. Our implementation of these APIs is limited in the following ways:

• The library has minimal support for wide and multibyte characters. The type wchar_t is implemented as 
unsigned int. The wide character set is equivalent to the set of values of type char. The library includes the 
header files <wchar.h> and <wctype.h> but does not include all the functions specified in the standard. See 
Section 5.4 for more information about extended character sets.

• The C library includes the header file <locale.h> but with a minimal implementation. The only supported 
locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded to the behavior 
of the C locale, and attempting to install a different locale via a call to setlocale() will return NULL.

7.1.6 Support for Time and Clock Functions

The compiler RTS library supports two low-level time-related standard C functions in time.h:

• clock_t clock(void);
• time_t time(time_t *timer);
The time() function returns the wall-clock time. The clock() function returns the number of clock cycles since the 
program began executing; it has nothing to do with wall-clock time.

The default implementations of these functions require that the program be run under CCS or a similar tool that 
supports the CIO System Call Protocol. If CIO is not available and you need to use one of these functions, you 
must provide your own definition of the function.

The clock() function returns the number of clock cycles since the program began executing. This information 
might be available in a register on the device itself, but the location varies from platform to platform. The 
compiler's RTS library provides an implementation that uses the CIO System Call Protocol to communicate with 
CCS, which figures out how to compute the right value for this device.

If CCS is not available, you must provide an implementation of the clock() function that gathers clock cycle 
information from the appropriate location on the device.

The time() function returns the real-world time, in terms of seconds since an epoch.

On many embedded systems, there is no internal real-world clock, so a program needs to discover the time 
from an external source. The compiler's RTS library provides an implementation that uses the CIO System Call 
Protocol to communicate with CCS, which provides the real-world time.

If CCS is not available, you must provide an implementation of the time() function that finds the time from some 
other source. If the program is running under an operating system, that operating system should provide an 
implementation of time().

Using Run-Time-Support Functions and Building Libraries www.ti.com

168 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


The time() function returns the number of seconds since an epoch. On C7000 systems, the epoch is defined as 
the number of seconds since midnight UTC January 1, 1970.

7.1.7 Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro _NFILE, which 
is set to 10. The impact is that you can only have 10 files simultaneously open at one time (including the 
pre-defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines the 
maximum number of files that can be opened at one time. The macro is defined in the stdio.h header file and can 
be modified by changing the value of the _NFILE macro and recompiling the library.

7.1.8 Library Naming Conventions

By default, the linker uses automatic library selection to select the correct run-time-support library (see Section 
11.3.1.1) for your application. If you select the library manually, you must select the matching library using a 
naming scheme like the following:

rts7100_[endian][_eh].lib

endian Indicates endianness:
le Little-endian library
be Big-endian library

eh Indicates whether the library has exception handling support (_eh) or not (blank).

7.2 The C I/O Functions
The C I/O functions make it possible to access the host's operating system to perform I/O. The capability to 
perform I/O on the host gives you more options when debugging and testing code.

The I/O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to perform I/O on 
custom user-defined devices. This provides an easy way to use the sophisticated buffering of the high-level I/O 
functions on an arbitrary device.

Note

Debugger Required for Default HOST: For the default HOST device to work, there must be a 
debugger to handle the C I/O requests; the default HOST device cannot work by itself in an embedded 
system. To work in an embedded system, you will need to provide an appropriate driver for your 
system.

Note

C I/O Mysteriously Fails: If there is not enough space on the heap for a C I/O buffer, operations on 
the file will silently fail. If a call to printf() mysteriously fails, this may be the reason. The heap needs to 
be at least large enough to allocate a block of size BUFSIZ (defined in stdio.h) for every file on which 
I/O is performed, including stdout, stdin, and stderr, plus allocations performed by the user's code, 
plus allocation bookkeeping overhead. Alternately, declare a char array of size BUFSIZ and pass it 
to setvbuf to avoid dynamic allocation. To set the heap size, use the --heap_size option when linking 
Section 12.4.
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Note

Open Mysteriously Fails: The run-time support limits the total number of open files to a small 
number relative to general-purpose processors. If you attempt to open more files than the maximum, 
you may find that the open will mysteriously fail. You can increase the number of open files by 
extracting the source code from rts.src and editing the constants controlling the size of some of the 
C I/O data structures. The macro _NFILE controls how many FILE (fopen) objects can be open at 
one time (stdin, stdout, and stderr count against this total). (See also FOPEN_MAX.) The macro 
_NSTREAM controls how many low-level file descriptors can be open at one time (the low-level files 
underlying stdin, stdout, and stderr count against this total). The macro _NDEVICE controls how many 
device drivers are installed at one time (the HOST device counts against this total).

7.2.1 High-Level I/O Functions

The high-level functions are the standard C library of stream I/O routines (printf, scanf, fopen, getchar, and 
so on). These functions call one or more low-level I/O functions to carry out the high-level I/O request. The 
high-level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level I/O functions.

To use the high-level I/O functions, include the header file stdio.h, or cstdio for C++ code, for each module that 
references a C I/O function. For example, given the following C program in a file named main.c:

#include <stdio.h>
void main()
{
   FILE *fid;
   fid = fopen("myfile","w");
   fprintf(fid,"Hello, world\n");
   fclose(fid);
   printf("Hello again, world\n");
}

Issuing the following compiler command compiles, links, and creates the file main.out from the run-time-support 
library:

cl7x main.c -z --heap_size=1000 --output_file=main.out

Executing main.out results in

Hello, world

being output to a file and

Hello again, world

being output to your host's stdout window.

7.2.1.1 Formatting and the Format Conversion Buffer

The internal routine behind the C I/O functions—such as printf(), vsnprintf(), and snprintf()—reserves stack 
space for a format conversion buffer. The buffer size is set by the macro FORMAT_CONVERSION_BUFFER, 
which is defined in format.h. Consider the following issues before reducing the size of this buffer:

• The default buffer size is 510 bytes. If MINIMAL is defined, the size is set to 32, which allows integer values 
without width specifiers to be printed.

• Each conversion specified with %xxxx (except %s) must fit in FORMAT_CONVERSION_BUFSIZE. This 
means any individual formatted float or integer value, accounting for width and precision specifiers, needs 
to fit in the buffer. Since the actual value of any representable number should easily fit, the main concern is 
ensuring the width and/or precision size meets the constraints.
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• The length of converted strings using %s are unaffected by any change in 
FORMAT_CONVERSION_BUFSIZE. For example, you can specify printf("%s value is %d", 
some_really_long_string, intval) without a problem.

• The constraint is for each individual item being converted. For example a format string of %d item1 %f 
item2 %e item3 does not need to fit in the buffer. Instead, each converted item specified with a % format 
must fit.

• There is no buffer overrun check.

7.2.2 Overview of Low-Level I/O Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, lseek, rename, 
and unlink. These low-level routines provide the interface between the high-level functions and the device-level 
drivers that actually perform the I/O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not actually 
disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as lseek) may not 
be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open, representing 
an opened file. Multiple file descriptors may be associated with a file; each has its own independent file position 
indicator.
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open

Open File for I/O

Syntax #include <file.h>

int open (const char * path , unsigned flags , int file_descriptor );

Description The open function opens the file specified by path and prepares it for I/O.

• The path is the filename of the file to be opened, including an optional directory path 
and an optional device specifier (see Section 7.2.5).

• The flags are attributes that specify how the file is manipulated. The flags are specified 
using the following symbols:

   O_RDONLY   (0x0000)   /* open for reading */
   O_WRONLY   (0x0001)   /* open for writing */
   O_RDWR     (0x0002)   /* open for read & write */
   O_APPEND   (0x0008)   /* append on each write */
   O_CREAT    (0x0200)   /* open with file create */
   O_TRUNC    (0x0400)   /* open with truncation */
   O_BINARY   (0x8000)   /* open in binary mode */

Low-level I/O routines allow or disallow some operations depending on the flags used 
when the file was opened. Some flags may not be meaningful for some devices, 
depending on how the device implements files.

• The file_descriptor is assigned by open to an opened file.

The next available file descriptor is assigned to each new file opened.

Return Value The function returns one of the following values:

non-negative file descriptor if successful
-1 on failure
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close

Close File for I/O

Syntax #include <file.h>

int close (int file_descriptor );

Description The close function closes the file associated with file_descriptor.

The file_descriptor is the number assigned by open to an opened file.

Return Value The return value is one of the following:

0 if successful
-1 on failure

read

Read Characters from a File

Syntax #include <file.h>

int read (int file_descriptor , char * buffer , unsigned count );

Description The read function reads count characters into the buffer from the file associated with 
file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.
• The buffer is where the read characters are placed.
• The count is the number of characters to read from the file.

Return Value The function returns one of the following values:

0 if EOF was encountered before any characters were read
# number of characters read (may be less than count)
-1 on failure

write

Write Characters to a File

Syntax #include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count );

Description The write function writes the number of characters specified by count from the buffer to 
the file associated with file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.
• The buffer is where the characters to be written are located.
• The count is the number of characters to write to the file.

Return Value The function returns one of the following values:

# number of characters written if successful (may be less than count)
-1 on failure
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lseek

Set File Position Indicator

Syntax for C #include <file.h>

off_t lseek (int file_descriptor , off_t offset , int origin );

Description The lseek function sets the file position indicator for the given file to a location relative to 
the specified origin. The file position indicator measures the position in characters from 
the beginning of the file.

• The file_descriptor is the number assigned by open to an opened file.
• The offset indicates the relative offset from the origin in characters.
• The origin is used to indicate which of the base locations the offset is measured from. 

The origin must be one of the following macros:

SEEK_SET (0x0000) Beginning of file

SEEK_CUR (0x0001) Current value of the file position indicator

SEEK_END (0x0002) End of file

Return Value The return value is one of the following:

# new value of the file position indicator if successful
(off_t)-1 on failure

unlink

Delete File

Syntax #include <file.h>

int unlink (const char * path );

Description The unlink function deletes the file specified by path. Depending on the device, a deleted 
file may still remain until all file descriptors which have been opened for that file have 
been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix. 
(See Section 7.2.5.)

Return Value The function returns one of the following values:

0 if successful
-1 on failure
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rename

Rename File

Syntax for C #include {<stdio.h> | <file.h>}

int rename (const char * old_name , const char * new_name );

Syntax for C++ #include {<cstdio> | <file.h>}

int std::rename (const char * old_name , const char * new_name );

Description The rename function changes the name of a file.

• The old_name is the current name of the file.
• The new_name is the new name for the file.

Note

The optional device specified in the new name must match the device of the 
old name. If they do not match, a file copy would be required to perform the 
rename, and rename is not capable of this action.

Return Value The function returns one of the following values:

0 if successful
-1 on failure

Note

Although rename is a low-level function, it is defined by the C standard and can 
be used by portable applications.

7.2.3 Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The default device 
driver is the HOST device driver, which uses the debugger to perform file operations. The HOST device driver is 
automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so that the host 
can perform the C I/O requested by the program. Instructions for C I/O operations that the program wants to 
perform are encoded in a special buffer named _CIOBUF_ in the .cio section. The debugger halts the program at 
a special breakpoint (C$$IO$$), reads and decodes the target memory, and performs the requested operation. 
The result is encoded into _CIOBUF_, the program is resumed, and the target decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread, HOSTwrite, 
HOSTlseek, HOSTunlink, and HOSTrename, which perform the encoding. Each function is called from the 
low-level I/O function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful for all devices, 
but all seven must be defined. Here we show the names of all seven functions as starting with DEV, but you may 
choose any name except for HOST.
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DEV_open

Open File for I/O

Syntax int DEV_open (const char * path , unsigned flags , int llv_fd );

Description This function finds a file matching path and opens it for I/O as requested by flags.

• The path is the filename of the file to be opened. If the name of a file passed to open 
has a device prefix, the device prefix will be stripped by open, so DEV_open will not 
see it. (See Section 7.2.5 for details on the device prefix.)

• The flags are attributes that specify how the file is manipulated. The flags are specified 
using the following symbols:

   O_RDONLY   (0x0000)   /* open for reading */
   O_WRONLY   (0x0001)   /* open for writing */
   O_RDWR     (0x0002)   /* open for read & write */
   O_APPEND   (0x0008)   /* append on each write */
   O_CREAT    (0x0200)   /* open with file create */
   O_TRUNC    (0x0400)   /* open with truncation */
   O_BINARY   (0x8000)   /* open in binary mode */

See POSIX for further explanation of the flags.
• The llv_fd is treated as a suggested low-level file descriptor. This is a historical artifact; 

newly-defined device drivers should ignore this argument. This differs from the low-
level I/O open function.

This function must arrange for information to be saved for each file descriptor, typically 
including a file position indicator and any significant flags. For the HOST version, all the 
bookkeeping is handled by the debugger running on the host machine. If the device uses 
an internal buffer, the buffer can be created when a file is opened, or the buffer can be 
created during a read or write.

Return Value This function must return -1 to indicate an error if for some reason the file could not be 
opened; such as the file does not exist, could not be created, or there are too many 
files open. The value of errno may optionally be set to indicate the exact error (the 
HOST device does not set errno). Some devices might have special failure conditions; for 
instance, if a device is read-only, a file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor unique among all 
open files handled by the specific device. The file descriptor need not be unique across 
devices. The device file descriptor is used only by low-level functions when calling the 
device-driver-level functions. The low-level function open allocates its own unique file 
descriptor for the high-level functions to call the low-level functions. Code that uses only 
high-level I/O functions need not be aware of these file descriptors.

Using Run-Time-Support Functions and Building Libraries www.ti.com

176 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


DEV_close

Close File for I/O

Syntax int DEV_close (int dev_fd );

Description This function closes a valid open file descriptor.

On some devices, DEV_close may need to be responsible for checking if this is the last 
file descriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that 
the file is actually removed from the device and the resources reclaimed, if appropriate.

Return Value This function should return -1 to indicate an error if the file descriptor is invalid in some 
way, such as being out of range or already closed, but this is not required. The user 
should not call close() with an invalid file descriptor.

DEV_read

Read Characters from a File

Syntax int DEV_read (int dev_fd , char * buf , unsigned count );

Description The read function reads count bytes from the input file associated with dev_fd.

• The dev_fd is the number assigned by open to an opened file.
• The buf is where the read characters are placed.
• The count is the number of characters to read from the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could be read 
from the file. This could be because of an attempt to read from a O_WRONLY file, or for 
device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. 0 indicates that EOF was 
reached before any bytes were read. It is not an error to read less than count bytes; this 
is common if the are not enough bytes left in the file or the request was larger than an 
internal device buffer size.

DEV_write

Write Characters to a File

Syntax int DEV_write (int dev_fd , const char * buf , unsigned count );

Description This function writes count bytes to the output file.

• The dev_fd is the number assigned by open to an opened file.
• The buffer is where the write characters are placed.
• The count is the number of characters to write to the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could be 
written to the file. This could be because of an attempt to read from a O_RDONLY file, or 
for device-specific reasons.
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DEV_lseek

Set File Position Indicator

Syntax off_t DEV_lseek (int dev_fd , off_t offset , int origin );

Description This function sets the file's position indicator for this file descriptor as lseek.

If lseek is supported, it should not allow a seek to before the beginning of the file, but it 
should support seeking past the end of the file. Such seeks do not change the size of the 
file, but if it is followed by a write, the file size will increase.

Return Value If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be 
written to the file. For many devices, the lseek operation is nonsensical (e.g. a computer 
monitor).

DEV_unlink

Delete File

Syntax int DEV_unlink (const char * path );

Description Remove the association of the pathname with the file. This means that the file may no 
longer be opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device which 
allows open file descriptors to point to unlinked files, the file will not actually be deleted 
until the last file descriptor is closed. See Section 7.2.3.

Return Value This function must return -1 to indicate an error if for some reason the file could not be 
unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

DEV_rename

Rename File

Syntax int DEV_rename (const char * old_name , const char * new_name );

Description This function changes the name associated with the file.

• The old_name is the current name of the file.
• The new_name is the new name for the file.

Return Value This function must return -1 to indicate an error if for some reason the file could not be 
renamed, such as the file doesn't exist, or the new name already exists.

Note

It is inadvisable to allow renaming a file so that it is on a different device. In 
general this would require a whole file copy, which may be more expensive than 
you expect.

If successful, this function returns 0.
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7.2.4 Adding a User-Defined Device Driver for C I/O

The function add_device allows you to add and use a device. When a device is registered with add_device, the 
high-level I/O routines can be used for I/O on that device.

You can use a different protocol to communicate with any desired device and install that protocol using 
add_device; however, the HOST functions should not be modified. The default streams stdin, stdout, and stderr 
can be remapped to a file on a user-defined device instead of HOST by using freopen() as in Example 7-1. If the 
default streams are reopened in this way, the buffering mode will change to _IOFBF (fully buffered). To restore 
the default buffering behavior, call setvbuf on each reopened file with the appropriate value (_IOLBF for stdin 
and stdout, _IONBF for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device instead of HOST 
by using freopen() as shown in Example 7-1. Each function must set up and maintain its own data structures as 
needed. Some function definitions perform no action and should just return.

Note

Use Unique Function Names

The function names open, read, write, close, lseek, rename, and unlink are used by the low-level 
routines. Use other names for the device-level functions that you write.

Use the low-level function add_device() to add your device to the device_table. The device table is a statically 
defined array that supports n devices, where n is defined by the macro _NDEVICE found in stdio.h/cstdio.

The first entry in the device table is predefined to be the host device on which the debugger is running. The 
low-level routine add_device() finds the first empty position in the device table and initializes the device fields 
with the passed-in arguments. For a complete description, see the add_device function.

Example 7-1. Mapping Default Streams to Device

#include <stdio.h>
#include <file.h>
#include "mydevice.h"
void main()
{
    add_device("mydevice", _MSA, 
               MYDEVICE_open, MYDEVICE_close, 
               MYDEVICE_read, MYDEVICE_write, 
               MYDEVICE_lseek, MYDEVICE_unlink, MYDEVICE_rename);
    /*-----------------------------------------------------------------------*/
    /* Re-open stderr as a MYDEVICE file                                     */
    /*-----------------------------------------------------------------------*/
    if (!freopen("mydevice:stderrfile", "w", stderr))
    { 
        puts("Failed to freopen stderr"); 
        exit(EXIT_FAILURE); 
    }
    /*-----------------------------------------------------------------------*/
    /* stderr should not be fully buffered; we want errors to be seen as     */
    /* soon as possible.  Normally stderr is line-buffered, but this example */
    /* doesn't buffer stderr at all.  This means that there will be one call */
    /* to write() for each character in the message.                         */
    /*-----------------------------------------------------------------------*/
    if (setvbuf(stderr, NULL, _IONBF, 0))
    { 
        puts("Failed to setvbuf stderr"); 
        exit(EXIT_FAILURE); 
    }
    /*-----------------------------------------------------------------------*/
    /* Try it out!                                                           */
    /*-----------------------------------------------------------------------*/
    printf("This goes to stdout\n");
    fprintf(stderr, "This goes to stderr\n"); }
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7.2.5 The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The device prefix 
is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen("mydevice:file1", "r");
int fd = open("mydevice:file2, O_RDONLY, 0);

If no device prefix is used, the HOST device will be used to open the file.

 

 

add_device

Add Device to Device Table

Syntax for C #include <file.h>

int add_device(char * name,
unsigned flags ,
int (* dopen )(const char * path , unsigned flags , int llv_fd),
int (* dclose )( int dev_fd),
int (* dread )(int dev_fd , char * buf , unsigned count ),
int (* dwrite )(int dev_fd , const char * buf , unsigned count ),
off_t (* dlseek )(int dev_fd, off_t ioffset , int origin ),
int (* dunlink )(const char * path ),
int (* drename )(const char * old_name , const char * new_name ));

Defined in lowlev.c (in the lib/src subdirectory of the compiler installation)

Description The add_device function adds a device record to the device table allowing that device 
to be used for I/O from C. The first entry in the device table is predefined to be the 
HOST device on which the debugger is running. The function add_device() finds the first 
empty position in the device table and initializes the fields of the structure that represent a 
device.

To open a stream on a newly added device use fopen( ) with a string of the format 
devicename : filename as the first argument.

• The name is a character string denoting the device name. The name is limited to 8 
characters.

• The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time

_MSA Denotes that the device supports multiple open streams

More flags can be added by defining them in file.h.
• The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are function 

pointers to the functions in the device driver that are called by the low-level functions 
to perform I/O on the specified device. You must declare these functions with the 
interface specified in Section 7.2.2. The device driver for the HOST that the C7000 
debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful
-1 on failure
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add_device (continued)

Add Device to Device Table

Example Example 7-2 does the following:

• Adds the device mydevice to the device table
• Opens a file named test on that device and associates it with the FILE pointer fid
• Writes the string Hello, world into the file
• Closes the file

Example 7-2 illustrates adding and using a device for C I/O:

Example 7-2. Program for C I/O Device

#include <file.h>
#include <stdio.h>
/****************************************************************************/
/* Declarations of the user-defined device drivers                          */
/****************************************************************************/
extern int   MYDEVICE_open(const char *path, unsigned flags, int fno);
extern int   MYDEVICE_close(int fno);
extern int   MYDEVICE_read(int fno, char *buffer, unsigned count);
extern int   MYDEVICE_write(int fno, const char *buffer, unsigned count);
extern off_t MYDEVICE_lseek(int fno, off_t offset, int origin);
extern int   MYDEVICE_unlink(const char *path);
extern int   MYDEVICE_rename(const char *old_name, char *new_name);
main()
{
   FILE *fid;
   add_device("mydevice", _MSA, MYDEVICE_open, MYDEVICE_close, MYDEVICE_read, 
               MYDEVICE_write, MYDEVICE_lseek, MYDEVICE_unlink, MYDEVICE_rename);
   fid = fopen("mydevice:test","w");
   fprintf(fid,"Hello, world\n");
  
   fclose(fid);
}
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7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
The C standard assumes only one thread of execution, with the only exception being extremely narrow support 
for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything in a signal 
handler. However, SYS/BIOS applications have multiple threads which need to modify the same global program 
state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does provide 
rudimentary support for multi-threaded reentrancy by providing support for critical sections. This implementation 
does not protect you from reentrancy issues ; this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a single-
threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded system 
such as SYS/BIOS, the kernel arranges to install semaphore lock primitive functions in these hooks, which are 
then called when the run-time-support enters code that needs to be protected by a critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be protected 
with a critical section, there are calls to the function _lock(). This calls the provided primitive, if installed, and 
acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is called to release the 
semaphore.

Usually SYS/BIOS is responsible for creating and installing the primitives, so you do not need to take any action. 
However, this mechanism can be used in multi-threaded applications that do not use the SYS/BIOS locking 
mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation functions are 
called to instruct the run-time-support environment to use these new primitives:

void _register_lock  (void (  *lock)());
void _register_unlock(void (*unlock)());

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments and 
return no values, and which implement some sort of global semaphore locking:

    extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;
    static int sema_depth = 0;
    static void my_lock(void) 
    { 
        while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_ID); 
        sema_depth++;
    }
    static void my_unlock(void) 
    { 
        if (!--sema_depth) ATOMIC_CLEAR(sema); 
    }

The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.
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7.4 Library-Build Process
When using the C/C++ compiler, you can compile your code under a number of different configurations and 
options that are not necessarily compatible with one another. Because it would be infeasible to include all 
possible run-time-support library variants, compiler releases pre-build only a small number of very commonly-
used libraries such as rts7100_le.lib.

To provide maximum flexibility, the run-time-support source code is provided as part of each compiler release. 
You can build the missing libraries as desired. The linker can also automatically build missing libraries. This 
is accomplished with a new library build process, the core of which is the executable mklib, which is available 
beginning with CCS 5.1.

7.4.1 Required Non-Texas Instruments Software

To use the self-contained run-time-support build process to rebuild a library with custom options, the following 
are required:

• sh (Bourne shell)
• gmake (GNU make 3.81 or later)

More information is available from GNU at http://www.gnu.org/software/make. GNU make (gmake) is also 
available in earlier versions of Code Composer Studio. GNU make is also included in some UNIX support 
packages for Windows, such as the MKS Toolkit, Cygwin, and Interix. The GNU make used on Windows 
platforms should explicitly report "This program build for Windows32" when the following is executed from the 
Command Prompt window:

    gmake -h

All three of these programs are provided as a non-optional feature of CCS 5.1. They are also available as part of 
the optional XDC Tools feature if you are using an earlier version of CCS.

The mklib program looks for these executables in the following order:
1. in your PATH
2. in the directory getenv("CCS_UTILS_DIR")/cygwin
3. in the directory getenv("CCS_UTILS_DIR")/bin
4. in the directory getenv("XDCROOT")
5. in the directory getenv("XDCROOT")/bin

If you are invoking mklib from the command line, and these executables are not in your path, you must set the 
environment variable CCS_UTILS_DIR such that getenv("CCS_UTILS_DIR")/bin contains the correct programs.

7.4.2 Using the Library-Build Process

You should normally let the linker automatically rebuild libraries as needed. If necessary, you can run mklib 
directly to populate libraries. See Section 7.4.2.2 for situations when you might want to do this.

7.4.2.1 Automatic Standard Library Rebuilding by the Linker

The linker looks for run-time-support libraries primarily through the C7X_C_DIR environment variable. Typically, 
one of the pathnames in C7X_C_DIR is your install directory/lib, which contains all of the pre-built libraries, as 
well as the index library libc.a. The linker looks in C7X_C_DIR to find a library that is the best match for the 
build attributes of the application. The build attributes are set indirectly according to the command-line options 
used to build the application. Build attributes include things like CPU revision. If the library name is explicitly 
specified (e.g. -library=rts7100_le.lib), run-time support looks for that library exactly. If the library name is not 
specified, the linker uses the index library libc.a to pick an appropriate library. If the library is specified by path 
(e.g. –library=/foo/rts7100_le.lib), it is assumed the library already exists and it will not be built automatically.

The index library describes a set of libraries with different build attributes. The linker will compare the build 
attributes for each potential library with the build attributes of the application and will pick the best fit. For details 
on the index library, see Chapter 10.
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Now that the linker has decided which library to use, it checks whether the run-time-support library is present 
in C7X_C_DIR. The library must be in exactly the same directory as the index library libc.a. If the library is not 
present, the linker invokes mklib to build it. This happens when the library is missing, regardless of whether the 
user specified the name of the library directly or allowed the linker to pick the best library from the index library.

The mklib program builds the requested library and places it in 'lib' directory part of C7X_C_DIR in the same 
directory as the index library, so it is available for subsequent compilations.

Things to watch out for:
• The linker invokes mklib and waits for it to finish before finishing the link, so you will experience a one-time 

delay when an uncommonly-used library is built for the first time. Build times of 1-5 minutes have been 
observed. This depends on the power of the host (number of CPUs, etc).

• In a shared installation, where an installation of the compiler is shared among more than one user, it is 
possible that two users might cause the linker to rebuild the same library at the same time. The mklib 
program tries to minimize the race condition, but it is possible one build will corrupt the other. In a shared 
environment, all libraries which might be needed should be built at install time; see Section 7.4.2.2 for 
instructions on invoking mklib directly to avoid this problem.

• The index library must exist, or the linker is unable to rebuild libraries automatically.
• The index library must be in a user-writable directory, or the library is not built. If the compiler installation 

must be installed read-only (a good practice for shared installation), any missing libraries must be built at 
installation time by invoking mklib directly.

• The mklib program is specific to a certain version of a certain library; you cannot use one compiler version's 
run-time support's mklib to build a different compiler version's run-time support library.

7.4.2.2 Invoking mklib Manually

You may need to invoke mklib directly in special circumstances:
• The compiler installation directory is read-only or shared.
• You want to build a variant of the run-time-support library that is not pre-configured in the index library libc.a 

or known to mklib. (e.g. a variant with source-level debugging turned on.)

7.4.2.2.1 Building Standard Libraries

You can invoke mklib directly to build any or all of the libraries indexed in the index library libc.a. The libraries 
are built with the standard options for that library; the library names and the appropriate standard option sets are 
known to mklib.

This is most easily done by changing the working directory to be the compiler run-time-support library directory 
'lib' and invoking the mklib executable there:

mklib --pattern=rts7100_le.lib

7.4.2.2.2 Shared or Read-Only Library Directory

If the compiler tools are to be installed in shared or read-only directory, mklib cannot build the standard libraries 
at link time; the libraries must be built before the library directory is made shared or read-only.

At installation time, the installing user must build all of the libraries which will be used by any user. To build all 
possible libraries, change the working directory to be the compiler RTS library directory 'lib' and invoke the mklib 
executable there:

mklib --all

Some targets have many libraries, so this step can take a long time. To build a subset of the libraries, invoke 
mklib individually for each desired library.

7.4.2.2.3 Building Libraries With Custom Options

You can build a library with any extra custom options desired. This is useful for building a version of the library 
with silicon exception workarounds enabled. The generated library is not a standard library, and must not be 
placed in the 'lib' directory. It should be placed in a directory local to the project which needs it. To build a 
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debugging version of the library rts7100_le.lib, change the working directory to the 'lib' directory and run the 
command:

mklib --pattern=rts7100_le.lib --name=rts7100_le_debug.lib --install_to=$Project/Debug 
  --extra_options=<options_list>

7.4.2.2.4 The mklib Program Option Summary

Run the following command to see the full list of options. These are described in Table 7-1.

mklib --help

Table 7-1. The mklib Program Options
Option Effect
--index= filename The index library (libc.a) for this release. Used to find a template library for custom builds, and to find the source 

files (in the lib/src subdirectory of the compiler installation). REQUIRED.
--pattern= filename Pattern for building a library. If neither --extra_options nor --options are specified, the library will be the standard 

library with the standard options for that library. If either --extra_options or --options are specified, the library is a 
custom library with custom options. REQUIRED unless --all is used.

--all Build all standard libraries at once.
--install_to= directory The directory into which to write the library. For a standard library, this defaults to the same directory as the 

index library (libc.a). For a custom library, this option is REQUIRED.
--compiler_bin_dir=
    directory

The directory where the compiler executables are. When invoking mklib directly, the executables should be in 
the path, but if they are not, this option must be used to tell mklib where they are. This option is primarily for use 
when mklib is invoked by the linker.

--name= filename File name for the library with no directory part. Only useful for custom libraries.
--options=' str ' Options to use when building the library. The default options (see below) are replaced by this string. If this 

option is used, the library will be a custom library.
--extra_options=' str ' Options to use when building the library. The default options (see below) are also used. If this option is used, 

the library will be a custom library.
--list_libraries List the libraries this script is capable of building and exit. ordinary system-specific directory.
--log= filename Save the build log as filename.
--tmpdir= directory Use directory for scratch space instead of the ordinary system-specific directory.
--gmake= filename Gmake-compatible program to invoke instead of "gmake"
--parallel= N Compile N files at once ("gmake -j N").
--query= filename Does this script know how to build FILENAME?
--help or --h Display this help.
--quiet or --q Operate silently.
--verbose or --v Extra information to debug this executable.

Examples:

To build all standard libraries and place them in the compiler's library directory:

mklib --all --index=$C_DIR/lib

To build one standard library and place it in the compiler's library directory:

mklib --pattern=rts7100_le.lib --index=$C_DIR/lib

To build a custom library that is just like rts7100_le.lib, but has symbolic debugging support enabled:

mklib --pattern=rts7100_le.lib --extra_options="-g" --index=$C_DIR/lib --install_to=$Project/Debug 
--name=rts7100_le_debug.lib 
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7.4.3 Extending mklib

The mklib API is a uniform interface that allows Code Composer Studio to build libraries without needing to 
know exactly what underlying mechanism is used to build it. Each library vendor (e.g. the TI compiler) provides 
a library-specific copy of 'mklib' in the library directory that can be invoked, which understands a standardized 
set of options, and understands how to build the library. This allows the linker to automatically build application-
compatible versions of any vendor's library without needing to register the library in advance, as long as the 
vendor supports mklib.

7.4.3.1 Underlying Mechanism

The underlying mechanism can be anything the vendor desires. For the compiler run-time-support libraries, 
mklib is just a wrapper that knows how to use the files in the lib/src subdirectory of the compiler installation 
and invoke gmake with the appropriate options to build each library. If necessary, mklib can be bypassed and 
the Makefile used directly, but this mode of operation is not supported by TI, and you are responsible for any 
changes to the Makefile. The format of the Makefile and the interface between mklib and the Makefile is subject 
to change without notice. The mklib program is the forward-compatible path.

7.4.3.2 Libraries From Other Vendors

Any vendor who wishes to distribute a library that can be rebuilt automatically by the linker must provide:
• An index library (like 'libc.a', but with a different name)
• A copy of mklib specific to that library
• A copy of the library source code (in whatever format is convenient)

These things must be placed together in one directory that is part of the linker's library search path (specified 
either in C7X_C_DIR or with the linker --search_path option).

If mklib needs extra information that is not possible to pass as command-line options to the compiler, the vendor 
will need to provide some other means of discovering the information (such as a configuration file written by a 
wizard run from inside CCS).

The vendor-supplied mklib must at least accept all of the options listed in Table 7-1 without error, even if they do 
not do anything.
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The linker creates executable object files from object modules. These executable object files can be executed by 
a C7000 CPU.

Object modules make modular programming easier because they encourage you to think in terms of blocks of 
code and data. These blocks are known as sections. The linker provides directives that allow you to create and 
manipulate sections.

This chapter focuses on the concept and use of sections.

8.1 Object File Format Specifications...........................................................................................................................188
8.2 Executable Object Files........................................................................................................................................... 188
8.3 Introduction to Sections.......................................................................................................................................... 188
8.4 How the Linker Handles Sections...........................................................................................................................189
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8.1 Object File Format Specifications
The object files created by the Code Generation Tools conform to the ELF (Executable and Linking Format) 
binary format, which is used by the Embedded Application Binary Interface (EABI). See the C7000 Embedded 
Application Binary Interface (EABI) Reference Guide (SPRUIG4) for information on the EABI ABI.

The C7000 has a 48-bit address space for both code and data. Accordingly, object files use the ELF64 format.

8.2 Executable Object Files
The linker can be used to produce static executable object modules. An executable object module has the same 
format as object files that are used as linker input. The sections in an executable object module, however, have 
been combined and placed in target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into target system 
memory. See Chapter 9 for details about loading and running programs.

8.3 Introduction to Sections
The smallest unit of an object file is a section. A section is a block of code or data that occupies contiguous 
space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It represents a 
contiguous region of target memory. It is a collection of sections that have the same property, such as writeable 
or readable. An ELF loader needs the segment information, but does not need the section information. The ELF 
standard allows the linker to omit ELF section information entirely from the executable object file.

Object files usually contain three default sections:

.text section Contains executable code 1

.data section Usually contains initialized data

.bss Usually reserves space for uninitialized variables

The linker allows you to create, name, and link other kinds of sections. The .text, .data, and .bss sections are 
archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections Contain data or code. The .text and .data sections are initialized.
Uninitialized sections Reserve space in the memory map for uninitialized data. The .bss section is uninitialized.

One of the linker's functions is to relocate sections into the target system's memory map; this function is called 
placement. Because most systems contain several types of memory, using sections can help you use target 
memory more efficiently. All sections are independently relocatable; you can place any section into any allocated 
block of target memory. For example, you can define a section that contains an initialization routine and then 
allocate the routine in a portion of the memory map that contains ROM. For information on section placement, 
see Section 11.3.5.

1 Some targets allow content other than text, such as constants, in .text sections.
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Figure 8-1 shows the relationship between sections in an object file and a hypothetical target memory. ROM may 
be EEPROM, FLASH or some other type of physical memory in an actual system.

Figure 8-1. Partitioning Memory Into Logical Blocks

8.3.1 Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections are treated 
in a special manner by the linker and the compiler's run-time support library. If you create a section with the 
same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

• .text -- Used for program code.
• .data -- Used for initialized non-const objects (global variables).
• .bss -- Used for uninitialized objects (global variables).
• .const -- Used for initialized const objects (string constants, variables declared const).
• .cinit -- Used to initialize C global variables at startup.
• .stack -- Used for the function call stack.
• .sysmem - Used for the dynamic memory allocation pool.

For more information on sections, see Section 11.3.5.

8.4 How the Linker Handles Sections
The linker has two main functions related to sections. First, the linker uses the sections in object files as building 
blocks; it combines input sections to create output sections in an executable output module. Second, the linker 
chooses memory addresses for the output sections; this is called placement. Two linker directives support these 
functions:

• The MEMORY directive allows you to define the memory map of a target system. You can name portions of 
memory and specify their starting addresses and their lengths.

• The SECTIONS directive tells the linker how to combine input sections into output sections and where to 
place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify the location 
of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the subsection is 
combined with the other sections with the same base section name. See Section 12.5.5.1.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target processor's 
default placement algorithm described in Section 12.7. When you do use linker directives, you must specify them 
in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:

• Section 12.5, Linker Command Files
• Section 12.5.4, The MEMORY Directive
• Section 12.5.5, The SECTIONS Directive
• Section 12.7, Default Placement Algorithm
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8.4.1 Combining Input Sections

Figure 8-2 provides a simplified example of the process of linking two files together.

Note that this is a simplified example, so it does not show all the sections that will be created or the actual 
sequence of the sections. See Section 12.7 for the actual default memory placement map for C7000.

Figure 8-2. Combining Input Sections to Form an Executable Object Module

In Figure 8-2, file1.obj and file2.obj have been assembled to be used as linker input. Each contains 
the .text, .data, and default sections; in addition, each contains a user-named section. The executable object 
module shows the combined sections. The linker combines the .text section from file1.obj and the .text section 
from file2.obj to form one .text section, then combines the two .data sections and the two sections, and finally 
places the user-named sections at the end. The memory map shows the combined sections to be placed into 
memory.

8.4.2 Placing Sections

Figure 8-2 illustrates the linker's default method for combining sections. Sometimes you may not want to use 
the default setup. For example, you may not want all of the .text sections to be combined into a single .text 
section. Or you may want a user-named section placed where the .data section would normally be allocated. 
Most memory maps contain various types of memory (RAM, ROM, EEPROM, FLASH, etc.) in varying amounts; 
you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 12.5.4 and 
Section 12.5.5. See Section 12.7 for the actual default memory allocation map for C7000.
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8.5 Symbols
An object file contains a symbol table that stores information about symbols in the object file. The linker uses this 
table when it performs relocation.

An object file symbol is a named 48-bit integer value, usually representing an address. A symbol can represent 
things like the start address of a function, variable, section, or an absolute integer (such as the size of the stack).

Absolute symbols are symbols with a numeric value. They may be constants. To the linker, such symbols are 
unsigned, but the integer may be treated as signed or unsigned depending on how it is used. The range of legal 
values for an absolute integer is 0 to 2^48-1 for unsigned treatment and -2^47 to 2^47-1 for signed treatment.

8.5.1 Local Symbols

Local symbols are visible within a single object file. Each object file may have its own local definition for a 
particular symbol. References to local symbols in an object file are entirely unrelated to local symbols of the 
same name in another object file.

By default, a symbol is local.

8.5.2 Weak Symbols

Weak symbols are symbols that may or may not be defined.

The linker processes symbols that are defined with a "weak" binding differently from symbols that are defined 
with global binding. Instead of including a weak symbol in the object file's symbol table (as it would for a global 
symbol), the linker only includes a weak symbol in the output of a "final" link if the symbol is required to resolve 
an otherwise unresolved reference.

This allows the linker to minimize the number of symbols it includes in the output file's symbol table by omitting 
those that are not needed to resolve references. Reducing the size of the output file's symbol table reduces the 
time required to link, especially if there are a large number of pre-loaded symbols to link against.

• Using the Linker Command File: To define a weak symbol in a linker command file, use the "weak" 
operator in an assignment expression to designate that the symbol as eligible for removal from the output 
file's symbol table if it is not referenced. In a linker command file, an assignment expression outside a 
MEMORY or SECTIONS directive can be used to define a weak linker-defined symbol. For example, you can 
define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;

If the linker command file performs the final link, then "ext_addr_sym" is presented to the linker as a weak 
symbol; it will not be included in the resulting output file if the symbol is not referenced. See Section 12.6.3.

• Using C/C++ code: See information about the WEAK pragma and weak GCC-style variable attribute in 
Section 5.8.35.

If there are multiple definitions of the same symbol, the linker uses certain rules to determine which definition 
takes precedence. Some definitions may have weak binding and others may have strong binding. "Strong" in 
this context means that the symbol has not been given a weak binding in an assignment statement in a linker 
command file. The linker uses the following guidelines to determine which definition is used when resolving 
references to a symbol:

• A strongly bound symbol always takes precedence over a weakly bound symbol.
• If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker command file 

takes precedence over a symbol defined in an input object file.
• If two symbols are both strongly bound and both are defined in an input object file, the linker provides a 

symbol redefinition error and halts the link process.
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8.6 Loading a Program
The linker creates an executable object file which can be loaded in several ways, depending on your execution 
environment. These methods include using Code Composer Studio or a hex conversion utility. For details, see 
Section 9.1.
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Even after a program is written, compiled, and linked into an executable object file, there are still many tasks that 
need to be performed before the program does its job. The program must be loaded onto the target, memory 
and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Many of the necessary tasks are handled for you by 
the compiler and linker, but if you need more control over these tasks, it helps to understand how the pieces are 
expected to fit together.

This chapter will introduce you to the concepts involved in program loading, initialization, and startup.

Refer to your device documentation for various device-specific aspects of bootstrapping.

9.1 Loading......................................................................................................................................................................194
9.2 Entry Point.................................................................................................................................................................194
9.3 Run-Time Initialization............................................................................................................................................. 195
9.4 Arguments to main...................................................................................................................................................198
9.5 Run-Time Relocation................................................................................................................................................198
9.6 Additional Information............................................................................................................................................. 198
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9.1 Loading
A program needs to be placed into the target device's memory before it may be executed. Loading is the 
process of preparing a program for execution by initializing device memory with the program's code and data. A 
loader might be another program on the device, an external agent (for example, a debugger), or the device might 
initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The load image 
is the program's code and data in memory before execution. What exactly constitutes loading depends on the 
environment, such as whether an operating system is present. This section describes several loading schemes 
for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

• A debugger running on a connected host workstation. In a typical embedded development setup, the 
device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The device is 
connected with a communication channel such as a JTAG interface. CCS reads the program and writes the 
load image directly to target memory through the communications interface.

• Loader running on another CPU. Using an ELF loader, another CPU on the device (typically an ARM core) 
loads the executable into memory.

• Another program running on the device. The running program can create the load image and transfer 
control to the loaded program. If an operating system is present, it may have the ability to load and run 
programs.

9.2 Entry Point
The entry point is the address at which the execution of the program begins. This is the address of the startup 
routine. The startup routine is responsible for initializing and calling the rest of the program. For a C/C++ 
program, the startup routine is usually named _c_int00 (see Section 9.3.1). After the program is loaded, the 
value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You can 
select a custom entry point; see Section 12.4.11. The device itself cannot read the entry point field from the 
object file, so it has to be encoded in the program somewhere.

• If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the 
bootloader branches to the entry point.

• If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter (PC) 
to the value of the entry point.
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9.3 Run-Time Initialization
After the load image is in place, the program can run. The subsections that follow describe bootstrap initialization 
of a C/C++ program.

9.3.1 The _c_int00 Function

The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs all the 
steps necessary for a C/C++ program to initialize itself.

The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets up 
the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry point for C 
programs by default. The compiler's run-time-support library provides a default implementation of _c_int00.

The startup routine is responsible for performing the following actions:

1. Set up the stack by initializing SP
2. Set up the data page pointer DP (for architectures that have one)
3. Set configuration registers
4. Process the .cinit table to autoinitialize global variables (when using the --rom_model option)
5. Process the .pinit table to construct global C++ objects.
6. Call the function main with appropriate arguments
7. Call exit when main returns

9.3.2 RAM Model vs. ROM Model

Choose a startup model based on the needs of your application. The ROM model performs more work during the 
boot routine. The RAM model performs more work while loading the application.

If your application is likely to need frequent RESETs or is a standalone application, the ROM model may be a 
better choice, because the boot routine will have all the data it needs to initialize RAM variables. However, for a 
system with an operating system, it may be better to use the RAM model.

C boot routine copies data from the .cinit section to the run-time location of the variables to be initialized.

9.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the 
linker with the --rom_model option.

The ROM model allows initialization data to be stored in slow non-volatile memory and copied to fast memory 
each time the program is reset. Use this method if your application runs from code burned into slow memory or 
needs to survive a reset.

For the ROM model , the .cinit section is loaded into memory along with all the other initialized sections. The 
linker defines a special symbol called __TI_CINIT_Base that points to the beginning of the initialization tables in 
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by .cinit) 
into the run-time location of the variables.
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Figure 9-1 illustrates autoinitialization at run time using the ROM model.

Initialization
tables

(EXT_MEM)

.bss
section

(D_MEM)

Boot
routine

.cinit
section

Loader

Object file Memory

cint

Figure 9-1. Autoinitialization at Run Time

9.3.2.2 Initializing Variables at Load Time (--ram_model)

The RAM model Initializes variables at load time. To use this method, invoke the linker with the --ram_model 
option.

This model may reduce boot time and save memory used by the initialization tables.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's header. 
This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no space in the 
memory map.)

The linker sets __TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

The loader copies values directly from the .data section to memory.

Figure 9-2 illustrates the initialization of variables at load time.

.bss

.cinit Loader

Object file Memory

Figure 9-2. Initialization at Load Time
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9.3.2.3 The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model option.

• The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C 
boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from the 
appropriate run-time-support library.

• When you use the ROM model to autoinitialize at run time (--rom_model option):
– The linker defines a special symbol called __TI_CINIT_Base that points to the beginning of the 

initialization tables in memory. When the program begins running, the C boot routine copies data from 
the tables (pointed to by .cinit) into the run-time location of the variables.

• When you use the RAM model to initialize at load time (--ram_model option):
– The linker sets __TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

9.3.3 About Linker-Generated Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load address 
to its run address. This function reads size and location information from copy tables. The linker automatically 
generates several kinds of copy tables. Refer to Section 12.8.

You can create and control code overlays with copy tables. See Section 12.8.4 for details and examples.

Copy tables can be used by the linker to implement run-time relocations as described in Section 9.5, however 
copy tables require a specific table format.

9.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the copying 
at auto-initialization time. Refer to Section 12.8.4.2 for more about the BINIT copy table name. The BINIT copy 
table is copied before .cinit processing.

9.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Section 9.3.2.1 for more about using the .cinit section 
with the ROM model and Section 9.3.2.2 for more using it with the RAM model.
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9.4 Arguments to main
Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an embedded 
program, but the TI runtime does provide a way to do it. The user must allocate an .args section of an 
appropriate size using the --args linker option. It is the responsibility of the loader to populate the .args section. It 
is not specified how the loader determines which arguments to pass to the target. The format of the arguments is 
the same as an array of pointers to char on the target.

See Section 12.4.4 for information about allocating memory for argument passing.

9.5 Run-Time Relocation
At times you may want to load code into one area of memory and move it to another area before running it. 
For example, you may have performance-critical code in an external-memory-based system. The code must be 
loaded into external memory, but it would run faster in internal memory. Because internal memory is limited, you 
might swap in different speed-critical functions at different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the linker to 
allocate a section twice: first to set its load address and again to set its run address. Use the load keyword for 
the load address and the run keyword for the run address. If a section is assigned two addresses at link time, all 
labels defined in the section are relocated to refer to the run-time address so that references to the section (such 
as branches) are correct when the code runs.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and loads 
and runs at the same address. If you provide both allocations, the section is actually allocated as if it were two 
separate sections. The two sections are the same size if the load section is not compressed.

Uninitialized sections (such as ) are not loaded, so the only significant address is the run address. The linker 
allocates uninitialized sections only once; if you specify both run and load addresses, the linker warns you and 
ignores the load address.

For a complete description of run-time relocation, see Section 12.5.6.

9.6 Additional Information
See the following sections and documents for additional information:

Section 6.7, "System Initialization"

Section 11.3.2, "Run-Time Initialization"

Section 12.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"

Section 12.4.11, "Define an Entry Point (--entry_point Option)"

Section 12.5.6.1 ,"Specifying Load and Run Addresses"

Section 12.8, "Linker-Generated Copy Tables"

Section 12.10.1, "Run-Time Initialization"
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The C7000 archiver lets you combine several individual files into a single archive file. You can use the archiver 
to collect a group of object files into an object library. The linker includes in the library the members that resolve 
external references during the link. The archiver allows you to modify a library by deleting, replacing, extracting, 
or adding members.

10.1 Archiver Overview.................................................................................................................................................. 200
10.2 The Archiver's Role in the Software Development Flow.................................................................................... 200
10.3 Invoking the Archiver.............................................................................................................................................201
10.4 Archiver Examples................................................................................................................................................. 202
10.5 Library Information Archiver Description............................................................................................................ 203
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10.1 Archiver Overview
You can build libraries from any type of files. The linker accepts archive libraries as input. It can use libraries that 
contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example, you can 
write several arithmetic routines, assemble them, and use the archiver to collect the object files into a single, 
logical group. You can then specify the object library as linker input. The linker searches the library and includes 
members that resolve external references.

10.2 The Archiver's Role in the Software Development Flow
Figure 10-1 shows the archiver's role in the software development process. The shaded portion highlights the 
most common archiver development path.

Figure 10-1. The Archiver in the C7000 Software Development Flow
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10.3 Invoking the Archiver
To invoke the archiver, enter:

ar7x[-]command [options] libname [filename1 ... filenamen ]

ar7x is the command that invokes the archiver.
[-]command tells the archiver how to manipulate the existing library members and any specified. A command can be preceded 

by an optional hyphen. You must use one of the following commands when you invoke the archiver, but you can use 
only one command per invocation. The archiver commands are as follows:
@ uses the contents of the specified file instead of command line entries. You can use this command to avoid 

limitations on command line length imposed by the host operating system. Use a ; at the beginning of a line 
in the command file to include comments. (See Archiver Command File for an example using an archiver 
command file.)

a adds the specified files to the library. This command does not replace an existing member that has the same 
name as an added file; it simply appends new members to the end of the archive.

d deletes the specified members from the library.
r replaces the specified members in the library. If you do not specify filenames, the archiver replaces the library 

members with files of the same name in the current directory. If the specified file is not found in the library, the 
archiver adds it instead of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files are listed. If you do not specify 
any filenames, the archiver lists all the members in the specified library.

x extracts the specified files. If you do not specify member names, the archiver extracts all library members. 
When the archiver extracts a member, it simply copies the member into the current directory; it does not 
remove it from the library.

options In addition to one of the commands, you can specify options. To use options, combine them with a command; for 
example, to use the a command and the s option, enter -as or as. The hyphen is optional for archiver options only. 
These are the archiver options:
-h provide command-line help
-q (quiet) suppresses the banner and status messages.
-s prints a list of the global symbols that are defined in the library. (This option is valid only with the a, r, and d 

commands.)
-u replaces library members only if the replacement has a more recent modification date. You must use the r 

command with the -u option to specify which members to replace.
-v (verbose) provides a file-by-file description of the creation of a new library from an old library and its members.

libname names the archive library to be built or modified. If you do not specify an extension for libname, the archiver uses the 
default extension .lib.

filenames names individual files to be manipulated. These files can be existing library members or new files to be added to the 
library. When you enter a filename, you must enter a complete filename including extension, if applicable.

Note
Naming Library Members: It is possible (but not desirable) for a library to contain several members 
with the same name. If you attempt to delete, replace, or extract a member whose name is the same 
as another library member, the archiver deletes, replaces, or extracts the first library member with that 
name.
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10.4 Archiver Examples
The following are examples of typical archiver operations:

• If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj, enter:

    ar7x -a function sine.obj cos.obj flt.obj

The archiver responds as follows:

    ==> new archive 'function.lib' 
    ==> building new archive 'function.lib'

• You can print a table of contents of function.lib with the -t command, enter:

    ar7x -t function

The archiver responds as follows:

      SIZE   DATE                        FILE NAME
  --------   ------------------------    -----------------
      4260   Thu Mar 28 15:38:18 2019    sine.obj
      4260   Thu Mar 28 15:38:18 2019    cos.obj
      4260   Thu Mar 28 15:38:18 2019    flt.obj

• If you want to add new members to the library, enter:

    ar7x -as function atan.obj

The archiver responds as follows:

      ==> symbol defined: '_sin'
      ==> symbol defined: '_cos'
      ==> symbol defined: '_tan'
      ==> symbol defined: '_atan
      ==> building archive 'function.lib'

Because this example does not specify an extension for the libname, the archiver adds the files to the library 
called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the archiver to list 
the global symbols that are defined in the library.)

• If you want to modify a library member, you can extract it, edit it, and replace it. In this example, assume there 
is a library named sine.obj that contains the members push.asm, pop.asm, and swap.asm.

    ar7x -x function sine.obj

The archiver makes a copy of sine.obj and places it in the current directory; it does not remove sine.obj from 
the library. Now you can examine or edit the extracted file. To replace the copy of sine.obj in the library with 
the edited copy, enter:

    ar7x -r function sine.obj

• If you want to use a command file, specify the command filename after the -@ command. For example:

    ar7x -@modules.cmd

The archiver responds as follows:

      ==>  building archive 'modules.lib'

Archiver Command File is the modules.cmd command file. The r command specifies that the filenames given 
in the command file replace files of the same name in the modules.lib library. The -u option specifies that 
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these files are replaced only when the current file has a more recent revision date than the file that is in the 
library.

Archiver Command File

; Command file to replace members of the
;     modules library with updated files
; Use r command and u option:
ru
; Specify library name:
modules.lib
; List filenames to be replaced if updated:
align.obj
bss.obj
data.obj
text.obj
sect.obj
clink.obj
copy.obj
double.obj
drnolist.obj
emsg.obj
end.obj

10.5 Library Information Archiver Description
Section 10.1 through Section 10.4 explain how to use the archiver to create libraries of object files for use in 
the linker of one or more applications. You can have multiple versions of the same object file libraries, each 
built with different sets of build options. For example, you might have different versions of your object file library 
for big and little endian, for different architecture revisions, or for different ABIs depending on the typical build 
environments of client applications. However, if you have several versions of a library, it can be cumbersome to 
keep track of which version of the library needs to be linked in for a particular application.

When several versions of a single library are available, the library information archiver can be used to create an 
index library of all of the object file library versions. This index library is used in the linker in place of a particular 
version of your object file library. The linker looks at the build options of the application being linked, and uses 
the specified index library to determine which version of your object file library to include in the linker. If one or 
more compatible libraries were found in the index library, the most suitable compatible library is linked in for your 
application.

10.5.1 Invoking the Library Information Archiver

To invoke the library information archiver, enter:

libinfo7x [options] --output=libname libname1 [libname2 ... libnamen ]

libinfo7x is the command that invokes the library information archiver.

options changes the default behavior of the library information archiver. These options are:
--output libname specifies the name of the index library to create or update. This option is required.
--update updates any existing information in the index library specified with the --output option 

instead of creating a new index.
libnames names individual object file libraries to be manipulated. When you enter a libname, you must enter a complete 

filename including extension, if applicable.
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10.5.2 Library Information Archiver Example

Consider these object file libraries that all have the same members, but are built with different build options:

Object File Library Name Build Options
mylib_7100_le.lib --silicon_version=7100
mylib_7100_be.lib --silicon_version=7100 --big_endian

Using the library information archiver, you can create an index library called mylib.lib from the above libraries:

libinfo7x --output mylib.lib mylib_7100_be.lib mylib_7100_le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library 
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the 
--run_linker option, the linker reports which library was chosen.

• Example 1 (little endian):

   cl7x -mv7100 --endian=little --issue_remarks main.c -z -l lnk.cmd ./mylib.lib
   <Linking>
   remark: linking in "mylib_7100_le.lib" in place of "mylib.lib"

• Example 2 (big endian):

   cl7x -mv7100 --endian=big --issue_remarks main.c -z -l lnk.cmd ./mylib.lib
   <Linking>
   remark: linking in "mylib_7100_be.lib" in place of "mylib.lib"

10.5.3 Listing the Contents of an Index Library

The archiver’s -t option can be used on an index library to list the archives indexed by an index library:

ar7x t mylib.lib
      SIZE   DATE                       FILE NAME
  --------   ------------------------   -----------------
       119   Wed Feb 03 12:45:22 2018   mylib_7100_be.lib
       119   Wed Feb 03 12:45:22 2018   mylib_7100_le.lib
         0   Wed Sep 30 12:45:22 2018   __TI_$$LIBINFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The __TI_$$LIBINFO 
member is a special member that designates mylib.lib as an index library, rather than a regular library.

If the archiver’s -d command is used on an index library to delete a .libinfo member, the linker will no longer 
choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __TI_$$LIBINFO member, results 
in undefined behavior, and is not supported.

10.5.4 Requirements

You must follow these requirements to use library index files:

• At least one application object file must appear on the linker command line before the index library.
• Each object file library specified as input to the library information archiver must only contain object file 

members that are built with the same build options.
• The linker expects the index library and all of the libraries it indexes to be in a single directory.
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The C/C++ Code Generation Tools provide two methods for linking your programs:
• You can compile individual modules and link them together. This method is especially useful when you have 

multiple source files.
• You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements of 
linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and allocating the 
program into memory. For a complete description of the linker, see Chapter 12.

11.1 Invoking the Linker Through the Compiler (-z Option)....................................................................................... 206
11.2 Linker Code Optimizations.................................................................................................................................... 208
11.3 Controlling the Linking Process............................................................................................................................209

Chapter 11 
Linking C/C++ Code

www.ti.com Linking C/C++ Code

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 205

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


11.1 Invoking the Linker Through the Compiler (-z Option)
This section explains how to invoke the linker after you have compiled and assembled your programs: as a 
separate step or as part of the compile step.

11.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

cl7x --run_linker {--rom_model | --ram_model} filenames

[options] [--output_file= name.out] --library= library [lnk.cmd]

cl7x --run_linker The command that invokes the linker.
--rom_model | --ram_model Options that tell the linker to use special conventions defined by the C/C++ environment. 

When you use cl7x --run_linker without listing any C/C++ files to be compiled on the 
command line, you must use --rom_model or --ram_model on the command line or in 
the linker command file. The --rom_model option uses automatic variable initialization at run 
time; the --ram_model option uses variable initialization at load time. See Section 11.3.4 for 
details about using the --rom_model and --ram_model options. If you fail to specify the ROM 
or RAM model, you will see a linker warning that says:
warning: no suitable entry-point found; setting to 0

filenames Names of object files, linker command files, or archive libraries. The default extensions 
for input files are .c.obj (for C source files) and .cpp.obj (for C++ source files). Any other 
extension must be explicitly specified. The linker can determine whether the input file is an 
object or ASCII file that contains linker commands. The default output filename is a.out, 
unless you use the --output_file option.

options Options affect how the linker handles your object files. Linker options can only appear after 
the --run_linker option on the command line, but otherwise may be in any order. (Options 
are discussed in detail in Chapter 12.)

--output_file= name.out Names the output file.
--library= library Identifies the appropriate archive library containing C/C++ run-time-support and floating-

point math functions, or linker command files. If you are linking C/C++ code, you must use 
a run-time-support library. You can use the libraries included with the compiler, or you can 
create your own run-time-support library. If you have specified a run-time-support library in a 
linker command file, you do not need this parameter. The --library option's short form is -l.

lnk.cmd Contains options, filenames, directives, or commands for the linker.

Note

The default file extensions for object files created by the compiler have been changed. Object files 
generated from C source files have the .c.obj extension. Object files generated from C++ source files 
have the .cpp.obj extension.

When you specify a library as linker input, the linker includes and links only those library members that resolve 
undefined references. The linker uses a default allocation algorithm to allocate your program into memory. You 
can use the MEMORY and SECTIONS directives in the linker command file to customize the allocation process. 
For information, see Chapter 12.

You can link a C/C++ program consisting of object files prog1.c.obj, prog2.c.obj, and prog3.cpp.obj, with an 
executable object file filename of prog.out with the command:

cl7x --run_linker --ram_model prog1 prog2 prog3 --output_file=prog.out
     --library=rts7100_le.lib
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11.1.2 Invoking the Linker as Part of the Compile Step

This is the general syntax for linking C/C++ programs as part of the compile step:

cl7x filenames [options] --run_linker [--rom_model | --ram_model] filenames

[options] [--output_file= name.out] --library= library [lnk.cmd]

The --run_linker option divides the command line into the compiler options (the options before --run_linker) and 
the linker options (the options following --run_linker). The --run_linker option must follow all source files and 
compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can 
be linker command files, additional object files, linker options, or libraries. These arguments are the same as 
described in Section 11.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments can be 
C/C++ source files or compiler options. These arguments are described in Section 3.2.

You can compile and link a C/C++ program consisting of object files prog1.c, prog2.c, and prog3.c, with an 
executable object file filename of prog.out with the command:

cl7x prog1.c prog2.c prog3.c --run_linker --ram_model --output_file=prog.out --
library=rts7100_le.lib

When you use cl7x --run_linker after listing at least one C/C++ file to be compiled on the same command line, 
by default the --rom_model is used for automatic variable initialization at run time. See Section 11.3.4 for details 
about using the --rom_model and --ram_model options.

Note

Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes arguments to 
the linker in the following order:
1. Object filenames from the command line
2. Arguments following the --run_linker option on the command line
3. Arguments following the --run_linker option from the C7X_C_OPTION environment variable

11.1.3 Disabling the Linker (--compile_only Compiler Option)

You can override the --run_linker option by using the --compile_only compiler option. The -run_linker option's 
short form is -z and the --compile_only option's short form is -c.

The --compile_only option is especially helpful if you specify the --run_linker option in the C7X_C_OPTION 
environment variable and want to selectively disable linking with the --compile_only option on the command line.
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11.2 Linker Code Optimizations
These techniques are used to further optimize your code.

11.2.1 Conditional Linking

With ELF conditional linking, a code or data section will not be included in a link unless at least one symbol in 
that code or data section is referenced.

You can use the RETAIN pragma (Section 5.8.31) to force the section that contains a specific symbol to be 
included in the link. The CLINK pragma (Section 5.8.2) indicates that the section that contains the definition of 
this symbol is eligible for removal during conditional linking. You can use the CODE_SECTION (Section 5.8.5) 
and DATA_SECTION (Section 5.8.8) pragmas to force a symbol to be allocated in a particular section. The 
symbol must be referenced in a statement other than its declaration to force that section to be included in the 
link.

11.2.2 Generating Function Subsections (--gen_func_subsections Compiler Option)

The compiler translates a source module into an object file. It may place all of the functions into a single code 
section, or it may create multiple code sections. The benefit of multiple code sections is that the linker may omit 
unused functions from the executable.

When the linker collects code to be placed into an executable file, it cannot split code sections. If the compiler 
did not use multiple code sections, and any function in a particular module needs to be linked into the 
executable, then all functions in that module are linked in, even if they are not used.

An example is a library *.c.obj file that contains a signed divide routine and an unsigned divide routine. If the 
application requires only signed division, then only the signed divide routine is required for linking. If only one 
code section was used, both the signed and unsigned routines are linked in since they exist in the same *.c.obj 
file.

The --gen_func_subsections compiler option remedies this problem by placing each function in a file in its own 
subsection. Thus, only the functions that are referenced in the application are linked into the final executable. 
This can result in an overall code size reduction.

However, be aware that using the --gen_func_subsections compiler option can result in overall code size 
growth if all or nearly all functions are being referenced. This is because any section containing code must be 
aligned to a 64-byte boundary to support the branching mechanism. When the --gen_func_subsections option 
is not used, all functions in a source file are usually placed in a common section which is aligned. When 
--gen_func_subsections is used, each function defined in a source file is placed in a unique section. Each of the 
unique sections requires alignment. If all the functions in the file are required for linking, code size may increase 
due to the additional alignment padding for the individual subsections. Thus, the --gen_func_subsections 
compiler option is advantageous for use with libraries where normally only a limited number of the functions 
in a file are used in any one executable. The alternative to using the --gen_func_subsections option is to place 
each function in its own file.

If this option is not used, the default is "off". If this option is used but neither "on" nor "off" is specified, the default 
is "on".

11.2.3 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

Similarly to code sections described in the previous section, data can either be placed in a single section 
or multiple sections. The benefit of multiple data sections is that the linker may omit unused data structures 
from the executable. This option causes aggregate data—arrays, structs, and unions—to be placed in separate 
subsections of the data section.

If this option is not used, the default is "on". If this option is used but neither "on" nor "off" is specified, an error 
message is provided.

If the SET_DATA_SECTION pragma is used, the --gen_data_subsections=on option is ignored. User-defined 
section placement takes precedence over automatic generation of subsections.
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11.3 Controlling the Linking Process
Regardless of the method you choose for invoking the linker, special requirements apply when linking C/C++ 
programs. You must:

• Include the compiler's run-time-support library
• Specify the type of boot-time initialization
• Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default linker 
command file. For more information about how to operate the linker, see the linker description in Chapter 12.

11.3.1 Including the Run-Time-Support Library

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++ functions 
as well as functions used by the compiler to manage the C/C++ environment. The following sections describe 
two methods for including the run-time-support library.

11.3.1.1 Automatic Run-Time-Support Library Selection

The linker assumes you are using the C and C++ conventions if either the --rom_model or --ram_model linker 
option is specified, or if at least one C/C++ file to compile is listed on the command line. See Section 11.3.4 for 
details about using the --rom_model and --ram_model options.

If the linker assumes you are using the C and C++ conventions and the entry point for the program (normally 
c_int00) is not resolved by any specified object file or library, the linker attempts to automatically include the 
most compatible run-time-support library for your program. The run-time-support library chosen by the compiler 
is searched after any other libraries specified with the --library option on the command line or in the linker 
command file. If libc.a is explicitly used, the appropriate run-time-support library is included in the search order 
where libc.a is specified.

You can disable the automatic selection of a run-time-support library by using the --disable_auto_rts option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is generated 
indicating which run-time support library was linked in. If a different run-time-support library is desired than the 
one reported by --issue_remarks, you must specify the name of the desired run-time-support library using the 
--library option and in your linker command files when necessary.

Example 11-1. Using the --issue_remarks Option

cl7x --silicon_version=7100 --issue_remarks main.c --run_linker --rom_model
<Linking>
remark: linking in "libc.a"
remark: linking in "rts7100_le.lib" in place of "libc.a"

11.3.1.2 Manual Run-Time-Support Library Selection

You can bypass automatic library selection by explicitly specifying the desired run-time-support library to use. 
Use the --library linker option to specify the name of the library. The linker will search the path specified by the 
--search_path option and then the C7X_C_DIR environment variable for the named library. You can use the 
--library linker option on the command line or in a command file.

cl7x --run_linker {--rom_model | --ram_model} filenames --library= libraryname
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11.3.1.3 Library Order for Searching for Symbols

Generally, you should specify the run-time-support library as the last name on the command line because the 
linker searches libraries for unresolved references in the order that files are specified on the command line. If 
any object files follow a library, references from those object files to that library are not resolved. You can use 
the --reread_libs option to force the linker to reread all libraries until references are resolved. Whenever you 
specify a library as linker input, the linker includes and links only those library members that resolve undefined 
references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then the 
definition from the same library that introduced the unresolved reference is used. Use the --priority option if you 
want the linker to use the definition from the first library on the command line that contains the definition.

11.3.2 Run-Time Initialization

C/C++ programs require initialization of the run-time environment before execution of the program itself may 
begin. This initialization is performed by a bootstrap routine. This routine is responsible for creating the stack, 
initializing global variables, and calling the main() function. The bootstrap routine should be the entry point for 
the program, and it typically should be the RESET interrupt handler. The bootstrap routine is responsible for the 
following tasks:

1. Set up the stack by initializing SP
2. Set up the data page pointer DP (for architectures that have one)
3. Set configuration registers
4. Process the .cinit table to autoinitialize global variables (when using the --rom_model option)
5. Process the .pinit table to construct global C++ objects.
6. Call the main() function with appropriate arguments
7. Call exit() when main() returns

When you compile a C/C++ program and use --rom_model or --ram_model, the linker automatically looks for a 
bootstrap routine named _c_int00. The run-time support library provides a sample _c_int00 in boot.c.obj, which 
performs the required tasks. If you use the run-time support's bootstrap routine, you should set _c_int00 as the 
entry point.

Note

The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as the entry 
point for the program. If your command line does not list any C/C++ files to compile and does not 
specify either the --ram_model or --rom_model link option, the linker does not know whether or not 
to use the C/C++ conventions, and you will receive a linker warning that says "warning: no suitable 
entry-point found; setting to 0". See Section 11.3.4 for details about using the --rom_model and 
--ram_model options.

11.3.3 Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during 
program initialization and their destructors to be called during program termination. The C++ compiler produces 
a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code, but 
the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before the main() function is called. 
Global destructors are invoked during the exit run-time support function, similar to functions registered through 
atexit.

Section 6.7.2.6 discusses the format of the global constructor table.
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11.3.4 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 6.7.2.4 discusses the format of 
these initialization tables. The initialization tables are used in one of the following ways:

• Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.7.2.3).
• Global variables are initialized at load time. Use the --ram_model linker option (see Section 6.7.2.5).

If you use the linker command line without compiling any C/C++ files, you must use either the --rom_model 
or --ram_model option. These options tell the linker two things. First, they indicate that the linker should follow 
C/C++ conventions, using the definition of main() to link in the c_int00 boot routines. Second, they tell the linker 
whether to select initialization at run time or load time. If your command line fails to include one of these options 
when it is required, you will see "warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used, the 
--rom_model or --ram_model option must follow the --run_linker option (see Section 11.1).

For details on linking conventions for EABI with --rom_model and --ram_model, see Section 6.7.2.3 and Section 
6.7.2.5, respectively.

11.3.5 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated in 
memory in a variety of ways to conform to a variety of system configurations. See Section 6.1.1 for a complete 
description of how the compiler uses these sections.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 11-1 summarizes the 
initialized sections. Table 11-2 summarizes the uninitialized sections.

Table 11-1. Initialized Sections Created by the Compiler
Name Contents
.args Reserved space for copying command line arguments before the main() function is called by the boot routine. 

See Section 3.6.
.binit Boot time copy tables (See Section 12.8.4.2 for information on BINIT in linker command files.)
.c7xabi.exidx Index table for exception handling; read-only (see --exceptions option).
.c7xabi.extab Unwinding instructions for exception handling; read-only (see --exceptions option).
.cinit The compiler does not generate a .cinit section unless the --rom_mode linker option is specified. If --rom_mode 

is specified, the linker creates this section, which contains tables for explicitly initialized global and static 
variables.

.const Global and static const variables, including string constants and initializers for local variables.

.data Global and static non-const variables that are explicitly initialized.

.got Global offset table.

.init_array Table of constructors to be called at startup.

.name.load Compressed image of section name; read-only (See Section 12.8 for information on copy tables.)

.ovly Copy tables other than boot time (.binit) copy tables. Read-only data.

.TI.crctab Generated CRC checking tables. Read-only data.

Table 11-2. Uninitialized Sections Created by the Compiler
Name Contents
.bss Uninitialized global and static variables
.cio Buffers for stdio functions from the run-time support library
.stack
.sysmem Memory pool (heap) for dynamic memory allocation (malloc, etc)

When you link your program, you must specify where to allocate the sections in memory. In general, initialized 
sections are linked into ROM or RAM; uninitialized sections are linked into RAM.
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The linker provides MEMORY and SECTIONS directives for allocating sections. For more information about 
allocating sections into memory, see Section 12.5.

11.3.6 A Sample Linker Command File

Linker Command File shows a typical linker command file that links a C program. The command file in this 
example is named lnk.cmd and lists several linker options:

--rom_model Tells the linker to use autoinitialization at run time.
--heap_size Tells the linker to set the C heap size at 0x2000 bytes.
--stack_size Tells the linker to set the stack size to 0x0100 bytes.
--library Tells the linker to use an archive library file, rts7100_le.lib, for input.

To link the program, use the following syntax:

cl7x --run_linker object_file(s) --output_file= outfile --map_file= mapfile lnk.cmd

The MEMORY and possibly the SECTIONS directives, might require modification to work with your system. See 
Section 12.5 for more information on these directives.

Linker Command File

--rom_model
--heap_size=0x2000
--stack_size=0x0100
--library=rts7100_le.lib
MEMORY
{
    VECS:   o = 0x00000000     l = 0x000000400 /* reset & interrupt vectors     */
    PMEM:   o = 0x00000400     l = 0x00000FC00 /* intended for initialization   */
    BMEM:   o = 0x80000000     l = 0x000010000 /* .bss, .sysmem, .stack, .cinit */
}
SECTIONS
{
    vectors     >       VECS
    .text       >       PMEM
    .data       >       BMEM
    .stack      >       BMEM
    .bss        >       BMEM
    .sysmem     >       BMEM
    .cinit      >       BMEM
    .const      >       BMEM
    .cio        >       BMEM 
}

Linking C/C++ Code www.ti.com

212 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


The C7000 linker creates a static executable by combining object modules. This chapter describes the linker 
options, directives, and statements used to create static executables. Object libraries, command files, and other 
key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 8 includes a detailed discussion of sections.
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12.1 Linker Overview
The C7000 linker allows you to allocate output sections efficiently in the memory map. As the linker combines 
object files, it performs the following tasks:

• Allocates sections into the target system's configured memory
• Relocates symbols and sections to assign them to final addresses
• Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address binding. 
The language supports expression assignment and evaluation. You configure system memory by defining and 
creating a memory model that you design. Two powerful directives, MEMORY and SECTIONS, allow you to:

• Allocate sections into specific areas of memory
• Combine object file sections
• Define or redefine global symbols at link time

12.2 The Linker's Role in the Software Development Flow
Figure 12-1 illustrates the linker's role in the software development process. The linker accepts several types 
of files as input, including object files, command files, libraries, and partially linked files. The linker creates an 
executable object module that can be downloaded to one of several development tools or executed by a C7000 
device.

Figure 12-1. The Linker in the C7000 Software Development Flow
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12.3 Invoking the Linker
The general syntax for invoking the linker is:

cl7x --run_linker [options] filename1 .... filenamen

cl7x --run_linker is the command that invokes the linker. The --run_linker option's short form is -z.
options can appear anywhere on the command line or in a linker command file. (Options are discussed in 

Section 12.4.)
filename 1, filename n can be object files, linker command files, or archive libraries. The default extensions for input files 

are .c.obj (for C source files) and .cpp.obj (for C++ source files). Any other extension must be explicitly 
specified. The linker can determine whether the input file is an object or ASCII file that contains linker 
commands. The default output filename is a.out, unless you use the --output_file option to name the 
output file.

Note

The default file extensions for object files created by the compiler have been changed. Object files 
generated from C source files have the .c.obj extension. Object files generated from C++ source 
files have the .cpp.obj extension. Object files generated from assembly source files still have the .obj 
extension.

There are two methods for invoking the linker:

• Specify options and filenames on the command line. This example links two files, file1.c.obj and file2.c.obj, 
and creates an output module named link.out.

   cl7x --run_linker file1.c.obj file2.c.obj --output_file=link.out

• Put filenames and options in a linker command file. Filenames that are specified inside a linker command file 
must begin with a letter. For example, assume the file linker.cmd contains the following lines:

   --output_file=link.out file1.c.obj file2.c.obj

Now you can invoke the linker from the command line; specify the command filename as an input file:

   cl7x --run_linker linker.cmd

When you use a command file, you can also specify other options and files on the command line. For 
example, you could enter:

   cl7x --run_linker --map_file=link.map linker.cmd file3.c.obj

The linker reads and processes a command file as soon as it encounters the filename on the command line, 
so it links the files in this order: file1.c.obj, file2.c.obj, and file3.c.obj. This example creates an output file 
called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 12.10.
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12.4 Linker Options
Linker options control linking operations. They can be placed on the command line or in a command file. Linker 
options must be preceded by a hyphen (-). Options can be separated from arguments (if they have them) by an 
optional space.

Table 12-1. Basic Options Summary
Option Alias Description Section
--run_linker -z Enables linking Section 12.3
--output_file -o Names the executable output module. The default filename is a.out. Section 12.4.22
--map_file -m Produces a map or listing of the input and output sections, including holes, and 

places the listing in filename
Section 12.4.17

--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that 
specifies the stack size. Default = 1K bytes

Section 12.4.27

--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and 
defines a global symbol that specifies the heap size. Default = 1K bytes

Section 12.4.13

Table 12-2. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 12.4.15
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 12.4.8
--priority -priority Satisfies unresolved references by the first library that contains a definition for 

that symbol
Section 12.4.15.3

--reread_libs -x Forces rereading of libraries, which resolves back references Section 12.4.15.3
--search_path -i Alters library-search algorithms to look in a directory named with pathname 

before looking in the default location. This option must appear before the 
--library option.

Section 12.4.15.1

Table 12-3. Command File Preprocessing Options Summary
Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 12.4.10
--undefine Removes the preprocessor macro name. Section 12.4.10
--disable_pp Disables preprocessing for command files Section 12.4.10

Table 12-4. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 12.4.7
--diag_remark Categorizes the diagnostic identified by num as a remark Section 12.4.7
--diag_suppress Suppresses the diagnostic identified by num Section 12.4.7
--diag_warning Categorizes the diagnostic identified by num as a warning Section 12.4.7
--display_error_number Displays a diagnostic's identifiers along with its text Section 12.4.7
--emit_references:file[=file] Emits a file containing section information. The information includes section 

size, symbols defined, and references to symbols.
Section 12.4.7

--emit_warnings_as_errors -pdew Treats warnings as errors Section 12.4.7
--issue_remarks Issues remarks (nonserious warnings) Section 12.4.7
--no_demangle Disables demangling of symbol names in diagnostics Section 12.4.19
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 12.4.7
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of 

errors. (The default is 100.)
Section 12.4.7

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 12.4.7
--warn_sections -w Displays a message when an undefined output section is created Section 12.4.31
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Table 12-5. Linker Output Options Summary
Option Alias Description Section
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither --

absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe 
were specified.

Section 12.4.3.1

--mapfile_contents Controls the information that appears in the map file. Section 12.4.18
--relocatable -r Produces a nonexecutable, relocatable output module Section 12.4.3.2
--xml_link_info Generates a well-formed XML file containing detailed information about the 

result of a link
Section 12.4.32

Table 12-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output 

module
Section 12.4.11

--globalize Changes the symbol linkage to global for symbols that match pattern Section 12.4.16
--hide Hides global symbols that match pattern Section 12.4.14
--localize Changes the symbol linkage to local for symbols that match pattern Section 12.4.16
--make_global -g Makes symbol global (overrides -h) Section 12.4.16.1
--make_static -h Makes all global symbols static Section 12.4.16.1
--no_sym_merge -b Disables merge of symbolic debugging information Section 12.4.20
--no_symtable -s Strips symbol table information and line number entries from the output module Section 12.4.21
--retain Retains a list of sections that otherwise would be discarded Section 12.4.25
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 12.4.26
--symbol_map Maps symbol references to a symbol definition of a different name Section 12.4.28
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 12.4.30
--unhide Reveals (un-hides) global symbols that match pattern Section 12.4.14

Table 12-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 12.4.4
--fill_value -f Sets default fill values for holes within output sections; fill_value is a 64-bit 

constant
Section 12.4.12

--ram_model -cr Initializes variables at load time Section 12.4.24
--rom_model -c Autoinitializes variables at run time Section 12.4.24
--trampolines Generates far call trampolines; on by default Section 12.4.29

Table 12-8. Miscellaneous Options Summary
Option Alias Description Section
--linker_help -help Displays information about syntax and available options –
--minimize_trampolines Selects the trampoline minimization algorithm (argument is optional; algorithm 

is postorder by default)
Section 12.4.29.2

--preferred_order Prioritizes placement of functions Section 12.4.23
--zero_init Controls preinitialization of uninitialized variables. Default is on. Always off if 

--ram_model is used.
Section 12.4.33
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12.4.1 Wildcards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark (?) 
wildcards. Using * matches any number of characters and using ? matches a single character. Using wildcards 
can make it easier to handle related objects, provided they follow a suitable naming convention. For example:

mp3*.obj    /* matches anything .obj that begins with mp3    */
task?.o*    /* matches task1.obj, task2.c.obj, taskX.o55, etc. */
SECTIONS
{
   .fast_code: { *.obj(*fast*) }              > FAST_MEM
   .vectors  : { vectors.c.obj(.vector:part1:*) > 0xFFFFFF00
   .str_code : { rts*.lib<str*.c.obj>(.text) }  > S1ROM
}

12.4.2 Specifying C/C++ Symbols with Linker Options

The link-time symbol is the same as the C/C++ identifier name. The compiler does not prepend an underscore to 
the beginning of C/C++ identifiers.

For more information on referencing symbol names, see Section 5.11.

For information specifically about C++ symbol naming, see Section 5.11.

See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

12.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the symbol's 
address changes.

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an absolute or a 
relocatable output module. The --absolute_exe and --relocatable options may not be used together.

When the linker encounters a file that contains no relocation or symbol table information, it issues a warning 
message (but continues executing). Relinking an absolute file can be successful only if each input file contains 
no information that needs to be relocated (that is, each file has no unresolved references and is bound to the 
same virtual address that it was bound to when the linker created it).

12.4.3.1 Producing an Absolute Output Module (--absolute_exe option)

If you use --absolute_exe without the --relocatable option, the linker produces an absolute, executable output 
module. Absolute files contain no relocation information. Executable files contain the following:

• Special symbols defined by the linker (see Section 12.5.9.4)
• An header that describes information such as the program entry point
• No unresolved references

The following example links file1.c.obj and file2.c.obj and creates an absolute output module called a.out:

cl7x --run_linker --absolute_exe file1.c.obj file2.c.obj

Note
The --absolute_exe and --relocatable Options

If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you specified 
--absolute_exe.

12.4.3.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the output 
module is relocated (at load time) or relinked (by another linker execution), use --relocatable to retain the 
relocation entries.
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The linker produces a file that is not executable when you use the --relocatable option without the --absolute_exe 
option. A file that is not executable does not contain special linker symbols or an optional header. The file can 
contain unresolved references, but these references do not prevent creation of an output module.

This example links file1.c.obj and file2.c.obj and creates a relocatable output module called a.out:

cl7x --run_linker --relocatable file1.c.obj file2.c.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will be 
relinked with other files is called partial linking. For more information, see Section 12.9.)

12.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments from 
the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size

The size is the number of bytes to be allocated in target memory for command-line arguments.

By default, the linker creates the __c_args__ symbol and sets it to -1. When you specify --arg_size=size, the 
following occur:

• The linker creates an uninitialized section named .args of size bytes.
• The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine whether and 
how to pass arguments from the host to the target program. See Section 3.6 for information about the loader.

12.4.5 Compression (--cinit_compression and --copy_compression Option)

By default, the linker does not compress copy table (Section 9.3.3 and Section 12.8) source data sections. The 
--cinit_compression and --copy_compression options specify compression through the linker.

The --cinit_compression option specifies the compression type the linker applies to the C autoinitialization copy 
table source data sections. The default is lzss.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can 
compress the data copied by the copy tables. The compressed data is decompressed during copy. The 
--copy_compression option controls the compression of the copy data tables.

The syntax for the options are:

--cinit_compression[=compression_kind]

--copy_compression[=compression_kind]

The compression_kind can be one of the following types:
• off. Don't compress the data.
• rle. Compress data using Run Length Encoding.
• lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression (the default if no compression_kind is 

specified).

See Section 12.8.5 for more information about compression.

12.4.6 Compress DWARF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating duplicate 
information from input object files.

For ELF object files, which are used with EABI, the --compress_dwarf option eliminates duplicate information 
that could not be removed through the use of ELF COMDAT groups. (See the ELF specification for information 
on COMDAT groups.)
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12.4.7 Control Linker Diagnostics

The linker honors certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic options 
must be specified before the --run_linker option.

--diag_error=num Categorize the diagnostic identified by num as an error. To find the numeric identifier of a diagnostic 
message, use the --display_error_number option first in a separate link. Then use --diag_error=num to 
recategorize the diagnostic as an error. You can only alter the severity of discretionary diagnostics.

--diag_remark=num Categorize the diagnostic identified by num as a remark. To find the numeric identifier of a diagnostic 
message, use the --display_error_number option first in a separate link. Then use --diag_remark=num 
to recategorize the diagnostic as a remark. You can only alter the severity of discretionary diagnostics.

--diag_suppress=num Suppress the diagnostic identified by num. To find the numeric identifier of a diagnostic message, use 
the --display_error_number option first in a separate link. Then use --diag_suppress=num to suppress 
the diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorize the diagnostic identified by num as a warning. To find the numeric identifier of a diagnostic 
message, use the --display_error_number option first in a separate link. Then use --diag_warning=num 
to recategorize the diagnostic as a warning. You can only alter the severity of discretionary diagnostics.

--display_error_number Display a diagnostic's numeric identifier along with its text. Use this option in determining which 
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error, 
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A 
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes 
the suffix -D; otherwise, no suffix is present. See Section 3.7 for more information on understanding 
diagnostic messages.

--emit_references:file [=filename] Emits a file containing section information. The information includes section size, symbols defined, and 
references to symbols. This information allows you to determine why each section is included in the 
linked application. The output file is a simple ASCII text file. The filename is used as the base name of 
a file created. For example, --emit_references:file=myfile generates a file named myfile.txt in the current 
directory.

--emit_warnings_as_
    errors

Treat all warnings as errors. This option cannot be used with the --no_warnings option. The 
--diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.

--issue_remarks Issue remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppress warning diagnostics (errors are still issued).
--set_error_limit=num Set the error limit to num, which can be any decimal value. The linker abandons linking after this 

number of errors. (The default is 100.)
--verbose_diagnostics Provide verbose diagnostics that display the original source with line-wrap and indicate the position of 

the error in the source line

12.4.8 Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library. See Section 
11.3.1.1 for details on the automatic selection process.

12.4.9 Do Not Remove Unused Sections (--unused_section_elimination Option)

To minimize the footprint, the ELF linker does not include sections that are not needed to resolve any references 
in the final executable. Use --unused_section_elimination=off to disable this optimization. The linker default 
behavior is equivalent to --unused_section_elimination=on.

12.4.10 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the command files 
can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name
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The compiler has --define and --undefine options with the same meanings. However, the linker options are 
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For example:

cl7x --define=FOO=1 main.c --run_linker --define=BAR=2 lnk.cmd

The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the usual way 
(that is, macros defined in the parent are visible in the child). However, when a command file is invoked other 
than through #include, either on the command line or by the typical way of being named in another command 
file, preprocessing context is not carried into the nested file. The exception to this is --define and --undefine 
options, which apply globally from the point they are encountered. For example:

  --define GLOBAL
  #define LOCAL
  #include "incfile.cmd"     /* sees GLOBAL and LOCAL */
  nestfile.cmd               /* only sees GLOBAL      */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as 
mentioned above. Second, since they are not actually preprocessing directives themselves, they are subject to 
macro substitution, probably with unintended consequences. This effect can be defeated by quoting the symbol 
name. For example:

  --define MYSYM=123
  --undefine MYSYM     /* expands to --undefine 123 (!) */
  --undefine "MYSYM"   /* ahh, that's better            */

The linker searches for an #include file in the following order until the file is found:

1. If the #include file name is in quotes (rather than <brackets>), search the directory that contains the current 
file.

2. If the --include_path compiler option was used (before the --run_linker or -z option), search the path 
specified with that option.

3. If the environment variable is defined, search directories pointed to by that definition. See Section 12.4.15.2.

There are two exceptions: relative pathnames (such as "../name") always search relative to the current directory, 
and absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker provides the built-in macro definitions listed in Table 12-9. The availability of these macros within 
the linker is determined by the command-line options used, not the build attributes of the files being linked. If 
these macros are not set as expected, confirm that your project's command line uses the correct compiler option 
settings.

Table 12-9. Predefined C7000 Macro Names
Macro Name Description
__DATE__ Expands to the compilation date in the form mmm dd yyyy

__FILE__ Expands to the current source filename
__TI_COMPILER_VERSION__ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not 

contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros 
are dropped to prevent the number being interpreted as an octal.

__TI_EABI__ Defined to 1 if EABI is enabled; otherwise, it is undefined.
__TIME__ Expands to the compilation time in the form "hh:mm:ss"
__C7000__ Always defined
__C7100__ Defined to 1 if --silicon_version=7100.
__C7120__ Defined to 1 if --silicon_version=7120.
__C7504__ Defined to 1 if --silicon_version=7504.
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12.4.11 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads a 
program into target memory, the program counter (PC) must be initialized to the entry point; the PC then points 
to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in which 
the linker tries to use them. If you use one of the first three values, it must be an external symbol in the symbol 
table.

• The value specified by the --entry_point option. The syntax is:

--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input files. 
The external symbol name of C or C++ objects may be different than the name as declared in the source 
language.

• The value of symbol _c_int00 (if present). The _c_int00 symbol must be the entry point if you are linking code 
produced by the C compiler.

• The value of symbol main (if present)
• 0 (default value)

This example links file1.c.obj and file2.c.obj. The symbol begin is the entry point; begin must be defined as 
external in file1 or file2.

cl7x --run_linker --entry_point=begin file1.c.obj file2.c.obj

See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

12.4.12 Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:

--fill_value= value

The argument value is a 64-bit constant (up to 16 hexadecimal digits). If you do not use --fill_value, the linker 
uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:

cl7x --run_linker --fill_value=0xABCDABCDABCDABCD file1.c.obj file2.c.obj

12.4.13 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called for the C run-time memory pool used by malloc(). You 
can set the size of this memory pool at link time by using the --heap_size option. The syntax for the --heap_size 
option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:

cl7x --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the section only if there is a section in an input file.

The linker also creates a global symbol, , and assigns it a value equal to the size of the heap. The default size is 
1K bytes. See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

12.4.14 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is used 
to prevent name space clashes in a link unit (see Section 12.4.16), symbol hiding is used to obscure symbols 
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which should not be visible outside a link unit. Such symbol’s names appear only as empty strings or “no name” 
in object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:

--hide=' pattern '

--unhide=' pattern '

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to match 
zero or more characters.

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols matching the 
pattern by changing the name to an empty string. A global symbol that is hidden is also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide 
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern defined 
by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

• The --hide and --unhide options can be specified more than once on the command line.
• The order of --hide and --unhide has no significance.
• A symbol is matched by only one pattern defined by either --hide or --unhide.
• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than Pattern B, if 

Pattern A matches a narrower set than Pattern B.
• It is an error if a symbol matches patterns from --hide and --unhide and one does not supersede the other. 

Pattern A supersedes pattern B if A can match everything B can and more. If Pattern A supersedes Pattern 
B, then Pattern B is said to more restrictive than Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Hidden Symbols heading.

12.4.15 Alter the Library Search Algorithm (--library, --search_path, and C7X_C_DIR )

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for the file 
in the current directory. For example, suppose the current directory contains the library object.lib. If this library 
defines symbols that are referenced in the file file1.c.obj, this is how you link the files:

cl7x --run_linker file1.c.obj object.lib

To use a file that is not in the current directory, use the --library linker option. The --library option's short form is -l. 
The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, object file, or linker command file. You can specify up to 128 search 
paths.

The --library option is not required when one or more members of an object library are specified for input to an 
output section. For more information about allocating archive members, see Section 12.5.5.5.

You can adjust the linker's directory search algorithm using the --search_path linker option or the C7X_C_DIR 
environment variable. The linker searches for object libraries and command files in this order:

1. Search directories named with the --search_path linker option. The --search_path option must appear before 
the --Iibrary option on the command line or in a command file.

2. Search directories named with C7X_C_DIR.
3. If C7X_C_DIR is not set, search directories named with the C7X_A_DIR environment variable.
4. Search the current directory.
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12.4.15.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's short 
form is -I. The syntax for this option is:

--search_path= pathname

The pathname names a directory that contains input files.

When the linker searches for files named with the --library option, it searches through directories named with --
search_path first. Each --search_path option specifies only one directory, but you can use several --search_path 
options per invocation. If you use the --search_path option to name an alternate directory, it must precede any 
--library option on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in ld and ld2 
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment variable, 
and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter
UNIX (Bourne shell) cl7x --run_linker f1.c.obj f2.c.obj --search_path=/ld --search_path=/ld2 

--library=r.lib --library=lib2.lib
Windows cl7x --run_linker f1.c.obj f2.c.obj --search_path=\ld --search_path=\ld2 

--library=r.lib --library=lib2.lib

12.4.15.2 Name an Alternate Library Directory ( C7X_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an 
environment variable named C7X_C_DIR to name alternate directories that contain object libraries. The 
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) C7X_C_DIR =" pathname1 ; pathname2 ; . . . "; export C7X_C_DIR
Windows set C7X_C_DIR = pathname1 ; pathname2 ; . . .

The pathnames are directories that contain input files. Use the --library linker option on the command line or in 
a command file to tell the linker which library or linker command file to search for. The pathnames must follow 
these constraints:

• Pathnames must be separated with a semicolon.
• Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after the 

semicolon in the following is ignored:

    set C7X_C_DIR= c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For 
example, the pathnames in the following are valid:

    set C7X_C_DIR=c:\first path\to\tools;d:\second path\to\tools

In the example below, assume that two archive libraries called r.lib and lib2.lib reside in ld and ld2 directories. 
The table below shows how to set the environment variable, and how to use both libraries during a link. Select 
the row for your operating system:

Operating System Invocation Command
UNIX (Bourne shell) C7X_C_DIR="/ld ;/ld2"; export C7X_C_DIR; 

cl7x --run linker f1.c.obj f2.c.obj --library=r.lib --library=lib2.lib
Windows C7X_C_DIR=\ld;\ld2

cl7x --run linker f1.c.obj f2.c.obj --library=r.lib --library=lib2.lib
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The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset C7X_C_DIR
Windows set C7X_C_DIR=

The assembler uses an environment variable named C7X_A_DIR to name alternate directories that contain 
copy/include files. If C7X_C_DIR is not set, the linker searches for object libraries in the directories named with 
C7X_A_DIR. For more information about object libraries, see Section 12.6.4.

12.4.15.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:

• Reread libraries if you cannot resolve a symbol reference (--reread_libs).
• Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on the 
command line or in the command file. When an archive is read, any members that resolve references to 
undefined symbols are included in the link. If an input file later references a symbol defined in a previously read 
archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries until 
no more references can be resolved. Linking using --reread_libs may be slower, so you should use it only as 
needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a reference to a 
symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the libraries twice, as in:

cl7x --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:

cl7x --run_linker --reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each 
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For example:

objfile  references A
lib1     defines B
lib2     defines A, B; obj defining A references B

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which resolves to 
the B in lib2.

Under --priority, objfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved by 
searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in other 
libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rts7100_le.lib without 
providing a full replacement for rts7100_le.lib. Using --priority and linking your new library before rts7100_le.lib 
guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one 
illustrated above occur.
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12.4.16 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global symbols 
that should not be widely visible, but must be global because they are accessed by several modules in the 
library. The linker supports symbol localization through the --localize and --globalize linker options.

The syntax for these options are:

--localize=' pattern '

--globalize=' pattern '

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to match 
zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --globalize 
option only affects symbols that are localized by the --localize option. The --globalize option excludes symbols 
that match the pattern from symbol localization, provided the pattern defined by --globalize is more restrictive 
than the pattern defined by --localize.

See Section 12.4.2 for information about using C/C++ identifiers in linker options such as --localize and 
--globalize.

These options have the following properties:

• The --localize and --globalize options can be specified more than once on the command line.
• The order of --localize and --globalize options has no significance.
• A symbol is matched by only one pattern defined by either --localize or --globalize.
• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than Pattern B, if 

Pattern A matches a narrower set than Pattern B.
• It is an error if a symbol matches patterns from --localize and --globalize and if one does not supersede other. 

Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A supersedes 
Pattern B, then Pattern B is said to more restrictive than Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Localized Symbols heading.

12.4.16.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked 
modules. By making global symbols static, global symbols are essentially hidden. This allows external symbols 
with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to the 
module in which they are defined, so no external references are possible. For example, assume file1.c.obj and 
file2.c.obj both define global symbols called EXT. By using the --make_static option, you can link these files 
without conflict. The symbol EXT defined in file1.c.obj is treated separately from the symbol EXT defined in 
file2.c.obj.

cl7x --run_linker --make_static file1.c.obj file2.c.obj

The --make_static option makes all global symbols static. If you have a symbol that you want to remain global 
and you use the --make_static option, you can use the --make_global option to declare that symbol to be global. 
The --make_global option overrides the effect of the --make_static option for the symbol that you specify. The 
syntax for the --make_global option is:

--make_global= global_symbol
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12.4.17 Create a Map File (--map_file Option)

The syntax for the --map_file option is:

--map_file= filename

The linker map describes:

• Memory configuration
• Input and output section allocation
• Linker-generated copy tables
• Trampolines
• The addresses of external symbols after they have been relocated
• Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three tables:

• A table shows the new memory configuration if the MEMORY directive specifies any non-default 
configuration. The table has the following columns, which are generated from the MEMORY directive in 
the linker command file. For information about the MEMORY directive, see Section 12.5.4.
– Name. This is the name of the memory range specified with the MEMORY directive.
– Origin. This specifies the starting address of a memory range.
– Length. This specifies the length of a memory range.
– Unused. This specifies the total amount of unused (available) memory in that memory area.
– Attributes. This specifies one to four attributes associated with the named range:

R specifies that the memory can be read.

W specifies that the memory can be written to.

X specifies that the memory can contain executable code.

I specifies that the memory can be initialized.

• A table showing the linked addresses of each output section and the input sections that make up the output 
sections (section placement map). This table has the following columns; this information is generated on the 
basis of the information in the SECTIONS directive in the linker command file:
– Output section. This is the name of the output section specified with the SECTIONS directive.
– Origin. The first origin listed for each output section is the starting address of that output section. The 

indented origin value is the starting address of that portion of the output section.
– Length. The first length listed for each output section is the length of that output section. The indented 

length value is the length of that portion of the output section.
– Attributes/input sections. This lists the input file or value associated with an output section. If the input 

section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 12.5.5.
• A table showing each external symbol and its address sorted by symbol name.
• A table showing each external symbol and its address sorted by symbol address.

The following example links file1.c.obj and file2.c.obj and creates a map file called map.out:

cl7x --run_linker file1.c.obj file2.c.obj --map_file=map.out

Output Map File, demo.map shows an example of a map file.
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12.4.18 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax for 
the --mapfile_contents option is:

--mapfile_contents= filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information about memory 
usage, placement information about sections that were created during a link, details about linker-generated copy 
tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is included in or 
excluded from a map file. When you specify --mapfile_contents=help from the command line, a help screen 
listing available filter options is displayed. The following filter options are available:

Attribute Description Default State
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes
none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display 
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:

--mapfile_contents=copytables,noentry
--mapfile_contents=all,nocopytables
--mapfile_contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option is specified 
are included. The filters specified in the --mapfile_contents options are processed in the order that they appear 
in the command line. In the third example above, the first filter, none, clears all map file content. The second 
filter, entry, then enables information about entry points to be included in the generated map file. That is, when 
--mapfile_contents=none,entry is specified, the map file contains only information about entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in the 
symbol list in addition to the run address (if the load address is different from the run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find it useful 
to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the sym_defs section by 
specifying the following --mapfile_contents option:

--mapfile_contents=nosym_name,nosym_dp,nosym_runaddr,sym_defs

By default, information about global symbols defined in an application are included in tables sorted by name, 
data page, and run address. If you use the --mapfile_contents=sym_defs option, static variables are also listed.
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12.4.19 Disable Name Demangling (--no_demangle)

By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.cpp.obj

The --no_demangle option instead shows the linkname for symbols in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.cpp.obj

For information on referencing object file symbol names, see Section 5.11. For information specifically about 
linker symbol naming, see Section 12.6.1.

12.4.20 Merging of Symbolic Debugging Information

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate information 
is commonly generated when a C program is compiled for debugging. For example:

-[ header.h ]-
typedef struct
{
   <define some structure members>
} XYZ;
-[ f1.c ]-
#include "header.h"
...
-[ f2.c ]-
#include "header.h"
...

When these files are compiled for debugging, both f1.c.obj and f2.c.obj have symbolic debugging entries to 
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker eliminates the 
duplicate entries automatically.

Use the --no_sym_merge option if you want the linker to keep such duplicate entries in object files. Using the 
--no_sym_merge option has the effect of the linker running faster and using less host memory during linking, but 
the resulting executable file may be very large due to duplicated debug information.

12.4.21 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line number 
entries. The --no_sym_table option is useful for production applications when you do not want to disclose 
symbolic information to the consumer.

This example links file1.c.obj and file2.c.obj and creates an output module, stripped of line numbers and symbol 
table information, named nosym.out:

cl7x --run_linker --output_file=nosym.out --no_symtable file1.c.obj file2.c.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Note
Stripping Symbolic Information

The --no_symtable option is deprecated. To remove symbol table information, use the strip7x utility as 
described in Section 13.4.
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12.4.22 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for the 
output module, the linker gives it the default name a.out. If you want to write the output module to a different file, 
use the --output_file option. The syntax for the --output_file option is:

--output_file= filename

The filename is the new output module name.

This example links file1.c.obj and file2.c.obj and creates an output module named run.out:

cl7x --run_linker --output_file=run.out file1.c.obj file2.c.obj

12.4.23 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order= function specification

12.4.24 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by the C 
compiler. Both options inform the linker that the program is a C program and requires a boot routine.

• The --ram_model option tells the linker to initialize variables at load time.
• The --rom_model option tells the linker to autoinitialize variables at run time.

If you use a linker command line that does not compile any C/C++ files, you must use either the --rom_model or 
--ram_model option. If your command line fails to include one of these options when it is required, you will see 
"warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used, the 
--rom_model or --ram_model option must follow the --run_linker option.

For more information, see Section 12.10, Section 9.3.2.1, and Section 9.3.2.2.

12.4.25 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is not 
needed in the executable to resolve references. The --retain option tells the linker to retain a list of sections that 
would otherwise not be retained. This option accepts the wildcards '*' and '?'. When wildcards are used, the 
argument should be in quotes. The syntax for this option is:

--retain=sym_or_scn_spec

The --retain option take one of the following forms:

• --retain= symbol_spec

Specifying the symbol format retains sections that define symbol_spec. For example, this code retains 
sections that define symbols that start with init:

   --retain='init*'

You cannot specify --retain='*'.
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• --retain= file_spec(scn_spec[, scn_spec, ...]

Specifying the file format retains sections that match one or more scn_spec from files matching the file_spec. 
For example, this code retains .intvec sections from all input files:

   --retain='*(.int*)'

You can specify --retain='*(*)' to retain all sections from all input files. However, this does not prevent sections 
from library members from being optimized out.

• --retain= ar_spec<mem_spec, [mem_spec, ...>(scn_spec[, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members matching one 
or more mem_spec from archive files matching ar_spec. For example, this code retains the .text sections 
from printf.c.obj in the rts7100_le.lib library:

   --retain=rts7100_le.lib<printf.c.obj>(.text)

If the library is specified with the --library option (--library=rts7100_le.lib) the library search path is used to 
search for the library. You cannot specify '*<*>(*)'.

12.4.26 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those 
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols defined 
in COMDAT sections. The --scan_libraries option helps determine those symbols that were actually chosen by 
the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to a 
definition when multiple definitions are available in the libraries.

12.4.27 Define Stack Size (--stack_size Option)

The C7000 C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time stack. You 
can set the size of this section in bytes at link time with the --stack_size option. The syntax for the --stack_size 
option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K bytes stack:

cl7x --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any symbols 
defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, , and assigns it a value equal to 
the size of the section. The default software stack size is 1K bytes. See Section 12.6.1 for information about 
referring to linker symbols in C/C++ code.

12.4.28 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name, which allows 
functions to be overridden with alternate definitions. This can be used to patch in alternate implementations to 
provide patches (bug fixes) or alternate functionality. The syntax for the --symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition foo_patch:

--symbol_map='foo=foo_patch'
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12.4.29 Generate Far Call Trampolines (--trampolines Option)

The C7000 device has PC-relative call and PC-relative branch instructions whose range is smaller than the 
entire address space. When these instructions are used, the destination address must be near enough to the 
instruction that the difference between the call and the destination fits in the available encoding bits. If the 
called function is too far away from the calling function, the linker generates an error or generates a trampoline, 
depending on the setting of the --trampolines option (on or off).

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load the 
called address into a register, and call that register. This is often undesirable because it takes more instructions 
(speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates calls that may require a trampoline if the destination is too far away. On some 
architectures, this type of call is called a "near call."

The --trampolines option allows you to control the generation of trampolines. When set to "on", this option 
causes the linker to generate a trampoline code section for each call that is linked out-of-range of its called 
destination. The trampoline code section contains a sequence of instructions that performs a transparent long 
branch to the original called address. Each calling instruction that is out-of-range from the called function is 
redirected to the trampoline.

The syntax for this option is:

--trampolines[=on|off]

The default setting is on. For C7000, trampolines are turned on by default.

For example, in a section of C code the bar function calls the foo function. The compiler generates this code for 
the function:

bar:
      ...
      CALL .B1    foo     ; call the function "foo"
      ...

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines the linker 
changes the original call to foo into a call to foo_trampoline as shown:

bar:
      ...
      CALL .B1 $Tramp$L$PI$$myfunc ; call a trampoline for foo
      ...

The above code generates a trampoline code section called foo_trampoline, which contains code that executes 
a long branch to the original called function, foo. For example:

$Tramp$L$PI$$myfunc:
    BE .B1 foo ; long branch to foo (with constant extension)

Trampolines can be shared among calls to the same called function. The only requirement is that all calls to the 
called function be linked near the called function's trampoline.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines, then 
the map file will contain statistics about what trampolines were generated to reach which functions. A list of calls 
for each trampoline is also provided in the map file.
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Note
The Linker Assumes D15 Contains the Stack Pointer

Assembly language programmers must be aware that the linker assumes D15 contains the stack 
pointer. The linker must save and restore values on the stack in trampoline code that it generates. If 
you do not use D15 as the stack pointer, you should use the linker option that disables trampolines, 
--trampolines=off. Otherwise, trampolines could corrupt memory and overwrite register values.

12.4.29.1 Advantages and Disadvantages of Using Trampolines

The advantage of using trampolines is that you can treat all calls as near calls, which are faster and more 
efficient. You will only need to modify those calls that don't reach. In addition, there is little need to consider the 
relative placement of functions that call each other. Cases where calls must go through a trampoline are less 
common than near calls.

While generating far call trampolines provides a more straightforward solution, trampolines have the 
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a 
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are generated 
in a more general manner, and may be slightly less efficient than inline code.

An alternative method to creating a trampoline code section for a call that cannot reach its called function is to 
actually modify the source code for the call. In some cases this can be done without affecting the size of the 
code. However, in general, this approach is extremely difficult, especially when the size of the code is affected by 
the transformation.

12.4.29.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call 
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their callers, 
so that the PC-relative offset to the callee is known when the caller is placed. By placing the callee first, its 
address is known when the caller is placed so the linker can definitively know if a trampoline is required.

12.4.29.3 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the 
capability to specify separate load and run allocations for a section. The burden of actually copying the code 
from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate this 
copy function, the assembler provides the .label directive, which allows you to define a load-time address. 
These load-time addresses can then be used to determine the start address and size of the code to be copied. 
However, this mechanism will not work if the code contains a call that requires a trampoline to reach its called 
function. This is because the trampoline code is generated at link time, after the load-time addresses associated 
with the .label directive have been defined. If the linker detects the definition of a .label symbol in an input 
section that contains a trampoline call, then a warning is generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 12.5.9.7). These 
operators allow you to define symbols to represent the load-time start address and size inside the linker 
command file. These symbols can be referenced by the copy code, and their values are not resolved until link 
time, after the trampoline sections have been allocated.
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Here is an example of how you could use the START() and SIZE() operators in association with an output 
section to copy the trampoline code section along with the code containing the calls that need trampolines:

SECTIONS
{  .foo : load = ROM, run = RAM, start(foo_start), size(foo_size)
          { x.obj(.text) }
   .text: {} > ROM
   .far : { --library=rts.lib(.text) } > FAR_MEM
}

A function in x.c.obj contains an run-time-support call. The run-time-support library is placed in far memory and 
so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker. The copy 
code can refer to the symbols foo_start and foo_size as parameters for the load start address and size of the 
entire .foo output section. This allows the copy code to copy the trampoline section along with the original x.c.obj 
code in .text from its load space to its run space.

See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

12.4.30 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table. This 
forces the linker to search a library and include the member that defines the symbol. The linker must encounter 
the --undef_sym option before it links in the member that defines the symbol. The syntax for the --undef_sym 
option is:

--undef_sym= symbol

For example, suppose a library named rts7100_le.lib contains a member that defines the symbol symtab; none 
of the object files being linked reference symtab. However, suppose you plan to relink the output module and 
you want to include the library member that defines symtab in this link. Using the --undef_sym option as shown 
below forces the linker to search rts7100_le.lib for the member that defines symtab and to link in the member.

cl7x --run_linker --undef_sym=symtab file1.c.obj file2.c.obj rts7100_le.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in 
file1.c.obj or file2.c.obj.

12.4.31 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are 
combined into output sections. However, if the linker encounters one or more input sections that do not have a 
corresponding output section defined in the SECTIONS directive, the linker combines input sections that have 
the same name into an output section with that name. By default, the linker does not display a message to tell 
you that this occurred.

Use the --warn_sections option to cause the linker to display a message when it creates a new output section.

For more information about the SECTIONS directive, see Section 12.5.5. For more information about the default 
actions of the linker, see Section 12.7.

12.4.32 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option. This 
option causes the linker to generate a well-formed XML file containing detailed information about the result of 
a link. The information included in this file includes all of the information that is currently produced in a linker 
generated map file. See Appendix A for specifics on the contents of the generated XML file.
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12.4.33 Zero Initialization (--zero_init Option)

The C and C++ standards require that global and static variables that are not explicitly initialized must be set to 
0 before program execution. The C/C++ compiler supports preinitialization of uninitialized variables by default. To 
turn this off, specify the linker option --zero_init=off.

The syntax for the --zero_init option is:

--zero_init[={on|off}]

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur, is 
used. If you use the --ram_model option for linking, the linker does not generate initialization records, and the 
loader must handle both data and zero initialization.

Note
Disabling Zero Initialization Not Recommended: In general, disabling zero initialization is not 
recommended. If you turn off zero initialization, automatic initialization of uninitialized global and static 
objects to zero will not occur. You are then expected to initialize these variables to zero in some other 
manner.
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12.5 Linker Command Files
Linker command files allow you to put linker options and directives in a file; this is useful when you invoke the 
linker often with the same options and directives. Linker command files are also useful because they allow you 
to use the MEMORY and SECTIONS directives to customize your application. You must use these directives in a 
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

• Input filenames, which specify object files, archive libraries, or other command files. (If a command file calls 
another command file as input, this statement must be the last statement in the calling command file. The 
linker does not return from called command files.)

• Linker options, which can be used in the command file in the same manner that they are used on the 
command line

• The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory 
configuration (see Section 12.5.4). The SECTIONS directive controls how sections are built and allocated 
(see Section 12.5.5.)

• Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the cl7x --run_linker command and follow it with the name of the 
command file:

cl7x --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an object 
file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and processing 
commands from it. Command filenames are case sensitive, regardless of the system used.

Linker Command File shows a sample linker command file called link.cmd.

Linker Command File

a.c.obj                    /*  First input filename          */
b.c.obj                    /*  Second input filename         */
--output_file=prog.out   /*  Option to specify output file */
--map_file=prog.map      /*  Option to specify map file    */

The sample file in Linker Command File contains only filenames and options. (You can place comments in a 
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

cl7x --run_linker link.cmd

You can place other parameters on the command line when you use a command file:

cl7x --run_linker --relocatable link.cmd x.c.obj y.c.obj

The linker processes the command file as soon as it encounters the filename, so a.c.obj and b.c.obj are linked 
into the output module before x.c.obj and y.c.obj.

You can specify multiple command files. If, for example, you have a file called names.lst that contains filenames 
and another file called dir.cmd that contains linker directives, you could enter:

cl7x --run_linker names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command file 
calls another command file as input, this statement must be the last statement in the calling command file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the format 
of linker directives in a command file. Command File With Linker Directives shows a sample command file that 
contains linker directives.

Linker Description www.ti.com

236 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


Command File With Linker Directives

a.obj b.obj c.obj           /* Input filenames       */
--output_file=prog.out      /* Options               */
--map_file=prog.map
MEMORY                      /* MEMORY directive      */
{
  FAST_MEM:  origin = 0x0100    length = 0x0100
  SLOW_MEM:  origin = 0x7000    length = 0x1000
}
SECTIONS                    /* SECTIONS directive    */
{
  .text:  > SLOW_MEM
  .data:  > SLOW_MEM
  .bss:   > FAST_MEM
}

For more information, see Section 12.5.4 for the MEMORY directive, and Section 12.5.5 for the SECTIONS 
directive.

12.5.1 Reserved Names in Linker Command Files

The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do not 
use them as symbol or section names in a command file.

ADDRESS_MASK f LENGTH ORG SIZE
ALGORITHM FILL LOAD ORIGIN START
ALIGN GROUP LOAD_END PAGE TABLE
ATTR HAMMING_MASK LOAD_SIZE PALIGN TYPE
BLOCK HIGH LOAD_START PARITY_MASK UNION
COMPRESSION INPUT_PAGE MEMORY RUN UNORDERED
COPY INPUT_RANGE MIRRORING RUN_END VFILL
DSECT l (lowercase L) NOINIT RUN_SIZE
ECC LAST NOLOAD RUN_START
END LEN o SECTIONS

In addition, any section names used by the TI tools are reserved from being used as the prefix for other names, 
unless the section will be a subsection of the section name used by the TI tools. For example, section names 
may not begin with .debug.

12.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal, octal, 
or hexadecimal constants (but not binary constants) used in the assembler or the scheme used for integer 
constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20

12.5.3 Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code and data in target 
memory. For example, you may want to place a specific data object from a specific file into a specific location 
in target memory. This is simple to do using the available LCF syntax to reference the desired object file or 
library. However, a problem that many developers run into when they try to do this is a linker generated "file not 
found" error when accessing an object file or library from inside the LCF that has been specified earlier in the 
command-line invocation of the linker. Most often, this error occurs because the syntax used to access the file on 
the linker command-line does not match the syntax that is used to access the same file in the LCF.
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Consider a simple example. Imagine that you have an application that requires a table of constants called 
"app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object 
is defined in a .data section that resides in an object file, app_coeffs.c.obj. The app_coeffs.c.obj file is then 
included in the object file library app_data.lib. In your LCF, you can control the placement of the "app_coeffs" 
data object as follows:

SECTIONS
{
   ...
   .coeffs: { app_data.lib<app_coeffs.c.obj>(.data) } > DDR
   ...
}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you 
are building the application. In order to gain access to app_data.lib from the build command-line, you can use 
a combination of the –i and –l options to set up a directory search path which the linker can use to find the 
app_data.lib library:

%> cl7x <compile options/files> -z -i ./lib -l app_data.lib mylnk.cmd <link options/files>

The –i option adds the lib sub-directory to the directory search path and the –l option instructs the linker to 
look through the directories in the directory search path to find the app_data.lib library. However, if you do 
not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and 
generate a "file not found" error. The reason is that when the linker encounters the reference to app_data.lib 
inside the SECTIONS directive, there is no –l option preceding the reference. Therefore, the linker tries to open 
app_data.lib in the current working directory.  

In essence, the linker has a few different ways of opening files:

• If there is a path specified, the linker will look for the file in the specified location. For an absolute path, the 
linker will try to open the file in the specified directory. For a relative path, the linker will follow the specified 
path starting from the current working directory and try to open the file at that location.

• If there is no path specified, the linker will try to open the file in the current working directory.
• If a –l option precedes the file reference, then the linker will try to find and open the referenced file in one of 

the directories in the directory search path. The directory search path is set up via –i options and environment 
variables (like C_DIR and C7X_C_DIR).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable LCFs, 
the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a –l option in front of the reference to app_data.lib in mylnk.cmd 
to ensure that the linker will find and open the app_data.lib library when the application is built:

SECTIONS
{
   ...
   .coeffs: { -l app_data.lib<app_coeffs.c.obj>(.data) } > DDR
   ...
}

Another benefit to using the –l option when referencing a file from within an LCF is that if the location of the 
referenced file changes, you can modify the directory search path to incorporate the new location of the file 
(using –i option on the command line, for example) without having to modify the LCF.
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12.5.4 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target memory 
to accomplish this. The MEMORY directive allows you to specify a model of target memory so that you can 
define the types of memory your system contains and the address ranges they occupy. The linker maintains the 
model as it allocates output sections and uses it to determine which memory locations can be used for object 
code.

The memory configurations of C7000 systems differ from application to application. The MEMORY directive 
allows you to specify a variety of configurations. After you use MEMORY to define a memory model, you can use 
the SECTIONS directive to allocate output sections into defined memory. For more information, see Section 8.4.

The C7000 compiler requires that all code and data lie within 2 GB of virtual address space. Use a linker 
command file to place your code and data within this 2 GB virtual address region. The C7000 compiler produces 
code that uses position-independent addressing to obtain the addresses of functions (in some cases) and to 
access statically allocated data in memory. Instructions that use position-independent addressing have limited 
reach. For further information, see the C7000 Embedded Application Binary Interface (EABI) Reference Guide 
(SPRUIG4), specifically the sections on “Computing Code Addresses” and “Data Allocation and Addressing”.

12.5.4.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that may be suitable for 
running executables on a generic simulator. Please consult your device documentation to determine what 
memory ranges are available. This model assumes that the full 48-bit address space (248 locations) is present in 
the system and available for use. For more information about the default memory model, see Section 12.7.

12.5.4.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and can be 
used by a program. Each range has several characteristics:

• Name
• Starting address
• Length
• Optional set of attributes
• Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for the program 
to access at run time. Memory defined by the MEMORY directive is configured; any memory that you do not 
explicitly account for with MEMORY is unconfigured. The linker does not place any part of a program into 
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address range 
in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a list of 
memory range specifications enclosed in braces. The MEMORY directive in The MEMORY Directive defines a 
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external memory at 
address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also demonstrates the 
use of memory range expressions as well as start/end/size address operators (see Section 12.5.4.3).

The MEMORY Directive

/********************************************************/
/*      Sample command file with MEMORY directive       */
/********************************************************/
file1.c.obj file2.c.obj               /*    Input files     */
--output_file=prog.out            /*    Options         */
#define BUFFER 0
MEMORY
{
   FAST_MEM (RX): origin = 0x00000000    length = 0x00001000 + BUFFER
   SLOW_MEM (RW): origin = end(FAST_MEM) length = 0x00001800 - size(FAST_MEM)
   EXT_MEM  (RX): origin = 0x10000000    length = size(FAST_MEM)
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The general syntax for the MEMORY directive is:
MEMORY
{

name 1 [( attr )] : origin = expr , length = expr [, fill = constant] [ LAST( sym )]
.
.
name n [( attr )] : origin = expr , length = expr [, fill = constant] [ LAST( sym )]

}

name names a memory range. A memory name can be one to 64 characters; valid characters include A-Z, a-z, $, ., and _. The 
names have no special significance to the linker; they simply identify memory ranges. Memory range names are internal 
to the linker and are not retained in the output file or in the symbol table. All memory ranges must have unique names 
and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional; when used, they must be 
enclosed in parentheses. Attributes restrict the allocation of output sections into certain memory ranges. If you do not use 
any attributes, you can allocate any output section into any range with no restrictions. Any memory for which no attributes 
are specified (including all memory in the default model) has all four attributes. Valid attributes are:
R specifies that the memory can be read.
W specifies that the memory can be written to.
X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or o. The value, specified in bytes, is a 64-bit 
integer constant expression, which can be decimal, octal, or hexadecimal.

length specifies the length of a memory range; enter as length, len, or l. The value, specified in bytes, is a 64-bit integer constant 
expression, which can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value is an integer constant and 
can be decimal, octal, or hexadecimal. The fill value is used to fill areas of the memory range that are not allocated to a 
section.

LAST optionally specifies a symbol that can be used at run-time to find the address of the last allocated byte in the memory 
range. See Section 12.5.9.8.

Note

Filling Memory Ranges: If you specify fill values for large memory ranges, your output file will be 
very large because filling a memory range (even with 0s) causes raw data to be generated for all 
unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of 0FFFFFFFFh:

MEMORY
{
RFILE (RW) : o = 0x00000020, l = 0x00001000, f = 0xFFFFFFFF
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control placement of 
output sections. For more information about the SECTIONS directive, see Section 12.5.5.

12.5.4.3 Expressions and Address Operators

Memory range origin and length can use expressions of integer constants with the following operators:

Binary operators: *  /  %  +  -  <<  >>  ==    = <  <=  >  >=  &  |  &&  ||

Unary operators: -  ~  !

Expressions are evaluated using standard C operator precedence rules.
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No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot be 
used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

START(MR) Returns start address for previously defined memory range MR.

SIZE(MR) Returns size of previously defined memory range MR.

END(MR) Returns end address for previously defined memory range MR.

Origin and Length as Expressions

/********************************************************/
/*      Sample command file with MEMORY directive       */
/********************************************************/
file1.c.obj file2.c.obj               /*    Input files     */
--output_file=prog.out            /*    Options         */
#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE  0x0001000
MEMORY
{
   FAST_MEM (RX): origin = ORIGIN + CACHE length = 0x00001000 + BUFFER
   SLOW_MEM (RW): origin = end(FAST_MEM)  length = 0x00001800 - size(FAST_MEM)
   EXT_MEM  (RX): origin = 0x10000000     length = size(FAST_MEM) - CACHE

12.5.5 The SECTIONS Directive

After you use MEMORY to specify the target system's memory model, you can use SECTIONS to place output 
sections into specific named memory ranges or into memory that has specific attributes. For example, you could 
allocate the .text and .data sections into the area named FAST_MEM and allocate the .bss section into the area 
named SLOW_MEM.

The SECTIONS directive controls your sections in the following ways:

• Describes how input sections are combined into output sections
• Defines output sections in the executable program
• Allows you to control where output sections are placed in memory in relation to each other and to the entire 

memory space (Note that the memory placement order is not simply the sequence in which sections occur in 
the SECTIONS directive.)

• Permits renaming of output sections

For more information, see Section 8.4. Subsections allow you to manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and allocating the 
sections. Section 12.7 describes this algorithm in detail.

12.5.5.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by a list 
of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property [, property] [, property] . . . ]
name : [property [, property] [, property] . . . ]
name : [property [, property] [, property] . . . ]

}
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Each section specification, beginning with name, defines an output section. (An output section is a section in 
the output file.) Section names can refer to sections, subsections, or archive library members. (See Section 
12.5.5.4 for information on multi-level subsections.) After the section name is a list of properties that define 
the section's contents and how the section is allocated. The properties can be separated by optional commas. 
Possible properties for a section are as follows:

• Load allocation defines where in memory the section is to be loaded. See Section 9.5 and Section 12.5.6.

Syntax: load = allocation or
> allocation

• Run allocation defines where in memory the section is to be run.

Syntax: run = allocation or
run > allocation

• Input sections defines the input sections (object files) that constitute the output section. See Section 12.5.5.3.

Syntax: { input_sections }

• Section type defines flags for special section types. See Section 12.5.8.

Syntax: type = COPY or
type = DSECT or

• Fill value defines the value used to fill uninitialized holes. See Section 12.5.10.

Syntax: fill = value

The SECTIONS Directive shows a SECTIONS directive in a sample linker command file.

The SECTIONS Directive

/**************************************************/
/*  Sample command file with SECTIONS directive   */
/**************************************************/
file1.c.obj    file2.c.obj           /* Input files   */
--output_file=prog.out           /* Options       */
SECTIONS
{
   .text:       load = EXT_MEM, run = 0x00000800
   .const:      load = FAST_MEM
   .bss:        load = SLOW_MEM
   .vectors:    load = 0x00000000
      {
         t1.c.obj(.intvec1)
         t2.c.obj(.intvec2)
         endvec = .;
      }
   .data:alpha: align = 16
   .data:beta:  align = 16
}

Figure 12-2 shows the output sections defined by the SECTIONS directive in The SECTIONS Directive 
(.vectors, .text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory 
using the MEMORY directive given in The MEMORY Directive.
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.const

.data:alpha

.vectors

FAST_MEM

.bss

SLOW_MEM

.data:beta

.text

EXT_MEM

0x00000000

0x00001000

0x00001800

0x10000000

0x10001000

0xFFFFFFFF

- Bound at 0x00000000

- Allocated in FAST_MEM

- Allocated in SLOW_MEM

- Aligned on 16-byte
boundary

- Aligned on 16-byte
boundary

- Empty range of memory
as defined in above

- Allocated in EXT_MEM

- Empty range of memory
as defined in above

The section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.obj.

.vectors

The section combines the .const sections
from file1.obj and file2.obj.

.const

The section combines the .bss sections from
file1.obj and file2.obj.

.bss

The subsection combines the .data:al-
pha subsections from file1.obj and file2.obj. The

subsection combines the .data:beta
subsections from file1.obj and file2.obj. The linker
places the subsections anywhere there is space for
them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.

.data:alpha

.data:beta

The section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

.text

Figure 12-2. Section Placement Defined by The SECTIONS Directive 

12.5.5.2 Section Allocation and Placement

The linker assigns each output section two locations in target memory: the location where the section will be 
loaded and the location where it will be run. Usually, these are the same, and you can think of each section as 
having only a single address. The process of locating the output section in the target's memory and assigning 
its address(es) is called placement. For more information about using separate load and run placement, see 
Section 12.5.6.

If you do not tell the linker how to allocate a section, it uses a default algorithm to place the section. Generally, 
the linker puts sections wherever they fit into configured memory. You can override the default placement for a 
section by defining it within a SECTIONS directive and providing instructions on how to allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists of a keyword, 
an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If load and run 
placement are separate, all parameters following the keyword LOAD apply to load placement, and those 
following the keyword RUN apply to run placement. The allocation parameters are:

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified name (like SLOW_MEM) or 
attributes.
.text: load > SLOW_MEM

Alignment uses the align or palign keyword to specify the section must start on an address boundary.
.text: align = 0x100

Blocking uses the block keyword to specify the section must fit between two address aligned to the blocking factor. If a section is 
too large, it starts on an address boundary.
.text: block(0x100)

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:

    .text: > SLOW_MEM    
    .text: {...} > SLOW_MEM
    .text: > 0x4000
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If more than one parameter is used, you can string them together as follows:

    .text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:

    .text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from input files that are combined to form 
an output section. See Section 12.5.5.3.

12.5.5.2.1 Binding

You can set the starting address for an output section by following the section name with an address:

    .text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be a 
64-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but they 
cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues an error 
message.

Note

Binding is Incompatible With Alignment and Named Memory: You cannot bind a section to an 
address if you use alignment or named memory. If you try this, the linker issues an error message.

12.5.5.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see Section 12.5.4). 
This example names ranges and links sections into them:

MEMORY
{
   SLOW_MEM (RIX)  : origin = 0x00000000,  length = 0x00001000
   FAST_MEM (RWIX) : origin = 0x03000000,  length = 0x00000300
}
SECTIONS
{
   .text  :   > SLOW_MEM
   .data  :   > FAST_MEM ALIGN(128) 
   .bss   :   > FAST_MEM
}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output sections are 
allocated into FAST_MEM. You can align a section within a named memory range; the .data section is aligned 
on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a set of 
attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive declaration, 
you can specify:

SECTIONS
{
   .text: > (X)   /* .text --> executable memory      */ 
   .data: > (RI)  /* .data --> read or init memory    */
   .bss : > (RW)  /* .bss --> read or write memory    */
}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area because 
both areas have the X attribute. The .data section can also go into either SLOW_MEM or FAST_MEM because 
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both areas have the R and I attributes. The .bss output section, however, must go into the FAST_MEM area 
because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower 
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no 
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific address, 
use binding instead of named memory.

12.5.5.2.3 Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by default. 
Alternatively, you can cause the linker to allocate a section from high to low addresses within a memory range 
by using the HIGH location specifier in the SECTION directive declaration. You might use the HIGH location 
specifier in order to keep RTS code separate from application code, so that small changes in the application do 
not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY
{
    RAM              : origin = 0x0200, length = 0x0800
    FLASH            : origin = 0x1100, length = 0xEEE0
    VECTORS          : origin = 0xFFE0, length = 0x001E
    RESET            : origin = 0xFFFE, length = 0x0002
}

and an accompanying SECTIONS directive:

SECTIONS
{
    .bss     : {} > RAM 
    .sysmem  : {} > RAM 
    .stack   : {} > RAM (HIGH)
}
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The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate .stack into the 
higher addresses within the RAM memory range. The .bss and sections are allocated into the lower addresses 
within RAM. Example 12-1 illustrates a portion of a map file that shows where the given sections are allocated 
within RAM for a typical program.

Example 12-1. Linker Placement With the HIGH Specifier

.bss       0    00000200    00000270     UNINITIALIZED
                  00000200    0000011a     rtsxxx.lib  : defs.c.obj (.bss)
                  0000031a    00000088                 : trgdrv.c.obj (.bss)
                  000003a2    00000078                 : lowlev.c.obj (.bss)
                  0000041a    00000046                 : exit.c.obj (.bss)
                  00000460    00000008                 : memory.c.obj (.bss)
                  00000468    00000004                 : _lock.c.obj (.bss)
                  0000046c    00000002                 : fopen.c.obj (.bss)
                  0000046e    00000002     hello.c.obj (.bss) 
.sysmem    0    00000470    00000120     UNINITIALIZED
                  00000470    00000004     rtsxxx .lib : memory.c.obj (.sysmem)
.stack     0    000008c0    00000140     UNINITIALIZED
                  000008c0    00000002     rtsxxx .lib : boot.c.obj (.stack)

As shown in Example 12-1 , the .bss and .sysmem sections are allocated at the lower addresses of RAM 
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses are 
available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 12-2

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>> 
operator).

Example 12-2. Linker Placement Without HIGH Specifier

.bss       0    00000200    00000270     UNINITIALIZED
                  00000200    0000011a     rtsxxx.lib  : defs.c.obj (.bss)
                  0000031a    00000088                 : trgdrv.c.obj (.bss)
                  000003a2    00000078                 : lowlev.c.obj (.bss)
                  0000041a    00000046                 : exit.c.obj (.bss)
                  00000460    00000008                 : memory.c.obj (.bss)
                  00000468    00000004                 : _lock.c.obj (.bss)
                  0000046c    00000002                 : fopen.c.obj (.bss)
                  0000046e    00000002     hello.c.obj (.bss)
.stack     0    00000470    00000140     UNINITIALIZED
                  00000470    00000002     rtsxxx.lib  : boot.c.obj (.stack)
.sysmem    0    000005b0    00000120     UNINITIALIZED
                  000005b0    00000004     rtsxxx.lib  : memory.c.obj (.sysmem)

12.5.5.2.4 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n is 
a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls on a 
32-byte boundary:

     .text: load = align(32)

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The specified 
block size must be a power of 2. For example, the following code allocates .bss so that the entire section is 
contained in a single 128-byte or begins on that boundary:

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and blocking 
cannot be used together.
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12.5.5.2.5 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte boundary, 
where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size of the section is a 
multiple of its placement alignment restrictions, padding the section size up to such a boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text 
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

   .text: palign(2) {} > PMEM
   .text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By default, 
padding space is filled with a value of 0 (zero). However, if a fill value is specified for the output section then any 
padding for the section is also filled with that fill value. For example, consider the following section specification:

   .mytext: palign(8), fill = 0xffffffff {} > PMEM

In this example, the length of the .mytext section is before the palign operator is applied. The contents of .mytext 
are as follows:

addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:

addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234
0006 0xffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has been 
filled with 0xff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this code:

   .mytext: palign(8), fill = 0xff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:

addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234
0006 0x00ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the 
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to 
increase the section's size to the next power of two boundary. In addition, the section is aligned on that power of 
2 as well. For example, consider the following section specification:

    .mytext: palign(power2) {} > PMEM
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Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After applying 
the palign(power2) operator, the .mytext output section will have the following properties:

  name     addr          size     align
-------    ----------    -----    -----
.mytext    0x00010080    0x80     128

12.5.5.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output section. 
In general, the linker combines input sections by concatenating them in the order in which they are specified. 
However, if alignment or blocking is specified for an input section, all of the input sections within the output 
section are ordered as follows:

• All aligned sections, from largest to smallest
• All blocked sections, from largest to smallest
• All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.

Example 12-3 shows the most common type of section specification; note that no input sections are listed.

Example 12-3. The Most Common Method of Specifying Section Contents

SECTIONS
{
   .text:
   .data:
   .bss:
}

In Example 12-3, the linker takes all the .text sections from the input files and combines them into the .text output 
section. The linker concatenates the .text input sections in the order that it encounters them in the input files. The 
linker performs similar operations with the .data and .bss sections. You can use this type of specification for any 
output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by its 
filename and section name. If the filename is hyphenated (or contains special characters), enclose it within 
quotes:

SECTIONS
{
  .text :              /* Build .text output section        */
  {
    f1.c.obj(.text)      /* Link .text section from f1.c.obj    */
    f2.c.obj(sec1)       /* Link sec1 section from f2.c.obj     */
    "f3-new.c.obj"       /* Link ALL sections from f3-new.c.obj */
    f4.c.obj"(.text,sec2) /* Link .text and sec2 from f4.c.obj   */
   }
}

It is not necessary for input sections to have the same name as each other or as the output section they 
become part of. If a file is listed with no sections, all of its sections are included in the output section. If 
any additional input sections have the same name as an output section but are not explicitly specified by the 
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the linker 
found more .text sections in the preceding example and these .text sections were not specified anywhere in the 
SECTIONS directive, the linker would concatenate these extra sections after f4.c.obj(sec2).
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The specifications in Example 12-3 are actually a shorthand method for the following:

SECTIONS
{
  .text: { *(.text) }
  .data: { *(.data) }
  .bss:  { *(.bss)  }
}

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

• You want the output section to contain all input sections that have a specified name, but the output section 
name is different from the input sections' name.

• You want the linker to allocate the input sections before it processes additional input sections or commands 
within the braces.

The following example illustrates the two purposes above:

SECTIONS
{
   .text  :  {
                   abc.c.obj(xqt)
                   *(.text)
             }
   .data  :  {
                   *(.data)
                   fil.c.obj(table)
             }
}

In this example, the .text output section contains a named section xqt from file abc.c.obj, which is followed by 
all the .text input sections. The .data section contains all the .data input sections, followed by a named section 
table from the file fil.c.obj. This method includes all the unallocated sections. For example, if one of the .text input 
sections was already included in another output section when the linker encountered *(.text), the linker could not 
include that first .text input section in the second output section.

Each input section acts as a prefix to gather longer-named sections. For example, the pattern *(.data) 
matches .dataspecial. Thus, prefixes enable subsections, which are described in the following section.

12.5.5.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated by 
colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a linker 
command file specifying a base name, such as A, selects the section A as well as any subsections of A, such as 
A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections beginning 
with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of A. A and A:B 
are supersections of A:B:C. Among a group of supersections of a subsection, the nearest supersection is the 
supersection with the longest name. Thus, among {A, A:B} the nearest supersection of A:B:C:D is A:B. With 
multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section of the 
same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same name 
or in the nearest existing supersection of such an output section. An exception to this rule is that during a 
partial link (specified by the --relocatable linker option) a subsection is allocated only to an existing output 
section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output 
section with the same name as the base name of the input section
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Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta
europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

  SECTIONS {
    nordic:  {*(europe:north)
              *(europe:central:denmark)} /* the nordic countries */
    central: {*(europe:central)}         /* france, germany      */
    therest: {*(europe)}                 /* spain, italy, malta  */
  }

This SECTIONS specification allocates the input sections as indicated in the comments:

  SECTIONS {
    islands: {*(europe:south:malta)
              *(europe:north:iceland)}  /* malta, iceland   */
    europe:north:finland : {}           /* finland          */
    europe:north         : {}           /* norway, sweden   */
    europe:central       : {}           /* germany, denmark */
    europe:central:france: {}           /* france           */
    /* (italy, spain) go into a linker-generated output section "europe" */
  }

Note
Upward Compatibility of Multi-Level Subsections

Existing linker commands that use the existing single-level subsection features and which do not 
contain section names containing multiple colon characters continue to behave as before. However, if 
section names in a linker command file or in the input sections supplied to the linker contain multiple 
colon characters, some change in behavior could be possible. You should carefully consider the 
impact of the rules for multiple levels to see if it affects a particular system link.

12.5.5.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section. Consider this 
SECTIONS directive:

Example 12-4. Archive Members to Output Sections

SECTIONS
{
boot>BOOT1
{
-l rtsXX.lib<boot.c.obj> (.text)
-l rtsXX.lib<exit.c.obj strcpy.c.obj> (.text)
}
.rts>BOOT2
{
-l rtsXX.lib (.text)
}
.text>RAM
{
* (.text)
}
}
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In Example 12-4, the .text sections of boot.c.obj, exit.c.obj, and strcpy.c.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object that is 
referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are to be placed 
in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle brackets < 
and > after the library name. Any object files separated by commas or spaces from the specified archive file are 
legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the option) 
listed before each library in Example 12-4 is optional when listing specific archive members inside < >. Using < > 
implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the SECTIONS 
directive. For example, the following collects all the .text sections from rts7100_le.lib into the .rtstest section:

SECTIONS
{
   .rtstest { -l rts7100_le.lib(.text) } > RAM
}

Note
SECTIONS Directive Effect on --priority: Specifying a library in a SECTIONS directive causes that 
library to be entered in the list of libraries that the linker searches to resolve references. If you use the 
--priority option, the first library specified in the command file will be searched first.

12.5.5.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be allocated. 
Consider the following example:

MEMORY
{
   P_MEM1 :  origin = 0x02000,  length = 0x01000
   P_MEM2 :  origin = 0x04000,  length = 0x01000
   P_MEM3 :  origin = 0x06000,  length = 0x01000
   P_MEM4 :  origin = 0x08000,  length = 0x01000
}
SECTIONS
{
   .text  : { } > P_MEM1 | P_MEM2 | P_MEM4
}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a whole 
into the first memory range in which it fits. The memory ranges are accessed in the order specified. In this 
example, the linker first tries to allocate the section in P_MEM1. If that attempt fails, the linker tries to place the 
section into P_MEM2, and so on. If the output section is not successfully allocated in any of the named memory 
ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section that 
grows beyond the available space of the memory range in which it is originally allocated. Instead of modifying 
the linker command file, you can let the linker move the section into one of the other areas.
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12.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the >> operator to 
indicate that an output section can be split, if necessary, into the specified memory ranges:

MEMORY
{
   P_MEM1 :  origin = 0x2000,  length = 0x1000
   P_MEM2 :  origin = 0x4000,  length = 0x1000
   P_MEM3 :  origin = 0x6000,  length = 0x1000
   P_MEM4 :  origin = 0x8000,  length = 0x1000
}
SECTIONS
{
  .text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
}

In this example, the >> operator indicates that the .text output section can be split among any of the listed 
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input section 
boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEM3 | P_MEM4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory range. 
This functionality is useful when several output sections must be allocated into the same memory range, but the 
restrictions of one output section cause the memory range to be partitioned. Consider the following example:

MEMORY
{
   RAM :  origin = 0x1000,  length = 0x8000
}
SECTIONS
{
  .special: { f1.c.obj(.text) } load = 0x4000
  .text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory range. This leaves two unused 
areas in RAM: from 0x1000 to 0x4000, and from the end of f1.c.obj(.text) to 0x8000. The specification for 
the .text section allows the linker to split the .text section around the .special section and use the available space 
in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a specified 
attribute combination. For example:

MEMORY
{
  P_MEM1 (RWX) : origin = 0x1000,  length = 0x2000
  P_MEM2 (RWI) : origin = 0x4000,  length = 0x1000
}
SECTIONS
{
  .text: { *(.text) } >> (RW)
}

The linker attempts to allocate all or part of the output section into any memory range whose attributes match the 
attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS
{
.text: { *(.text) } >> P_MEM1 | P_MEM2}
}
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Certain sections should not be split:

• Certain sections created by the compiler, including
– The .cinit section, which contains the autoinitialization table for C/C++ programs
– The .pinit section, which contains the list of global constructors for C++ programs
– The .bss section, which defines global variables

• An output section with an input section specification that includes an expression to be evaluated. The 
expression may define a symbol that is used in the program to manage the output section at run time.

• An output section that has a START(), END(), OR SIZE() operator applied to it. These operators provide 
information about a section's load or run address, and size. Splitting the section may compromise the integrity 
of the operation.

• The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

12.5.6 Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example, you may have 
performance-critical code in slow external memory. The code must be loaded into slow external memory, but it 
would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the linker to 
allocate a section twice: once to set its load address and again to set its run address. For example:

    .fir: load = SLOW_MEM, run = FAST_MEM

Use the load keyword for the load address and the run keyword for the run address.

See Section 9.5 for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen 
automatically when you specify a separate run address. (The TABLE operator instructs the linker to produce 
a copy table; see Section 12.8.4.1.)

12.5.6.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the section 
(such as labels in it) refer to its run address.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and loads 
and runs at the same address. If you provide both allocations, the section is allocated as if it were two sections 
of the same size. This means that both allocations occupy space in the memory map and cannot overlay each 
other or other sections. (The UNION directive provides a way to overlay sections; see Section 12.5.7.2.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after the 
appropriate keyword. Everything related to allocation after the keyword load affects the load address until the 
keyword run is seen, after which, everything affects the run address. The load and run allocations are completely 
independent, so any qualification of one (such as alignment) has no effect on the other. You can also specify run 
first, then load. Use parentheses to improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:

    .data: load = SLOW_MEM, align = 32, run = FAST_MEM

The following example uses parentheses, but has effects that are identical to the previous example:

    .data: load = (SLOW_MEM align 32), run = FAST_MEM
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The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allocations to 16 bits:

    .data: run  = FAST_MEM, align 32, load = align 16

For more information on run-time relocation see Section 9.5.

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address. The 
linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker warns you 
and ignores the load address. Otherwise, if you specify only one address, the linker treats it as a run address, 
regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section:

    .bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples have 
the same effect. The .bss section is allocated in FAST_MEM.

    .dbss: load = FAST_MEM
    .bss: run = FAST_MEM
    .bss: > FAST_MEM

12.5.7 Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION. Grouping sections 
causes the linker to allocate them contiguously in memory. Unioning sections causes the linker to allocate them 
to the same run address.

12.5.7.1 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously and in the 
order listed, unless the UNORDERED operator is used. For example, assume that a section named term_rec 
contains a termination record for a table in the .data section. You can force the linker to allocate .data and 
term_rec together:

Allocate Sections Together

SECTIONS
{
   .text           /* Normal output section             */
   .bss            /* Normal output section             */
   GROUP 0x00001000 : /* Specify a group of sections    */
   {
      .data        /* First section in the group        */
      term_rec     /* Allocated immediately after .data */
   }
}

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single output 
section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data is allocated 
at 0x1000, and term_rec follows it in memory.

Note
You Cannot Specify Addresses for Sections Within a GROUP: When you use the GROUP option, 
binding, alignment, or allocation into named memory can be specified for the group only. You cannot 
use binding, named memory, or alignment for sections within a group.

12.5.7.2 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same address during 
run time. For example, you may have several routines you want in fast external memory at different stages 
of execution. Or you may want several data objects that are not active at the same time to share a block of 
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memory. The UNION statement within the SECTIONS directive provides a way to allocate several sections at 
the same run-time address.

In The UNION Statement, the .bss sections from file1.c.obj and file2.c.obj are allocated at the same address in 
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The components 
of a union remain independent sections; they are simply allocated together as a unit.

The UNION Statement

   SECTIONS
   {
      .text: load = SLOW_MEM
      UNION: run  = FAST_MEM
      {
         .bss:part1: { file1.c.obj(.bss) }
         .bss:part2: { file2.c.obj(.bss) }
      }
         .bss:part3: run = FAST_MEM { globals.c.obj(.bss) }
   }

Allocating a section as part of a union affects only its run address. Sections can never be overlaid for loading. 
If an initialized section is a union member (an initialized section, such as .text, has raw data), its load allocation 
must be separately specified. See Separate Load Addresses for UNION Sections. (There is an exception to this 
rule when combining an initialized section with uninitialized sections; see Section 12.5.7.3.)

Separate Load Addresses for UNION Sections

   UNION run = FAST_MEM
   {
      .text:part1: load = SLOW_MEM, { file1.c.obj(.text) }
      .text:part2: load = SLOW_MEM, { file2.c.obj(.text) }
   }

.bss:part2

.bss:part1

.bss:part3

FAST_MEM

.text

SLOW_MEM

Sections can run
as a union. This
is run-time alloca-
tion only.

.text 2 (run)

.text 1 (run)

.bss:part3

FAST_MEM

.text 1 (load)

SLOW_MEM

.text 2 (load)

Sections cannot
load as a union

Copies at
run time

Figure 12-3. Memory Allocation Shown in The UNION Statement and Separate Load Addresses for UNION 
Sections 

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a union. 
Therefore, each requires its own load address. If you fail to provide a load allocation for an initialized section 
within a UNION, the linker issues a warning and allocates load space anywhere it can in configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load address 
for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any one allocation 

www.ti.com Linker Description

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 255

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


specified is considered a run address, and if both run and load addresses are specified, the linker issues a 
warning and ignores the load address.

12.5.7.3 Using Memory for Multiple Purposes

One way to reduce an application's memory requirement is to use the same range of memory for multiple 
purposes. You can first use a range of memory for system initialization and startup. Once that phase is complete, 
the same memory can be repurposed as a collection of uninitialized data variables or a heap. To implement 
this scheme, use the following variation of the UNION statement to allow one section to be initialized and the 
remaining sections to be uninitialized.

Generally, an initialized section (one with raw data, such as .text) in a union must have its load allocation 
specified separately. However, one and only one initialized section in a union can be allocated at the union's run 
address. By listing it in the UNION statement with no load allocation at all, it will use the union's run address as 
its own load address.

For example:

UNION run = FAST_MEM
{ .cinit .bss }

In this example, the .cinit section is an initialized section. It will be loaded into FAST_MEM at the run address of 
the union. In contrast, .bss is an uninitialized section. Its run address will also be that of the union.

12.5.7.4 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By nesting 
GROUP and UNION statements, you can express hierarchical overlays and groupings of sections. Nesting 
GROUP and UNION Statements shows how two overlays can be grouped together.

Nesting GROUP and UNION Statements

SECTIONS
{
   GROUP 0x1000 : run = FAST_MEM
   {
      UNION:
      {
         mysect1: load = SLOW_MEM
         mysect2: load = SLOW_MEM
      }
      UNION:
      {
         mysect3: load = SLOW_MEM
         mysect4: load = SLOW_MEM
      }
   }
}

For this example, the linker performs the following allocations:

• The four sections (mysect1, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load 
addresses. This assignment is determined by the particular load allocations given for each section.

• Sections mysect1 and mysect2 are assigned the same run address in FAST_MEM.
• Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.
• The run addresses of mysect1/mysect2 and mysect3/mysect4 are allocated contiguously, as directed by the 

GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n UNION_n

where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or union in the 
linker control file without regard to nesting. Groups and unions each have their own counter.
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12.5.7.5 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections. The 
following rules are used:

• Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions that are 
not nested under any other groups or unions). The linker uses the run address of the top-level structure to 
compute the run addresses of the components within groups and unions.

• The linker does not accept a load allocation for UNIONs.
• The linker does not accept a load allocation for uninitialized sections.
• In most cases, you must provide a load allocation for an initialized section. However, the linker does not 

accept a load allocation for an initialized section that is located within a group that already defines a load 
allocator.

• As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations for every 
initialized section or subgroup nested within the group. However, a load allocation is accepted for an entire 
group only if all of the following conditions are true:
– The group is initialized (that is, it has at least one initialized member).
– The group is not nested inside another group that has a load allocator.
– The group does not contain a union containing initialized sections.

• If the group contains a union with initialized sections, it is necessary to specify the load allocation for each 
initialized section nested within the group. Consider the following example:

    SECTIONS
    {
      GROUP: load = SLOW_MEM, run = SLOW_MEM
      {
       .text1:
       UNION:
       {
        .text2:
        .text3:
       }
      }
    }

The load allocator given for the group does not uniquely specify the load allocation for the elements within 
the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that these load 
allocations be specified explicitly.

12.5.7.6 Naming UNIONs and GROUPs

You can give a name to a UNION or GROUP by entering the name in parentheses after the declaration. For 
example:

   GROUP(BSS_SYSMEM_STACK_GROUP)
   {
      .bss    :{}
      .sysmem :{}
      .stack  :{}
   } load=D_MEM,  run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:

warning: LOAD placement ignored for "BSS_SYSMEM_STACK_GROUP": object is uninitialized
   UNION(TEXT_CINIT_UNION)
   {
      .const :{}load=D_MEM, table(table1)
      .pinit :{}load=D_MEM, table(table1)
   }run=P_MEM
warning:table(table1) operator ignored: table(table1) has already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which ".pinit" is a descendant
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12.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign the following special types to output sections: DSECT, COPY, NOLOAD, and NOINIT. These 
types affect the way that the program is treated when it is linked and loaded. You can assign a type to a section 
by placing the type after the section definition. For example:

SECTIONS
   {
   sec1: load = 0x00002000, type =  DSECT  {f1.c.obj}
   sec2: load = 0x00004000, type =  COPY   {f2.c.obj}
   sec3: load = 0x00006000, type =  NOLOAD {f3.c.obj}
   sec4: load = 0x00008000, type =  NOINIT {f4.c.obj}
   }

• The DSECT type creates a dummy section with the following characteristics:
– It is not included in the output section memory allocation. It takes up no memory and is not included in the 

memory map listing.
– It can overlay other output sections, other DSECTs, and unconfigured memory.
– Global symbols defined in a dummy section are relocated normally. They appear in the output module's 

symbol table with the same value they would have if the DSECT had actually been loaded. These symbols 
can be referenced by other input sections.

– Undefined external symbols found in a DSECT cause specified archive libraries to be searched.
– The section's contents, relocation information, and line number information are not placed in the output 

module.

In the preceding example, none of the sections from f1.c.obj are allocated, but all the symbols are relocated 
as though the sections were linked at address 0x2000. The other sections can refer to any of the global 
symbols in sec1.

• A COPY section is similar to a DSECT section, except that its contents and associated information are written 
to the output module. The .cinit section that contains initialization tables for the C7000 C/C++ compiler has 
this attribute under the run-time initialization model.

• A NOLOAD section differs from a normal output section in one respect: the section's contents, relocation 
information, and line number information are not placed in the output module. The linker allocates space for 
the section, and it appears in the memory map listing.

• A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section as 
needed.

12.5.9 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at link 
time. You can use this feature to initialize a variable or pointer to an allocation-dependent value. See Section 
12.6.1 for information about referring to linker symbols in C/C++ code.

12.5.9.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol - = expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression
symbol / = expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the symbol 
table. The expression must follow the rules defined in Section 12.5.9.3. Assignment statements must terminate 
with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an expression 
contains a symbol, the address used for that symbol reflects the symbol's address in the executable output file.
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For example, suppose a program reads data from one of two tables identified by two external symbols, Table1 
and Table2. The program uses the symbol cur_tab as the address of the current table. The cur_tab symbol must 
point to either Table1 or Table2. You can use a linker assignment statement to assign cur_tab at link time:

prog.c.obj           /* Input file                          */
cur_tab = Table1;  /* Assign cur_tab to one of the tables */

12.5.9.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC) 
during allocation. The SPC keeps track of the current location within a section. The . symbol can be used 
only in assignment statements within a SECTIONS directive because . is meaningful only during allocation and 
SECTIONS controls the allocation process. (See Section 12.5.5.)

The . symbol refers to the current run address, not the current load address, of the section.

A special type of assignment assigns a value to the . (dot) symbol. This adjusts the SPC within an output 
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative to the 
beginning of the section, not to the address actually represented by the . symbol. Holes and assignments to . are 
described in Section 12.5.10.

12.5.9.3 Assignment Expressions

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language operators listed in Table 12-10.
• All numbers are treated as long (64-bit) integers.
• Constants are identified by the linker in the same way as by the assembler. That is, numbers are recognized 

as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C language prefixes 
are also recognized (0 for octal and 0x for hex). Hexadecimal constants must begin with a digit. No binary 
constants are allowed.

• Symbols within an expression have only the value of the symbol's address. No type-checking is performed.
• Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols (and 0 

or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute. If a symbol 
is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value of an absolute 
expression, it is absolute.

The linker supports the C language operators listed in Table 12-10 in order of precedence. Operators in the 
same group have the same precedence. Besides the operators listed in Table 12-10, the linker also has an align 
operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a power of 2). 
For example, the following expression aligns the SPC within the current section on the next 16-byte boundary. 
Because the align operator is a function of the current SPC, it can be used only in the same context as . —that 
is, within a SECTIONS directive.

    . = align(16);

Table 12-10. Groups of Operators Used in Expressions (Precedence)
Group 1 (Highest Precedence) Group 6

!
~
-

Logical NOT
Bitwise NOT
Negation

& Bitwise AND

Group 2 Group 7
*
/

%

Multiplication
Division
Modulus

| Bitwise OR

Group 3 Group 8
+
-

Addition
Subtraction && Logical AND

Group 4 Group 9
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Table 12-10. Groups of Operators Used in Expressions (Precedence) (continued)
Group 1 (Highest Precedence) Group 6

>>
<<

Arithmetic right shift
Arithmetic left shift || Logical OR

Group 5 Group 10 (Lowest Precedence)
==
! =
>
<

< =
> =

Equal to
Not equal to
Greater than
Less than
Less than or equal to
Greater than or equal to

=
+ =
- =
* =
/ =

Assignment
A + = B
A - = B
A * = B
A / = B

 
is equivalent to
is equivalent to
is equivalent to
is equivalent to

 
A = A + B
A = A - B
A = A * B
A = A / B

12.5.9.4 Symbols Automatically Defined by the Linker

.text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The linker automatically defines the following symbols for C/C++ support when the --ram_model or --rom_model 
option is used.

__TI_STACK_SIZE is assigned the size of the .stack section.
__TI_STACK_END is assigned the end of the .stack section.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section.
__TI_STATIC_BASE is assigned the value to be loaded into the data pointer register (DP) at boot time. This is 

typically the start of the first section containing a definition of a symbol that is referenced via 
near-DP addressing.

See Section 12.6.1 for information about referring to linker symbols in C/C++ code.

12.5.9.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory and 
run it in another (faster) area. This is done by specifying separate load and run addresses for an output section 
or group in the linker command file. Then execute a sequence of instructions that moves the program code from 
its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this feature. 
One of these responsibilities is to determine the size and run-time address of the program code to be moved. 
The current mechanisms to do this involve use of the .label directives in the copying code.

This method of specifying the size and load address of the program code has limitations. While it works fine 
for an individual input section that is contained entirely within one source file, this method becomes more 
complicated if the program code is spread over several source files or if the programmer wants to copy an entire 
output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being moved may 
have an associated far call trampoline section that needs to be moved with it.
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12.5.9.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output section. It 
is interpreted like a PC. Whatever the current offset within the current section is, that is the value associated with 
the dot. Consider an output section specification within a SECTIONS directive:

outsect:
{
        s1.c.obj(.text)
        end_of_s1   = .;
        start_of_s2 = .;
        s2.c.obj(.text)
        end_of_s2 = .;
}

This statement creates three symbols:

• end_of_s1—the end address of .text in s1.c.obj
• start_of_s2—the start address of .text in s2.c.obj
• end_of_s2—the end address of .text in s2.c.obj

Suppose there is padding between s1.c.obj and s2.c.obj created as a result of alignment. Then start_of_s2 is not 
really the start address of the .text section in s2.c.obj, but it is the address before the padding needed to align 
the .text section in s2.c.obj. This is due to the linker's interpretation of the dot operator as the current PC. It is 
also true because the dot operator is evaluated independently of the input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that was 
required at the end of the output section. You cannot reliably use end_of_s2 as the end address of the output 
section. One way to get around this problem is to create a dummy section immediately after the output section in 
question. For example:

GROUP
{
   outsect:
   {
      start_of_outsect = .;
      ...
   }
      dummy: { size_of_outsect = . - start_of_outsect; }
}

12.5.9.7 Address and Dimension Operators

Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START( sym )
START( sym )

Defines sym with the load-time start address of related allocation unit

LOAD_END( sym )
END( sym )

Defines sym with the load-time end address of related allocation unit

LOAD_SIZE( sym )
SIZE( sym )

Defines sym with the load-time size of related allocation unit

RUN_START( sym ) Defines sym with the run-time start address of related allocation unit
RUN_END( sym ) Defines sym with the run-time end address of related allocation unit
RUN_SIZE( sym ) Defines sym with the run-time size of related allocation unit
LAST( sym ) Defines sym with the run-time address of the last allocated byte in the related memory range.

Note
Linker Command File Operator Equivalencies --

LOAD_START() and START() are equivalent, as are LOAD_END()/END() and LOAD_SIZE()/SIZE(). 
The LOAD names are recommended for clarity.
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These address and dimension operators can be associated with several different kinds of allocation units, 
including input items, output sections, GROUPs, and UNIONs. The following sections provide some examples of 
how the operators can be used in each case.

These symbols defined by the linker can be accessed at runtime using the _symval operator, which is essentially 
a cast operation. For example, suppose your linker command file contains the following:

.text: RUN_START(text_run_start), RUN_SIZE(text_run_size) { *(.text) }

Your C program can access these symbols as follows:

extern char text_run_start, text_run_size;
printf(".text load start is %lx\n", _symval(&text_run_start));
printf(".text load size is %lx\n",  _symval(&text_run_size));

See Section 12.6.1 for more information about referring to linker symbols in C/C++ code.

12.5.9.7.1 Input Items

Consider an output section specification within a SECTIONS directive:

outsect:
{
        s1.c.obj(.text)
        end_of_s1   = .;
        start_of_s2 = .;
        s2.c.obj(.text)
        end_of_s2 = .;
}

This can be rewritten using the START and END operators as follows:

outsect:
{
        s1.c.obj(.text) { END(end_of_s1) }
        s2.c.obj(.text) { START(start_of_s2), END(end_of_s2) }
}

The values of end_of_s1 and end_of_s2 will be the same as if you had used the dot operator in the original 
example, but start_of_s2 would be defined after any necessary padding that needs to be added between the 
two .text sections. Remember that the dot operator would cause start_of_s2 to be defined before any necessary 
padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the operator 
list. The operators in the list are applied to the input item that occurs immediately before the list.
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12.5.9.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of_outsect), SIZE(size_of_outsect)
{
        <list of input items>
}

In this case, the SIZE operator defines size_of_outsect to incorporate any padding that is required in the output 
section to conform to any alignment requirements that are imposed.

The syntax for specifying the operators with an output section does not require braces to enclose the operator 
list. The operator list is simply included as part of the allocation specification for an output section.

12.5.9.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{
        outsect1: { ... }
        outsect2: { ... }
} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying code can 
use group_start and group_size as parameters for where to copy from and how much is to be copied.

12.5.9.7.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a UNION's 
load space and the size of the space where its constituents are going to be copied before they are run. Here is 
an example:

UNION: run = RAM, LOAD_START(union_load_addr),
       LOAD_SIZE(union_ld_sz), RUN_SIZE(union_run_sz)
{
        .text1: load = ROM, SIZE(text1_size) { f1.c.obj(.text) }
        .text2: load = ROM, SIZE(text2_size) { f2.c.obj(.text) }
}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union. The 
union_run_sz value is equivalent to the largest output section in the union. Both of these symbols incorporate 
any padding due to blocking or alignment requirements.

12.5.9.8 LAST Operator

The LAST operator is similar to the START and END operators that were described previously. However, LAST 
applies to a memory range rather than to a section. You can use it in a MEMORY directive to define a symbol 
that can be used at run-time to learn how much memory was allocated when linking the program. See Section 
12.5.4.2 for syntax details.

For example, a memory range might be defined as follows:

D_MEM : org = 0x20000020 len = 0x20000000 LAST(dmem_end)

Your C program can then access this symbol at runtime using the _symval operator. For example:

extern char dmem_end;
printf("End of D_MEM memory is %lx\n", _symval(&dmem_end));

See Section 12.6.1 for more information about referring to linker symbols in C/C++ code.
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12.5.10 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into them. 
These areas are called holes. In special cases, uninitialized sections can also be treated as holes. This section 
describes how the linker handles holes and how you can fill holes (and uninitialized sections) with values.

12.5.10.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:

• Raw data for the entire section
• No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual 
memory image contents of the section. When the section is loaded, this image is loaded into memory at 
the section's specified starting address. The .text and .data sections always have raw data if anything was 
assembled into them.

By default, the .bss section and sections defined with the .usect directive have no raw data (they are 
uninitialized). They occupy space in the memory map but have no actual contents. Uninitialized sections typically 
reserve space in fast external memory for variables. In the object file, an uninitialized section has a normal 
section header and can have symbols defined in it; no memory image, however, is stored in the section.

12.5.10.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave extra 
space between input sections within an output section. When such a hole is created, the linker must supply raw 
data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such space is 
not a hole. To fill the space between output sections, see Section 12.5.4.2.

To create a hole in an output section, you must use a special type of linker assignment statement within an 
output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it, assigning 
a greater value to it, or aligning it on an address boundary. The operators, expressions, and syntaxes of 
assignment statements are described in Section 12.5.9.

The following example uses assignment statements to create holes in output sections:

SECTIONS
{
   outsect:
   {
      file1.c.obj(.text)
     . += 0x0100    /* Create a hole with size 0x0100 */
      file2.c.obj(.text)
    . = align(16);  /* Create a hole to align the SPC */
      file3.c.obj(.text)
    }
}

The output section outsect is built as follows:

1. The .text section from file1.c.obj is linked in.
2. The linker creates a 256-byte hole.
3. The .text section from file2.c.obj is linked in after the hole.
4. The linker creates another hole by aligning the SPC on a 16-byte boundary.
5. Finally, the .text section from file3.c.obj is linked in.

All values assigned to the . symbol within a section refer to the relative address within the section. The linker 
handles assignments to the . symbol as if the section started at address 0 (even if you have specified a 
binding address). Consider the statement . = align(16) in the example. This statement effectively aligns the 
file3.c.obj .text section to start on a 16-byte boundary within outsect. If outsect is ultimately allocated to start on 
an address that is not aligned, the file3.c.obj .text section will not be aligned either.
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The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an 
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and align.

If an output section contains all input sections of a certain type (such as .text), you can use the following 
statements to create a hole at the beginning or end of the output section.

    .text:   {  .+= 0x0100; }     /* Hole at the beginning */
    .data:   {  *(.data)
                . += 0x0100; }    /* Hole at the end       */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized section 
to form a single output section. In this case, the linker treats the uninitialized section as a hole and supplies data 
for it. The following example illustrates this method:

SECTIONS
{
   outsect:
   {
      file1.c.obj(.text)
     file1.c.obj(.bss)           /* This becomes a hole */
   }
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the 
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several uninitialized 
sections are linked together, the resulting output section is also uninitialized.

12.5.10.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills holes 
with a 64-bit fill value that is replicated through memory until it fills the hole. The linker determines the fill value 
as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a 
fill value for the uninitialized section. Follow the section name with an = sign and a 64-bit constant. For 
example:

   SECTIONS
   {  outsect:
      {  
         file1.c.obj(.text)
         file2.c.obj(.bss)= 0xFF00FF00  /* Fill this hole with 0xFF00FF00 */
      }
   }

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the 
section definition:

   SECTIONS
   {  outsect:fill = 0xFF00FF00       /* Fills holes with 0xFF00FF00 */
      {
         . += 0x0010;                 /* This creates a hole         */
         file1.c.obj(.text)
         file1.c.obj(.bss)              /* This creates another hole   */
      }
   }

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified with 
the --fill_value option (see Section 12.4.12). For example, suppose the command file link.cmd contains the 
following SECTIONS directive:

   SECTIONS { .text: { .= 0x0100; } /* Create a 100 word hole */ }
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Now invoke the linker with the --fill_value option:

   cl7x --run_linker --fill_value=0xFFFFFFFFFFFFFFFF link.cmd

This fills the hole with 0xFFFFFFFF.
4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills holes 

with 0s.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map along 
with the value the linker uses to fill it.

12.5.10.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the 
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTIONS
{
   .bss: fill = 0x1234123412341234 /* Fills .bss with 0x1234123412341234 */
}

Note
Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for the entire section in the 
output file, your output file will be very large if you specify fill values for large sections or holes.

12.6 Linker Symbols
This section provides information about using and resolving linker symbols.

12.6.1 Using Linker Symbols in C/C++ Applications

Linker symbols have a name and a value. The value is a 48-bit address contained in a 64-bit unsigned long.

The most common kind of symbol is generated by the compiler for each function and variable. The value 
represents the target address where that function or variable is located. When you refer to the symbol by name 
in the linker command file, you get that 48-bit value.

However, in C and C++ names mean something different. If you have a variable named x that contains the value 
Y, and you use the name "x" in your C program, you are actually referring to the contents of variable x. If "x" 
is used on the right-hand side of an expression, the compiler fetches the value Y. To realize this variable, the 
compiler generates a linker symbol named x with the value &x. Even though the C/C++ variable and the linker 
symbol have the same name, they don't represent the same thing. In C, x is a variable name with the address &x 
and content Y. For linker symbols, x is an address, and that address contains the value Y.

Because of this difference, there are some tricks to referring to linker symbols in C code. The basic technique is 
to cause the compiler to create a "fake" C variable or function and take its address. The details differ depending 
on the type of linker symbol.

Linker symbols that represent a function address: In C code, declare the function as an extern function. 
Then, refer to the value of the linker symbol using the same name. This works because function pointers "decay" 
to their address value when used without adornment. For example:

extern void _c_int00(void);
printf("_c_int00 %lx\n", (unsigned long) &_c_int00);

Suppose your linker command file defines the following linker symbol:

func_sym=other_sym+100;
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Your C application can refer to this symbol as follows:

extern void func_sym(void);
printf("func_sym %lx\n", (unsigned long) &func_sym);

Linker symbols that represent a data address or an arbitrary address: In C code, declare the variable as 
an extern variable. Then, refer to the value of the linker symbol using the & operator. Because the variable is at 
a valid data address, we know that a data pointer can represent the value. Suppose your linker command file 
defines the following linker symbols:

data_sym=.data+100;
xyz=12345

Your C application can refer to these symbols as follows:

extern char data_sym;
extern int xyz;
printf("data_sym %p\n", &data_sym);
int another_var = &xyz;

On C7000 devices, all symbol references are handled in a position-independent manner through a PC-relative 
offset. However, linker-defined symbols may have a value that does not resolve to a valid symbol address or 
resolves to an address that is beyond the +/- 2 GB reach of normal PC-relative addressing. When accessing 
such symbols, you must use the _symval() intrinsic to force the use of absolute addressing. Such addressing 
prevents the compiler from generating PC-relative offsets/relocations for symbols that don't actually correspond 
to addresses or to addresses that are beyond the +/- 2 GB reach of PC-relative addressing.

Therefore, if the data symbol in the above example is more than +/- 2 GB from where it is used, you must 
use the _symval() operator to force an absolute addressing mechanism, because the PC-relative addressing 
mechanism won't reach:

printf("data_sym %p\n", _symval(&data_sym));

12.6.2 Using _symval() vs. Weak Symbol References

On C7000 devices, all symbol references are handled in a position-independent manner through a PC-relative 
offset. However, linker-defined symbols may have a value that does not resolve to a valid symbol address. When 
accessing such symbols, you must use the _symval() intrinsic to force the use of absolute addressing as 
described in the previous section.

If a symbol may resolve to either a valid address or a single non-address value, you are encouraged to use 
weak symbol references. A weak symbol reference may be unresolved at link time, in which case the address is 
treated as 0. Therefore, for weak references, application code must test to make sure &var is not zero before 
attempting to read the contents. Using weak symbol references preserves the position independence of the 
system, while allowing for cases in which the symbol may resolve to a non-address value (in this case, "0" if the 
symbol is unresolved at link time).

12.6.3 Declaring Weak Symbols

In a linker command file, an assignment expression outside a MEMORY or SECTIONS directive can be used to 
define a linker-defined symbol. To define a weak symbol in a linker command file, use the "weak" operator in an 
assignment expression to designate that the symbol as eligible for removal from the output file's symbol table if it 
is not referenced. For example, you can define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;

When the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the linker as 
a weak absolute symbol; it will not be included in the resulting output file if the symbol is not referenced.

See Section 8.5.2 for details about how weak symbols are handled by the linker.
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12.6.4 Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of related 
modules are grouped together into a library. When you specify an object library as linker input, the linker includes 
any members of the library that define existing unresolved symbol references. You can use the archiver to build 
and maintain libraries. Section 10.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object file that 
contains a function is specified at link time, the file is linked whether the function is used or not; however, if that 
same function is placed in an archive library, the file is included only if the function is referenced.

The order in which libraries are specified is important, because the linker includes only those members that 
resolve symbols that are undefined at the time the library is searched. The same library can be specified as 
often as necessary; it is searched each time it is included. Alternatively, you can use the --reread_libs option to 
reread libraries until no more references can be resolved (see Section 12.4.15.3). A library has a table that lists 
all external symbols defined in the library; the linker searches through the table until it determines that it cannot 
use the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

• Input files f1.c.obj and f2.c.obj both reference an external function named clrscr.
• Input file f1.c.obj references the symbol origin.
• Input file f2.c.obj references the symbol fillclr.
• Member 0 of library libc.lib contains a definition of origin.
• Member 3 of library liba.lib contains a definition of fillclr.
• Member 1 of both libraries defines clrscr.

If you enter:

cl7x --run_linker f1.c.obj f2.c.obj liba.lib libc.lib

then:

• Member 1 of liba.lib satisfies the f1.c.obj and f2.c.obj references to clrscr because the library is searched and 
the definition of clrscr is found.

• Member 0 of libc.lib satisfies the reference to origin.
• Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

cl7x --run_linker f1.c.obj f2.c.obj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to force the 
linker to include a library member. (See Section 12.4.30.) The next example creates an undefined symbol rout1 
in the linker's global symbol table:

cl7x --run_linker --undef_sym=rout1 libc.lib

If any member of libc.lib defines rout1, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see Section 
12.5.5.

Section 12.4.15 describes methods for specifying directories that contain object libraries.

12.7 Default Placement Algorithm
The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating 
sections. However, any memory locations or sections you choose not to specify must still be handled by the 
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linker. The linker uses algorithms to build and allocate sections in coordination with any specifications you do 
supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates sections starting at a memory 
address near zero. It begins by placing .text sections and then places the various data sections after that.

See Section 8.4.1 for information about default memory allocation.

All .text input sections are concatenated to form a .text output section in the executable output file, and all .data 
input sections are combined to form a .data output section.

If you use a SECTIONS directive, allocation is performed according to the rules specified by the SECTIONS 
directive and the general algorithm described next in Section 12.7.1.

12.7.1 How the Allocation Algorithm Creates Output Sections

An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition
Method 2 By combining input sections with the same name into an output section that is not defined in a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines the 
section's contents. (See Section 12.5.5 for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the linker 
combines all such input sections that have the same name into an output section with that name. For example, 
suppose the files f1.c.obj and f2.c.obj both contain named sections called Vectors and that the SECTIONS 
directive does not define an output section for them. The linker combines the two Vectors sections from the input 
files into a single output section named Vectors, allocates it into memory, and includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in the 
SECTIONS directive. You can use the --warn_sections linker option (see Section 12.4.31) to cause the linker to 
display a message when it creates a new output section.

After the linker determines the composition of all output sections, it must allocate them into configured memory. 
The MEMORY directive specifies which portions of memory are configured. If there is no MEMORY directive, the 
linker uses the default configuration. (See Section 12.5.4 for more information on configuring memory.)

12.7.2 Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be used 
more efficiently and increases the probability that your program will fit into memory. The algorithm comprises 
these steps:

1. Each output section for which you supply a specific binding address is placed in memory at that address.
2. Each output section that is included in a specific, named memory range or that has memory attribute 

restrictions is allocated. Each output section is placed into the first available space within the named area, 
considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a 
SECTIONS directive are allocated in the order in which they are encountered. Each output section is placed 
into the first available memory space, considering alignment where necessary.

12.8 Using Linker-Generated Copy Tables
The linker supports extensions to the linker command file syntax that enable the following:

• Make it easier for you to copy objects from load-space to run-space at boot time
• Make it easier for you to manage memory overlays at run time
• Allow you to split GROUPs and output sections that have separate load and run addresses

For an introduction to copy tables and their use, see Section 9.3.3.

www.ti.com Linker Description

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 269

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


12.8.1 Using Copy Tables for Boot Loading

In some embedded applications, there is a need to copy or download code and/or data from one location to 
another at boot time before the application actually begins its main execution thread. For example, an application 
may have its code and/or data in FLASH memory and need to copy it into on-chip memory before the application 
begins execution.

One way to develop such an application is to create a copy table that contains three elements for each block of 
code or data that needs to be moved from FLASH to on-chip memory at boot time:

• The load address
• The run address
• The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section that has 
a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size of 
each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.
4. Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece 
of code or data is added or removed from the application, you must repeat the process in order to keep the 
contents of the copy table up to date.

12.8.2 Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and SIZE() 
operators that are already part of the linker command file syntax. For example, instead of building the application 
to generate a .map file, the linker command file can be annotated:

SECTIONS
{
   .flashcode: { app_tasks.c.obj(.text) } 
      load = FLASH, run = PMEM, 
      LOAD_START(_flash_code_ld_start),
      RUN_START(_flash_code_rn_start),
      SIZE(_flash_code_size)
   ...
}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create three 
symbols:

Symbol Description
_flash_code_ld_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be updated 
automatically each time the application is linked. This approach removes step 1 of the process described in 
Section 12.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the copy 
table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker would 
generate the boot copy table automatically. This would avoid having to build the application twice and free you 
from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 12.5.9.7.
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12.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory overlay 
is defined using a UNION in the linker command file as illustrated in Using a UNION for Memory Overlay:

Using a UNION for Memory Overlay

SECTIONS
{
   ...
   UNION
   {
      GROUP
      {
         .task1: { task1.c.obj(.text) }
         .task2: { task2.c.obj(.text) }
      } load = ROM, LOAD_START(_task12_load_start), SIZE(_task12_size)
      GROUP
      {
         .task3: { task3.c.obj(.text) }
         .task4: { task4.c.obj(.text) }
      } load = ROM, LOAD_START(_task34_load_start), SIZE(_task_34_size)
   } run = RAM, RUN_START(_task_run_start)
 ...
}

The application must manage the contents of the memory overlay at run time. That is, whenever any services 
from .task1 or .task2 are needed, the application must first ensure that .task1 and .task2 are resident in the 
memory overlay. Similarly for .task3 and .task4.

To affect a copy of .task1 and .task2 from ROM to RAM at run time, the application must first gain access to the 
load address of the tasks (_task12_load_start), the run address (_task_run_start), and the size (_task12_size). 
Then this information is used to perform the actual code copy.

12.8.4 Generating Copy Tables With the table() Operator

The linker supports extensions to the linker command file syntax that enable you to do the following:

• Identify any object components that may need to be copied from load space to run space at some point 
during the run of an application

• Instruct the linker to automatically generate a copy table that contains (at least) the load address, run 
address, and size of the component that needs to be copied

• Instruct the linker to generate a symbol specified by you that provides the address of a linker-generated copy 
table. For instance, Using a UNION for Memory Overlay can be written as shown in Produce Address for 
Linker Generated Copy Table:

Produce Address for Linker Generated Copy Table

SECTIONS
{
   ...
   UNION
   {
      GROUP
      {
         .task1: { task1.c.obj(.text) }
         .task2: { task2.c.obj(.text) }
      } load = ROM, table(_task12_copy_table)
      GROUP
      {
         .task3: { task3.c.obj(.text) }
         .task4: { task4.c.obj(.text) }
      } load = ROM, table(_task34_copy_table)
 
   } run = RAM
   ...
}
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Using the SECTIONS directive from Produce Address for Linker Generated Copy Table in the linker command 
file, the linker generates two copy tables named: _task12_copy_table and _task34_copy_table. Each copy table 
provides the load address, run address, and size of the GROUP that is associated with the copy table. This 
information is accessible from application source code using the linker-generated symbols, _task12_copy_table 
and _task34_copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can reference 
the address of any copy table generated by the linker in C/C++ , passing that value to a general purpose copy 
routine, which will process the copy table and affect the actual copy.

12.8.4.1 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be 
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular table() 
specification can be accessed through a symbol specified by you that is provided as an argument to the table() 
operator. The linker creates a symbol with this name and assigns it the address of the copy table as the value of 
the symbol. The copy table can then be accessed from the application using the linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a table() 
operator is applied to a GROUP, then none of that GROUP's members may be marked with a table() 
specification. The linker detects violations of these rules and reports them as warnings, ignoring each offending 
use of the table() specification. The linker does not generate a copy table for erroneous table() operator 
specifications.

Copy tables can be generated automatically; see Section 12.8.4. The table operator can be used with 
compression; see Section 12.8.5.

12.8.4.2 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time copy table. 
This table is handled before the .cinit section is used to initialize variables at startup. For example, the linker 
command file for the boot-loaded application described in Section 12.8.2 can be rewritten as follows:

SECTIONS
{
   .flashcode: { app_tasks.c.obj(.text) } 
   load = FLASH, run = PMEM, 
      table(BINIT)
   ...
}

For this example, the linker creates a copy table that can be accessed through a special linker-generated 
symbol, __binit__, which contains the list of all object components that need to be copied from their load location 
to their run location at boot-time. If a linker command file does not contain any uses of table(BINIT), then the 
__binit__ symbol is given a value of -1 to indicate that a boot-time copy table does not exist for a particular 
application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in the 
context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to a 
GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects violations of 
these rules and reports them as warnings, ignoring each offending use of the table(BINIT) specification.

12.8.4.3 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table() 
operator to several different object components. In addition, if you want to manage a particular object component 
in multiple ways, you can apply more than one table() operator to it. Consider the linker command file excerpt in 
Linker Command File to Manage Object Components:
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Linker Command File to Manage Object Components

SECTIONS
{
   UNION
   {
      .first: { a1.c.obj(.text), b1.c.obj(.text), c1.c.obj(.text) }
            load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)
      .second: { a2.c.obj(.text), b2.c.obj(.text) }
            load = EMEM, run = PMEM, table(_second_ctbl)
   }
   .extra: load = EMEM, run = PMEM, table(BINIT)
   ...
}

In this example, the output sections .first and .extra are copied from external memory (EMEM) into program 
memory (PMEM) at boot time while processing the BINIT copy table. After the application has started executing 
its main thread, it can then manage the contents of the overlay using the two overlay copy tables named: 
_first_ctbl and _second_ctbl.

12.8.4.4 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy table 
symbol is defined with the address value of the input section that contains the corresponding copy table.

The linker generates a unique name for each overlay copy table input section. For example, table(_first_ctbl) 
would place the copy table for the .first section into an input section called .ovly:_first_ctbl. The linker creates a 
single input section, .binit, to contain the entire boot-time copy table.

Controlling the Placement of the Linker-Generated Copy Table Sections illustrates how you can control the 
placement of the linker-generated copy table sections using the input section names in the linker command file.

Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS
{
   UNION
   {
      .first: { a1.c.obj(.text), b1.c.obj(.text), c1.c.obj(.text) }
             load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)
      .second: { a2.c.obj(.text), b2.c.obj(.text) }
             load = EMEM, run = PMEM, table(_second_ctbl)
   }
   .extra: load = EMEM, run = PMEM, table(BINIT)
   ...
   .ovly: { } > BMEM
   .binit: { } > BMEM
}

For the linker command file in Controlling the Placement of the Linker-Generated Copy Table Sections, the 
boot-time copy table is generated into a .binit input section, which is collected into the .binit output section, which 
is mapped to an address in the BMEM memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input 
section and the _second_ctbl is generated into the .ovly:_second_ctbl input section. Since the base names of 
these input sections match the name of the .ovly output section, the input sections are collected into the .ovly 
output section, which is then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are 
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in the 
same output section. The linker does not allow a copy table section that was created from a partial link session 
to be used as input to a succeeding link session.

12.8.4.5 Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker can access both 
the load address and run address of every piece of a split object component. Using the table() operator, you 
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can tell the linker to generate this information into a copy table. The linker gives each piece of the split object 
component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4 through 
7 (using a UNION directive). The load placement of all of the tasks is split among four different memory areas 
(LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area PMEM. You must move 
each set of tasks into the overlay at run time before any services from the set are used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have all the 
information needed to move either group of tasks into the memory overlay as shown in Creating a Copy Table to 
Access a Split Object Component.

Creating a Copy Table to Access a Split Object Component

SECTIONS
{
   UNION
   {
      .task1to3: { *(.task1), *(.task2), *(.task3) } 
              load >> LMEM1 | LMEM2 | LMEM4, table(_task13_ctbl)
      GROUP
      {
         .task4: { *(.task4) }
         .task5: { *(.task5) }
         .task6: { *(.task6) }
         .task7: { *(.task7) }
      } load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)
   } run = PMEM
   ...
   .ovly: > LMEM4
}

Split Object Component Driver illustrates a possible driver for such an application.

Split Object Component Driver

#include <cpy_tbl.h>
extern COPY_TABLE task13_ctbl;
extern COPY_TABLE task47_ctbl;
extern void task1(void);
...
extern void task7(void);
main()
{
   ...
   copy_in(&task13_ctbl);
   task1();
   task2();
   task3();
   ...
   copy_in(&task47_ctbl);
   task4();
   task5();
   task6();
   task7();
   ...
}

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space. 
The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for each piece of the split 
section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3 is copied 
from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs the 
GROUP split by applying the split operator to each member of the GROUP in order. The copy table for the 
GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP. These pieces 
are copied into the memory overlay when the _task47_ctbl is processed by copy_in().
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The split operator can be applied to an output section, GROUP, or the load placement of a UNION or UNION 
member. The linker does not permit a split operator to be applied to the run placement of either a UNION or of 
a UNION member. The linker detects such violations, emits a warning, and ignores the offending split operator 
usage.

12.8.5 Compression

When automatically generating copy tables, the linker provides a way to compress the load-space data. This can 
reduce the read-only memory foot print. This compressed data can be decompressed while copying the data 
from load space to run space.

You can specify compression in two ways:
• The linker command line option --copy_compression=compression_kind can be used to apply the specified 

compression to any output section that has a table() operator applied to it.
• The table() operator accepts an optional compression parameter. The syntax is: .

table( name , compression= compression_kind )

The compression_kind can be one of the following types:
– off. Don't compress the data.
– rle. Compress data using Run Length Encoding.
– lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.

A table() operator without the compression keyword uses the compression kind specified using the command 
line option --copy_compression. If no compression_kind was specified with the command-line option, the default 
is LZSS compression.

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker 
compresses load data only when such compression reduces the overall size of the load space. In some cases 
even if the compression results in smaller load section size the linker does not compress the data if the 
decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of section1 by 30 bytes. Also assume the RLE 
decompression routine takes up 40 bytes in load space. By choosing to compress section1 the load space is 
increased by 10 bytes. Therefore, the linker will not compress section1. On the other hand, if there is another 
section (say section2) that can benefit by more than 10 bytes from applying the same compression then both 
sections can be compressed and the overall load space is reduced. In such cases the linker compresses both 
the sections.

You cannot force the linker to compress the data when doing so does not result in savings.

You cannot compress the decompression routines or any member of a GROUP containing .cinit.

12.8.5.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression_kind. The size field of the copy record is 
overloaded to support compression. Figure 12-4 illustrates the compressed copy table layout.

Load address Run address Size (0 if load data is compressed)

Rec size Rec cnt

Figure 12-4. Compressed Copy Table

In Figure 12-4, if the size in the copy record is non-zero it represents the size of the data to be copied, and also 
means that the size of the load data is the same as the run data. When the size is 0, it means that the load data 
is compressed.
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12.8.5.2 Compressed Section Representation in the Object File

The linker creates a separate input section to hold the compressed data. Consider the following table() operation 
in the linker command file.

SECTIONS
{
    .task1: load = ROM, run = RAM, table(_task1_table)
}

The output object file has one output section named .task1 which has different load and run addresses. This is 
possible because the load space and run space have identical data when the section is not compressed.

Alternatively, consider the following:

SECTIONS
{
    .task1: load = ROM, run = RAM, table(_task1_table, compression=rle)
}

If the linker compresses the .task1 section then the load space data and the run space data are different. The 
linker creates the following two sections:
• .task1 : This section is uninitialized. This output section represents the run space image of section task1.
• .task1.load : This section is initialized. This output section represents the load space image of the section 

task1. This section usually is considerably smaller in size than .task1 output section.

The linker allocates load space for the .task1.load input section in the memory area that was specified for load 
placement for the .task1 section. There is only a single load section to represent the load placement of .task1 
- .task1.load. If the .task1 data had not been compressed, there would be two allocations for the .task1 input 
section: one for its load placement and another for its run placement.
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12.8.5.3 Compressed Data Layout

The compressed load data has the following layout:

-bit index Compressed data

The first bits of the load data are the handler index. This handler index is used to index into a handler table to get 
the address of a handler function that knows how to decode the data that follows. The handler table is a list of 
48-bit function pointers as shown in Figure 12-5.

Figure 12-5. Handler Table

The linker creates a separate output section for the load and run space. For example, if .task1.load is 
compressed using RLE, the handler index points to an entry in the handler table that has the address of the 
run-time-support routine __TI_decompress_rle().

12.8.5.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run space. 
The address of the copy table is passed to this routine. First the routine reads the record count. Then it repeats 
the following steps for each record:

1. Read load address, run address and size from record.
2. If size is zero go to step 5.
3. Call memcpy passing the run address, load address and size.
4. Go to step 1 if there are more records to read.
5. Read the first from the load address.
6. Read the handler address from (&__TI_Handler_Base)[index].
7. Call the handler and pass load address + 1 and run address.
8. Go to step 1 if there are more records to read.

The routines to handle the decompression of load data are provided in the run-time-support library.

12.8.5.5 Compression Algorithms

The following subsections provide information about decompression algorithms for the RLE and LZSS formats. 
To see example decompression algorithms, refer to the following functions in the Run-Time Support library:

• RLE: The __TI_decompress_rle() function in the copy_decompress_rle.c file.
• LZSS: The __TI_decompress_lzss() function in the copy_decompress_lzss.c file.

Run Length Encoding (RLE):

-bit index Initialization data compressed using run length encoding

The data following the -bit index is compressed using run length encoded (RLE) format. C7000 uses a simple 
run length encoding that can be decompressed using the following algorithm. See copy_decompress_rle.c for 
details.
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1. Read the first , Delimiter (D).
2. Read the next (B).
3. If B != D, copy B to the output buffer and go to step 2.
4. Read the next (L).

a. If L == 0, then length is either a value or we’ve reached the end of the data, read the next (L).
b. Else if L > 0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is -bit value (L).

5. Read the next (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.

The C7000 run-time support library has a routine __TI_decompress_rle() to decompress data compressed using 
RLE. The first argument to this function is the address pointing to the after the -bit index. The second argument 
is the run address from the C auto initialization record.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

-bit index Data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The C7000 run-time-support library 
has the routine __TI_decompress_lzss() to decompress the data compressed using LZSS. The first argument to 
this function is the address pointing to the after the -bit Index, and the second argument is the run address from 
the C auto initialization record.

See copy_decompress_lzss.c for details on the LZSS algorithm.
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12.8.6 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This information is 
included in a run-time-support library header file, cpy_tbl.h, which contains a C source representation of the copy 
table data structure that is generated by the linker.

C7000 cpy_tbl.h File

/*****************************************************************************/
/* cpy_tbl.h                                                                 */
/*                                                                           */
/* Copyright (c) 2003 Texas Instruments Incorporated                         */
/* http://www.ti.com/                                                        */
/*                                                                           */ 
/* Specification of copy table data structures which can be automatically    */ 
/* generated by the linker (using the table() operator in the LCF).          */ 
/*****************************************************************************/ 
#ifndef _CPY_TBL
#define _CPY_TBL
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/*****************************************************************************/ 
/* Copy Record Data Structure                                                */ 
/*****************************************************************************/ 
typedef struct copy_record
{
   uint64_t load_addr;
   uint64_t run_addr;
   uint32_t size;
} __attribute((__packed__)) COPY_RECORD;
/*****************************************************************************/
/* Copy Table Data Structure                                                 */
/*****************************************************************************/
typedef struct copy_table
{
   uint16_t rec_size;
   uint16_t num_recs;
   COPY_RECORD    recs[1];
} COPY_TABLE;
/*****************************************************************************/
/* Prototype for general purpose copy routine.                               */
/*****************************************************************************/
extern void copy_in(COPY_TABLE *tp);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* !_CPY_TBL */

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it. Each 
COPY_RECORD contains at least the following information for the object component:

• The load address
• The run address
• The size

The linker collects all COPY_RECORDs that are associated with the same copy table into a COPY_TABLE 
object. The COPY_TABLE object contains the size of a given COPY_RECORD, the number of 
COPY_RECORDs in the table, and the array of COPY_RECORDs in the table. For instance, in the BINIT 
example in Section 12.8.4.2, the .first and .extra output sections will each have their own COPY_RECORD 
entries in the BINIT copy table. The BINIT copy table will then look like this:
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COPY_TABLE __binit__ = { 12, 2,
                         { <load address of .first>,
                           <run address of .first>,
                           <size of .first> },
                         { <load address of .extra>,
                           <run address of .extra>,
                           <size of .extra> } };

12.8.7 General Purpose Copy Routine

The cpy_tbl.h file in C7000 cpy_tbl.h File also contains a prototype for a general-purpose copy routine, 
copy_in(), which is provided as part of the run-time-support library. The copy_in() routine takes a single 
argument: the address of a linker-generated copy table. The routine then processes the copy table data object 
and performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in Run-Time-
Support cpy_tbl.c File.

Run-Time-Support cpy_tbl.c File

/****************************************************************************/
/* cpy_tbl.c                                                                */
/*                                                                          */
/* Copyright (c) 2011 Texas Instruments Incorporated                        */
/*                                                                          */
/* General purpose copy routine. Given the address of a link-generated      */
/* COPY_TABLE data structure, effect the copy of all object components      */
/* that are designated for copy via the corresponding LCF table() operator. */
/*                                                                          */
/****************************************************************************/
#include <cpy_tbl.h>
#include <string.h>
typedef void (*handler_fptr)(const unsigned char *in, unsigned char *out);
/****************************************************************************/
/* COPY_IN()                                                                */
/****************************************************************************/
void copy_in(COPY_TABLE *tp)
{
   unsigned short I;
   for (I = 0; I < tp->num_recs; I++)
   {
      COPY_RECORD crp = tp->recs[i];
      unsigned char *ld_addr = (unsigned char *)crp.load_addr;
      unsigned char *rn_addr = (unsigned char *)crp.run_addr;
      if (crp.size)
      {
         /*------------------------------------------------------------------*/
         /* Copy record has a non-zero size so the data is not compressed.   */
         /* Just copy the data.                                              */
         /*------------------------------------------------------------------*/
         memcpy(rn_addr, ld_addr, crp.size);
      }
#ifdef __TI_EABI__
      else if (HANDLER_TABLE)
      {
         /*------------------------------------------------------------------*/
         /* Copy record has size zero so the data is compressed. The first   */
         /* byte of the load data has the handler index. Use this index with */
         /* the handler table to get the handler for this data. Then call    */
         /* the handler by passing the load and run address.                 */
         /*------------------------------------------------------------------*/
         unsigned char index = *((unsigned char *)ld_addr++);
         handler_fptr hndl = (handler_fptr)(&HANDLER_TABLE)[index];
         (*hndl)((const unsigned char *)ld_addr, (unsigned char *)rn_addr);
      }
#endif
   } 
}
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12.9 Partial (Incremental) Linking
An output file that has been linked can be linked again with additional modules. This is known as partial linking 
or incremental linking. Partial linking allows you to partition large applications, link each part separately, and then 
link all the parts together to create the final executable program. Follow these guidelines for producing a file that 
you will relink:

• The intermediate files produced by the linker must have relocation information. Use the --relocatable option 
when you link the file the first time. (See Section 12.4.3.2.)

• Intermediate files must have symbolic information. By default, the linker retains symbolic information in its 
output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table strips 
symbolic information from the output module. (See Section 12.4.21.)

• Intermediate link operations should be concerned only with the formation of output sections and not with 
allocation. All allocation, binding, and MEMORY directives should be performed in the final link. Since the 
ELF object file format is used, input sections are not combined into output sections during a partial link unless 
a matching SECTIONS directive is specified in the link step command file.

• If the intermediate files have global symbols that have the same name as global symbols in other files and 
you want them to be treated as static (visible only within the intermediate file), you must link the files with the 
--make_static option (see Section 12.4.16.1).

• If you are linking C code, do not use --ram_model or --rom_model until the final linker. Every time you invoke 
the linker with the --ram_model or --rom_model option, the linker attempts to create an entry point. (See 
Section 12.4.24 , Section 9.3.2.1, and Section 9.3.2.2.)

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the --relocatable option to retain relocation information in the output file out1.out.
cl7x --run_linker --relocatable --output_file=out1 file1.com

file1.com contains:
SECTIONS
{
   ss1:   {
          f1.c.obj
          f2.c.obj
           ...
          fn.c.obj
          }
}

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the output file out2.out. file2.com 
contains:
SECTIONS
{
   ss2:   {
          g1.c.obj
          g2.c.obj
           ...
          gn.c.obj
          }
}

Step 3: Link out1.out and out2.out.
cl7x --run_linker --map_file=final.map --output_file=final.out out1.out out2.out

12.10 Linking C/C++ Code
The C/C++ compiler produces assembly language source code that can be assembled and linked. For example, 
a C program consisting of modules prog1, prog2, etc., can be assembled and then linked to produce an 
executable file called prog.out:

cl7x --run_linker --rom_model --output_file prog.out prog1.c.obj prog2.c.obj ... rts7100_le.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++ environment.

The archive libraries shipped by TI contain C/C++ run-time-support functions.
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C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support functions 
and variables that can be called and referenced from both C and C++ will have the same linkage.

12.10.1 Run-Time Initialization

C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap routine (the 
boot.c.obj object module). The _c_int00 symbol is defined as the program entry point and is the start of the 
C boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from the 
run-time-support library. When a program runs, it first executes boot.c.obj. The boot.c.obj symbol contains code 
and data to initialize the run-time environment; it performs the following:

• Set up the system stack and configuration registers
• Process run-time .cinit initialization table and autoinitialize global variables (if --rom_model was used)
• Disable interrupts and calls _main

The run-time-support object libraries contain boot.c.obj. You can:
• Use the archiver to extract boot.c.obj from the library and then link the module in directly.
• Include the appropriate run-time-support library as an input file (the linker automatically extracts boot.c.obj 

when you use the --ram_model or --rom_model option).

12.10.2 Object Libraries and Run-Time Support

Chapter 7 describes additional run-time-support functions that are included in rts.src. If your program uses any of 
these functions, you must link the appropriate run-time-support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those library 
members that resolve undefined references.

12.10.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used by the 
malloc( ) functions and the run-time stacks, respectively. You can set the size of these by using the --heap_size 
or --stack_size option and specifying the size of the section as a constant immediately after the option. If the 
options are not used, the default size of the heap is 1K bytes and the default size of the stack is 1K bytes.

See Section 12.4.13 for setting heap sizes Section 12.4.27 for setting stack sizes.

12.10.4 Initializing and AutoInitialzing Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the 
linker with the --rom_model option. See Section 9.3.2.1 for details.

Initialization of variables at load time enhances performance by reducing boot time and saving memory used by 
initialization tables. To use this method, invoke the linker with --ram_model. See for details.

See Section 9.3.2.3 for steps performed when you invoke the linker with --ram_model or --rom_model.

12.10.5 Constraints Due to CMMU Configuration

The C7000 compiler may generate vector predicated stores during vectorization that extend up to 63 bytes 
beyond the end of an address. If the 63 bytes after a range defined by the MEMORY directive may be 
inaccessible at run-time due to the Corepac Memory Management Unit (CMMU) configuration, the length of that 
memory range should be reduced by up to 63 bytes to prevent placement of a section in memory that may cause 
a page fault at run-time due to a vector predicated store.

For more information about the MEMORY directive, see Section 12.5.4. For more information about 
vectorization, see the C7000 C/C++ Optimization Guide (SPRUIV4).
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12.11 Linker Example
This example links three object files named demo.c.obj, filter.c.obj, and tables.obj and creates a program called 
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x0080 to 0x7000 On-chip RAM_PG
0xC000 to 0xFF80 On-chip ROM

Address Range Contents
0x0080 to 0x0FFF RAM block ONCHIP
0x0060 to 0xFFFF Mapped external 

addresses EXT

Address Range Contents
0x00000020 to 0x00210000 PMEM
0x00400000 to 0x01400000 EXT0
0x01400000 to 0x01800000 EXT1
0x02000000 to 0x03000000 EXT2
0x03000000 to 0x04000000 EXT3
0x40000000 to 0x82000000 BMEM

The output sections are constructed in the following manner:

• Executable code, contained in the .text sections of demo.c.obj, filters.c.obj, as well as executable code from 
the RTS library, are linked into program memory PMEM.

• Two data objects are defined in tables.c.obj. Each is placed in its own output section: .tableA and .tableB. 
When the program is loaded, both the .tableA and .tableB output sections are linked into separate locations 
in the BMEM area. However, run-time access to these tables refers to the run-time location indicated by the 
symbol "filter_matrix", which is defined as the start address of the UNION containing both .tableA and .tableB. 
This location is linked into the EXT1 memory area. At run-time, the application is responsible for copying 
either .tableA or .tableB from its load location in BMEM to its run location in EXT1 before attempting to 
access data from the table that was copied. The linker supports the copy table mechanisms described in 
Section 12.8 to help facilitate this action.

• For architectures that support and use DP-relative addressing, all data objects that are accessed using 
DP-relative addressing are collected into a group consisting of the .bss output sections. This group is linked 
into the BMEM memory area.

• Since the demo.out program uses command line arguments that must be specified when demo.out is loaded 
and run, the application must reserve space for passing command-line arguments to the program in the .args 
section. The amount of space allocated for the .args section is indicated in the '--args 0x1000' option near the 
top of the linker command file. The .args output section is then linked into the BMEM memory area. Support 
for processing command-line arguments is provided in the boot routine contained in the RTS library that will 
be linked into the demo.out program.

• The size of the software stack is indicated by the "--stack 0x6000" option near the top of the linker command 
file. Likewise, the size of the heap, from which memory can be dynamically allocated at run-time, is indicated 
via the "--heap 0x3000" option near the top of the linker command file. Both the .stack and .sysmem (which 
contains the heap) output sections are linked into the BMEM memory area.

Linker Command File, mylnk.cmd shows the linker command file for this example. Output Map File, demo.map 
shows the map file.
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Linker Command File, mylnk.cmd

/****************************************************************************/  
/*** Specify Linker Options                                               ***/  
/****************************************************************************/  
-cr                                /* --ram_model: load-time initialization */  
--heap 0x3000
--stack 0x6000
--args 0x1000
--output_file=demo.out                        /* Name the output file      */   
--map_file=demo.map                           /* Create an output map file */   
--undefined_sym=filter_table_A            /* Introduce an undefined symbol */   
--undefined_sym=filter_table_B            /* Introduce an undefined symbol */   
/****************************************************************************/  
/*** Specify the Input Files                                              ***/  
/****************************************************************************/  
demo.c.obj
tables.obj
filter.c.obj
/****************************************************************************/  
/*** Specify Runtime Support Library to be linked in                      ***/  
/****************************************************************************/  
-l libc.a
/****************************************************************************/  
/*** Specify the Memory Configuration                                     ***/  
/****************************************************************************/  
MEMORY
{
  PMEM: o = 00000020h l = 0020ffe0h
  EXT0: o = 00400000h l = 01000000h
  EXT1: o = 01400000h l = 00400000h
  EXT2: o = 02000000h l = 01000000h
  EXT3: o = 03000000h l = 01000000h
  BMEM: o = 40000000h l = 02000000h
}
/****************************************************************************/  
/*** Specify the Output Sections                                          ***/  
/****************************************************************************/  
SECTIONS
{
  .text : > PMEM
  UNION
  {
    .tableA: { tables.obj(tableA) } load > BMEM, table(tableA_cpy)
    .tableB: { tables.obj(tableB) } load > BMEM, table(tableB_cpy)
  } RUN = EXT1, RUN_START(filter_matrix)
  GROUP
  {
    .rodata:
    .bss:
  } > EXT2
  .stack:  > BMEM
  .args :  > BMEM
  .cinit:  > BMEM
  .cio:    > BMEM
  .const:  > BMEM
  .data:   > BMEM
  .sysmem: > BMEM
}
/****************************************************************************/  
/*** End of Command File                                                  ***/  
/****************************************************************************/

Invoke the linker by entering the following command:

cl7x --run_linker mylnk.cmd

This creates the map file shown in Output Map File, demo.map and an output file called demo.out that can be 
run on a C7000.
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Output Map File, demo.map

OUTPUT FILE NAME:   <demo.out>
ENTRY POINT SYMBOL: "_c_int00"  address: 000000007ec0
MEMORY CONFIGURATION
         name            origin         length     used     unused   attr    fill
----------------------  ------------   --------  --------  --------  ----  --------
  PMEM                  000000000020   0020ffe0  00008170  00207e70  RWIX
  EXT0                  000000400000   01000000  00000000  01000000  RWIX
  EXT1                  000001400000   00400000  00000080  003fff80  RWIX
  EXT2                  000002000000   01000000  000000b0  00ffff50  RWIX
  EXT3                  000003000000   01000000  00000000  01000000  RWIX
  BMEM                  000040000000   02000000  0000a6e4  01ff591c  RWIX
SEGMENT ALLOCATION MAP
  run origin     load origin      length   init length attrs members
--------------  --------------  ---------- ----------- ----- -------
000000000040    000000000040    00008170   00008170    r-x
  000000000040    000000000040    00008140   00008140    r-x .text
  000000008180    000000008180    00000030   00000030    r-- .ovly
000001400000    00004000a5e4    00000080   00000080    rw-
  000001400000    00004000a5e4    00000080   00000080    rw- .tableA
000001400000    00004000a664    00000080   00000080    rw-
  000001400000    00004000a664    00000080   00000080    rw- .tableB
000002000000    000002000000    000000b0   00000000    rw-
  000002000000    000002000000    000000b0   00000000    rw- .bss
000040000000    000040000000    00009000   00000000    rw-
  000040000000    000040000000    00006000   00000000    rw- .stack
  000040006000    000040006000    00003000   00000000    rw- .sysmem
000040009000    000040009000    00001384   00001384    rw-
  000040009000    000040009000    00001000   00001000    rw- .args
  00004000a000    00004000a000    00000384   00000384    rw- .data
00004000a384    00004000a384    00000140   00000140    r--
  00004000a384    00004000a384    00000140   00000140    r-- .const
00004000a4c4    00004000a4c4    00000120   00000000    rw-
  00004000a4c4    00004000a4c4    00000120   00000000    rw- .cio
SECTION ALLOCATION MAP
 output                                      attributes/
section   page      origin        length       input sections
--------  ----  --------------  ----------   ----------------
.text      0    000000000040    00008140
                  000000000040    00002400     rts7100_le.lib : _printfi.c.obj (.text:__TI_printfi)
                  000000002440    00000900                    : _printfi.c.obj (.text:_pconv_a)
                  000000002d40    00000800                    : _printfi.c.obj (.text:_pconv_g)
                  000000003540    00000680                    : _printfi.c.obj (.text:_pconv_e)
                  000000003bc0    000003c0                    : memory.c.obj (.text:aligned_alloc)
                  000000003f80    00000380                    : frcdivd.c.obj (.text:__TI_frcdivd)
                  000000004300    00000340                    : _printfi.c.obj (.text:_pconv_f)
                  000000004640    00000300                    : _printfi.c.obj (.text:fcvt)
                  000000004940    00000300                    : fputs.c.obj (.text:fputs)
...
.rodata    0    000002000000    00000000     UNINITIALIZED
.bss       0    000002000000    000000b0     UNINITIALIZED
                  000002000000    000000a0     (.common:__TI_tmpnams)
                  0000020000a0    00000008     rts7100_le.lib : memory.c.obj (.bss)
                  0000020000a8    00000008     (.common:parmbuf)
.stack     0    000040000000    00006000     UNINITIALIZED
                  000040000000    00000010     rts7100_le.lib : boot.c.obj (.stack)
                  000040000010    00005ff0     --HOLE--
.sysmem    0    000040006000    00003000     UNINITIALIZED
                  000040006000    00000010     rts7100_le.lib : memory.c.obj (.sysmem)
                  000040006010    00002ff0     --HOLE--
.args      0    000040009000    00001000
                  000040009000    00001000     --HOLE-- [fill = 0]
.data      0    00004000a000    00000384
                  00004000a000    000001e0     rts7100_le.lib : defs.c.obj (.data:_ftable)
                  00004000a1e0    000000d8                    : host_device.c.obj (.data:_device)
                  00004000a2b8    000000a0                    : host_device.c.obj (.data:_stream)
                  00004000a358    00000010                    : exit.c.obj (.data)
                  00004000a368    00000008                    : _lock.c.obj (.data:_lock)
                  00004000a370    00000008                    : _lock.c.obj (.data:_unlock)
                  00004000a378    00000004                    : defs.c.obj (.data)
                  00004000a37c    00000004                    : errno.c.obj (.data)
                  00004000a380    00000004                    : memory.c.obj (.data)
.const     0    00004000a384    00000140
                  00004000a384    00000101     rts7100_le.lib : ctype.c.obj 
(.const:.string:_ctypes_)
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                  00004000a485    00000003     --HOLE-- [fill = 0]
                  00004000a488    00000024                    : _printfi.c.obj (.const:.string)
                  00004000a4ac    00000018     demo.c.obj (.const:.string)
.tableA    0    00004000a5e4    00000080     RUN ADDR = 000001400000
                  00004000a5e4    00000080     tables.obj (tableA)
.tableB    0    00004000a664    00000080     RUN ADDR = 000001400000
                  00004000a664    00000080     tables.obj (tableB)
.cinit     0    000040000000    00000000     UNINITIALIZED
.cio       0    00004000a4c4    00000120     UNINITIALIZED
                  00004000a4c4    00000120     rts7100_le.lib : trgmsg.c.obj (.cio)
.ovly      0    000000008180    00000030
                  000000008180    00000018     (.ovly:tableA_cpy)
                  000000008198    00000018     (.ovly:tableB_cpy)
...
LINKER GENERATED COPY TABLES
tableA_cpy @ 00008180 records: 1, size/record: 20, table size: 24
        .tableA: load addr=00004000a5e4, load size=00000080, run addr=000001400000, 
         run size=00000080, compression=none
tableB_cpy @ 00008198 records: 1, size/record: 20, table size: 24
        .tableB: load addr=00004000a664, load size=00000080, run addr=000001400000, 
         run size=00000080, compression=none
GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name
address       name
------------  ----
000000008040  C$$EXIT
000000006eb0  C$$IO$$
0000000069c0  HOSTclose
000000006100  HOSTlseek
000000005f80  HOSTopen
...
000000008180  tableA_cpy
000000008198  tableB_cpy
000000007cc0  unlink
000000007d40  wcslen
000000007dc0  write
...
[96 symbols]
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This chapter describes how to invoke the following utilities:

• The object file display utility prints the contents of object files, executable files, and/or archive libraries in 
both text and XML formats.

• The disassembler accepts object files and executable files as input and produces an assembly listing as 
output. This listing shows assembly instructions, their opcodes, and the section program counter values.

• The name utility prints a list of names defined and referenced in an object file, executable files, and/or 
archive libraries.

• The strip utility removes symbol table and debugging information from object and executable files.

13.1 Invoking the Object File Display Utility................................................................................................................ 288
13.2 Invoking the Disassembler.................................................................................................................................... 289
13.3 Invoking the Name Utility.......................................................................................................................................290
13.4 Invoking the Strip Utility........................................................................................................................................ 290
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Object File Utilities
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13.1 Invoking the Object File Display Utility
The object file display utility, ofd7x, prints the contents of object files (.obj), executable files (.out), and/or archive 
libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while localized symbols are 
listed like any other local symbol.

To invoke the object file display utility, enter the following:

ofd7x [options] input filename [input filename]

ofd7x is the command that invokes the object file display utility.
input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file. The filename must contain an 

extension.
options identify the object file display utility options that you want to use. Options are not case sensitive and can appear 

anywhere on the command line following the command. Precede each option with a hyphen.
--call_graph Prints function stack usage and callee information in XML format. While the XML 

output may be accessed by a developer, this option was primarily designed to be 
used by tools such as Code Composer Studio to display an application’s worst case 
stack usage.

--dwarf_display=attributes Controls the DWARF display filter settings by specifying a comma-delimited list of 
attributes. When prefixed with no, an attribute is disabled instead of enabled. For 
example:
--dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types
The ordering of attributes is important (see --obj_display). The list of available 
display attributes can be obtained by invoking ofd7x --dwarf_display=help.

--dwarf Appends DWARF debug information to program output.
--help Displays help
--output=filename Sends program output to filename rather than to the screen.
--obj_display attributes Controls the object file display filter settings by specifying a comma-delimited list of 

attributes. When prefixed with no, an attribute is disabled instead of enabled. For 
example:
--obj_display=rawdata,nostrings
--obj_display=all,norawdata
--obj_display=none,header
The ordering of attributes is important. For instance, in "--obj_display=none,header", 
ofd7x disables all output, then re-enables file header information. If the attributes 
are specified in the reverse order, (header,none), the file header is enabled, the all 
output is disabled, including the file header. Thus, nothing is printed to the screen 
for the given files. The list of available display attributes can be obtained by invoking 
ofd7x --obj_display=help.

--verbose Prints verbose text output.
--xml Displays output in XML format.
--xml_indent=num Sets the number of spaces to indent nested XML tags.

If an archive file is given as input to the object file display utility, each object file member of the archive is 
processed as if it was passed on the command line. The object file members are processed in the order in which 
they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of the 
input files on the console screen.

Note
Object File Display Format: The object file display utility produces data in a text format by default. 
This data is not intended to be used as input to programs for further processing of the information. 
XML format should be used for mechanical processing.
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13.2 Invoking the Disassembler
The disassembler, dis7x, examines the output of the assembler or linker. This utility accepts an object file or 
executable file as input and writes the disassembled object code to standard output or a specified file.

To invoke the disassembler, enter the following:

dis7x [options] input filename[.] [output filename]

dis7x is the command that invokes the disassembler.
options identifies the name utility options you want to use. Options are not case sensitive and can appear anywhere on 

the command line following the invocation. Precede each option with a hyphen (-). The name utility options are as 
follows:
--all (-1) disassembles all sections, processes .cinit sections
--noaddr (-a) disables the printing of branch destination addresses along with labels.
--bytes (-b) displays data as bytes instead of words.
-c dumps the object file information.
--nodata (-d) disables display of data sections.
--hex (-e) displays integer values in hexadecimal.
--help (-h) shows the current help screen.
--data_as_text (-i) disassembles .data sections as instructions.
--text_as_data (-l) disassembles data sections as text.
--loadtime_addr (-L) displays both load and run addresses if they are different.
--single_opcode (-o) ## disassembles single word ## or 0x## then exits.
--quiet (-q) (quiet mode) suppresses the banner and all progress information.
--realquiet (-qq) (super quiet mode) suppresses all headers.
--suppress (-s) suppresses printing of address and data words.
--notext (-t) suppresses the display of text sections in the listing.
--silicon_version (-v) displays family of the target.
--copy_tables (-y) displays copy tables and the sections copied. The table information is 

dumped first, then each record followed by its load and run data.
input filename[.ext] This is the name of the input file. If the optional extension is not specified, the file is searched for in this order:

1. infile
2. infile.out, an executable file
3. infile.obj, an object file

output filename is the name of the optional output file to which the disassembly will be written. If an output filename is not specified, 
the disassembly is written to standard output.
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13.3 Invoking the Name Utility
The name utility, nm7x, prints the list of names defined and referenced in an object file, executable file, or 
archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols are listed 
as "" . To invoke the name utility, enter the following:

nm7x [-options] [input filenames]

nm7x is the command that invokes the name utility.
input filename is an object file (.obj), executable file (.out), or archive library (.lib).
options identifies the name utility options you want to use. Options are not case sensitive and can appear anywhere on 

the command line following the invocation. Precede each option with a hyphen (-). The name utility options are as 
follows:
--all (-a) prints all symbols.
--prep_fname (-f) prepends file name to each symbol.
--global (-g) prints only global symbols.
--help (-h) shows the current help screen.
--format:long (-l) produces a detailed listing of the symbol information.
--sort:value (-n) sorts symbols numerically rather than alphabetically.
--output (-o) file outputs to the given file.
--sort:none (-p) causes the name utility to not sort any symbols.
--quiet (-q) (quiet mode) suppresses the banner and all progress information.
--sort:reverse (-r) sorts symbols in reverse order.
--dynamic (-s) lists symbols in the dynamic symbol table for an ELF object module.
--undefined (-u) only prints undefined symbols.

13.4 Invoking the Strip Utility
The strip utility, strip7x, removes symbol table and debugging information from object and executable files. To 
invoke the strip utility, enter the following:

strip7x [-p] input filename [input filename]

strip7x is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can appear anywhere on the 

command line following the invocation. Precede each option with a hyphen (-). The strip utility option is as follows:
--help (-h) displays help information.
--outfile (-o) filename writes the stripped output to filename.
--postlink (-p) removes all information not required for execution. This option causes more 

information to be removed than the default behavior, but the object file is left 
in a state that cannot be linked. This option should be used only with static 
executable files.

--rom Strip readonly sections and segments.
When the strip utility is invoked without the -o option, the input object files are replaced with the stripped version.

Object File Utilities www.ti.com

290 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


The C++ compiler implements function overloading, operator overloading, and type-safe linking by encoding 
a function's prototype and namespace in its link-level name. The process of encoding the prototype into the 
linkname is often referred to as name mangling. When you inspect mangled names, such as in assembly 
files, disassembler output, or compiler or linker diagnostic messages, it can be difficult to associate a mangled 
name with its corresponding name in the C++ source code. The C++ name demangler is a debugging aid that 
translates each mangled name it detects to its original name found in the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads in input, 
looking for mangled names. All unmangled text is copied to output unaltered. All mangled names are demangled 
before being copied to output.

14.1 Invoking the C++ Name Demangler...................................................................................................................... 292
14.2 Sample Usage of the C++ Name Demangler........................................................................................................ 293
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14.1 Invoking the C++ Name Demangler
The syntax for invoking the C++ name demangler is:
dem7x [options ] [filenames]

dem7x Command that invokes the C++ name demangler.
options Options affect how the name demangler behaves. Options can appear anywhere on the command line.
filenames Text input files, such as the assembly file output by the compiler, the assembler listing file, the disassembly file, and the 

linker map file. If no filenames are specified on the command line, dem7x uses standard input.

By default, the C++ name demangler outputs to standard output. You can use the -o file option if you want to 
output to a file.

The following options apply only to the C++ name demangler:

--debug (--d) Prints debug messages.
--diag_wrap[=on,off] Sets diagnostic messages to wrap at 79 columns (on, which is the default) or not (off).
--help (-h) Prints a help screen that provides an online summary of the C++ name demangler options.
--output= file (-o) Outputs to the specified file rather than to standard out.
--quiet (-q) Reduces the number of messages generated during execution.
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14.2 Sample Usage of the C++ Name Demangler
The examples in this section illustrate the demangling process.

This example shows a sample C++ program. In this example, the linknames of all the functions are mangled; 
that is, their signature information is encoded into their names.

class banana {
public:
    int calories(void);
    banana();
    ~banana();
};
int calories_in_a_banana(void)
{
    banana x;
    return x.calories();
}

Executing the C++ name demangler will demangle all names that it believes to be mangled. Enter:

dem7x calories_in_a_banana.asm

The result after running the C++ name demangler is as follows. The linknames _ZN6bananaC1Ev, 
_ZN6banana8caloriesEv, and _ZN6bananaD1Ev are demangled.

||calories_in_a_banana()||:
;** --------------------------------------------------------------------------*
           MVC     .S1     RP,A9             ; [A_S1] 
||         STD     .D1     A8,*SP(8)         ; [A_D1] 
||         STD     .D2X    A9,*SP++(-24)     ; [A_D2] 
           CALL    .B1     ||banana::banana()|| ; [A_B] |9| 
||         ADDD    .D1     SP,0x10,A4        ; [A_D1] |9| 
$C$RL0:    ; CALL OCCURS (||banana::banana()||) arg:{A4} ret:{}  ; [] |9| 
           CALL    .B1     ||banana::calories()|| ; [A_B] |10| 
||         ADDD    .D1     SP,0x10,A4        ; [A_D1] |10| 
$C$RL1:    ; CALL OCCURS (||banana::calories()||) arg:{A4} ret:{A4}  ; [] |10| 
           CALL    .B1     ||banana::~banana()|| ; [A_B] |10| 
||         ADDD    .D1     SP,0x10,A4        ; [A_D1] |10| 
||         MV      .D2     A4,A8             ; [A_D2] |10| 
$C$RL2:    ; CALL OCCURS (||banana::~banana()||) arg:{A4} ret:{}  ; [] |10| 
           MV      .D1     A8,A4             ; [A_D1] |10| 
           MVC     .S1     A9,RP             ; [A_S1] BARRIER
           LDD     .D1     *SP(24),A9        ; [A_D1] 
||         LDD     .D2     *SP(32),A8        ; [A_D2] 
           RET     .B1     ; [A_B] 
||         ADDD    .D1     SP,0x18,SP        ; [A_D1] 
           ; RETURN OCCURS {RP}              ; []
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The C7000 linker supports the generation of an XML link information file via the --xml_link_info file option. This 
option causes the linker to generate a well-formed XML file containing detailed information about the result 
of a link. The information included in this file includes all of the information that is currently produced in a 
linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that could 
be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link information file.

A.1 XML Information File Element Types..................................................................................................................... 296
A.2 Document Elements.................................................................................................................................................296

Appendix A
XML Link Information File Description
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A.1 XML Information File Element Types
These element types will be generated by the linker:

• Container elements represent an object that contains other elements that describe the object. Container 
elements have an id attribute that makes them accessible from other elements.

• String elements contain a string representation of their value.
• Constant elements contain a 64-bit unsigned long representation of their value (with a 0x prefix).
• Reference elements are empty elements that contain an idref attribute that specifies a link to another 

container element.

In Section A.2, the element type is specified for each element in parentheses following the element description. 
For instance, the <link_time> element lists the time of the link execution (string).

A.2 Document Elements
The root element, or the document element, is <link_info>. All other elements contained in the XML link 
information file are children of the <link_info> element. The following sections describe the elements that an XML 
information file can contain.

A.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link 
session:

• The <banner> element lists the name of the executable and the version information (string).
• The <copyright> element lists the TI copyright information (string).
• The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).
• The <output_file> element lists the name of the linked output file generated (string).
• The <entry_point> element specifies the program entry point, as determined by the linker (container) with 

two entries:
– The <name> is the entry point symbol name, if any (string).
– The <address> is the entry point address (constant).

Header Element for the hi.out Output File

<banner>TMS320Cxx Linker           Version x.xx (Jan 6 2008)</banner>
<copyright>Copyright (c) 1996-2008 Texas Instruments Incorporated</copyright>
<link_time>0x43dfd8a4</link_time>
<output_file>hi.out</output_file>
<entry_point>
   <name>_c_int00</name>
   <address>0xaf80</address>
</entry_point>
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A.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a <input_file_list> 
container element. The <input_file_list> can contain any number of <input_file> elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute that 
can be referenced by other elements, such as an <object_component>. An <input_file> is a container element 
enclosing the following elements:

• The <path> element names a directory path, if applicable (string).
• The <kind> element specifies a file type, either archive or object (string).
• The <file> element specifies an archive name or filename (string).
• The <name> element specifies an object file name, or archive member name (string).

Input File List for the hi.out Output File

<input_file_list>
   <input_file id="fl-1">
      <kind>object</kind>
      <file>hi.obj</file>
      <name>hi.obj</name>
   </input_file>
   <input_file id="fl-2">
      <path>/tools/lib/</path>
      <kind>archive</kind>
      <file>rtsxxx.lib</file>
      <name>boot.obj</name>
   </input_file>
   <input_file id="fl-3">
      <path>/tools/lib/</path>
      <kind>archive</kind>
      <file>rtsxxx.lib</file>
      <name>exit.obj</name>
   </input_file>
   <input_file id="fl-4">
      <path>/tools/lib/</path>
      <kind>archive</kind>
      <file>rtsxxx.lib</file>
      <name>printf.obj</name>
   </input_file>
...
</input_file_list>
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A.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components that are 
involved in the link. An example of an object component is an input section. In general, an object component is 
the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any number of <object_component> elements.

Each <object_component> specifies a single object component. Each <object_component> has an id attribute 
so that it can be referenced directly from other elements, such as a <logical_group>. An <object_component> is 
a container element enclosing the following elements:

• The <name> element names the object component (string).
• The <load_address> element specifies the load-time address of the object component (constant).
• The <run_address> element specifies the run-time address of the object component (constant).
• The <size> element specifies the size of the object component (constant).
• The <input_file_ref> element specifies the source file where the object component originated (reference).

Object Component List for the fl-4 Input File

<object_component id="oc-20">
   <name>.text</name>
   <load_address>0xac00</load_address>
   <run_address>0xac00</run_address>
   <size>0xc0</size>
   <input_file_ref idref="fl-4"/>
</object_component>
<object_component id="oc-21">
   <name>.data</name>
   <load_address>0x80000000</load_address>
   <run_address>0x80000000</run_address>
   <size>0x0</size>
   <input_file_ref idref="fl-4"/>
</object_component>
<object_component id="oc-22">
   <name>.bss</name>
   <load_address>0x80000000</load_address>
   <run_address>0x80000000</run_address>
   <size>0x0</size>
   <input_file_ref idref="fl-4"/>
</object_component>
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A.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a 
linker-generated map file. However, the XML link information file contains a specification of GROUP and UNION 
output sections, which are not represented in a map file. There are three kinds of list items that can occur in a 
<logical_group_list>:

• The <logical_group> is the specification of a section or GROUP that contains a list of object components or 
logical group members. Each <logical_group> element is given an id so that it may be referenced from other 
elements. Each <logical_group> is a container element enclosing the following elements:
– The <name> element names the logical group (string).
– The <load_address> element specifies the load-time address of the logical group (constant).
– The <run_address> element specifies the run-time address of the logical group (constant).
– The <size> element specifies the size of the logical group (constant).
– The <contents> element lists elements contained in this logical group (container). These elements refer 

to each of the member objects contained in this logical group:
• The <object_component_ref> is an object component that is contained in this logical group 

(reference).
• The <logical_group_ref> is a logical group that is contained in this logical group (reference).

• The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that share the 
same memory space (container). Each <overlay> element is given an id so that it may be referenced from 
other elements (like from an <allocated_space> element in the placement map). Each <overlay> contains the 
following elements:
– The <name> element names the overlay (string).
– The <run_address> element specifies the run-time address of overlay (constant).
– The <size> element specifies the size of logical group (constant).
– The <contents> container element lists elements contained in this overlay. These elements refer to each 

of the member objects contained in this logical group:
• The <object_component_ref> is an object component that is contained in this logical group 

(reference).
• The <logical_group_ref> is a logical group that is contained in this logical group (reference).

• The <split_section> is another special kind of logical group that represents a collection of logical groups 
that is split among multiple memory areas. Each <split_section> element is given an id so that it may be 
referenced from other elements. The id consists of the following elements.
– The <name> element names the split section (string).
– The <contents> container element lists elements contained in this split section. The <logical_group_ref> 

elements refer to each of the member objects contained in this split section, and each element referenced 
is a logical group that is contained in this split section (reference).
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Logical Group List for the fl-4 Input File

<logical_group_list>
   ...
      <logical_group id="lg-7">
      <name>.text</name>
      <load_address>0x20</load_address>
      <run_address>0x20</run_address>
      <size>0xb240</size>
      <contents>
         <object_component_ref idref="oc-34"/>
         <object_component_ref idref="oc-108"/>
         <object_component_ref idref="oc-e2"/>
      ...
      </contents>
   </logical_group>
   ...
   <overlay id="lg-b">
      <name>UNION_1</name>
      <run_address>0xb600</run_address>
      <size>0xc0</size>
      <contents>
         <object_component_ref idref="oc-45"/>
         <logical_group_ref idref="lg-8"/>
      </contents>
   </overlay>
    ...
   <split_section id="lg-12">
      <name>.task_scn</name>
      <size>0x120</size>
      <contents>
         <logical_group_ref idref="lg-10"/>
         <logical_group_ref idref="lg-11"/>
      </contents>
   ...
</logical_group_list>
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A.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in the 
application, including unused spaces between logical groups that have been placed in a particular memory area.

The <memory_area> is a description of the placement details within a named memory area (container). The 
description consists of these items:

• The <name> names the memory area (string).
• The <page_id> gives the id of the memory page in which this memory area is defined (constant).
• The <origin> specifies the beginning address of the memory area (constant).
• The <length> specifies the length of the memory area (constant).
• The <used_space> specifies the amount of allocated space in this area (constant).
• The <unused_space> specifies the amount of available space in this area (constant).
• The <attributes> lists the RWXI attributes that are associated with this area, if any (string).
• The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is specified 

with the memory area (constant).
• The <usage_details> lists details of each allocated or available fragment in this memory area. If the 

fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate access to 
the details of that logical group. All fragment specifications include <start_address> and <size> elements.
– The <allocated_space> element provides details of an allocated fragment within this memory area 

(container):
• The <start_address> specifies the address of the fragment (constant).
• The <size> specifies the size of the fragment (constant).
• The <logical_group_ref> provides a reference to the logical group that is allocated to this fragment 

(reference).
– The <available_space element provides details of an available fragment within this memory area 

(container):
• The <start_address> specifies the address of the fragment (constant).
• The <size> specifies the size of the fragment (constant).

Placement Map for the fl-4 Input File

<placement_map>
   <memory_area>
      <name>PMEM</name>
      <page_id>0x0</page_id>
      <origin>0x20</origin>
      <length>0x100000</length>
      <used_space>0xb240</used_space>
      <unused_space>0xf4dc0</unused_space>
      <attributes>RWXI</attributes>
      <usage_details>
         <allocated_space>
            <start_address>0x20</start_address>
            <size>0xb240</size>
            <logical_group_ref idref="lg-7"/>
         </allocated_space>
         <available_space>
            <start_address>0xb260</start_address>
            <size>0xf4dc0</size>
         </available_space>
      </usage_details>
   </memory_area>
   ...
</placement_map>
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A.2.6 Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The linker supports the generation 
of far call trampolines to help a call site reach a destination that is out of range. A far call trampoline function is 
guaranteed to reach the called function (callee) as it may utilize an indirect call to the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker for a 
particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline> elements. Each 
<far_call_trampoline> is a container enclosing the following elements:

• The <callee_name> element names the destination function (string).
• The <callee_address> is the address of the called function (constant).
• The <trampoline_object_component_ref> is a reference to an object component that contains the 

definition of the trampoline function (reference).
• The <trampoline_address> is the address of the trampoline function (constant).
• The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function (container).
• The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of these 

items:
– The <caller_address> specifies the call site address (constant).
– The <caller_object_component_ref> is the object component where the call site resides (reference).

Fall Call Trampoline List for the fl-4 Input File

<far_call_trampoline_list>
...
   <far_call_trampoline>
      <callee_name>_foo</callee_name>
      <callee_address>0x08000030</callee_address>
      <trampoline_object_component_ref idref="oc-123"/>
      <trampoline_address>0x2020</trampoline_address>
      <caller_list>
         <call_site>
            <caller_address>0x1800</caller_address>
            <caller_object_component_ref idref="oc-23"/>
         </call_site>
         <call_site>
            <caller_address>0x1810</caller_address>
            <caller_object_component_ref idref="oc-23"/>
         </call_site>
      </caller_list>
</far_call_trampoline>
...
</far_call_trampoline_list>
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A.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list provides 
information about a symbol's name and value. In the future, the symbol_table list may provide type information, 
the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:

• The <name> element specifies the symbol name (string).
• The <value> element specifies the symbol value (constant).

Symbol Table for the fl-4 Input File

<symbol_table>
   <symbol>
      <name>_c_int00</name>
      <value>0xaf80</value>
   </symbol>
   <symbol>
      <name>_main</name>
      <value>0xb1e0</value>
   </symbol>
   <symbol>
      <name>_printf</name>
      <value>0xac00</value>
   </symbol>
   ...
</symbol_table>

www.ti.com XML Link Information File Description

SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

C7000 Optimizing C/C++ Compiler 303

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


XML Link Information File Description www.ti.com

304 C7000 Optimizing C/C++ Compiler SPRUIG8G – JANUARY 2018 – REVISED AUGUST 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG8G&partnum=TMS320C7000


B.1 List of Unsupported Tools and Features
The following tools and features will not be supported by the C7000 compiler toolset:

• Compiler Consultant
• Profile Directed Compilation
• CCS Optimizer Assistant
• Cache Layout Tool
• Hex Utility (We recommend that you instead use third-party tools, such as GNU “objcopy” or ARM Ltd. Tools.)
• Cross Reference Tool
• Absolute Lister
• C6x Linear Assembly
• C7x Linear Assembly
• C6x (Legacy) Assembly Compatibility
• MISRA-C:2004 and MISRA-C:2012 checking (We recommend that you use third-party tooling, such as 

LDRA.)

Appendix B
Unsupported Tools and Features
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C.1 Terminology

alias disambiguation A technique that determines when two pointer expressions cannot point to the same 
location, allowing the compiler to freely optimize such expressions.

aliasing The ability for a single object to be accessed in more than one way, such as when 
two pointers point to a single object. It can disrupt optimization, because any indirect 
reference could refer to any other object.

allocation A process in which the linker calculates the final memory addresses of output 
sections.

ANSI American National Standards Institute; an organization that establishes standards 
voluntarily followed by industries.

Application Binary 
Interface (ABI)

A standard that specifies the interface between two object modules. An ABI specifies 
how functions are called and how information is passed from one program component 
to another.

archive library A collection of individual files grouped into a single file by the archiver.

archiver A software program that collects several individual files into a single file called an 
archive library. With the archiver, you can add, delete, extract, or replace members of 
the archive library.

assembler A software program that creates a machine-language program from a source file 
that contains assembly language instructions, directives, and macro definitions. The 
assembler substitutes absolute operation codes for symbolic operation codes and 
absolute or relocatable addresses for symbolic addresses.

assignment statement A statement that initializes a variable with a value.

autoinitialization The process of initializing global C variables (contained in the .cinit section) before 
program execution begins.

autoinitialization at 
run time

An autoinitialization method used by the linker when linking C code. The linker uses 
this method when you invoke it with the --rom_model link option. The linker loads 
the .cinit section of data tables into memory, and variables are initialized at run time.

big endian An addressing protocol in which bytes are numbered from left to right within a word. 
More significant bytes in a word have lower numbered addresses. Endian ordering is 
hardware-specific and is determined at reset. See also little endian

block A set of statements that are grouped together within braces and treated as an entity.
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.bss section One of the default object file sections. You use the assembler .bss directive to reserve 
a specified amount of space in the memory map that you can use later for storing 
data. The .bss section is uninitialized.

byte Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler A software program that translates C source statements into assembly language 
source statements.

code generator A compiler tool that takes the file produced by the parser or the optimizer and 
produces an assembly language source file.

command file A file that contains options, filenames, directives, or commands for the linker or hex 
conversion utility.

comment A source statement (or portion of a source statement) that documents or improves 
readability of a source file. Comments are not compiled, assembled, or linked; they 
have no effect on the object file.

compiler program A utility that lets you compile, assemble, and optionally link in one step. The 
compiler runs one or more source modules through the compiler (including the parser, 
optimizer, and code generator), the assembler, and the linker.

configured memory Memory that the linker has specified for allocation.

constant A type whose value cannot change.

cross-reference listing An output file created by the assembler that lists the symbols that were defined, what 
line they were defined on, which lines referenced them, and their final values.

.data section One of the default object file sections. The .data section is an initialized section 
that contains initialized data. You can use the .data directive to assemble code into 
the .data section.

direct call A function call where one function calls another using the function's name.

directives Special-purpose commands that control the actions and functions of a software tool 
(as opposed to assembly language instructions, which control the actions of a device).

disambiguation See alias disambiguation

dynamic memory 
allocation

A technique used by several functions (such as malloc, calloc, and realloc) to 
dynamically allocate memory for variables at run time. This is accomplished by 
defining a large memory pool (heap) and using the functions to allocate memory from 
the heap.

ELF Executable and Linkable Format; a system of object files configured according to the 
System V Application Binary Interface specification.

emulator A hardware development system that duplicates the device's operation.

entry point A point in target memory where execution starts.
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environment variable A system symbol that you define and assign to a string. Environmental variables are 
often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog The portion of code in a function that restores the stack and returns.

executable object file A linked, executable object file that is downloaded and executed on a target system.

expression A constant, a symbol, or a series of constants and symbols separated by arithmetic 
operators.

external symbol A symbol that is used in the current program module but defined or declared in a 
different program module.

file-level optimization A level of optimization where the compiler uses the information that it has about the 
entire file to optimize your code (as opposed to program-level optimization, where the 
compiler uses information that it has about the entire program to optimize your code).

function inlining The process of inserting code for a function at the point of call. This saves the 
overhead of a function call and allows the optimizer to optimize the function in the 
context of the surrounding code.

global symbol A symbol that is either defined in the current module and accessed in another, or 
accessed in the current module but defined in another.

high-level language 
debugging

The ability of a compiler to retain symbolic and high-level language information (such 
as type and function definitions) so that a debugging tool can use this information.

indirect call A function call where one function calls another function by giving the address of the 
called function.

initialization at load 
time

An autoinitialization method used by the linker when linking C/C++ code. The linker 
uses this method when you invoke it with the --ram_model link option. This method 
initializes variables at load time instead of run time.

initialized section A section from an object file that will be linked into an executable object file.

input section A section from an object file that will be linked into an executable object file.

integrated 
preprocessor

A C/C++ preprocessor that is merged with the parser, allowing for faster compilation. 
Stand-alone preprocessing or preprocessed listing is also available.

interlist feature A feature that inserts as comments your original C/C++ source statements into the 
assembly language output from the assembler. The C/C++ statements are inserted 
next to the equivalent assembly instructions.

intrinsics Operators that are used like functions and produce assembly language code that 
would otherwise be inexpressible in C, or would take greater time and effort to code.

ISO International Organization for Standardization; a worldwide federation of national 
standards bodies, which establishes international standards voluntarily followed by 
industries.

kernel The body of a software-pipelined loop between the pipelined-loop prolog and the 
pipelined-loop epilog.
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K&R C Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C 
Programming Language (K&R). Most K&R C programs written for earlier, non-ISO C 
compilers should correctly compile and run without modification.

label A symbol that begins in column 1 of an assembler source statement and corresponds 
to the address of that statement. A label is the only assembler statement that can 
begin in column 1.

linker A software program that combines object files to form an executable object file that 
can be allocated into system memory and executed by the device.

listing file An output file, created by the assembler, which lists source statements, their line 
numbers, and their effects on the section program counter (SPC).

little endian An addressing protocol in which bytes are numbered from right to left within a word. 
More significant bytes in a word have higher numbered addresses. Endian ordering is 
hardware-specific and is determined at reset. See also big endian

loader A device that places an executable object file into system memory.

loop unrolling An optimization that expands small loops so that each iteration of the loop appears 
in your code. Although loop unrolling increases code size, it can improve the 
performance of your code.

macro A user-defined routine that can be used as an instruction.

macro call The process of invoking a macro.

macro definition A block of source statements that define the name and the code that make up a 
macro.

macro expansion The process of inserting source statements into your code in place of a macro call.

map file An output file, created by the linker, which shows the memory configuration, section 
composition, section allocation, symbol definitions and the addresses at which the 
symbols were defined for your program.

memory map A map of target system memory space that is partitioned into functional blocks.

name mangling A compiler-specific feature that encodes a function name with information regarding 
the function's arguments return types.

object file An assembled or linked file that contains machine-language object code.

object library An archive library made up of individual object files.

operand An argument of an assembly language instruction, assembler directive, or macro 
directive that supplies information to the operation performed by the instruction or 
directive.

optimizer A software tool that improves the execution speed and reduces the size of C 
programs.
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options Command-line parameters that allow you to request additional or specific functions 
when you invoke a software tool.

output section A final, allocated section in a linked, executable module.

parser A software tool that reads the source file, performs preprocessing functions, checks 
the syntax, and produces an intermediate file used as input for the optimizer or code 
generator.

partitioning The process of assigning a data path to each instruction.

pipelining A technique where a second instruction begins executing before the first instruction 
has been completed. You can have several instructions in the pipeline, each at a 
different processing stage.

pop An operation that retrieves a data object from a stack.

pragma A preprocessor directive that provides directions to the compiler about how to treat a 
particular statement.

preprocessor A software tool that interprets macro definitions, expands macros, interprets header 
files, interprets conditional compilation, and acts upon preprocessor directives.

program-level 
optimization

An aggressive level of optimization where all of the source files are compiled into 
one intermediate file. Because the compiler can see the entire program, several 
optimizations are performed with program-level optimization that are rarely applied 
during file-level optimization.

prolog The portion of code in a function that sets up the stack.

push An operation that places a data object on a stack for temporary storage.

quiet run An option that suppresses the normal banner and the progress information.

raw data Executable code or initialized data in an output section.

relocation A process in which the linker adjusts all the references to a symbol when the symbol's 
address changes.

run-time environment The run time parameters in which your program must function. These parameters 
are defined by the memory and register conventions, stack organization, function call 
conventions, and system initialization.

run-time-support 
functions

Standard ISO functions that perform tasks that are not part of the C language (such as 
memory allocation, string conversion, and string searches).

run-time-support 
library

A library file, rts.src, which contains the source for the run time-support functions.

section A relocatable block of code or data that ultimately will be contiguous with other 
sections in the memory map.

sign extend A process that fills the unused MSBs of a value with the value's sign bit.
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software pipelining A technique used by the C/C++ optimizer to schedule instructions from a loop so that 
multiple iterations of the loop execute in parallel.

source file A file that contains C/C++ code or assembly language code that is compiled or 
assembled to form an object file.

stand-alone 
preprocessor

A software tool that expands macros, #include files, and conditional compilation as 
an independent program. It also performs integrated preprocessing, which includes 
parsing of instructions.

static variable A variable whose scope is confined to a function or a program. The values of static 
variables are not discarded when the function or program is exited; their previous 
value is resumed when the function or program is reentered.

storage class An entry in the symbol table that indicates how to access a symbol.

string table A table that stores symbol names that are longer than eight characters (symbol names 
of eight characters or longer cannot be stored in the symbol table; instead they are 
stored in the string table). The name portion of the symbol's entry points to the 
location of the string in the string table.

subsection A relocatable block of code or data that ultimately will occupy continuous space in the 
memory map. Subsections are smaller sections within larger sections. Subsections 
give you tighter control of the memory map.

symbol A string of alphanumeric characters that represents an address or a value.

symbolic debugging The ability of a software tool to retain symbolic information that can be used by a 
debugging tool such as an emulator.

target system The system on which the object code you have developed is executed.

.text section One of the default object file sections. The .text section is initialized and contains 
executable code. You can use the .text directive to assemble code into the .text 
section.

trigraph sequence A 3-character sequence that has a meaning (as defined by the ISO 646-1983 
Invariant Code Set). These characters cannot be represented in the C character set 
and are expanded to one character. For example, the trigraph ??' is expanded to ^.

trip count The number of times that a loop executes before it terminates.

unconfigured memory Memory that is not defined as part of the memory map and cannot be loaded with 
code or data.

uninitialized section A object file section that reserves space in the memory map but that has no actual 
contents.

unsigned value A value that is treated as a nonnegative number, regardless of its actual sign.

variable A symbol representing a quantity that can assume any of a set of values.

word A 32-bit addressable location in target memory
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Revision History

Changes from October 22, 2021 to August 5, 2022 (from Revision F (October 2021) to Revision 
G (August 2022)) Page
• The --strict_compatibility linker option no longer has any effect and has been removed from the 

documentation.................................................................................................................................................. 30
• Removed documentation of the --rom linker option, which is not supported.................................................... 30
• Added the --fp_single_precision_constant compiler option.............................................................................. 33
• Added the --mma_version=2_256 setting for C7504........................................................................................34
• Added the --silicon_version=7504 command-line option..................................................................................35
• Added a predefined macro name for C7504 devices....................................................................................... 38
• Added links to additional information to list of --opt_level optimizations...........................................................54
• Native vector types are now called "TI vector types.".......................................................................................91
• Revised information related to OpenCL conformance......................................................................................91
• Examples have been updated to use constructors to initialize elements of a vector rather than cast/scalar-

widening syntax.............................................................................................................................................. 132
• Accessors are provided for swizzle operators. The examples have been updated to reflect this change......134
• Added examples for reinterpretation of Boolean vectors................................................................................136
• Added information and examples of Boolean vectors.................................................................................... 137
• Added section on scalable vector programming.............................................................................................141
• The --strict_compatibility linker option no longer has any effect and has been removed from the 

documentation................................................................................................................................................ 216
• Removed documentation of the --rom linker option, which is not supported.................................................. 216
• Documented that the --absolute_exe and --relocatable options may not be used together........................... 218
• Added a predefined macro name for C7504 devices..................................................................................... 220
• Correct the description of the linker's include file search path........................................................................220

Changes from March 19, 2021 to October 22, 2021 (from Revision E (March 2021) to Revision F 
(October 2021)) Page
• Added the --mma_version command-line option.............................................................................................. 25
• Added the --mma_version command-line option.............................................................................................. 34
• Added the --silicon_version=7120 command-line option..................................................................................35
• Added a predefined macro name for C7120 devices....................................................................................... 38
• Link-time optimization not supported for files compiled with different --silicon_version or --mma_version...... 59
• Specify that C7120 and later ISAs can be configured to allow predicated SA loads........................................78
• Added several examples for load operations....................................................................................................79
• The SET_DATA_SECTION pragma takes precedence over the --gen_data_subsections=on option............118
• Document that all C7000 code and data must lie within 2 GB of virtual address space.................................144
• Removed runtime support arithmetic functions that are no longer in the RTS library.....................................158
• Clarified information about string handling functions...................................................................................... 168
• Added information about time and clock RTS functions................................................................................. 168
• The SET_DATA_SECTION pragma takes precedence over the --gen_data_subsections=on option............208
• Added a predefined macro name for C7120 devices..................................................................................... 220
• Document that all C7000 code and data must lie within 2 GB of virtual address space.................................239
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Changes from December 15, 2020 to March 19, 2021 (from Revision D (December 2020) to 
Revision E (March 2021)) Page
• Vector predicated stores generated by the compiler may trigger page fault exceptions in certain situations. 

This issue can be corrected in the linker command file.................................................................................. 282

Changes from February 28, 2020 to December 15, 2020 (from Revision C (February 2020) to 
Revision D (December 2020)) Page
• Updated the numbering format for tables, figures, and cross-references throughout the document................11
• Removed references to the Processors wiki throughout the document............................................................11
• Clarified that --opt_level=4 must be placed before --run_linker option............................................................. 59
• Added predicated loads for Streaming Address Generator and examples that cause well-defined vs. 

unspecified behavior for store and load operations depending on the SA configuration..................................79
• Documented that C11 atomic operations are not supported............................................................................ 84
• Updated information about the size of enum types.......................................................................................... 90
• Clarify interaction between --opt_level and FUNCTION_OPTIONS pragma..................................................110
• Added C++ attribute syntax for attributes that correspond to the MUST_ITERATE pragma.......................... 112
• Added C++ attribute syntax for attributes that correspond to the UNROLL pragma.......................................119
• Documented that C11 atomic operations are not supported.......................................................................... 124
• Added example using the location attribute....................................................................................................129
• Added information about default for --gen_func_subsections option..............................................................208
• Corrected information about default for --gen_data_subsections option........................................................ 208

The following table lists changes made to this document between v7.4 of the Code Generation Tools (SPRU187) 
and SPRUI03C (when the document production system was changed). The left column identifies the version of 
this document in which that particular change appeared.

Earlier Revisions
Version Added Chapter Location Additions / Modifications / Deletions

SPRUIG8C C/C++ Language Section 5.3.2, 
Section 5.14

Added note that vectors cannot be passed via stdarg and cannot be passed 
to printf().

SPRUIG8C C/C++ Language

Section 5.8.23, 
Section 5.8.30, 
Section 5.8.34, 
Section 5.13.3

C++ attribute syntax is available to correspond to the MUST_ITERATE, 
PROB_ITERATE, and UNROLL pragmas.

SPRUIG8C C/C++ Language Section 5.8.28 The #pragma once is now documented for use in header files.

SPRUIG8C
Run-Time 
Environment,
Linker

Section 6.7.2.1, 
Section 12.4.33

Clarified that zero initialization takes place only if the --rom_model linker 
option is used, not if the --ram_model option is used.

SPRUIG8C Program Loading Section 9.3.2.3 Corrected information about RAM and ROM model use of CINIT.

SPRUIG8C Linking,
Linker

Section 11.3.4, 
Section 12.4.24

Clarified that either --rom_model or --ram_model is required if only the linker 
is being run, but --rom_model is the default if the compiler runs on C/C++ 
files on the same command line.

SPRUIG8C Linker
Section 12.5.4.2, 
Section 12.5.9.7, and 
Section 12.5.9.8

Added LAST operator to define a symbol with the run-time address of the 
last allocated byte in the related memory range.

SPRUIG8B Optimizing Section 4.14 Updated types for Streaming Engine and Streaming Address Generator.

SPRUIG8B Language Section 5.2 MISRA C 2004 checking is not supported at this time.

SPRUIG8B Language Section 5.14.6 Conversion modifiers for vector data types are not supported at this time.

SPRUIG8A Introduction,
Language

Section 1.3,
Section 5.1, and
Section 5.2

Support for C11 and C++14 has been added.

SPRUIG8A Optimization Section 4.14 Information about the vector length and element size for the Steaming 
Engine and Streaming Address Generator has been added.
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