
User's Guide
Motor Control SDK Universal Project and Lab

ABSTRACT

This document explains the steps needed to run the motor drive evaluation kits with the Universal Motor Control
Lab project in MotorControlSDK, how to migrate the lab project to a custom board, and how to port the lab
project to a new C2000™ device.

Table of Contents
1 Introduction...3
2 Motor Control Theory... 4

2.1 Mathematical Model and FOC Structure of PMSM.. 5
2.2 Field Oriented Control of PM Synchronous Motor... 6
2.3 Sensorless Control of PM Synchronous Motor.. 14
2.4 Hardware Prerequisites for Motor Drive...17
2.5 Additional Control Features..17

3 Running the Universal Lab on TI Hardware Kits..24
3.1 Supported TI Motor Evaluation Kits... 24
3.2 Hardware Board Setup...27
3.3 Lab Software Implementation.. 46
3.4 Monitoring Feedback or Control Variables... 55
3.5 Running the Project Incrementally Using Different Build Levels.. 60

4 Building a Custom Board...84
4.1 Building a New Custom Board... 84
4.2 Supporting New BLDC Motor Driver Board..98
4.3 Porting Reference Code to New C2000 MCU..101

A Appendix A. Motor Control Parameters...104
References..119
Revision History.. 120

List of Figures
Figure 2-1. The Interaction Between the Rotating Stator Flux, and the Rotor Flux Produces a Torque......................................4
Figure 2-2. Sensorless FOC Structure of an PMSM System...5
Figure 2-3. Definitions of Coordinate Reference Frames for PMSM Modeling..5
Figure 2-4. Flux and Torque are Independently Controlled in DC Motor Model.. 7
Figure 2-5. Stator Current Space Vector and its Component in (a,b,c) Frame..8
Figure 2-6. Stator Current Space Vector in the Stationary Reference Frame... 9
Figure 2-7. Stator Current Space Vector in The d,q Rotating Reference Frame... 9
Figure 2-8. Basic Scheme of FOC for AC Motor... 10
Figure 2-9. Current, Voltage and Rotor Flux Space Vectors in the (d, q) Rotating Reference Frame....................................... 11
Figure 2-10. Sensorless FOC of PMSM Using eSMO With Flying Start (FS)... 12
Figure 2-11. Sensorless FOC of PMSM Using eSMO With FWC and MTPA.. 13
Figure 2-12. Sensorless FOC of PMSM Using FAST With Flying Start (FS)...13
Figure 2-13. Sensorless FOC of PMSM Using FAST With FWC and MTPA...14
Figure 2-14. Block Diagram of eSMO With PLL for a PMSM.. 14
Figure 2-15. Block Diagram of Traditional Sliding Mode Observer..15
Figure 2-16. Block Diagram of Phase Locked Loop Position Tracker... 16
Figure 2-17. Simplified Block Diagram of Phase Locked Loop Position Tracker...17
Figure 2-18. Equivalent Circuit of an IPM Synchronous Motor..18
Figure 2-19. IPMSM Control Operation Regions... 19
Figure 2-20. Block Diagram of Field-Weakening and Maximum Torque per Ampere Control... 21
Figure 2-21. Current Phasor Diagram of an IPMSM During FW and MTPA..21

www.ti.com Table of Contents

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 1

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Figure 2-22. Flowchart for an InstaSPIN-FOC Project With FW and MTPA..22
Figure 2-23. Flying Start Control Block Diagram... 23
Figure 2-24. Flying Start Module Program Flowchart.. 24
Figure 3-1. F280025C LaunchPad Board Overview and Switches Setting... 28
Figure 3-2. F280039C LaunchPad Board Overview and Switches Setting... 29
Figure 3-3. F2800137 LaunchPad Board Overview and Switches Setting..30
Figure 3-4. F28002x controlCARD and Switches Setting..31
Figure 3-5. F280039C controlCARD and Switches Setting... 32
Figure 3-6. F2800137 controlCARD and Switches Setting..33
Figure 3-7. TMDSADAP180TO100 Adapter and Switches Setting... 34
Figure 3-8. LAUNCHXL-F280025C Connected to the DRV8329AEVM and DAC128S085EVM.. 35
Figure 3-9. LAUNCHXL-F280025C Connected to the DRV8329AEVM and DAC128S085EVM, Side View............................ 36
Figure 3-10. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-DRV8323RH and the

DAC128S085EVM... 37
Figure 3-11. LAUNCHXL-F280025C Board Modifications For Connecting BOOSTXL-DRV Board.. 37
Figure 3-12. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-DRV8323RS and

DAC128S085EVM... 38
Figure 3-13. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the DRV8353RS-EVM and DAC128S085EVM..... 39
Figure 3-14. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-3PHGANINV and

DAC128S085EVM... 40
Figure 3-15. LAUNCHXL-F280025C Connected to the DRV8316 REVM and DAC128S085EVM... 41
Figure 3-16. TMDSHVMTRINSPIN Connected to the TMDSCNCD280025C, TMDSCNCD280039C, or

TMDSCNCD2800137 with TMDSADAP180TO100... 42
Figure 3-17. TMDSHVMTRINSPIN Kit Jumpers and Connectors Diagram.. 44
Figure 3-18. Select the Right Build Configurations within CCS... 49
Figure 3-19. Select the Desired Pre-define Symbols in Project Properties... 49
Figure 3-20. Project Structure Overview..50
Figure 3-21. Project Explorer View of the Example Lab.. 51
Figure 3-22. Project Software Flowchart Diagram...52
Figure 3-23. DATALOG Module Block Diagram...55
Figure 3-24. Graph window settings.. 56
Figure 3-25. PWMDAC Module Block Diagram...57
Figure 3-26. External RC Low-Lass Filter Connecting to a PWM Pin of the C2000 MCU...57
Figure 3-27. DAC128S Module Block Diagram... 58
Figure 3-28. DAC128S085EVM Evaluation Board.. 58
Figure 3-29. Build Level 1 Software Block Diagram - Offset Validation... 60
Figure 3-30. Build Level 1: Variables in Expressions Window...63
Figure 3-31. Build Level 1: PWM Output Waveforms.. 64
Figure 3-32. Build Level 2 Software Block Diagram - Open Loop Control...64
Figure 3-33. Build Level 2: Variables in Expressions Window...68
Figure 3-34. Build Level 2: Current Protection Setting.. 69
Figure 3-35. Build Level 2: Motor Phase Current Waveforms... 69
Figure 3-36. Build Level 2: Motor Phase Voltage Waveforms Using Common SVM Mode...69
Figure 3-37. Build Level 2: Motor Phase Voltage Waveforms Using Minimum SVM Mode...70
Figure 3-38. Build Level 2: Motor Rotor Angle and Phase Current Waveforms.. 70
Figure 3-39. Build Level 2: Motor Phase Current Waveforms With Graph Tool...71
Figure 3-40. Build Level 2: Motor Phase Voltage Waveforms With Graph Tool...71
Figure 3-41. Build Level 2: Motor Rotor Angle Waveforms With Graph Tool...72
Figure 3-42. Build Level 3 Software Block Diagram - Current Close Loop Control... 73
Figure 3-43. Build Level 3: Variables in Expressions Window...74
Figure 3-44. Build Level 3: Motor Rotor Angle and Phase Current Waveforms on Oscilloscope.. 75
Figure 3-45. Build Level 4 Software Block Diagram - Speed and Current Close Loop Control...75
Figure 3-46. Build Level 4: Variables in Expressions Window...78
Figure 3-47. Build Level 4: Rotor Angle with FAST, Phase Current Waveforms at Forward Move..79
Figure 3-48. Build Level 4: Rotor Angle with FAST and eSMO, Phase Current Waveforms at Forward Rotation.................... 80
Figure 3-49. Build Level 4: Rotor Angle With FAST and eSMO, Phase Current Waveforms at Reversal Rotation...................80
Figure 3-50. Build Level 4: Rotor Angle with FAST and Encoder, Phase Current Waveforms at Forward Rotation................. 81
Figure 3-51. Build Level 4: Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Forward Rotation............ 82
Figure 3-52. Build Level 4: Motor Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Reversal

Rotation..82
Figure 3-53. Build Level 4: Rotor Angle with eSMO and Encoder, Phase Current Waveforms at Forward Rotation................ 83
Figure 4-1. HAL Configuration and Motor Control Setting Block Diagram...84
Figure 4-2. PWM Connection Diagram..86

Table of Contents www.ti.com

2 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Figure 4-3. ADC Connection Diagram... 88
Figure 4-4. CMPSS Connection Diagram..90

List of Tables
Table 3-1. Motor Drive Evaluation Kits Supported by Motor Control SDK... 25
Table 3-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors.. 26
Table 3-3. Key Jumpers, Connectors Explanation...45
Table 3-4. The Supporting Algorithms, Functions and Motors Matrix in Example Lab.. 48
Table 3-5. Using Motor Control Modules in Lab Project.. 53
Table 3-6. Motor Control Modules Used per Incremental Build... 54
Table 3-7. Supporting Estimator Algorithms in Lab Project... 55
Table 3-8. Hardware Changes Required for DAC128S085EVM Usage ... 59

Trademarks
C2000™, FAST™, InstaSPIN™, InstaSPIN-FOC™, Code Composer Studio™, LaunchPad™, NexFET™, and
BoosterPack™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

1 Introduction
The Universal Motor Control Lab project described in this guide is intended for you to not only experiment with
various motor control algorithms but also to use as a reference for your own design. The universal motor control
solution, as well as the lab project, is located within the MotorControl SDK.

The Universal Motor Control Lab project provides an example using the F28002x, F28003x, and F280013x
series C2000 MCU. This is a single project with build examples for different Sensorless (FAST™, eSMO,
InstaSPIN™-BLDC) and Sensored (Incremental Encoder, Hall) motor control techniques (FOC, Trapezoidal), with
included system features and debug interfaces that can be used across a variety of three-phase inverter motor
evaluation kits.

The FAST library (which is used to estimate the motor Flux, Angle, Speed, and Torque) is implemented with
InstaSPIN-FOC™ in this Universal Motor Control Lab project. This library enables the use of the FAST observer
for InstaSPIN-FOC with FPU enabled and C2000Ware-MotorControl-SDK supported C2000 devices. The user
no longer needs to use a C2000 device with special ROM content in order to use FAST or InstaSPIN-FOC.

In this user's guide you will learn how to modify the user_mtr1.h file, which is the header file that stores all
of the user parameters. Some of these parameters can be manipulated through CCS during run-time, but the
parameters must be updated in the user_mtr1.h file to be saved permanently in your project. You will learn how
to migrate the lab to your own hardware board, and port the lab project to the other C2000 MCU controllers by
modifying the hal.h and hal.c files.

The lab project provides several interface functions to start/stop the motor and set the reference speed by using
push a button, potentiometer, or CAN interface.

The Motor Control Universal Lab project is built within the MotorControl SDK folder and additionally uses
files from C2000Ware. The MotorControl SDK software includes firmware that runs on C2000 motor control
evaluation modules (EVMs) and TI designs (TIDs). A copy of C2000Ware is provided as part of the MotorControl
SDK and offers various projects, ranging from device-specific drivers and support software to complete example
system applications.

The Universal MotorControl Lab requires:

• Code Composer Studio™ v12.0.0 or newer
• C2000 Compiler v22.6.0 LTS or newer
• C2000Ware MotorControl SDK V4.01.00 or newer

www.ti.com Trademarks

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 3

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

2 Motor Control Theory
Permanent Magnet Synchronous motor (PMSM) has a wound stator, a permanent magnet rotor assembly and
internal or external devices to sense rotor position. The sensing devices provide position feedback for adjusting
frequency and amplitude of stator voltage reference properly to maintain rotation of the magnet assembly. The
combination of an inner permanent magnet rotor and outer windings offers the advantages of low rotor inertia,
efficient heat dissipation, and reduction of the motor size.

• Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a constant
rotor flux. This rotor flux usually has a constant magnitude. The stator windings when energized create
a rotating electromagnetic field. To control the rotating magnetic field, it is necessary to control the stator
currents.

• The actual structure of the rotor varies depending on the power range and rated speed of the machine.
Permanent magnets are suitable for synchronous machines ranging up-to a few Kilowatts. For higher power
ratings the rotor usually consists of windings in which a DC current circulates. The mechanical structure of
the rotor is designed for number of poles desired, and the desired flux gradients desired.

• The interaction between the stator and rotor fluxes produces a torque. Since the stator is firmly mounted to
the frame, and the rotor is free to rotate, the rotor will rotate, producing a useful mechanical output as shown
in Figure 2-1.

• The angle between the rotor magnetic field and stator field must be carefully controlled to produce maximum
torque and achieve high electromechanical conversion efficiency. For this purpose a fine tuning is needed
after closing the speed loop using sensorless algorithm to draw minimum amount of current under the same
speed and torque conditions.

• The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field; otherwise
the rotor will experience rapidly alternating positive and negative torque. This will result in less than optimal
torque production, and excessive mechanical vibration, noise, and mechanical stresses on the machine
parts. In addition, if the rotor inertia prevents the rotor from being able to respond to these oscillations, the
rotor will stop rotating at the synchronous frequency, and respond to the average torque as seen by the
stationary rotor: Zero. This means that the machine experiences a phenomenon known as pull-out. This is
also the reason why the synchronous machine is not self starting.

• The angle between the rotor field and the stator field must be equal to 90ºC to obtain the highest mutual
torque production. This synchronization requires knowing the rotor position to generate the right stator field.

• The stator magnetic field can be made to have any direction and magnitude by combining the contribution of
different stator phases to produce the resulting stator flux.

Figure 2-1. The Interaction Between the Rotating Stator Flux, and the Rotor Flux Produces a Torque

Motor Control Theory www.ti.com

4 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

2.1 Mathematical Model and FOC Structure of PMSM
The FOC structure for a PMSM is illustrated in Figure 2-2. In this system, the eSMO is used for achieving
the sensorless control an IPMSM system, and the eSMO model is designed by utilizing the back EMF model
together with a PLL model for estimating the rotor position and speed.

+

Space

Vector

PWM

V�
*

w
*

3-phase

Inverter

PWM1A

PWM1B

PWM2A

PWM2B

PWM3A

PWM3B

d-q

�-�

V�
* Vd

*

Vq
*

id
*

iq
*

PI

PI

-

a-b-c

�-� d-q

�-�

eSMO

+

PLL

PI

FWC

+

MTPA

+

-

+

-

�e
 ^

	e
 ^

id

iq

iq

id

Vdc

i

i�

ia

ib

ic

we
 ^

we
 ^

Pump

Figure 2-2. Sensorless FOC Structure of an PMSM System

An IPMSM consists of a three-phase stator winding (a, b, c axes), and permanent magnets (PM) rotor for
excitation. The motor is controlled by a standard three-phase inverter. An IPMSM can be modeled by using
phase a-b-c quantities. Through proper coordinate transformations, the dynamic PMSM models in the d-q
rotor reference frame and the α-β stationary reference frame can be obtained. The relationship among these
reference frames are illustrated in Equation 1. The dynamic model of a generic PMSM can be written in the d-q
rotor reference frame as:vdvq = Rs+ pLd −ωeLqωeLd Rs+ pLq idiq + 0ωeλpm (1)

Where vd and vq are the q-axis and d-axis stator terminal voltages, respectively; id and iq are the d-axis and
q-axis stator currents, respectively; Ld and Lq are the q-axis and d-axis inductances, respectively, p is the
derivative operator, a short notation of ddt ; λpm is the flux linkage generated by the permanent magnets, Rs is the
resistance of the stator windings; and ωe is the electrical angular velocity of the rotor.

N

S

�e =�et

Vs�
 a

b

c

�

�

dq
Vs

Vs�

Is�

Is� es�

es	
es

Is

Figure 2-3. Definitions of Coordinate Reference Frames for PMSM Modeling

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 5

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

By using the inverse Park transformation as shown in Figure 2-3, the dynamics of the PMSM can be modeled in
the α-β stationary reference frame as:vαvβ = Rs+ pLd ωe Ld− Lq−ωe Ld− Lq Rs+ pLq iαiβ + eαeβ (2)

Where the ea and eβ are components of extended electromotive force (EEMF) in the α-β axis and can be defined
as: eαeβ = λpm+ Ld− Lq id ωe −sin θecos θe (3)

According to Equation 2 and Equation 3, the rotor position information can be decoupled from the inductance
matrix by means of the equivalent transformation and the introduction of the EEMF concept, so that the EEMF
is the only term that contains the rotor pole position information. And then the EEMF phase information can be
directly used to realize the rotor position observation. Rewrite the IPMSM voltage equation Equation 4 as a state
equation using the stator current as a state variable:i̇αi̇β = 1Ld −Rs −ωe Ld− Lqωe Ld− Lq −Rs iαiβ + 1Ld Vα− eαVβ− eβ (4)

Since the stator current is the only physical quantity that can be directly measured, the sliding surface is selected
on the stator current path:

S x = iα− iαiβ− iβ = i αi β (5)

where iα and iβ are the estimated currents, the superscript ^ indicates the estimated value, the superscript
“˜” indicates the variable error which refers to the difference between the observed value and the actual
measurement value.

2.2 Field Oriented Control of PM Synchronous Motor
To achieve better dynamic performance, a more complex control scheme needs to be applied, to control
the PM motor. With the mathematical processing power offered by the microcontrollers, we can implement
advanced control strategies, which use mathematical transformations to decouple the torque generation and the
magnetization functions in PM motors. Such de-coupled torque and magnetization control is commonly called
rotor flux oriented control, or simply Field Oriented Control (FOC).

In a direct current (DC) Motor, the excitation for the stator and rotor is independently controlled, the produced
torque and the flux can be independently tuned as shown in Figure 2-4. The strength of the field excitation
(for example, the magnitude of the field excitation current) sets the value of the flux. The current through the
rotor windings determines how much torque is produced. The commutator on the rotor plays an interesting part
in the torque production. The commutator is in contact with the brushes, and the mechanical construction is
designed to switch into the circuit the windings that are mechanically aligned to produce the maximum torque.
This arrangement then means that the torque production of the machine is fairly near optimal all the time. The
key point here is that the windings are managed to keep the flux produced by the rotor windings orthogonal to
the stator field.

To achieve better dynamic performance, a more complex control scheme needs to be applied, to control
the PM motor. With the mathematical processing power offered by the microcontrollers, we can implement
advanced control strategies, which use mathematical transformations to decouple the torque generation and the
magnetization functions in PM motors. Such de-coupled torque and magnetization control is commonly called
rotor flux oriented control, or simply Field Oriented Control (FOC).

Motor Control Theory www.ti.com

6 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Figure 2-4. Flux and Torque are Independently Controlled in DC Motor Model

The goal of the FOC (also called vector control) on synchronous and asynchronous machine is to be able to
separately control the torque producing and magnetizing flux components. FOC control will allow us to decouple
the torque and the magnetizing flux components of stator current. With decoupled control of the magnetization,
the torque producing component of the stator flux can now be thought of as independent torque control. To
decouple the torque and flux, it is necessary to engage several mathematical transforms, and this is where
the microcontrollers add the most value. The processing capability provided by the microcontrollers enables
these mathematical transformations to be carried out very quickly. This in turn implies that the entire algorithm
controlling the motor can be executed at a fast rate, enabling higher dynamic performance. In addition to the
decoupling, a dynamic model of the motor is now used for the computation of many quantities such as rotor flux
angle and rotor speed. This means that their effect is accounted for, and the overall quality of control is better.

According to the electromagnetic laws, the torque produced in the synchronous machine is equal to vector cross
product of the two existing magnetic fields as Equation 6.

τem = B stator × B rotor (6)

This expression shows that the torque is maximum if stator and rotor magnetic fields are orthogonal meaning if
we are to maintain the load at 90°. If we are able to ensure this condition all the time, if we are able to orient the
flux correctly, we reduce the torque ripple and we ensure a better dynamic response. However, the constraint is
to know the rotor position: this can be achieved with a position sensor such as incremental encoder. For low-cost
application where the rotor is not accessible, different rotor position observer strategies are applied to get rid of
position sensor.

In brief, the goal is to maintain the rotor and stator flux in quadrature: the goal is to align the stator flux with
the q axis of the rotor flux, for example, orthogonal to the rotor flux. To do this, the stator current component in
quadrature with the rotor flux is controlled to generate the commanded torque, and the direct component is set to
zero. The direct component of the stator current can be used in some cases for field weakening, which has the
effect of opposing the rotor flux, and reducing the back-emf, which allows for operation at higher speeds.

The Field Orientated Control consists of controlling the stator currents represented by a vector. This control is
based on projections which transform a three phase time and speed dependent system into a two co-ordinate (d
and q co-ordinates) time invariant system. These projections lead to a structure similar to that of a DC machine
control. Field orientated controlled machines need two constants as input references: the torque component
(aligned with the q co-ordinate) and the flux component (aligned with d co-ordinate). As Field Orientated Control
is simply based on projections, the control structure handles instantaneous electrical quantities. This makes
the control accurate in every working operation (steady state and transient) and independent of the limited
bandwidth mathematical model. The FOC thus solves the classic scheme problems, in the following ways:

• The ease of reaching constant reference (torque component and flux component of the stator current)
• The ease of applying direct torque control because in the (d, q) reference frame the expression of the torque

is defined in Equation 7.τem ∝ ψR × isq (7)

By maintaining the amplitude of the rotor flux (ψR) at a fixed value we have a linear relationship between torque
and torque component (iSq). We can then control the torque by controlling the torque component of stator current
vector.

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 7

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Space Vector Definition and Projection

The 3-phase voltages, currents and fluxes of AC-motors can be analyzed in terms of complex space vectors.
With regard to the currents, the space vector can be defined as follows. Assuming that ia, ib, ic are the
instantaneous currents in the stator phases, then the complex stator current vector is defined in Equation 8.is = ia+ αib+ α2ic (8)

where α = ej23π and α2 = ej43π represent the spatial operators.

Figure 2-5 shows the stator current complex space vector.

Figure 2-5. Stator Current Space Vector and its Component in (a,b,c) Frame

Where (a,b,c) are the three phase system axes. This current space vector depicts the three phase sinusoidal
system. It still needs to be transformed into a two time invariant co-ordinate system. This transformation can be
split into two steps:
• a, b α,β (Clarke transformation) which outputs a 2-coordinate time-variant system
• α,β d, q (Park transformation) which outputs a 2-coordinate time-invariant system

The a, b α,β Clarke Transformation

Motor Control Theory www.ti.com

8 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The space vector can be reported in another reference frame with only two orthogonal axis called (α, β).
Assuming that the axis a and the axis αlpha are in the same direction we have the following vector diagram as
shown in Figure 2-6.

Figure 2-6. Stator Current Space Vector in the Stationary Reference Frame

The projection that modifies the 3-phase system into the (α, β) 2-dimension orthogonal system is presented in
Equation 9.isα = iaisβ = 13 ia+ 23 ib (9)

The two phase (α, β) currents are still depends on time and speed.

The α,β d, q Park Transformation

This is the most important transformation in the FOC. In fact, this projection modifies a 2-phase orthogonal
system (α, β) in the (d, q) rotating reference frame. If we consider the d axis aligned with the rotor flux, Figure
2-7 shows the relationship for the current vector from the two reference frame.

Figure 2-7. Stator Current Space Vector in The d,q Rotating Reference Frame

The flux and torque components of the current vector are determined by Equation 10.isd = isαcos θ + isβsin θisq = − isαsin θ + isβcos θ (10)

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 9

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

where θ is the rotor flux position

These components depend on the current vector (α, β) components and on the rotor flux position; if we know
the right rotor flux position then, by this projection, the d,q component becomes a constant. Two phase currents
now turn into dc quantity (time-invariant). At this point the torque control becomes easier where constant isd (flux
component) and isq (torque component) current components controlled independently.

The Basic Scheme of FOC for AC Motor

Figure 2-8 summarizes the basic scheme of torque control with FOC:

Figure 2-8. Basic Scheme of FOC for AC Motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module. The
outputs of this projection are designated isα and isβ. These two components of the current are the inputs of the
Park transformation that gives the current in the d,q rotating reference frame. The isd and isq components are
compared to the references isdref (the flux reference component) and isqref (the torque reference component). At
this point, this control structure shows an interesting advantage: it can be used to control either synchronous or
induction machines by simply changing the flux reference and obtaining rotor flux position. As in synchronous
permanent magnet a motor, the rotor flux is fixed determined by the magnets; there is no need to create one.
Hence, when controlling a PMSM, isdref should be set to zero. As an AC induction motor needs a rotor flux
creation to operate, the flux reference must not be zero. This conveniently solves one of the major drawbacks
of the classic control structures: the portability from asynchronous to synchronous drives. The torque command
isqref could be the output of the speed regulator when we use a speed FOC. The outputs of the current regulators
are Vsdref and Vsqref; they are applied to the inverse Park transformation.

Motor Control Theory www.ti.com

10 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The outputs of this projection are Vsαref and Vsβref which are the components of the stator vector voltage in the
(α, β) stationary orthogonal reference frame. These are the inputs of the Space Vector PWM. The outputs of this
block are the signals that drive the inverter. Note that both Park and inverse Park transformations need the rotor
flux position. Obtaining this rotor flux position depends on the AC machine type (synchronous or asynchronous
machine).

Rotor Flux Position

Knowledge of the rotor flux position is the core of the FOC. In fact if there is an error in this variable the rotor flux
is not aligned with d-axis and isd and isq are incorrect flux and torque components of the stator current. Figure
2-9 shows the (a, b, c), (α, β) and (d, q) reference frames, and the correct position of the rotor flux, the stator
current and stator voltage space vector that rotates with d,q reference at synchronous speed.

Figure 2-9. Current, Voltage and Rotor Flux Space Vectors in the (d, q) Rotating Reference Frame

The measure of the rotor flux position is different if we consider synchronous or asynchronous motor:

• In the synchronous machine the rotor speed is equal to the rotor flux speed. Then θ (rotor flux position) is
directly measured by position sensor or by integration of rotor speed.

• In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip speed), then
it needs a particular method to calculate θ. The basic method is the use of the current model which needs two
equations of the motor model in d, q reference frame.

Theoretically, the field oriented control for the PMSM drive allows the motor torque be controlled independently
with the flux like DC motor operation. In other words, the torque and flux are decoupled from each other.
The rotor position is required for variable transformation from stationary reference frame to synchronously
rotating reference frame. As a result of this transformation (so called Park transformation), q-axis current will
be controlling torque while d-axis current is forced to zero. Therefore, the key module of this system is the
estimation of rotor position using enhance Sliding-Mode Observer (eSMO) or FAST estimator.

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 11

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Figure 2-10 shows the overall block diagram of sensorless FOC of a PMSM motor using eSMO with flying start
in this document.

Figure 2-11 shows the overall block diagram of sensorless FOC of a PMSM motor using eSMO with field
weakening control (FWC) and maximum torque per ampere (MTPA) in this document.

Figure 2-13 shows the overall block diagram of sensorless FOC of a PMSM motor using FAST with flying start in
this document.

Figure 2-13 shows the overall block diagram of sensorless FOC of a PMSM motor using FAST with field
weakening control (FWC) and maximum torque per ampere (MTPA) in this document.

SVM

Iq
PI

Speed
PI

INV
PARK

CLARKE

PARK

Id
PI

eSMO

PWM
Driver

ADC
Driver

HAL_writePwmData

+
+

Vq

Vd

Vα_out

Vβ_out

Ta
Tb
Tc

Ia
Ib
Ic

Vbus

Vα_in

Vβ_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

Iα_in

Iβ_in

Rs
~

ys
~

Lsd
~

Lsq
~

q
~

w~

y~

w~

y~

Irated
~

q
~

q
~

w~

HAL_readAdcData

q
~

Volt_Rec

Traj
Ramp

Angle

Speed

Flux

FS

SpdRef

Enable_FS

w~
User_IdRef

Figure 2-10. Sensorless FOC of PMSM Using eSMO With Flying Start (FS)

Motor Control Theory www.ti.com

12 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

SVM

Iq
PI

Speed
PI

INV
PARK

CLARK
E

PARK

Id
PI

Traj
Ramp

eSMO

PWM
Driver

ADC
Driver

HAL_writePwmData

+
+

Vq

Vd

Vα_out

Vβ_out

Ta
Tb
Tc

Ia
Ib
Ic

Vbus

Vα_in

Vβ_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

Iα_in

Iβ_in

Angle

Speed

Flux

Rs
~

ys
~

Lsd
~

Lsq
~

q
~

w~

y~

w~

y~

Irated
~

q
~

q
~

w~

Is_ref

HAL_readAdcData

ISC

FWC

q
~

SpdRef

y~

Lq

Ld

Vs

Vref

θ1

θ2

MTPA

Volt_Rec

Figure 2-11. Sensorless FOC of PMSM Using eSMO With FWC and MTPA

SVM

Iq
PI

Speed
PI

INV
PARK

CLARK
E

CLARK
E

PARK

Id
PI

Traj
Ramp

FAST™ Estimator
Flux, Angle, Speed, Torque

Motor Parameters ID

PWM
Driver

ADC
Driver

HAL_writePwmData

+
+

Vq

Vd

Vα_out

Vβ_out

Ta
Tb
Tc

Ia
Ib
Ic

Va
Vb
Vc

Vbus

Vα_in

Vβ_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

Iα_in

Iβ_in

Angle

Speed

Flux

Torque

EST_run

q
~

w~

t~

y~

t~
w~

y~

Irated
~

q
~

q
~

w~

HAL_readAdcData

FS

q
~

SpdRef

Enable_FS

w~ User_IdRef

Enable Motor Identification

Enable Rs Online Recalibration

Rs
~

ys
~

Lsd
~

Lsq
~

Enable Force Angle Startup

Figure 2-12. Sensorless FOC of PMSM Using FAST With Flying Start (FS)

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 13

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

SVM

Iq
PI

Speed
PI

INV
PARK

CLARKE

CLARKE

PARK

Id
PI

Traj
Ramp

FAST™ Estimator
Flux, Angle, Speed, Torque

Motor Parameters ID

PWM
Driver

ADC
Driver

HAL_writePwmData

+
+

Vq

Vd

Vα_out

Vβ_out

Ta
Tb
Tc

Ia
Ib
Ic

Va
Vb
Vc

Vbus

Vα_in

Vβ_in

Iq_ref

Iq

Id_ref

Id

wref

Id

Iq

Iα_in

Iβ_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable Rs Online Recalibration

EST_run

R
s

~

ys
~

Lsd
~

Lsq
~

q
~

w~

t~

y~

t~
w~

y~

Irated
~

q
~

q
~

w~

Is_ref

Enable Force Angle Startup

HAL_readAdcData

ISC

FWC

q
~

SpdRef

y~

Lq

Ld

Vs

Vref

θ1

θ2

MTPA

Figure 2-13. Sensorless FOC of PMSM Using FAST With FWC and MTPA

2.3 Sensorless Control of PM Synchronous Motor
In home appliance applications, if the mechanical sensor is used, it will cause increasing cost, size, and reliability
problems. To overcome these problems, sensorless control methods are implemented. Several estimation
methods to get the rotor speed and position information without mechanical position sensor. The sliding
mode observer (SMO) is commonly utilized due to its various attractive features including reliability, desired
performance, and robustness against system parameter variations.
2.3.1 Enhanced Sliding Mode Observer with Phase Locked Loop

Model-based method is used to achieve position sensorless control of the IPMSM drive system when the motor
runs at middle or high speed. The model method estimates the rotor position by the back-EMF or the flux linkage
model. The sliding mode observer is an observer-design method based on sliding mode control. The structure of
the system is not fixed but purposefully changed according to the current state of the system, forcing the system
to move according to the predetermined sliding mode trajectory. Its advantages include fast response, strong
robustness, and insensitivity to both parameter changes and disturbances.

2.3.1.1 Design of ESMO for PMSM

The conventional PLL integrated into the SMO is shown in Figure 2-14.

Sliding Mode

Observer (SMO)

V�

Phase Locked

Loop (PLL)

V�

I�

I�

Vbus

e�
 ^

e�
 ^

�e

^

we
 ^

Figure 2-14. Block Diagram of eSMO With PLL for a PMSM

Motor Control Theory www.ti.com

14 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The traditional reduced-order sliding mode observer is constructed, which mathematical model is shown in
Figure 2-14 and the block diagram is shown in Figure 2-15.

i̇αi̇β = 1Ld −Rs −ωe Ld− Lqωe Ld− Lq −Rs iαiβ + 1Ld Vα− eα+ zαVβ− eβ+ zβ (11)

where zα and zβ are sliding mode feedback components and are defined as:

zαzβ = kαsign iα− iαkβsign iβ− iβ (12)

Where kα and kβ are the constant sliding mode gain designed by Lyapunov stability analysis. If kα and kβ are
positive and significant enough to guarantee the stable operation of the SMO, the kα and kβ should be large
enough to hold kα > max eα and kβ > max eβ .

Bang-Bang

Control

V�

w
^

V�

�I�

�I�

+ -Motor Model

Based Sliding

Mode Current

Observer

I�
 ^

I�
 ^

e�
 ^

e	
 ^

I
 I�

Z�

Z

Low

Pass

Filter

Flux

Angle

Calculator
+

+

Flux Angle

Correction

θe

^

Zβ

Zα

eα
 ^

eβ
 ^

+ -
θeu

^

Figure 2-15. Block Diagram of Traditional Sliding Mode Observer

The estimated value of EEMF in α-β axes (eα , eβ) can be obtained by low-pass filter from the discontinuous
switching signals zα and zα :eαeβ = ωcs+ ωc zαzβ (13)

Where ωc = 2πfc is the cutoff angular frequency of the LPF, which is usually selected according to the
fundamental frequency of the stator current.

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, defined as follow

θe = − tan−1 eαeβ (14)

Low pass filter removes the high-frequency term of the sliding mode function, which leads to occur phase delay
resulting. It can be compensated by the relationship between the cut-off frequency ωc and back EMF frequency ωe , which is defined as:

∆θe = − tan−1 ωeωc (15)

And then the estimated rotor position by using SMO method is:

θe = − tan−1 eαeβ + ∆θe (16)

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 15

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

In a digital control application, a time discrete equation of the SMO is needed. The Euler method is the
appropriate way to transform to a time discrete observer. The time discrete system matrix of Equation 17 in α-β
coordinates is given by Equation 17 as:

i̇α n+ 1i̇β n+ 1 = FαFβ i̇α ni̇β n + GαGβ Vα* n − eα n + zα nVβ* n − eβ n + zβ n (17)

Where the matrix F and G are given by Equation 18 and Equation 19 as:

FαFβ = e−RsLde−RsLq (18)

GαGβ = 1Rs 1− e−RsLd1− e−RsLq (19)

The time discrete form of Equation 13 is given by Equation 20 as:eα n+ 1eβ n+ 1 = eα neβ n + 2πfc zα n − eα nzβ n − eβ n (20)

2.3.1.2 Rotor Position and Speed Estimation With PLL

With the arc tangent method, the accuracy of the position and velocity estimations are affected due to the
existence of noise and harmonic components. To eliminate this issue, the PLL model can be used for velocity
and position estimations in the sensorless control structure of the IPMSM. The PLL structure used with SMO is
illustrated in Section 2.3.1.1. The back-EMF estimations eα and eβ can be used with a PLL model to estimate the
motor angular velocity and position as shown in Figure 2-16.

ε

e�
^

e�
^

+

÷
εn

eq
 ^

sign()

+

εerr
 �e

^

we
 ^

�e

^cos()

sin()�e

^

kp +
ki

s
e�

 ^
e�

 ^ +

1

s

Figure 2-16. Block Diagram of Phase Locked Loop Position Tracker

Since eα = Ecos θe , eβ = Esin θe and E = ωeλpm , the position error can be defined as:

ε = eβcos θe − eαsin θe = Esin θe cos θe − Ecos θe sin θe = Esin θe− θe (21)

Where E is the magnitude of the EEMF, which is proportional to the motor speed ωe . When θe− θe < π2 , the
Equation 21 could be simplified asε = E θe− θe (22)

Further, the position error after the normalization of the EEMF can be obtained:εn = θe− θe (23)

Motor Control Theory www.ti.com

16 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

According to the analysis, the simplified block diagram of the quadrature phaselocked loop position tracker
can be obtained as shown in Figure 2-17. The closed-loop transfer functions of the PLL can be expressed as
Equation 24:

θeθe = kps+ kis2 + kps+ ki = 2ξωns+ ωn2s2 + 2ξωns+ ωn2 (24)

where the kp and ki are the proportional and the integral gains of the standard PI regulator, its natural frequency ωn and the damping ratio ξ is given:

kp = 2ξωn, ki = ωn2 (25)

+ �n
 �e

 ^ ��e�e

Ki

Kp

we
 ^

-

+

+
Eex

1

s

1

s

Figure 2-17. Simplified Block Diagram of Phase Locked Loop Position Tracker

2.4 Hardware Prerequisites for Motor Drive
The algorithm for controlling the motor makes use of sampled measurements of the motor conditions, including
dc bus power supply voltage, the voltage on each motor phase, the current of each motor phase. There are
a few hardware dependent parameters that need to be set correctly to identify the motor properly and run the
motor effectively using Field Oriented Control (FOC). The following sections show how to calculate the current
scale value, voltage scale value and voltage filter pole for compressor and fan motors control with FAST or
eSMO.

2.4.1 Motor Phase Voltage Feedback

Motor phase voltage feedback is needed in the FAST estimator to allow the best performance at the widest
speed range, the phase voltages are measured directly from the motor phases instead of a software estimate.
The eSMO relies on software estimation values to represent the voltage phases without using the motor phase
voltage sensing circuit. This software value (USER_ADC_FULL_SCALE_VOLTAGE_V) depends on the circuit
that senses the voltage feedback from the motor phases. Figure 2-35 shows how the motor voltage is filtered
and scaled for the ADC input range using a voltage feedback circuit based on resistor dividers. The similar circuit
is used to measure all three of both compressor and fan motors, and dc bus.

The maximum phase voltage feedback measurable by the microcontroller in this reference design can be
calculated as given in Equation 92, considering the maximum voltage for the ADC input is 3.3 V.

2.5 Additional Control Features

2.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control

Permanent magnet synchronous motor (PMSM) is widely used in home appliance applications due to its high
power density, high efficiency, and wide speed range. The PMSM includes two major types: the surface-mounted
PMSM (SPM), and the interior PMSM (IPM). SPM motors are easier to control due to their linear relationship
between the torque and q-axis current. However, the IPMSM has electromagnetic and reluctance torques due
to a large saliency ratio. The total torque is non-linear with respect to the rotor angle. As a result, the MTPA
technique can be used for IPM motors to optimize torque generation in the constant torque region. The aim
of the field weakening control is to optimize to reach the highest power and efficiency of a PMSM drive. Field
weakening control can enable a motor operation over its base speed, expanding its operating limits to reach
speeds higher than rated speed and allow optimal control across the entire speed and voltage range.

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 17

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The voltage equations of the mathematical model of an IPMSM can be described in d-q coordinates as shown in
Equation 26 and Equation 27.

vd = Lddiddt + Rsid− pωmLqiq (26)

vq = Lqdiqdt + Rsiq+ pωmLdid+ pωmψm (27)

The dynamic equivalent circuit of an IPM synchronous motor is shown in Figure 2-18.

+

-

+

-

Rs

id

Ud

Ld

�mLqiq �mLdid

Lq

�m�m

Rs

iq

Uq

+ –

+

–

+

–

Figure 2-18. Equivalent Circuit of an IPM Synchronous Motor

The total electromagnetic torque generated by the IPMSM can be expressed as Equation 28 that the produced
torque is composed of two distinct terms. The first term corresponds to the mutual reaction torque occurring
between torque current iq and the permanent magnet ψm , while the second term corresponds to the reluctance
torque due to the differences in d-axis and q-axis inductance.

Te = 32p ψmiq+ Ld− Lq idiq (28)

In most applications, IPMSM drives have speed and torque constraints, mainly due to inverter or motor rating
currents and available DC link voltage limitations respectively. These constraints can be expressed with the
mathematical equations Equation 29 and Equation 30.

Ia = id2 + iq2 ≤ Imax (29)

Va = vd2 + vq2 ≤ Vmax (30)

Where Vmax and Imax are the maximum allowable voltage and current of the inverter or motor. In a two-level
three-phase Voltage Source Inverter (VSI) fed machine, the maximum achievable phase voltage is limited by the
DC link voltage and the PWM strategy. The maximum voltage is limited to the value as shown in Equation 31 if
Space Vector Modulation (SVPWM) is adopted.

vd2 + vq2 ≤ vmax = vdc3 (31)

Usually the stator resistance Rs is negligible at high speed operation and the derivate of the currents is zero in
steady state, thus Equation 32 is obtained as shown.

Ld2 id+ ψpmLd 2+ Lq2iq2 ≤ Vmaxωm (32)

Motor Control Theory www.ti.com

18 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The current limitation of Equation 29 produces a circle of radius Imax in the d-q plane, and the voltage limitation
of Equation 31 produces an ellipse whose radius Vmax decreases as speed increases. The resultant d-q plane
current vector must be controlled to obey the current and voltage constraints simultaneously. According to these
constraints, three operation regions for the IPMSM can be distinguished as shown in Figure 2-19.

І П Ш

Constant

Torque

Constant

Power

Constant

Voltage

ωb
 ωc

 ωm

Te

Figure 2-19. IPMSM Control Operation Regions

1. Constant Torque Region: MTPA can be implemented in this operation region to ensure maximum torque
generation.

2. Constant Power Region: Field weakening control must be employed and the torque capacity is reduced as
the current constraint is reached.

3. Constant Voltage Region: In this operation region, deep field weakening control keeps a constant stator
voltage to maximize the torque generation.

In the constant torque region, according to Equation 28, the total torque of an IPMSM includes the
electromagnetic torque from the magnet flux linkage and the reluctance torque from the saliency between Ld and Lq . The electromagnetic torque is proportional to the q-axis current iq , and the reluctance torque is proportional
to the multiplication of the d-axis current id , the q-axis current iq , and the difference between Ld and Lq .
Conventional vector control systems of a SPM motors only utilizes electromagnetic torque by setting the
commanded id to zero for non-field weakening modes. But an IPMSM will utilize the reluctance torque of the
motor, d-axis current should be controlled as well. The aim of the MTPA control is to calculate the reference
currents id and iq to maximize the ratio between produced electromagnetic torque and reluctance torque. The
relationship between id and iq , and the vectorial sum of the stator current Is is shown in the following equations.

Is = id2 + iq2 (33)Id = Iscosβ (34)Iq = Issinβ (35)

Where β is the stator current angle in the synchronous (d-q) reference frame. Equation 28 can be expressed as
Equation 36 where Is substituted for id and iq .
Equation 36 shows that motor torque depends on the angle of the stator current vector; as such:

Te = 32pIssinβ ψm+ Ld− Lq Iscosβ (36)

The maximum efficiency point can be calculated when the motor torque differential is equal to zero. The MTPA

point can be found when this differential, dTedβ is zero as given in Equation 37.

dTedβ = 32p ψmIscosβ+ Ld− Lq Is2cos 2β = 0 (37)

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 19

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Following, the current angle of the MTPA control can be derived as in Equation 38.

βmtpa = cos−1 −ψm+ ψm2 + 8* Ld − Lq 2*Is24* Ld − Lq *Is (38)

Thus, the effective d-axis and q-axis reference currents can be expressed by Equation 39 and Equation 40 using
the current angle of the MTPA control.Id = Is*cosβmtpa (39)Iq = Is*sinβmtpa (40)

However, as shown in Equation 38, the angle of the MTPA control, βmtpa is related to d-axis and q-axis
inductance. This means that the variation of inductance will impede the ability to find the optimal MTPA point.
To improve the efficiency of a motor drive, the d-axis and q-axis inductance should be estimated online, but
the parameters Ld and Lq are not easily measured online and are influenced by saturation effects. A robust
Look-Up Table (LUT) method ensures controllability under electrical parameter variations. Usually, to simplify
the mathematical model, the coupling effect between d-axis and q-axis inductance can be neglected. Thus,
assumes that Ld changes with id only, and Lq changes with iq only. Consequently, d- and q-axis inductance can
be modeled as a function of their d-q currents respectively, as shown in Equation 41 and Equation 42.Ld = f1 id, iq = f1 id (41)Lq = f2 iq, id = f2 iq (42)

To reduce the ISR calculation burden by simplifying Equation 38. The motor-parameter-based constant, Kmtpa is
expressed instead as Equation 44, where Kmtpa is computed in the background loop using the updated Ld and Lq .

Kmtpa = ψm4* Lq − Ld = 0.25* ψmLq − Ld (43)

βmtpa = cos−1 Kmtpa/Is− Kmtpa/Is 2+ 0.5 (44)

A second intermediate variable, Gmtpa described in Equation 45, is defined to further simplify the calculation.
Using Gmtpa , the angle of the MTPA control, βmtpa can be calculated as Equation 46. These two calculations are
performed in the ISR to achieve a real current angle βmtpa .Gmtpa = Kmtpa/Is (45)

βmtpa = cos−1 Gmtpa− Gmtpa2 + 0.5 (46)

In all cases, the magnetic flux can be weakened to extend the achievable speed range by acting on the direct
axis current id . As a consequence of entering this constant power operating region, field weakening control is
chosen instead of the MTPA control used in constant power and voltage regions. Since the maximum inverter
voltage is limited, PMSM motors cannot operate in such speed regions where the back-electromotive force,
almost proportional to the permanent magnet field and motor speed, is higher than the maximum output voltage
of the inverter. The direct control of magnet flux is not an option in PM motors. However, the air gap flux can be
weakened by the demagnetizing effect due to the d-axis armature reaction by adding a negative id .

Motor Control Theory www.ti.com

20 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Considering the voltage and current constraints, the armature current and the terminal voltage are limited as
Equation 29 and Equation 30. The inverter input voltage (DC-Link voltage) variation limits the maximum output
of the motor. Furthermore, the maximum fundamental motor voltage also depends on the PWM method used. In
Equation 32, the IPMSM has two factors: one is a permanent magnet value and the other is made by inductance
and current of flux.

Figure 2-20 shows the typical control structure is used to implement field weakening. βfw is the output of the
field weakening (FW) PI controller and generates the reference id and iq . Before the voltage magnitude reaches
its limit, the input of the PI controller of FW is always positive and therefore the output is always saturated at 0.

Speed

PI
�
�

�ref

Is_ref

Vs_ref

Vq

Vd

Vbus
FW

PI

Iq

PI

Iq_ref

Iq

Id_ref

Id

Vs

MTPA

Switching

ControlIs

Id

PI

Vq

Vd

LUT

�fw

�m

�mtpa

Kmtpa

Ld Lq

Figure 2-20. Block Diagram of Field-Weakening and Maximum Torque per Ampere Control

Figure 2-11 and Figure 2-13 show the implementation of FAST or eSMO-based FOC block diagram. The block
diagrams provide an overview of the FOC system's functions and variables. There are two control modules in
the motor drive FOC system: one is MTPA control and the other one is field weakening control. These two
modules generate current angle βmtpa and βfw , respectively, based on input parameters as show in Figure
2-21.

d

q

is_fw

is_mtpa

id_fw

iq_fw

id_mtpa

iq_mtpa

βfw
βmtpa

Figure 2-21. Current Phasor Diagram of an IPMSM During FW and MTPA

The switching control module is used to decide which angle should be applied, and then calculate the reference id and iq as shown in Equation 34 and Equation 35. The current angle is chosen as following Equation 47 and
Equation 48.β = βfw if βfw > βmtpa (47)β = βmpta if βfw < βmtpa (48)

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 21

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Figure 2-22 is the flowchart that shows the steps required to run InstaSPIN-FOC with FW and MPTA in the main
loop and interrupt.

Start of main ISR

Acknowledge ADC Interrupt

Read ADC Result

Remove ADC Offsets

ADC Offset

Calculation Complete?

Current Reconstruction

for Over-Modulation

Run ADC Offset Calculation

Enable PWM and

Set PWM duty to 50%

Run CLARK Transform on Current and

Voltage

Yes

Run Speed Trajectory

Get the reference speed

Speed Trajectory

Timer Out?

Yes

Run Estimator

Get the Id&Iq from PARK Transform in

Estimator

Run Speed PI Controller

Enable Speed Controller?

And Its Timer Out?

Yes

2

2

Write PWM compare Value

Set ADC Trigger

Run DataLog and PWMDAC (Options)

End of main ISR

Exit ADC interrupt

FW and MTPA

Timer Out?

Calculate Reference and Feedback Vector

Voltage

Run FW Control

Yes

Run MTPA

Get the current phase angle

Calculate the Reference Id and Iq

Update Id and Iq Reference for Rs Online

Calculate Maximum Output Voltage

Run Id and Iq Controller

Run IPARK Transform on Voltage

Run SVGEN

Run PWM compensation for Over

Modulation

Start of main loop

Initialize User Parameters for InstaSPIN

Set Driver Parameters

Enable System Flag?

Initialize FOC Modules and Estimator

Parameters

Set Interrupt Vectors and Enable Interrupt

for Controllers and Estimator

Yes

Calculate and Update MTPA Parameters

Enable MTPA

Parameters Update?

Yes

Set Reference to Speed Traj

Update Controller Parameters

Run Motor Control, Rs Online and Check

Fault

No

No

No

No

No

No

Figure 2-22. Flowchart for an InstaSPIN-FOC Project With FW and MTPA

2.5.2 Flying Start

Flying start is a feature that allows the drive to determine the speed and direction of a spinning motor and begin
the output voltage and frequency at that speed and direction. Without flying start, the drive will begin its output
at zero volts and zero speed and attempt to ramp to the commanded speed. If the inertia or direction of rotation
of a load requires the motor to produce a large amount of torque, excess current can result and overcurrent trips
might occur on the drive. These problems can be eliminated with flying start.

Flying start is the capacity to start control at any speed other than ZERO, which is an important function in
air-condition application for fan drive.

Motor Control Theory www.ti.com

22 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

When a motor is started in its normal mode, the control initially applies a frequency of 0 Hz and ramps to the
desired frequency. If the drive is started in this mode with the motor already spinning with non-zero frequency,
large currents are generated. An over current trip can result if the current limiter cannot react quickly enough.
Even if the current limiter is fast enough to prevent an over current trip, it can take an unacceptable amount of
time for synchronization to occur and for the motor to reach its desired frequency. In addition, larger mechanical
stress is placed on the application.

In flying start mode, the drive’s response to a start command is to synchronize with the motor’s speed (frequency
and phase) and voltage. The motor then accelerates to the commanded frequency. This process prevents an
over current trip and significantly reduces the time for the motor to reach its commanded frequency. Because the
drive synchronizes with the motor at its rotating speed and ramps to the proper speed, little or no mechanical
stress are present.

The flying start function implements an algorithm that searches for the rotor speed. The algorithm searches for a
motor voltage that corresponds with the excitation current applied to the motor

When the motor is spinning, the speed and position information can be estimated from the BEMF voltages.
Since the stator voltage is measured in InstaSPIN drive, the speed and position are easily obtained by switching
the inverter. A zero torque current is applied to the motor and the generated current and stator voltage is
measured, then InstaSPIN-FOC module uses these signals to estimate rotor position and speed.

The block diagram of FOC with flying start is shown in Figure 2-23, the flying start module outputs a flag to
enable or disable speed close loop control. A zero reference torque current is set and the speed PI controller
output is disabled while flying start is operating.

Speed PI Iq

PI

Id

PI

FS

speed_ref

Iq_ref = 0

Enable SpeedCtrl

User Id_ref

User Iq_ref

Enable FS

Vd

Vqspeed_est

FAST EST

PARK

�

�

I�

Iβ

I�

Iβ

V�Vβ Vbus

Figure 2-23. Flying Start Control Block Diagram

www.ti.com Motor Control Theory

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 23

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

As shown in Figure 2-24, the module routine disables speed close loop control, sets the reference Iq to zero, and
enables the FOC module during starting run the motor. After the phase currents and voltages are measured, the
routine runs InstaSPIN-FOC and the real motor speed can be estimated. The program re-enables speed closed
loop control and sets the speed reference value after flying start is completed.

Start?

Disable Speed Ctrl

Id=0, Iq=0

Enable InstaSPIN EST

Enable FS

Set Id=0, Iq=0

Disable Speed Ctrl

Read Speed_est

Check Time > Set

Time?

Speed_est <

Speed_fs_min

Set

Speed_int=Speed_est

Disable FS

Enable Speed Ctrl

Set Speed_int=0

End

Y
e
s

No

Y
e
s

N
o

Yes

No

No

start

Figure 2-24. Flying Start Module Program Flowchart

3 Running the Universal Lab on TI Hardware Kits

3.1 Supported TI Motor Evaluation Kits
The TMS320F28002x (F28002x), TMS320F28003x (F28003x), or TMS320F280013x (F280013x) is a member
of the C2000™ real-time Microcontroller family with IEEE 754 Floating-Point Unit (FPU) and Trigonometric Math
Unit (TMU). The user can use one of these LaunchPad™ development kits or controlCARDs with the relevant
motor drive evaluation board to evaluate this lab for motor control.

Running the Universal Lab on TI Hardware Kits www.ti.com

24 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-1 lists the current evaluation kits that are supported for this universal motor control lab project in
MotorControl SDK.

Table 3-1. Motor Drive Evaluation Kits Supported by Motor Control SDK
Motor Drive Evaluation Board C2000 MCU

Evaluation Module
Current Sensing
Topology

Rotor Position
Sensing Method Tested MotorsPart Number Description

DRV8329AEVM 4.5~60V, 30A
3-ph inverter
with CSD18536KTTT
NexFET™

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Single shunt dc-link
current

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors
based sensored-
FOC Sensorless
trapzoidalcontrol

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

BOOSTXL-
DRV8323RH

6~54V, 15A 3-
ph inverter with
CSD88599Q5DC
NexFET™ power
blocks

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

BOOSTXL-
DRV8323RS

6~54V, 15A 3-
ph inverter with
CSD88599Q5DC
NexFETTM power
blocks

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

DRV8316REVM 4.5~35V, 8A peak
current 3-ph inverter
integrated MOSFET

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Integrated CSAs for
three-phase low-side
current

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

DRV8353RS-EVM 9~95V, 15A 3-
ph inverter with
CSD19532Q5B

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 25

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-1. Motor Drive Evaluation Kits Supported by Motor Control SDK (continued)
Motor Drive Evaluation Board C2000 MCU

Evaluation Module
Current Sensing
Topology

Rotor Position
Sensing Method Tested MotorsPart Number Description

BOOSTXL-3PHGANI
NV

12~60V, 3.5A 3-ph
GaN inverter

LAUNCHXL-
F280025C
LAUNCHXL-
F280039C
LAUNCHXL-
F2800137

Three shunt-based
inline motor phase
current sensing

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC
Hall sensors based
sensored-FOC

LVSERVOMTR
(Encoder Embedded)
LVBLDCMTR (Hall
Sensors Embedded)

TMDSHVMTRINSPIN 400V, 10A 3-ph
inverter

TMDSCNCD280025C
,
TMDSCNCD280039C
,
TMDSCNCD2800137
, with
TMDSADAP180TO10
0

Three low-side
current shunt

FAST estimator
based sensorless-
FOC
eSMO observer
based sensorless-
FOC
QEP encoder based
sensored-FOC

HVPMSMMTR
(Encoder Embedded)
HVBLDCMTR (Hall
Sensors Embedded)

If the lab is set to use Encoder or Hall based sensored-FOC, it is important to ensure that the physical
connections are connected in the correct order. If the motor, encoder, or hall wires are connected in the wrong
order, the lab will not function properly, potentially resulting in the motor being unable to spin. For the motor
phase wires, it is important to ensure that the motor phases are connected to the right phase on the inverter
board. For the motors that are provided with the TI Motor Control Reference Kits, the correct phase connections
are provided as shown in Table 3-2.

For the encoder, it is important to ensure that A is connected to A, B to B, and I to I. For the Hall sensor, it is
important to ensure that A is connected to A, B to B, and C to C. Often +5V dc and ground connections are
required as well. If you are using Hall sensors or encoders that are different than the ones specifically listed
in Table 2-2, please refer to the users manual for the Hall sensor or encoder you are using to ensure that you
properly connect the wires.

It is important for the setup and configuration of the ENC module that the number of slots per rotation for the
encoder be provided. This allows the ENC module to correctly convert the encoder signal into an angle. The
USER_MOTOR1_NUM_ENC_SLOTS constant that is defined in the user_mtr1.h file needs to be updated to the
correct value for your encoder. If this value is not correct, the motor will spin faster or slower depending on the
value that was set. It is important to note that this value should be set to the number of slots on the encoder, not
the resulting number of counts after figuring the quadrature accuracy.

Table 3-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors
LVSERVOMTR LVBLDCMTR HVPMSMMTR HVBLDCMTR

Motor Phase Lines U BLACK (16AWG) YELLOW RED YELLOW

V RED (16AWG) RED BLUE/BLACK RED

W WHITE (16AWG) BLACK WHITE BLACK

Encoder GND (J12-1
of LAUNCHXL-
F280025C/39C/137)

BLACK (J4-1) N/A, Not support
for encoder based
sensored-FOC

BLACK Not support for
encoder based
sensored-FOC

+5V RED (J4-2) RED

I (1I, J12-3
of LAUNCHXL-
F280025C/39C/137)

BROWN (J4-3) YELLOW

B (1B, J12-4
of LAUNCHXL-
F280025C/39C/137)

ORANGE (J4-4) GREEN

A (1A, J12-5
of LAUNCHXL-
F280025C/39C/137)

BLUE (J4-1) BLUE

Running the Universal Lab on TI Hardware Kits www.ti.com

26 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-2. Motor Phase, Encoder, or Hall Sensors Connections for Reference Kits and Motors (continued)
LVSERVOMTR LVBLDCMTR HVPMSMMTR HVBLDCMTR

Hall Sensors
(LAUCHXL_F280013
7 only has J12, Hall
sensors share the J12
with Encoder)

GND BLACK (J10-1) BLACK Not support for
Hall sensor based
sensored-FOC

BLACK

+5V RED (J10-2) RED RED

A (2I, J13-3
of LAUNCHXL-
F280025C/39C)

GRAY-WHITE (J10-3) BLUE BLUE

B (2B, J13-4
of LAUNCHXL-
F280025C/39C)

GREEN-WHITE
(J10-4)

GREEN GREEN

C (2A, J13-5
of LAUNCHXL-
F280025C/39C)

GREEN (J10-5) WHITE WHITE

Get started with C2000™ Real-Time Control Microcontrollers (MCUs) to implement motor control.

1. Step 1: Order the desired motor drive evaluation board, C2000 MCU evaluation module, and motor as
shown in Table 3-1.

2. Step 2: Download the latest version of MotorControl SDK.
3. Step 3: Download the latest version of Code Composer Studio IDE.
4. Step 4: Follow the instructions in Section 3.2 to setup the hardware and run the example labs described in

the following sections.
5. Step 5: For answers to any design questions that you may have, you can search existing answers or ask

your own question using the TI C2000 E2E forum.

3.2 Hardware Board Setup
This section describes how to set up hardware boards for motor control when combining the motor driver
evaluation board with the C2000 development tools. The following sections show the detailed operation
procedure on different motor driver evaluation boards.

3.2.1 LAUNCHXL-F280025C Setup

LAUNCHXL-F280025C is a low-cost development board for the TI C2000 real-time microcontrollers series of
F28002x devices. This LaunchPad™ kit offers extra pins for development and supports the connection of two
BoosterPack™ plug-in modules.

• The hardware files are in the <install_location>\boards\LaunchPads\LAUNCHXL_F280025C folder
of C2000Ware.

• For more details about the LAUNCHXL-F280025C, see the F28002x Series LaunchPad™ Development Kit
User's Guide.

• Make sure that the switches on the LAUNCHXL-F280025C are set as described below shown in Figure 3-1.
– Install jumpers on JP1, JP2, JP3 and J101 for the power supply and debug JTAG. And jumpers on JP8 for

the power supply of DAC128S board if used.
– For S2, position the SEL1 (LEFT) switch UP (1) to route GPIO28 and GPIO29 to the BoosterPack

connector, and position the SEL2 (RIGHT) switch UP (1) to rout GPIO16 and GPIO17 to the virtual COM
port of the XDS110 debugger.

– For S3, position the SEL1(LEFT) switch DOWN to pull GPIO24 low to logic 0, and position the
SEL2(RIGHT) switch UP to pull GPIO32 high to logic 1 to put the F280025C into wait boot mode for
reducing the risk of connectivity issues or a previous loaded code execution.

– For S4, set S4 to DOWN (on), GPIO32 and GPIO33 are routed to the CAN transceiver to J14 CAN
interface if the pre-define symbols "CMD_CAN_EN" is set in project properties.

– For S5, position the QEP1 SEL(LEFT) switch DOWN to route GPIO44/37/43 to eQEP1 for the encoder
interface on J12, and position the QEP2 SEL (RIGHT) switch DOWN to route GPIO14/25/26 to eQEP2 for
the Hall sensor interface on J13.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 27

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/lvservomtr
https://www.ti.com/tool/lvbldcmtr
https://www.ti.com/tool/hvpmsmmtr
https://www.ti.com/tool/hvbldcmtr
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/CCSTUDIO
https://e2e.ti.com/support/microcontrollers/c2000-microcontrollers-group/c2000/f/c2000-microcontrollers-forum
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/lit/pdf/SPRUIW8
https://www.ti.com/lit/pdf/SPRUIW8
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Up

Right

GPIO24=0 (Left, Down),
GPIO32=1 (Right, up): Wait
boot mode

Isolated USB Interface
with voltage regulator

(USB101, U101)

USB Power Isolation
Header (JP1 – JP3)

JTAG/UART Isolation
Header (J101)40-pin Boosterpack

Connector Site 1
(J1 - J4)

VREFHI Header
(J15)

40-pin Boosterpack
Connector Site 2

(J5 - J8)

Encoder Interface CAN Interface
(J14)

S3, Boot Mode Select
Switch

F280025C Microcontoller
(U1)

Site 2 Power (JP8)

S5, QEP Select Switch

S2, UART Select Switch

S4, CAN Select Switch

Down: GPIO32/33 to J14
for CAN if
“CMD_CAN_EN” set

J12: QEP Encoder

Encoder Interface
J13: Hall Sensor

SEL1=1 (Left, Up), SEL2=1
(Right, up): GPIO16/17 to
XDS100 COM Port for SFRA

SEL1=1 (Left, Down):
GPIO44/37/43 to J12 for
QEP encoder
SEL2=1 (Right, Down):
GPIO14/25/26 to J13 for
hall sensor

Install Inverter board
on this site with right
direction

Add all jumpers on
JP1-JP3

Add all jumpers on JP8
for power of DAC board

Add all jumpers on J101
for cJTAG and UART of
XDS110

Figure 3-1. F280025C LaunchPad Board Overview and Switches Setting

3.2.2 LAUNCHXL-F280039C Setup

LAUNCHXL-F280039C is a low-cost development board for the TI C2000 real-time microcontrollers series of
F28003x devices. This LaunchPad™ kit offers extra pins for development and supports the connection of two
BoosterPack™ plug-in modules.

• The hardware files are in the <install_location>\boards\LaunchPads\LAUNCHXL_F280039C folder
of C2000Ware.

• For more details about the LAUNCHXL-F280039C, see the C2000™ F28003x Series LaunchPad™
Development Kit User's Guide.

Running the Universal Lab on TI Hardware Kits www.ti.com

28 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/lit/pdf/spruj31
https://www.ti.com/lit/pdf/spruj31
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

• Make sure that the switches on the LAUNCHXL-F280039C are set as described below shown in Figure 3-2.
– Install jumpers on JP1, JP2 and J101 for the power supply and debug JTAG. And install jumpers on JP8

for the power supply of DAC128S board if used.
– For S2, position the SEL1 (LEFT) switch UP (1) to route GPIO28 and GPIO29 to the BoosterPack

connector, and position the SEL2 (RIGHT) switch UP (1) to rout GPIO15 and GPIO56 to the virtual COM
port of the XDS110 debugger.

– For S3, position the GPIO24 (LEFT) switch DOWN to pull GPIO24 low to logic 0, and position the GPIO32
(RIGHT) switch UP to pull GPIO32 high to logic 1 to put the F280039C into wait boot mode to reduce the
risk of connectivity issues or a previous loaded code execution.

– For S4, set S4 to DOWN (on) to route GPIO4 and GPIO5 to the CAN transceiver interface J14 if the
pre-define symbol "CMD_CAN_EN" is set in the project properties. Set S4 to UP (off) to route GPIO4 and
GPIO 5 to the BoosterPack connectors otherwise.

– For S5, position the QEP1 SEL (LEFT) switch DOWN to route GPIO40/41/59 to the eQEP1 encoder
interface on J12 and position the QEP2 SEL (RIGHT) switch DOWN to route GPIO14/55/57 to the eQEP2
Hall sensor interface on J13.

Up

Right

GPIO24=0 (Left, Down),
GPIO32=1 (Right, up): Wait
boot mode

Isolated USB Interface
with voltage regulator

(USB101, U101)

USB Power Isolation
Header (JP1)

JTAG/UART Isolation
Header (J101)40-pin Boosterpack

Connector Site 1
(J1 - J4)

VREFHI Header
(J15)

40-pin Boosterpack
Connector Site 2

(J5 - J8)

Encoder Interface CAN Interface
(J14)

S3, Boot Mode Select
Switch

F280039C Microcontoller
(U1)

Site 2 Power (JP8)

S5, QEP Select Switch

S2, UART Select Switch

S4, CAN Select Switch

Down: GPIO4/5 to J14 for
CAN if “CMD_CAN_EN”
set

J12: QEP Encoder

Encoder Interface
J13: Hall Sensor

SEL1=1 (Left, Up), SEL2=1
(Right, up): GPIO16/17 to
XDS100 COM Port for SFRA

QEP1 SEL=0 (Left,
Down): GPIO40/41/59 to
J12 for QEP encoder
QEP2 SEL=0 (Right,
Down): GPIO14/55/57 to
J13 for hall sensor

Install Inverter board
on this site with right
direction

Add all jumpers on JP1

Add all jumpers on JP8
for power of DAC board

Add all jumpers on J101
for cJTAG and UART of
XDS110

5V & 3.3V Isolation
Header (JP2)

Add all jumpers on JP2

Figure 3-2. F280039C LaunchPad Board Overview and Switches Setting

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 29

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.3 LAUNCHXL-F2800137 Setup

LAUNCHXL-F2800137 is a low-cost development board for the TI C2000 real-time microcontrollers series of
F280013x devices. This LaunchPad™ kit offers extra pins for development and supports the connection of two
BoosterPack™ plug-in modules.

• The hardware files are in the <install_location>\boards\LaunchPads\LAUNCHXL_F2800137 folder
of C2000Ware.

• For more details about the LAUNCHXL-F2800137, see the C2000™ F2800137 Series LaunchPad™
Development Kit User's Guide.

• Make sure that the switches on the LAUNCHXL-F2800137 are set as described below shown in Figure 3-3.
– Install jumpers on JP1, JP2 and J101 for the power supply and debug JTAG. And install jumpers on JP8

for the power supply of DAC128S board if used.
– For S2, position the SEL1 switch UP (1) to route GPIO28 and GPIO29 to the BoosterPack connector.

There is only SFRA support on the LAUNCHXL-F2800137 with the BOOSTXL-3PHGANINV via the virtual
COM port of the XDS110 debugger by setting SEL1 to DOWN (0). The other kits need the GPIO29 to
enable the DRV device. This is due to the pin constraints on the LAUNCHXL-F2800137.

– For S3, position the GPIO24 (LEFT) switch DOWN to pull GPIO24 low to logic 0, and position the GPIO32
(RIGHT) switch UP to pull GPIO32 high to logic 1 to put the F2800137 into wait boot mode for reducing
the risk of connectivity issues or a previous loaded code execution.

– For S4, position the CAN ROUTE switch DOWN (on) to route GPIO4 and GPIO5 to the J14 CAN interface
if the pre-define symbols "CMD_CAN_EN" is set in project properties. Position the CAN ROUTE switch
UP (off) to route GPIO4 and GPIO 5 to the BoosterPack connectors otherwise.

– For S5, position the QEP1 SEL switch DOWN to route GPIO40/41/39 to eQEP1 for the encoder interface
on J12. (There is no J13 on LAUNCHXL-F2800137. Hall sensor reading is unavailable by default.)

Site 2 Power (JP8)

J12: QEP encoder or
Hall sensor

Up

Right

GPIO24=0 (Left, Down),
GPIO32=1 (Right, up): Wait
boot mode

Down: GPIO4/5 to J14 for
CAN if “CMD_CAN_EN” set

SEL1=1 (Up): GPIO28/29 to
XDS100 COM Port if SFRA is
enabled

QEP1 SEL=0 (Down): GPIO40/
41/39 to J12 for QEP encoder

Install Inverter board
on this site with right
direction

Add all jumpers on JP1

Add all jumpers on JP8
for power of DAC board

Add all jumpers on J101 for
cJTAG and UART of XDS110

Add all jumpers on JP2

Figure 3-3. F2800137 LaunchPad Board Overview and Switches Setting

Running the Universal Lab on TI Hardware Kits www.ti.com

30 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/lit/pdf/spruj32
https://www.ti.com/lit/pdf/spruj32
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.4 TMDSCNCD280025C Setup

TMDSCNCD280025C is a low-cost evaluation and development board for TI C2000™ MCU series of
TMS320F28002x devices. It comes with a HSEC180 (180-pin High Speed Edge Connector) and can be used on
existing 100-Pin DIMM based TMDSHVMTRINSPIN with TMDSADAP180TO100 adapter

• Hardware Files are in the <install_location>\boards\controlCARDs\TMDSCNCD280025C folder of
C2000Ware.

• For more details about on TMDSCNCD280025C , see TMS320F280025C controlCARD Information Guide.
• Make sure that switches on TMDSCNCD280025C are set as described below shown in Figure 3-4.

– For S1:A, position both SEL1 (left) and SEL2 (right) switches UP for using the on-Card XDS100v2
emulator and ISO UART communication.

– For S1, position both SEL1 (left) and SEL2 (right) switches DOWN for routing GPIO24 and GPIO25 to
HSEC connector.

– For S2, position both SEL1 (left) and SEL2 (right) switches DOWN for routing GPIO26 and GPIO27 to
HSEC connector.

– For S3, position the switch UP to enable the external crystal.
– For S4, position the SEL1 (left) switch DOWN to pull GPIO24 low to logic 0, and position the SEL2 (right)

switch UP to pull GPIO32 high to logic 1 to put the F280025C into wait boot mode for reducing the risk of
connectivity issues or a previous loaded code execution.

– For S5, position the SEL1 (left) switch DOWN so that A8/C11 is routed to HSEC pin 30, and position the
SEL2 (right) switch UP to enable the internal voltage reference.

S1:A �� Isolated emulation and

UART communication enable

switches

(Both SEL1&2 are ON/up)J1:A �� USB

emulation/UART

connector

D1/D2 �� GPIO31

and GPIO34

Connected LEDs

S3 �� GPIO18 and

GPIO19 function

selection switch

(SEL is ON/up)

S4 �	 Boot Mode

selection switches

(SEL1/Left is down, SEL2/

Right is up)

S5
� A8/C11 HSEC Pin selection and

ADC VREFHI selection switches

(SEL1/Left is Down, SEL2/Right is up)

S1 � GPIO24 and GPIO25

HSEC pin selection switches

(Both SEL1&2 are down)

U1 �� C2000

F280025C

microcontroller

J1 �� FSI header

S2 �� GPIO26 and GPIO27

HSEC pin selection switches

(Both SEL1&2 are down)

D3 �� 3.3 V power good

LED

EVM Revision

Up

Right

Figure 3-4. F28002x controlCARD and Switches Setting

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 31

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/piccolo-entry-performance/overview.html
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/lit/pdf/spruir3
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.5 TMDSCNCD280039C Setup

TMDSCNCD280039C is a low-cost evaluation and development board for TI C2000 MCU series of
TMS320F28003x devices. It comes with a HSEC180 (180-pin High Speed Edge Connector) and can be used on
existing 100-Pin DIMM based TMDSHVMTRINSPIN with TMDSADAP180TO100 adapter

• Hardware Files are in the <install_location>\boards\controlCARDs\TMDSCNCD280039C folder of
C2000Ware.

• For more details about on TMDSCNCD280039C , see TMS320F280039C controlCARD Information Guide.
• Make sure that switches on TMDSCNCD280039C are set as described below shown in Figure 3-5.

– For S1:A, position both SEL1 (up) and SEL2 (down) switches LEFT for using the on-Card XDS110
emulator and ISO UART communication.

– For S1, position the switch UP to enable the external crystal.
– For S2, position the SEL1 (left) switch DOWN to pull GPIO24 low to logic 0, and position the SEL2 (right)

switch UP to pull GPIO32 high to logic 1 to put the F280039C into wait boot mode for reducing the risk of
connectivity issues or a previous loaded code execution.

– For S3, position the switch DOWN to enable the internal voltage reference.

S1:A �� Isolated emulation

and UART communication

enable switches

(Both SEL1&2 are Left)

J1:A �� USB

emulation/UART

connector

S1 �� GPIO18 and

GPIO19 function

selection switch

(SEL is Up)

S2 �� Boot Mode

selection switches

(SEL1/Left is Down, SEL2/

Right is Up)

S3 �	 ADC VREFHI

selection switches

(SEL is Up)

U1
� C2000 F280039C

microcontroller

J1 � FSI header

D3 �� 3.3 V power

good LED

EVM Revision

Up

Right

Figure 3-5. F280039C controlCARD and Switches Setting

Running the Universal Lab on TI Hardware Kits www.ti.com

32 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/piccolo-entry-performance/overview.html
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com/lit/pdf/spruiz4
https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.6 TMDSCNCD2800137 Setup

TMDSCNCD2800137 is a low-cost evaluation and development board for TI C2000 MCU series of
TMS320F280013x devices. It comes with a HSEC180 (180-pin High Speed Edge Connector) and can be used
on existing 100-Pin DIMM based TMDSHVMTRINSPIN with TMDSADAP180TO100 adapter

• Hardware Files are in the <install_location>\boards\controlCARDs\TMDSCNCD2800137 folder of
C2000Ware.

• For more details about on TMDSCNCD2800137 , see TMS320F2800137 controlCARD Information Guide.
• Make sure that switches on TMDSCNCD2800137 are set as described below shown in Figure 3-6.

– For S1:A, position both SEL1 (up) and SEL2 (down) switches LEFT for using the on-Card XDS110
emulator and ISO UART communication.

– For S1, position the switche UP for routing GPIO35 and GPIO37 to HSEC connector.
– For S2, position the switch UP to enable the external crystal.
– For S3, position the SEL1 (left) switch DOWN to pull GPIO24 low to logic 0, and position the SEL2 (right)

switch UP to pull GPIO32 high to logic 1 to put the F2800137 into wait boot mode for reducing the risk of
connectivity issues or a previous loaded code execution.

– For S4, position the SEL1 (left) switch DOWN so that A8/C11 is routed to HSEC pin 30, and position the
SEL2 (right) switch UP to enable the internal voltage reference.

S1:A �� Isolated

emulation and UART

communication

enable switches

(Both SEL1&2 are

Left)

J1:A �� USB

emulation/UART

connector

D1/D2 �� GPIO24

and GPIO29

Connected User

LEDs

S2 �� GPIO18 and

GPIO19 function

selection switch

(SEL is Up)

S3 �	 Boot Mode

selection switches

(SEL1/Left is down,

SEL2/Right is up)

S4
� ADC VREFHI & A8/

C11 selection switch

(SEL1/Left is down,

SEL2/Right is up)

U1 � C2000

F2800137

microcontroller

D3 �� 3.3 V power

good LED

EVM Revision

LED1:A �� 5.0V

power good LED

S1 �� GPIO35 and

GPIO37 function

selection switch

(SEL is Up)

Figure 3-6. F2800137 controlCARD and Switches Setting

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 33

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/piccolo-entry-performance/overview.html
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com/lit/pdf/spruir3
https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.7 TMDSADAP180TO100 Setup

The TMDSADAP180TO100 adapter allows the use of 180-Pin C2000 controlCARDs with existing 100-Pin DIMM
based evaluation tools. The TMDSCNCD280025C, TMDSCNCD280039C or TMDSCNCD2800137 controlCARD
needs TMDSADAP180TO100 to be used on TMDSHVMTRINSPIN.

• Hardware files are located in the <install_location>\boards\controlCARDs\TMDSADAP180TO100
folder of C2000Ware.

• Make sure that switches TMDSADAP180TO100 are set as described below or shown in Figure 3-7.
– The S1 switch needs to be positioned to the RIGHT, and S2, S3, and S4 switches need to be positioned

to the LEFT.

Up

Right

S1 �� cCard-30&33

Selection Switch

(On Right for HV-Kit)

S2 �� cCard-80&83

Selection Switch

(On Left)

S3 �� cCard-31&84

Selection Switch

(On Left)

S4 �� cCard-81&34

Selection Switch

(On Left)

Figure 3-7. TMDSADAP180TO100 Adapter and Switches Setting

3.2.8 DRV8329AEVM Setup

DRV8329AEVM is a 4.5V-60V, 30-A, 3-phase brushless DC drive stage based on the DRV8329A gate driver
and CSD18536KT MOSFET for BLDC/PMSM motors . The module has an individual DC bus and three-phase
voltage sensing as well as single shunt dc-link current shunt amplifiers, making this board for BLDC/PMSM
control with C2000 LaunchPad development kits suitable for use with the sensorless InstaSPIN-FOC algorithm.
The drive stage is fully protected with short circuit, thermal, shoot-through, and under voltage protection and
easily configurable via the device's GPIO interfacing with C2000 MCUs.

• The DRV8329AEVM Hardware Design Files are on the DRV8329AEVM page within ti.com.
• For more details about the DRV8329AEVM, see the User's Guide for the EVM.
• Make sure that the following items are completed as described below, and then connect the DRV8329AEVM

to site 1 (J1/J3 and J4/J2) of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137
as shown in Figure 3-8.
– The DRV8329AEVM connects on the top of the launchpad, so it is necessary to use male to female

adapters to connect the headers on the DRV8329AEVM to the LAUNCHXL-F280025C, LAUNCHXL-
F280039C, or LAUNCHXL-F2800137 headers.

– If using the DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C,
or LAUNCHXL-F2800137 with 90 degrees to avoid connecting that pin to the DAC128S085EVM board.
This EVM board is only used for debugging purposes to monitor various software variables.

• Connect the motor, encoder, and Hall sensors to the DRV8329AEVM and the LAUNCHXL-F280025C,
LAUNCHXL-F280039C, or LAUNCHXL-F2800137 as described in Table 3-2 and shown in Figure 3-8.

• Connect a supply voltage ranging from 9 to 54 V from a battery or a DC voltage source to the voltage supply
pins. Power should only be applied when instructed to do so in Section 3.5, keep disconnected otherwise.

Running the Universal Lab on TI Hardware Kits www.ti.com

34 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com/tool/TMDSCNCD280039C
https://www.ti.com/tool/TMDSCNCD2800137
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/C2000WARE
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/lit/zip/slvc834
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/lit/pdf/slvucf5
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Connect DRV8329AEVM to

LAUNCHXL-F280025C J1/

J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Connect JA-2 to JB-2

using a jumper wire

Motor

Encoder (J4)

Motor Hall

Sensors

(J10)

D
C
+

D
C
-

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

Figure 3-8. LAUNCHXL-F280025C Connected to the DRV8329AEVM and DAC128S085EVM

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 35

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Connect DRV8329AEVM to

LAUNCHXL-F280025C using

male-to-female adapters

Figure 3-9. LAUNCHXL-F280025C Connected to the DRV8329AEVM and DAC128S085EVM, Side View

3.2.9 BOOSTXL-DRV8323RH Setup

BOOSTXL-DRV8323RH is a 15A, three-phase brushless DC drive stage based on the DRV8323RH gate driver
and CSD88599Q5DC NexFETTM power blocks. The module has an individual DC bus and three-phase voltage
sensing as well as three low-side current shunt amplifiers, making this board for BLDC/PMSM control with
C2000 LaunchPad™ development kits suitable for use with the sensorless InstaSPIN-FOC algorithm.

• The BOOSTXL-DRV8323RH Hardware Files are on the BOOSTXL-DRV8323RH page within ti.com.
• For more details about the BOOSTXL-DRV8323RH, see the User's Guide for the EVM.
• Make sure that the following items are completed as described below, and then connect the BOOSTXL-

DRV8323RH to J1/J3 and J4/J2 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-
F2800137 as shown in Figure 3-10.
– Populate C9, C10, and C11 with a 47nF capacitor.
– Bend J3-29 and J3-30 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137

with 90° so that they are not connected to the BOOSTXL-DRV8323RH as shown in Figure 3-11.
– If using the DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C,

or LAUNCHXL-F2800137 with 90 degrees to avoid connecting that pin to the DAC128S085EVM board.
This EVM board is only used for debugging purposes to monitor various software variables.

– Use a jumper wire to connect J3-29 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or
LAUNCHXL-F2800137 to J3-11 of the BOOSTXL-DRV8323RH if the potentiometer functionality is desired
to be used on the BOOSTXL-DRV8323RH for setting the reference speed.

• Connect the motor, encoder, and Hall sensors to the BOOSTXL-DRV8323RH and LAUNCHXL-F280025C,
LAUNCHXL-F280039C, or LAUNCHXL-F2800137 boards as described in Table 3-2 and shown in Figure
3-10.
– Connect a supply voltage ranging from 6 to 40 V from a battery or a DC voltage source to the voltage

supply pins as shown in Figure 3-10. The maximum supply voltage rating for the BOOSTXL-DRV8323RH
is 65V, so care must be taken to ensure that the voltage does not exceed this value during operation.
This is particularly important while slowing down or braking the motor, which can cause the supply
voltage to rise substantially. Power should only be applied when instructed to do so in Section 3.5, keep
disconnected otherwise.

Running the Universal Lab on TI Hardware Kits www.ti.com

36 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/lit/zip/slvc691
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/lit/pdf/slvub01
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Populate a 47nF capacitor to

C9, C10, and C11 for

supporting InstaSPIN-FOC

Connect BOOSTXL-

DRV8323RH to LAUNCHXL-

F280025C J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH to enable POT

Connect JA-2 to JB-2 using a

wire for SPI of DAC

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

Motor Encoder

(J4)

Motor Hall

Sensors

(J10)

J1

J5

J13

J12

Figure 3-10. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-DRV8323RH and the
DAC128S085EVM

The switches and connections on LAUNCHXL-F280025C as shown in Figure 3-11 can be used with the
BOOSTXL-DRV8323RH, BOOSTXL-DRV8323RS , and DRV8353RS-EVMs.

Disconnect J3-29, J3-30 to BOOSTX-

DRV8323RS, BOOSTXL-DRV8323RH,

or DRV8353RS-EVM

Disconnect J5-42 to

DAC128S085EVM

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH/RS to enable POT

On board USB isolation

JTAG emulator connector

J12 connects

to encoder

(J4)

J13 connects to

hall sensors

(J10)

Figure 3-11. LAUNCHXL-F280025C Board Modifications For Connecting BOOSTXL-DRV Board

3.2.10 BOOSTXL-DRV8323RS Setup

BOOSTXL-DRV8323RS is a 15A, three-phase brushless DC drive stage based on the DRV8323RS gate driver
and CSD88599Q5DC NexFETTM power blocks. The module has an individual DC bus and three-phase voltage
sensing as well as three low-side current shunt amplifiers, making this board for BLDC/PMSM control with
C2000 LaunchPad development kits suitable for use with the sensorless InstaSPIN-FOC algorithm. The drive
stage has IDRIVE configuration, along with a fault pin and protection for short circuit, thermal, shoot-through,
and under voltage conditions through configurable SPI by C2000 MCUs.

• The BOOSTXL-DRV8323RS Hardware Files are on the BOOSTXL-DRV8323RS page within ti.com.
• For more details about the BOOSTXL-DRV8323RS, see the User's Guide for the EVM.
• Make sure that the following items are completed as described below, and then connect the BOOSTXL-

DRV8323RS to J1/J3 and J4/J2 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-
F2800137 as shown in Figure 3-12.
– Populate C9, C10, and C11 with a 47nF capacitor.
– Bend J3-29 and J3-30 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137

with 90 degrees so that they are not connected to the BOOSTXL-DRV8323RS as shown in Figure 3-11.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 37

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/lit/pdf/slvc691
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/lit/pdf/slvub01
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– If using the DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C,
or LAUNCHXL-F2800137 with 90 degrees to avoid connecting that pin to the DAC128S085EVM board.
This EVM board is only used for debugging purposes to monitor various software variables, it's optional
and not nessary for a motor control.

– Bend J2-12 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137 with 90
degrees so that they are not connected to the BOOSTXL-DRV8323RS. For LAUNCHXL-F280025C
and LAUNCHXL-F280039C use a jumper wire to connect J4-18(nSCS/GAIN) and J4-4 of BOOSTXL-
DRV8323RS to use SPIA-STE of the C2000 device directly as shown in Figure 3-11. For LAUNCHXL-
F2800137 use a jumper wire to connect J4-18(nSCS/GAIN) and J4-16 of BOOSTXL-DRV8323RS.

– Use a jumper wire to connect J3-29 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or
LAUNCHXL-F2800137 to J3-11 of the BOOSTXL-DRV8323RS if the potentiometer functionality is desired
to be used on the BOOSTXL-DRV8323RS for setting the reference speed.

• Connect the motor, encoder, and Hall sensors to the BOOSTXL-DRV8323RS and LAUNCHXL-F280025C,
LAUNCHXL-F280039C, or LAUNCHXL-F2800137 boards as described in Table 3-2 and shown in Figure
3-12.
– Connect a supply voltage ranging from 6 to 40 V from a battery or a DC voltage source to the voltage

supply pins as shown in Figure 3-12. The ABS max supply voltage rating for the DRV8323RS is 65V,
so care must be taken to ensure that the voltage does not exceed this value during operation. This is
particularly important while slowing down or braking the motor, which can cause the supply voltage to rise
substantially. Power should only be applied when instructed to do so in Section 3.5, keep disconnected
otherwise.

Populate a 47nF capacitor

to C9, C10, and C11 for

supporting InstaSPIN-FOC

Connect BOOSTXL-

DRV8323RS to LAUNCHXL-

F280025C J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Option: Connect J3-29 of LAUNCHXL-

F280025C to J3-11 of BOOSTXL-

DRV8323RH to enable POT

Connect JA-2 to

JB-2 using a

jumper wire

Connect J4-4 to J4-18 using

a jumper wire for connecting

DRV_SCS to SPI_STE

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

J1

J5

Motor Encoder

(J4)

Motor Hall

Sensors

(J10)

J13

J12

Figure 3-12. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-DRV8323RS and
DAC128S085EVM

3.2.11 DRV8353RS-EVM Setup

DRV8353RS-EVM is a 15A, three-phase brushless DC drive stage based on the DRV8353RS gate driver
and CSD19532Q5B NexFETTM power blocks. The module has an individual DC bus and three-phase voltage
sensing as well as three low-side current shunt amplifiers, making this board for BLDC/PMSM control with
C2000 LaunchPad development kits suitable for use with the sensorless InstaSPIN-FOC algorithm. The drive
stage is fully protected with short circuit, thermal, shoot-through, and under voltage protection and easily
configurable via the device's SPI registers interfacing with C2000 MCUs.

• The DRV8353Rx-EVM Design Files are on the DRV8353RS-EVM page within ti.com.
• For more details about the DRV8353RS-EVM, see the User's Guide for the EVM.
• Make sure that the following items are completed as described below, and then connect the DRV8353RS-

EVM to site 1 (J1/J3 and J4/J2) of the LAUNCHXL-F280025C as shown in Figure 3-13.
– The DRV8353RS-EVM connects on the bottom of the launchpad, so it is necessary to use male to male

adapters to connect the headers on the DRV8353RS-EVM to the LAUNCHXL-F280025C, LAUNCHXL-
F280039C, or LAUNCHXL-F2800137 headers. The male adapter pins corresponding to pins J1-17 and
J1-19 of the DRV8353RS-EVM need to be disconnected from the LAUNCHXL-F280025C, LAUNCHXL-
F280039C, or LAUNCHXL-F2800137. This can be accomplished by bending these pins 90 degrees.

Running the Universal Lab on TI Hardware Kits www.ti.com

38 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/lit/zip/slvc742
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/lit/pdf/slvub79
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– Do not connect J3-29 and J3-30 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-
F2800137 to the DRV8353RS-EVM as shown in Figure 3-13.

– Use a jumper wire to connect J2-19 to J2-12 of LAUNCHXL-F280025C andLAUNCHXL-F280039C or
J2-13 to J2-12 of LAUNCHXL-F2800137 to make proper connection of the C2000's SPI-STE to the DRVx
device as shown in Figure 3-13.

– If using the DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C,
or LAUNCHXL-F2800137 with 90 degrees to avoid connecting that pin to the DAC128S085EVM board.
This EVM board is only used for debugging purposes to monitor various software variables.

• Connect the motor, encoder, and Hall sensors to the DRV8353RS-EVM and the LAUNCHXL-F280025C,
LAUNCHXL-F280039C, or LAUNCHXL-F2800137 as described in Table 3-2 and shown in Figure 3-13.

• Connect a supply voltage ranging from 9 to 54 V from a battery or a DC voltage source to the voltage supply
pins. Power should only be applied when instructed to do so in Section 3.5, keep disconnected otherwise.

Connect DRV8353RS-EVM

to LAUNCHXL-F280025C

J1/J3 and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Connect JA-2 to JB-2

using a jumper wire

Connect J2-12 to J2-19 using

a jumper wire for connecting

DRV_SCS to SPI_STE

Motor

Encoder (J4)

Motor Hall

Sensors

(J10)

J13

J12

D
C
+ D
C
-

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J6 J5

Figure 3-13. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the DRV8353RS-EVM and
DAC128S085EVM

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 39

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.12 BOOSTXL-3PHGANINV Setup

The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision
in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.
The module also has an individual DC bus and three-phase voltage sensing, making this board for BLDC/
PMSM control with C2000 LaunchPad™ development kits suitable for use with the sensorless InstaSPIN-FOC
algorithm.

• The hardware files and more details are available on the BOOSTXL-3PHGANINV page within ti.com.
• For more details about the BOOSTXL-3PHGANINV, see the corresponding DRV8353Rx-EVM User’s Guide.
• Make sure that the following items are completed as described below, and then connect the

BOOSTXL-3PHGANINV to J1/J3 and J4/J2 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or
LAUNCHXL-F2800137 as shown in Figure 3-14.
– If using the DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C, LAUNCHXL-F280039C,

or LAUNCHXL-F2800137 90 degrees to avoid connecting that pin to the DAC128S085EVM board. This
EVM board is only used for debugging purposes to monitor various software variables.

• Connect the motor, encoder, and Hall sensors to the BOOSTXL-3PHGANINV and the LAUNCHXL-
F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137 as described in Table 3-2 and shown in Figure
3-14.

• Connect a supply voltage ranging from 12 to 54 V from a battery or a DC voltage source to the voltage supply
pins. Follow the operation instructions in Section 3.5 to turn on the power source.

Motor

Encoder (J4)

Motor Hall

Sensors

(J10)

J13

J12

D
C
+D
C
-

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J3 J4

Figure 3-14. LAUNCHXL-F280025C/F280039C/F2800137 Connected to the BOOSTXL-3PHGANINV and
DAC128S085EVM

Running the Universal Lab on TI Hardware Kits www.ti.com

40 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/lit/pdf/SLVUB79
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.13 DRV8316REVM Setup

The DRV8316REVM provides three half-H-bridge integrated MOSFET drivers for driving a three-phase
brushless DC (BLDC) motor with 8-A Peak current drive. The DRV8316 device integrates current-sense
amplifiers (CSA) for three-phase low-side current measurement and individual DC bus and three-phase voltage
sensing on the module that makes this board for BLDC/PMSM control with C2000 LaunchPad™ development
kits suitable for use with the sensorless InstaSPIN-FOC algorithm

• The DRV8316REVM Hardware Design Files are on the DRV8316REVM page within ti.com.
• For more details about the DRV8316REVM, see the DRV8316REVM Evaluation Module.
• Make sure that the following items are completed as described below, and then connect the DRV8316REVM

to J1/J3 and J4/J2 site of LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137 as
shown in Figure 3-15.
– If using DAC128S085EVM board, bend J5-42 of the LAUNCHXL-F280025C 90 degrees to avoid

connecting that pin to the DAC128S085EVM board. This EVM board is only used for debugging purposes
to monitor various software variables.

• Connect the motor, encoder, and Hall sensors to the DRV8316REVM and LAUNCHXL-F280025C,
LAUNCHXL-F280039C, or LAUNCHXL-F2800137 as described in Table 3-2 and shown in Figure 3-15.

• Connect a supply voltage ranging from 4.5 to 24V from a battery or a DC voltage source to the voltage supply
pins as shown in Figure 3-15. The ABS max supply voltage rating for the DRV8316REVM is 40V, so care
must be taken to ensure that the voltage does not exceed this value during operation. This is particularly
important while slowing down or braking the motor, which can cause the supply voltage to rise substantially.
Power should only be applied when instructed to do so in Section 3.5, keep disconnected otherwise.

Connect BOOSTXL-DRV8323RH

to LAUNCHXL-F280025C J1/J3

and J2/J4

Connect DAC128S085EVM

to LAUNCHXL-F280025C

J5/J7 and J6/J8

Connect JA-2 to JB-2

using a jumper wire

Motor Inc

Encoder (J4)

Motor Hall

Sensors (J10)

J13

J12

DC+

DC-

MOTOR_U

MOTOR_V

MOTOR_W

J5

J6

Figure 3-15. LAUNCHXL-F280025C Connected to the DRV8316 REVM and DAC128S085EVM

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 41

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/lit/pdf/sloc372
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/lit/pdf/SLVUBZ9
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.2.14 TMDSHVMTRINSPIN Setup

WARNING
• This EVM is meant to be operated in a lab environment only and is not considered by TI to be a

finished end-product fit for general consumer use.
• This EVM must be used only by qualified engineers and technicians familiar with risks associated

with handling high voltage electrical and mechanical components, systems and subsystems.
• This EVM operates at voltages and currents that can result in electrical shock, fire hazard and/or

personal injury if not properly handled. Equipment must be used with necessary caution and
appropriate safeguards must be employed to avoid personal injury or property damage.

• Always use caution when using the EVM electronics due to presence of high voltages! DC bus
Capacitors will remain charged for a long time after the mains supply is disconnected.

• The EVM can accept power from the AC Mains/wall power supply, only uses the live and
neutral line from the wall supply, the protective earth is unconnected (floating). The power
ground is floating from the protective earth ground, all of the ground planes are the same.
Hence appropriate caution must be taken and proper isolation requirements must be met before
connecting scopes and other test equipment to the board. Isolation transformers must be used
when connecting grounded equipment to the EVM.

• The power stages on the board are individually rated. It is the user’s responsibility to make sure
that these ratings (i.e. voltage, current and power levels) are well understood and complied with,
prior to connecting these power blocks together and energizing the board. When energized, the
EVM or components connected to the EVM should not be touched.

TMDSHVMTRINSPIN is a DIMM100 controlCARD based motherboard evaluation module showcasing control
of the most common types of high voltage, three-phase motors including AC induction (ACI), brushless DC
(BLDC), and permanent magnet synchronous motors (PMSM). The High Voltage Motor Control Kit has individual
DC bus and three-phase voltage sensing making this board for BLDC/PMSM control with C2000 LaunchPad™
development kits suitable for use with the sensorless InstaSPIN-FOC algorithm.

• The hardware Files are in the <install_location>\solutions\tmdshvmtrinspin\hardware folder
of C2000WARE-MOTORCONTROL-SDK.

This section explains the steps needed to run the TMDSHVMTRINSPIN with the software supplied through
MotorControl SDK. The kit ships with the jumper and switch settings correctly positioned for connecting with
the controlCARD. Make sure that these settings are valid on the board as described below, and then insert the
controlCARD with the TMDSADAP180TO100 adapter into the TMDSHVMTRINSPIN board as shown in Figure
3-16.

Connect BS1 to BS5

using a jumper wire

Insert the ControlCard-

F280025C/F280049C with

a TMDSADAP180TO100

adapter to high voltage kit

M
O
T
O
R
_
U

M
O
T
O
R
_
V

M
O
T
O
R
_
W

J3

J4

AC or DC Power Supply

On card USB isolation

JTAG emulator connector

Figure 3-16. TMDSHVMTRINSPIN Connected to the TMDSCNCD280025C, TMDSCNCD280039C, or
TMDSCNCD2800137 with TMDSADAP180TO100

Running the Universal Lab on TI Hardware Kits www.ti.com

42 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

CAUTION
Do not apply AC power to the board before you have verified these settings!

• Make sure nothing is connected to the board, and no power is being supplied to the board.
• Insert the Control card with TMDSADAP180TO100 adapter into the [Main]-J1 controlCARD connector if not

already populated.
• Make sure the following jumpers & connector settings are correctly implemented as shown in Figure 3-17.

– [Main]-J3, J4, J5 and J8 are populated.
– [Main]-J9 and [M3]-J5 are not populated for using a controlCARD with its own onboard emulation to

disable the XDS100 on HVKIT.
– [Main]-J7 is populated between pins 2-3 (pins furthest from the DIMM 100 socket).
– Banana cable between [Main]-BS1 and [Main]-BS5 is installed to bypass the PFC.
– Make sure that the DC Fan shipped with the kit is connected to the DC Fan Jumper [Main]-J17 when

operating the motor under load > 150W.
• Two options to get DC Bus power are as below, recommend using the external 15V DC power supply.

– [Main]-J2 is not populated if using the +15V from an external 15V DC power supply. Ensure that [M6]-SW1
is in the “Off” position, connect 15V DC power supply to [M6]-JP1.

– [Main]-J2 is populated with a jumper between bridge and the middle pin if using the +15V power supply
from aux power supply module.

• Turn on [M6]-SW1. Now [M6]-LD1 should turn on. Notice the control card LED would light up as well
indicating the control card is receiving power from the board.

• Connect [Main]-BS1 and BS5 to each other using banana plug cord, and then connect one end of the AC
mains power or DC power to [Main]-P1.

• Connect the motor, encoder, and Hall sensors to the kits as described in Table 3-2 and shown in Figure 3-17.
• Connect a supply voltage from an AC or a DC voltage source to the voltage supply pins. Power should only

be applied when instructed to do so in Section 3.5, keep disconnected otherwise.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 43

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/tmdsadap180to100
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

J3 J4 J5

QEP Encoder

CAP Hall Sensors

Main] TB3 – Motor

Connector

(220V 3Phase AC,

1.5KW Max)

[M6] JP1 –

DC Jack for 15V

DC power supply

[Main] P1 –

85-132VAC/

170-250VAC

(750W Max input)

[Main] H1 – CAP/QEP

and Hall sensor output

connector

[M3] J5 – On-board

emulation disable jumper

[Main] J9– JTAG

TRSTn Option Jumper

[M3] J2 – External JTAG

emulator interface

[Main] J1–controlCARD

connector

[Main] J3, J4, J5 –

jumper to enable

controller power (15, 5

and 3.3VDC) from the

15V DC power supply

[Main] J16 –

CAN Bus

Connector

[M3] JP1 - USB

Connection for

onboard emulation

[Main] J17 –

DC Fan

[Main] J14 –

DAC outputs

[M6] SW1 –

15, 5 , 3.3VDC

power switch

[M1] F1 –

AC input fuse

(250VAC 4 Amps

slow acting)

Main] BS1 –

Rectified AC Out

(750W Max Output)

Main] BS3 –

Banana Connector

jack for PFC input

(750W Max Input)

[Main] BS6

Banana Connector

jack for GND

[Main] BS4 –

Banana Connector

Jack for PFC

Output (750W

Max Output)

[Main] BS5 –

Banana Connector

Jack for Inverter

DC Bus (1.5KW

Max input)

[Main] BS2

Banana Connector

jack for GND

[Main] J7 –OCP

threshold setting jumper

[Main] J8 – IPM OCP

enable jumper

[Main] VR1 – OCP

threshold setting

VR1

[Main] J2 –

Aux power supply

input selection

jumper

Figure 3-17. TMDSHVMTRINSPIN Kit Jumpers and Connectors Diagram

Running the Universal Lab on TI Hardware Kits www.ti.com

44 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-3 shows the various connections available on the board. The location of these connections on the board
are shown in Figure 3-17.

Table 3-3. Key Jumpers, Connectors Explanation
[Main]-P1 AC input connector (110V – 220V AC)

[Main]-TB3 Terminal Block to connect motor

[Main]-BS1 Banana Jack for Output from AC Rectifier

[Main]-BS2, BS6 Banana Jack for GND Connection

[Main]-BS3 Banana Jack for connecting an input voltage for the PFC stage, this would typically be
rectified AC voltage from the [Main]-BS1 connector.

[Main]-BS4 Banana Jack for connecting a load to the output from the PFC stage, When using
PFC+Motor project the output of the PFC stage would connect to the input for the inverter
bus i.e. [Main]-BS5

[Main]-BS5 Banana Jack for input of DC bus voltage for the inverter

[Main]-J2 Aux power supply module input voltage selection jumper,
• When jumper connected to Bridge position the aux power supply module sources

power from the AC rectifier bridge output.
• When Jumper connected to PFC position the aux power supply module sources power

from the output of the PFC stage.

[Main]-J3, J4, J5 Jumpers J3,J4 and J5 are used for sourcing 15V, 5V and 3.3V power respectively for the
board from the 15V DC Power supply.

[Main]-J7 J7 is used to select the over current protection threshold source

[Main]-J8 J8 is used to enable/disable the IPM over current protection

[Main]-J9 JTAG TRSTn disconnect jumper, populating the jumper enables JTAG connection to the
Microcontroller. The jumpers need to be unpopulated when no JTAG connection is required
such as when booting from FLASH.

[Main]-J14 PWMDAC outputs: Gives voltage outputs that result from a PWM being attached to a
first-order low-pass filter. Pins 1,2,3 and 4 are attached to low pass filtered PWM output
pins respectively to observe system variables on an oscilloscope.

[Main]-J16 Isolated CAN bus connector

[Main]-J17 Connector to supply power to the DC fan (shipped with the board) that is attached to the
IPM heat sink.

[Main]-H1 QEP connector: connects with a 0-5V QEP sensor to gather information on a motor’s
speed and position.
CAP/Hall effect sensor connector: connects with a 0-5V sensor to gather information on a
motor’s speed and position.

[M1]-F1 Fuse for the AC input

[M3]-JP1 USB connection for on-board emulation

[M3]-J2 External JTAG interface: this connector gives access to the JTAG emulation pins. If
external emulation is desired, place a jumper across [M3]-J5 and connect the emulator
to the board. To power the emulation logic a USB connector will still need to be connected
to [M3]-JP1.

[M3]-J5 On-board emulation disable jumper: Place a jumper here to disable the on-board emulator
and give access to the external interface.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 45

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.3 Lab Software Implementation
1. Download and install Code Composer Studio from the Code Composer Studio (CCS) Integrated

Development Environment (IDE) tools folder. Version 10.4 or above is recommended. More details about
CCS installation and implementation in CCS User's Guide..

2. Download and install C2000WARE-MOTORCONTROL-SDK software package from the link provided by TI,
install this Motor Control SDK software in its default folder. C2000WARE-MOTORCONTROL-SDK can be
installed in one of two ways:
a. Download the software through the C2000Ware MotorControl SDK tools folder.
b. Go to CCS and under View → Resource Explorer. Under the TI Resource Explorer, go to

Software→C2000Ware_MotorControl_SDK, and click on the install button.
3. Once the installation is complete, close CCS, and create a new workspace for importing the project. The

software project of this example lab is inside the C2000Ware Motor Control SDK folder at
<install_location>\C2000Ware_MotorControl_SDK_<version>\solutions\universal_mot
orcontrol_lab. Follow these steps to build and run this code with different incremental builds as
described in the following sections.

3.3.1 Importing and Configuring Project

The example lab is a universal project that has support for various TI EVM motor driver kits that can be used
in conjunction with the F280025C, F280039C, or F2800137 C2000 MCU devices. The user can run different
TI EVM kits by setting the build configurations and properties of the lab project. In the following sections,
the LAUNCHXL-F280025C, LAUNCHXL-F280039C, or LAUNCHXL-F2800137 is used in combination with the
BOOSTXL-DRV8323RS lab to show how to import and run the example lab on this kit.

1. Import the project within CCS by clicking "Project" ➔"Import CCS Projects...", and then click "Browse..."
button to select search directory at:
a. F28002x based

lab:<install_location>\solutions\universal_motorcontrol_lab\f28002x\ccs\motor_
control\ to select the "universal_motorcontrol_lab_f28002x" project.

b. F28003x based
lab:<install_location>\solutions\universal_motorcontrol_lab\f28003x\ccs\motor_
control\ to select the "universal_motorcontrol_lab_f28003x" project.

c. F280013x based
lab:<install_location>\solutions\universal_motorcontrol_lab\f280013x\ccs\motor
_control\ to select the "universal_motorcontrol_lab_f280013x" project.

2. The lab project can be configured to run on a variety of motor driver kits. You can select one of these
kits by right-clicking on the imported project name and selecting the right build configuration (such as
Flash_lib_DRV8323RS_3SC) as shown in Figure 3-18.

3. Configure the project to select the supporting functions in the project by right-clicking on the imported project
name, and then click the "Properties" command to set the pre-define symbols for the project as shown in
Figure 3-19.
a. A pre-define symbol is active or disabled by removing or adding the "_N" in the name. For example,

field weakening control is enabled by removing the "_N" in "MOTOR1_FWC_N" to change it to
"MOTOR1_FWC", and field weakening control functions are disabled for motor 1 (Compressor) by
changing the "MOTOR1_FWC" symbol name to "MOTOR1_FWC_N".

b. Select the right supporting motor control algorithm based on the motor and hardware board by enabling
the related pre-define symbol as described above. The supporting algorithms and related motors matrix
are shown in Table 3-4.

c. Select the right supporting functions by enabling the pre-define symbol/s as shown in Figure 3-19.
4. Select the right target configuration file (.ccxml) as shown in Figure 3-21 by right clicking on the file name to

select "Set as Active Target Configuration" and "Set as Default Target Configuration" on the pop-up menu.
a. TMS320F280025C_LaunchPad.ccxml is for the LAUNCHXL-F280025C based hardware kits.
b. TMS320F280025C.ccxml is for the TMDSCNCD280025C based hardware kits.

Running the Universal Lab on TI Hardware Kits www.ti.com

46 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/CCSTUDIO
https://software-dl.ti.com/ccs/esd/documents/users_guide_10.4.0/index.html
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/LAUNCHXL-F280039C
https://www.ti.com/tool/LAUNCHXL-F2800137
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/TMDSCNCD280025C
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

5. Select or define the right motor model in the user_mtr1.h and user_common.h files. These files are
located under the src_board folder located in the project explorer window. The motor defines section in the
user_mtr1.h file begins on line 921. Uncomment the #define that corresponds with the motor being tested,
and ensure that the rest of the #define motors remain commented out. Make sure that the motor parameters
in the code match with the specifications of the connecting motor.

6. Set up the hardware kit, connect the motor, encoder, and/or hall sensor to the kit as described in Section 3.2.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 47

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-4. The Supporting Algorithms, Functions and Motors Matrix in Example Lab
Algorithms or
Functions

Pre-Define
Symbols LaunchPad controlCARD

DRV8329AEVM BOOSTXL-
DRV8323RH

BOOSTXL-
DRV8323RS

DRV8353RS-EVM BOOSTXL-3PHGA
NINV

DRV8316REVM TMDSHVMTRINSP
IN

FAST based
Sensorless FOC

MOTOR1_FAST ✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR

eSMO based
Sensorless FOC

MOTOR1_ESMO ✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR

QEP Encoder
based Sensored
FOC

MOTOR1_ENC
QEP_ENABLE

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, LVSERVOMTR ✔, HVPMSMMTR

Hall Sensors based
Sensored FOC

MOTOR1_HALL
HALL_ENABLE
HALL_CAL

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, LVSERVOMTR,
LVBLDCMTR

✔, HVBLDCMTR#

Trapezoidal
InstaSPIN-BLDC

MOTOR1_ISBLDC ✔, LVSERVOMTR,
LVBLDCMTR

✖ ✖ ✖ ✖ ✖ ✖

Single-Shunt
Current Sense

MOTOR1_DCLINK
SS

✔, LVSERVOMTR,
LVBLDCMTR

✖ ✖ ✖ ✖ ✖ ✖

Datalog with Graph
Tool1

DATALOGF2_EN ✔ ✔ ✔ ✔ ✔ ✔ ✔

PWMDAC EPWMDAC_MODE ✖ ✖ ✖ ✖ ✖ ✖ ✔
External DAC DAC128S_ENABL

E
✔ ✔ ✔ ✔ ✔ ✔ ✖

SFRA Tool SFRA_ENABLE ✔ ✔ ✔ ✔ ✔ ✔ ✔

Step Response
with Graph Tool

STEP_RP_EN ✔ ✔ ✔ ✔ ✔ ✔ ✔

1 The Datalog implementation in the Universal Motor Control Lab requires DMA. Not all C2000 devices have DMA. Refer to specific device datasheet to determine DMA support.

Running the Universal Lab on TI Hardware Kits www.ti.com

48 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DRV8329AEVM
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RH
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com/tool/DRV8353RS-EVM
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/BOOSTXL-3PHGANINV
https://www.ti.com/tool/DRV8316REVM
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com/tool/TMDSHVMTRINSPIN
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Right-click on project name with

CCS. Click “Build Configurations” to

select the right build configuration to

set it active

Figure 3-18. Select the Right Build Configurations within CCS

Select one of the

algorithm for the

hardware board

according the table

Enables the supporting

additional functions

Enables single shunt

based hardware board

Enables the debugging

functions

Right-click on project

name within CCS. Click

“Properties” on pop-up

menu, navigate to

“Predefined Symbols”

Select external

command and speed

input mode

Figure 3-19. Select the Desired Pre-define Symbols in Project Properties

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 49

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.3.2 Lab Project Structure

The general structure of the project is shown in Figure 3-20. The device peripherals configuration is based on
C2000Ware driverlib. The user only needs to change the code and definitions in the hal.c and hal.h files, and
the parameters in the user_mtr1.h file, if they want to migrate the reference design software to their own custom
board or to a different C2000 device.

C28x MCU

user_mtr1.c

 user_mtr1.h

motor_comm.c, motor1_drive.c

motor_comm.h, motor1_drive.h

Observer

Library

sys_settings.h

Build level setting

Board and Motor

specific parameters

hal.c

hal.h

Board specific

drivers configuration
FOC

Library

System solution specific files

Motor drive control specific files

sys_main.c, sys_xxx.c

sys_main.h, sys_xxx.h

InstaSPIN-FAST

InstaSPIN-BLDC

C2000Ware

Driverlib

Inverter

Gate Driver

drv83xx.c

 drv83xx.h

PI, PID,

CLARK

PARK/I-PARK

SVGEN

Trajectory

RAMPGEN

eSMO with PL

QEP Encoder

Hall Sensor

Figure 3-20. Project Structure Overview

Once the project is imported into CCS, the project explorer will appear inside CCS as shown in Figure 3-21.

The src_foc folder includes the typical FOC modules including Park, Clark, and inverse Park and Clark
transforms, PID, and estimators that consist of the motor drive algorithm and are independent of specific devices
or boards.

The src_lib folder includes the InstaSPIN-FOC library and math library that is not specific to any particular device
or board.

The src_control folder includes motor drive control files that call motor control core algorithm functions within the
interrupt service routines and background tasks.

The src_sys folder includes some files reserved for system control that are independent of specific devices or
boards. The user can add their own code for system control, communication, and so forth.

Running the Universal Lab on TI Hardware Kits www.ti.com

50 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Board-specific, motor-specific and device-specific files are in the src_board folder. These files consist of device
specific drivers to run the solution. If the user wants to migrate the project for their own board or to other C2000
devices, the user only needs to make changes to the hal.c, hal.h, and user_mtr1.h files based on the usage of
device peripherals for the board.

Project Name [Build Configuration]

Header files path for different components in the

project

System main file

Target Configuration for debugger connection,

select one to be active according to hardware

board

Hardware board drivers for the solution

Board and motor parameters definition files

Motor drive common functions files

Device support files based bit-field and linker

command files

Gate driver file

Motor drive and math libraries

Device support files based drivelib

System specific files reserved for the user

Motor drive control specific files

DAC driver file

SFRA specific files

Figure 3-21. Project Explorer View of the Example Lab

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 51

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.3.3 Lab Software Overview

Figure 3-22 shows the project software flow diagram of the firmware that includes one ISR for real time motor
control and the main loop for motor control parameters that updates in a background loop. The ISR will be
triggered by ADC End of Conversion (EOC).

Setup device

Mem Copy

Setup PWMs

Setup ADCs

cinit_0

Initialize motor control parameters

Setup Fault Protection for motors

Setup Interrupts for motors control

Update motor control parameters

Main Loop

Save contexts and clear int flags

Enable nest interrupt EINT

C – ISR

(Motor Control)

Read ADC Result, current/voltage

calculation and clark transform

Run FAST/eSMO estimators or Encoder

Run speed trajectory control

Restore Context

Return

Motor Control Loop ISR

Motor Control ISR

ADC offset calibration for motors

Run motor control

Run speed loop compensator

Run IPD, FWC and MTPA

Id and Iq reference calculation

Run I-Park, SVGEN and PWM

Modulator

Run Id and Iq loop compensator

Figure 3-22. Project Software Flowchart Diagram

To simplify the system bring up and design, the software is organized in four incremental builds, which makes
learning and getting familiar with the board and software easier. This approach is also good for debugging and
testing boards.

Running the Universal Lab on TI Hardware Kits www.ti.com

52 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-5 lists the framework modules to be used in this lab project.

Table 3-5. Using Motor Control Modules in Lab Project
Module Names Explanation Algorithm
ANGLE_GEN_run Ramp angle generator for open-loop running eSMO, ENC, HALL

CLARKE_run Clarke transformation for current or voltage FAST, eSMO, ENC, HALL

collectRMSData, calculateRMSData Collect sampling values to calculate the RMS
value of phase current and voltage

FAST, eSMO, ENC, HALL

DAC128S_writeData Converts and send software variables to
external DAC with SPI

All Algorithms

DATALOGIF_update Stores the real-time values into for displaying
with graph tool

All Algorithms

ENC_run Calculate rotor angle based on encoder ENC

ESMO_run Enhance Sliding Mode Observer (eSMO) for
sensorless-FOC

eSMO

EST_run FAST estimator for sensorless-FOC FAST

EST_runTraj Trajectory generator for current and speed for
motor identification

FAST

EST_setupTrajState Trajectory generator setup for current and
speed for motor identification

FAST

HAL_readADCData Returns ADC conversion values with floating-
point format

All Algorithms

HAL_writePWMDACData Converts software variables into the PWM
signals

All Algorithms

HAL_writePWMData PWM drives for motor All Algorithms

HALL_run Calculate rotor angle ans speed based on
Hall sensors

HALL

IPARK_run Inverse Park transformation FAST, eSMO, ENC, HALL

PARK_run Park Transformation FAST, eSMO, ENC, HALL

PI_run PI Regulators for current and speed All Algorithms

SPDCALC_run Speed Measurement based on the angle
from encoder signal

ENC

SPDFR_run Speed measurement based on the angle
from observer

eSMO

SVGEN_run Space Vector PWM with quadrature control FAST, eSMO, ENC, HALL

TRAJ_run Trajectory for setting speed reference All Algorithms

VS_FREQ_run Generate vector voltage with v/f profile FAST, eSMO, ENC, HALL

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 53

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-6 summarizes the modules tested in each incremental system build.

Table 3-6. Motor Control Modules Used per Incremental Build
Software Module DMC_LEVEL_1 DMC_LEVEL_2 DMC_LEVEL_3 DMC_LEVEL_4

50% PWM duty,
verify ADC offset
calibration, PWM
output, and phase

shift

Open loop control
to verify the motor

current and voltage
sensing signals

Closed current loop to
validate the current

sensing on the board
and the current

control with the PID

Closed-loop run with
estimators/observers

Motor parameters
identify with FAST

estimators

HAL_readADCData √√ √ 1 √ √ √

HAL_writePWMData √√ √ √ √ √

ANGLE_GEN_run √√ √ √(eSMO, ENC,
HALL)*

VS_FREQ_run √√

CLARKE_run
(current)

√ √ √ √

CLARKE_run
(voltage)

√ √ (FAST)* 2 √ (FAST)* √ (FAST)*

TRAJ_run √√ √ √√

EST_run √(FAST)* √ (FAST)* √√ (FAST)* √√ (FAST)*

EST_setupTrajState √√ (FAST)*

EST_runTraj √√ (FAST)*

ESMO_run √(eSMO)* √(eSMO)* √√ (eSMO)*

SPDFR_run √(eSMO)* √(eSMO)* √√ (eSMO)*

ENC_run √(ENC)* √(ENC)* √√(ENC)*

SPDCALC_run √(ENC)* √(ENC)* √√(ENC)*

HALL_run √(HALL)* √(HALL)* √√(HALL)*

PARK_run √ √ √ √

PI_run (Id) √√ √ √

PI_run (Iq) √√ √ √

PI_run (speed) √√ √

IPARK_run √√ √ √ √

SVGEN_run √√ √ √ √

HAL_writePWMDAC
Data

√** 3 √** √** √**

DATALOGIF_update √ √ √ √

DAC128S_writeData √** √** √** √**

1. √ means this module is used. √√ means this module is being tested.
2. √(FAST)* means this module is only used by FAST. √ (eSMO)* means this module is only used by eSMO. √

(ENC)* means this module is only used by ENC. √ (HALL)* means this module is only used by HALL.
3. √** means this module is supported by some hardware kit as shown in Table 3-1.

Running the Universal Lab on TI Hardware Kits www.ti.com

54 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The universal lab project can use one of the FOC algorithms separately for motor control, or use two of the FOC
algorithms simultaneously as shown in Table 3-7. The estimator in use can be switched smoothly on the fly if two
algorithms are implemented in the lab project.

Table 3-7. Supporting Estimator Algorithms in Lab Project
FAST(MOTOR1_FAS

T)
eSMO

(MOTOR1_ESMO)
ENCODER

(MOTOR1_ENC)
HALL
(MOTOR1_HALL）

ISBLDC
(MOTOR1_ISBLDC)

FAST √ 1 √ √ √ ✕
eSMO √ √ √ ✕ ✕
ENCODER √ √ √ ✕ ✕
HALL √ ✕ ✕ √ ✕
ISBLDC ✕ ✕ ✕ ✕ √

1. √ means these two algorithms can be used simultaneously in project. ✕ means these two algorithms can not
be used simultaneously in project.

3.4 Monitoring Feedback or Control Variables
The continuous feedback or control variables can be monitored by using multiple methods, such as datalog with
graph tool, PWMDAC with an oscilloscope, external DAC with an oscilloscope.

3.4.1 Using DATALOG Function

The DATALOG module stores the real-time values of two user selectable software variables in the data RAM
provided on the C2000 MCU as shown in Figure 3-23. The two variables are selected by configuring the module
inputs, iptr[0] and iptr[1] to the address of the two variables. The starting addresses of the two RAM buffer
locations, where the data values are stored, are stored in datalogBuff1[0] and datalogBuff1[1]. These Datalog
buffers are large arrays that contain value-triggered data that can then be displayed to a graph. The datalog
prescalar is configurable, which will allow the dlog function to only log one out of every prescalar samples. The
default prescalar is set to 10, but can be changed by modifying the value of the DATA_LOG_SCALE_FACTOR
define in the datalogIF.h file. Direct Memory Access (DMA) is used to transfer the values of the selected software
variables to the datalog buffer in RAM.

DATLOG

Update

GSx

RAM

H/W

datalog.iptr[0]

datalog.iptr[1]

Figure 3-23. DATALOG Module Block Diagram

In order to enable the datalog functionality, the predefine symbol DATALOGF2_EN must be added in the project
properties as shown in Figure 3-19.

The code below shows the declaration of one DATALOG object and handle. This code is located in the
datalogIF.c file.

DATALOG_Obj datalog;
DATALOG_Handle datalogHandle; //!< the handle for the Datalog object

The code below shows the initialization and setting up of the datalog object, handle and parameters. This code is
located in the sys_main.c file.

// Initialize Datalog
datalogHandle = DATALOGIF_init(&datalog, sizeof(datalog));
DATALOG_Obj *datalogObj = (DATALOG_Obj *)datalogHandle;

HAL_setupDMAforDLOG(halHandle, 0, &datalogBuff1[0], &datalogBuff1[1]);
HAL_setupDMAforDLOG(halHandle, 1, &datalogBuff2[0], &datalogBuff2[1]);

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 55

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The code below shows the configuration of the two module inputs, iptr[0] and iptr[1], to point to the address of
two variables. The datalog module inputs point to different system variables depending on the build level. This
code is located in the sys_main.c file:

datalogObj->iptr[0] = &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.I_A.value[1];

The code below shows the periodic updating of the datalog buffer with the new data during the execution of the
motor1ctrlISR() interrupt. This code is located in the motor1_drive.c file.

if(DATALOGIF_enable(datalogHandle) == true)
{
 DATALOGIF_updateWithDMA(datalogHandle);

 // Force trig DMA channel to save the data
 HAL_trigDMAforDLOG(halHandle, 0);
 HAL_trigDMAforDLOG(halHandle, 1);
}

Note
If there is not enough RAM, the datalog will be not used in the software on the device.

The datalog module is used with the graph tool, which provides a means to visually inspect the variables and
judge system performance. The graph tool is available in CCS, which can display arrays of data in various
graphical types. The arrays of data are stored in a device’s memory in various formats.

While the project is in debug mode, open and setup time graph windows to plot the data log buffers as shown in
Figure 3-24. Alternatively, the user can import the graph configurations files that are located in the project folder.
In order to import them, Click: Tools -> Graph -> DualTime… and select import and browse to the following
location <install_location>\solutions\universal_motorcontrol_lab\common\debug and select
motor_datalog_fp2.graphProp file. Hit OK, this should add the Graphs to your debug perspective. Click on

Continuous Refresh button on the top left corner of the graph tab.

The start address of the

data log buffer

Equals to the size of he data

log buffer

Set the data type as the

software variables

Equals to datalog update

frequency

Equals to the size of he data

log buffer

Import the example

.graphProp file

Figure 3-24. Graph window settings

Running the Universal Lab on TI Hardware Kits www.ti.com

56 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-graphs.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.4.2 Using PWMDAC Function

The PWMDAC module converts the software variables into PWM signals using ePWM 6A, 6B, 7A, and 7B as
shown in Figure 3-25. The PWMDAC module is only supported on the high voltage kit (TMDSHVMTRINSPIN)
since it has extra PWM outputs with RC filters available on the board. If the PWMDAC module is used with a
motor driver board that does not support the PWMDAC module, then the PWM signals will be routed to spare
PWMs on the C2000 LaunchPad and the user would need to add RC filters to those pins in order to utilize the
PWMDAC solution.

PWMDAC

Update

PWM

H/W

pwmDACData.ptrData[0]
EPWM6A

pwmDACData.ptrData[1]

pwmDACData.ptrData[2]

EPWM6B

EPWM7A

Figure 3-25. PWMDAC Module Block Diagram

The PWMDAC module can be used to view the signal, represented by the variable, at the outputs of the related
pins through the external low-pass filters. Therefore, the external low-pass filters are necessary to view the
actual signal waveforms as seen in Figure 3-26. The (1st-order) RC low-pass filter is used to filter out the
high frequency component embedded in the actual low frequency signals. To select R and C values, the time
constant can be expressed in terms of the cut-off frequency (fc) as shown in the following equations Equation 49
and Equation 50.

τ = RC = 12πfc (49)

fc = 2πRC (50)

470�

0.47μF

GND

PWM

Scope

Scope

Figure 3-26. External RC Low-Lass Filter Connecting to a PWM Pin of the C2000 MCU

In order to enable the ePWM DAC functionality, the predefined symbol EPWMDAC_MODE must be added in the
project properties as shown in Figure 3-19.

The code below shows the declaration of the PWMDAC object. This code is located in the sys_main.c file.

HAL_PWMDACData_t pwmDACData;

The code below shows the initialization and setting up of the PWMDAC object, handle and parameters. Four
module inputs, ptrData[0], ptrData[1], ptrData[2], and ptrData[3] are configured to point to the addresses of four
variables. The PWMDAC module inputs point to different system variables depending on the build level. This
code is located in the sys_main.c file.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 57

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

// set DAC parameters
pwmDACData.periodMax =
 PWMDAC_getPeriod(halHandle->pwmDACHandle[PWMDAC_NUMBER_1]);

pwmDACData.ptrData[0] = &motorVars_M1.anglePLL_rad; // PWMDAC1
... ...
pwmDACData.ptrData[1] = &motorVars_M1.angleENC_rad; // PWMDAC2
... ...
pwmDACData.ptrData[2] = &motorVars_M1.angleENC_rad; // PWMDAC3
... ...
pwmDACData.ptrData[3] = &motorVars_M1.adcData.I_A.value[0]; // PWMDAC4

pwmDACData.offset[0] = 0.5f;
pwmDACData.offset[1] = 0.5f;
pwmDACData.offset[2] = 0.5f;
pwmDACData.offset[3] = 0.5f;

pwmDACData.gain[0] = 1.0f / MATH_TWO_PI;
pwmDACData.gain[1] = 1.0f / MATH_TWO_PI;
pwmDACData.gain[2] = 1.0f / MATH_TWO_PI;
pwmDACData.gain[3] = 4096.0f / USER_MOTOR1_OVER_CURRENT_A;

The code below shows the updating of the PWM outputs with new data during the execution of the
motor1ctrlISR() interrupt. This code is located in the motor1_drive.c file.

// connect inputs of the PWMDAC module. HAL_writePWMDACData(halHandle, &pwmDACData);

3.4.3 Using External DAC Board

The DAC128S module converts up to 8 software variables into a 12-bit integer value and transmits the data
through SPI to the digital-to-analog converter (DAC) on the DAC128S085EVM as shown in Figure 3-27.

DAC128S

WriteData

C2000

SPI

dac128s.ptrData[0] DACOUTA

DACOUTB

DACOUTC

SPI_CS

SPI_CLK

SPI_SDI

dac128s.ptrData[1]

dac128s.ptrData[2]

dac128s.ptrData[3]

DAC

SPI

DACOUTD

Scope

DAC128S

EVM

Board

Figure 3-27. DAC128S Module Block Diagram

The DAC128S085EVM can be connected to the LaunchPad as shown in Figure 3-12 . Key connections of the
DAC128S are shown in Figure 3-28.

SPI_SCS

SPI_SCLK

SPI_SDI

SPI_SDO

(Op�on)

Scope LAUNCHXL-F28002x/4x
Use a jumper wire to

connect these two pins

Figure 3-28. DAC128S085EVM Evaluation Board

Running the Universal Lab on TI Hardware Kits www.ti.com

58 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Table 3-8. Hardware Changes Required for DAC128S085EVM Usage
LaunchPad Device Hardware Changes Required
F28002x, F28003x Jumper wire C2000 SPI_STE (SCS) pin JB-2 to SYNC pin JA-2 on the DAC128S085EVM,

as shown in Figure 3-28.

F280013x (1) Device has only 1x SPI module which is shared between Boosterpack site 1 and site 2.
This requires populating 0 ohm resistors on the LaunchPad to connect the SPI signals to
the Boosterpack site 2, which the DAC128S085EVM connects to. For the specific resistor
identifiers, see SPI Routing section in the LAUNCHXL-F2800137 Schematic.
(2) Jumper wire C2000 SPI_STE (SCS) pin to SYNC pin JA-2 on the DAC128S085EVM. The
C2000 SPI_STE pin usage will depend on Inverter boosterpack being used:
1. GPIO19 is used for DRV8323RS, DRV8353RS, DRV8316, & 3-phase GaN inverter

EVMs. This will require using the F280013x's Internal Oscillator and making hardware
changes. For details, see the Oscillator section of the LAUNCHXL-F2800137
Schematic.

2. GPIO37 is used for all other inverter EVMs.

Hardware changes required for DAC128S085EVM usage. In order to enable the DAC128S functionality, the
predefined symbol DAC_128S_ENABLE must be added in the project properties as shown in Figure 3-19.

The code below shows the declaration of the DAC128S object. This code is located in the sys_main.c file.

DAC128S_Handle dac128sHandle; //!< the DAC128S interface handle
DAC128S_Obj dac128s; //!< the DAC128S interface object

The DAC128S085 has an eight channel, 12-bit digital-to-analog converter (DAC) , so the user can set the output
number between 1 and 8 by changing the value of the DAC_EN_CH_NUM define in the dac128s085.h file.
Although the sys_main.c file initializes 8 ptrData[] module inputs to 8 different variable addresses, the number
of module inputs that will actually be transmitted and used during the execution of the code will be determined
by the value of the DAC_EN_CH_NUM constant that is defined in the dac128s085.h file (shown below). Since
most oscilloscopes only have four probes, using 4 out of the 8 DAC128S085 outputs is the default setting in this
example. Using 4 outputs is the default setting in this example lab since most of the oscilloscope only has four
probes. More outputs will occupy much more ISR time to convert and transmit the data, which can negatively
effect the time to spend on other tasks, which is a factor that must be considered if the user desires to use more
than 4 outputs.

#define DAC_EN_CH_NUM (4) // 1~8

The code below shows the initialization and setting up of the DAC128S object, handle and parameters. The code
configures eight module inputs, ptrData[0] - ptrData[7], to point to the addresses of eight different software
variables, but the number of module inputs that will actually be used is determined by the value of the
DAC_EN_CH_NUM constant that is defined in the dac128s085.h file. The dac128s data points to different
system variables depending on the build level and the control algorithm that is defined. This code can be found
in the sys_main.c file.

// initialize the DAC128S
dac128sHandle = DAC128S_init(&dac128s);

// setup SPI for DAC128S
DAC128S_setupSPI(dac128sHandle);
... ...
// Build_Level_2 or Level_3, verify the estimator
dac128s.ptrData[0] = &motorVars_M1.angleGen_rad; // CH_A
dac128s.ptrData[1] = &motorVars_M1.angleEST_rad; // CH_B
dac128s.ptrData[2] = &motorVars_M1.anglePLL_rad; // CH_C
dac128s.ptrData[3] = &motorVars_M1.adcData.I_A.value[0]; // CH_D
dac128s.ptrData[4] = &motorVars_M1.adcData.V_V.value[0]; // CH_E, N/A
dac128s.ptrData[5] = &motorVars_M1.adcData.I_A.value[1]; // CH_F, N/A
dac128s.ptrData[6] = &motorVars_M1.adcData.I_A.value[2]; // CH_G, N/A
dac128s.ptrData[7] = &motorVars_M1.adcData.V_V.value[1]; // CH_H, N/A

dac128s.gain[0] = 4096.0f / MATH_TWO_PI;
dac128s.gain[1] = 4096.0f / MATH_TWO_PI;
dac128s.gain[2] = 4096.0f / MATH_TWO_PI;

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 59

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/lit/sprr447
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/lit/sprr447
https://www.ti.com/lit/sprr447
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

dac128s.gain[3] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[4] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V;
dac128s.gain[5] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[6] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[7] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V;

dac128s.offset[0] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[1] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[2] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[3] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[4] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[5] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[6] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[7] = (uint16_t)(0.5f * 4096.0f);

The below code shows the updating of the DAC128S board with the new data over SPI periodically during the
execution of the motor1ctrlISR() interrupt. This code is located in the motor1_drive.c file. The number of the
DAC outputs that will actually be updated will depend on the value of the DAC_EN_CH_NUM constant.

// Write the variables data value to DAC128S085
DAC128S_writeData(dac128sHandle);

3.5 Running the Project Incrementally Using Different Build Levels
The system is gradually tested and verified in multiple stages so that the final system can be confidently
operated. To select a particular build option, change the value of the DMC_BUILDLEVEL define to the desired
DMC_LEVEL_X option in the sys_settings.h file. Once the build option is selected, compile the project by
right-clicking on the project name and clicking "Rebuild Project".

3.5.1 Level 1 Incremental Build

Objectives for this build level:
• Use the HAL object to initialize the peripherals of the MCU for the motor drive hardware.
• Verify the PWM and ADC driver modules
• Verify the ADC Offset validation
• Become familiar with the operation of CCS. More details about CCS can be found in the CCS User's Guide.

In this build level, the board is executed in open loop mode with a fixed PWM duty cycle. The duty cycles are
set to 50%. This build level verifies the sensing of feedback values from the power stage and also operation
of the PWM gate driver and ensures there are no hardware issues. Additionally, calibration of input and output
voltage sensing can be performed in this build level. During this process the motor must remain disconnected.
The software block diagram of this build level is shown in Figure 3-29.

PWM

Driver

HAL_writePwmData

Ta = 0

HAL_read

Mtr1ADCData

Tb = 0

Tc = 0

Ia

Ib

Ic

Va

Vb

Vc

Vbus

ADC

Driver

M

Figure 3-29. Build Level 1 Software Block Diagram - Offset Validation

Running the Universal Lab on TI Hardware Kits www.ti.com

60 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

http://software-dl.ti.com/ccs/esd/documents/users_guide/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.5.1.1 Build and Load Project

1. Set up the motor driver hardware board and the C2000 Launchpad or controlCARD as described in Section
3.2, except the motor should NOT be connected to the motor driver board in this build level. Note: it is
especially important to ensure that the the S2 switches on the LaunchPad are configured correctly, since this
is necessary to connect the enable pin of the driver to GPIO 29 of the Launchpad.

2. Connect a USB cable from the computer to the on-board USB connector on the C2000 Launchpad or
controlCARD to enable isolation JTAG emulation to the C2000 device.

3. Power on the motor driver board by applying the appropriate voltage to the bus voltage input terminal as
described in Section 3.2.

4. Import the universal motor control lab project into CCS and select the right build configuration as described
in Section 3.3.1. Open the sys_settings.h file and set DMC_BUILDLEVEL to DMC_LEVEL_1. This will
ensure the project is configured to run the first incremental build.

5. In the Project Explorer window, make sure the correct target configuration file is set as Active by right
clicking on the desired target configuration file name and selecting Set as Active Target Configuration. It is
recommended to also set the desired target configuration file as default by right clicking on the file name
and selecting Set as Default Target Configuration. One reason for doing this is because there is no visible
indicator to show which file is active, but if the file is set to default then the [default] indicator will appear
next to the file name in the project explorer window. Setting the file as default will also cause the file to be
used by default unless a different configuration file is specifically set to Active. You can also link a target
configuration to a project in the workspace by going to View > Target Configurations and right clicking on the
target configuration name in the Target Configurations view and selecting Link to Project.

6. Right click on the project name and click on Rebuild Project. Watch the Console window. Any errors in the
project will be displayed in the Console window.

7. On successful completion of the build, click on the Debug button or click Run → Debug. The IDE
will now automatically connect to the target, load the output file into the device and change to the Debug
perspective. The CCS Debug icon will appear in the upper right-hand corner, indicating that the user is now
in the Debug Perspective view. The program should be halted at the start of main().

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

3.5.1.2 Setup Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in CCS, such as memory views and watch views. Additionally, CCS has the ability to
create time (and frequency) domain plots. This ability allows the user to view waveforms using the graph tool.
For information on how to set up and configure the graph tool, see Section 3.4.1. For information on setting up
the Expressions window, see the instructions below.

1. Setup watch window: Click View → Expressions on the menu bar to open an Expressions watch window.
Variables can be added to the Expressions window by clicking Add new expression within the Expressions
window and typing the name of the variable and then pressing enter. The number format that the variable
value is displayed in is based on the number format associated with the variable when it was declared.
You can change the desired number format for a particular variable by right clicking on the variable and
navigating to Number Format and selecting the desired format.

2. Alternately, a group of variables can be imported into the Expressions window by right clicking
within the Expressions window and clicking Import, browse to the directory of the project at
<install_location>\solutions\universal_motorcontrol_lab\common\debug\, select the
universal_lab_level1.txt file, and click OK to import the variables shown in Figure 3-30.

Note
Some of the variables have not been initialized at this point in the main code and may contain
some useless values.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 61

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Note
The structure of variables motorVars_M1 has references to most variables that are related to
controlling motor drive.

3. Click on the Continuous Refresh button in the top right corner of the Expressions Window tab to enable
periodic capture of data from the Microcontroller. By clicking the "View Menu" button (the three dots in the
upper right hand corner of the Expressions window),you can select Continuous Refresh Interval and edit the
refresh rate of the Expressions window. Note that choosing too fast an interval may affect performance.

3.5.1.3 Run the Code

1. Run the code by pressing on the run button, or click Run → Resume in the Debug tab.
2. The project should now run, and the values in the graph and watch window should keep updating.
3. In the Expressions window, set the variables motorVars_M1.flagEnableRunAndIdentify to 1 after

systemVars.flagEnableSystem was automatically set to 1 in the watch window.
4. The project should now run, and the values in the graphs and expressions window should continuously

update as shown in Figure 3-30 while using this project. You may want to re-size the windows according to
your preference.

5. In the watch view, the variables motorVars_M1.flagRunIdentAndOnLine should be set to 1 automatically
if there are no faults. The ISRCount should be increasing continuously. If the ISRCount is not increasing,
ensure that the TEST_ENABLE predefine is defined. If this predefine is not defined, then the ISRCount will
not increment in the code.

6. Check the calibration offsets of the motor driver board. The offset values of the motor phase current sensing
values should be equal to approximately half of the ADC scale current and the phase voltage offsets should
be equal to approximately 0.5 as shown in Figure 3-30.

7. If using the graph tool, the variables shown in the graphs are the phase currents for phase u and v. These
should be close to 0 in magnitude.

8. Expand and check the MotorVars_M1.faultMtrPrev.bit structure to ensure that there are no fault flags set.
9. Using an oscilloscope, probe the PWM outputs that are used for motor drive control. The duty cycles

of the three PWMs are set to 50% in this build level. The expected PWM output waveforms are as
shown in Figure 3-31. The PWM switching frequency will be the same as the value that was set for the
USER_M1_PWM_FREQ_kHz define in the user_mtr1.h file.

10. Set the motorVars_M1.flagEnableRunAndIdentify variable to 0 to disable the PWMs.
11. If any of the previous steps provide unexpected results, additional debug will be necessary. A few things to

check are:
a. Ensure that the DRV board is properly set up, with the proper capacitors/resistors populated on the

EVM.
b. Ensure that the motor driver board being used is the same as the board selected in the build

configurations (see 111).
c. Ensure that the proper predefines are set.
d. Ensure that the switches are configured properly on the C2000 MCU Lunchpad/ControlCARD as

described in Section 3.2.
12. Once the previous steps are complete, the controller can now be halted, and the debug connection

terminated. Halt the controller by first clicking the Halt button on the toolbar or by clicking Target →

Halt. Finally, reset the controller by clicking on the button or clicking Run → Reset→CPU Reset.

13. Close the CCS debug session by clicking the Terminate Debug Session button or clicking Run →
Terminate. This will halt the program and disconnect Code Composer from the MCU.

14. It is not necessary to terminate the debug session each time the user changes or runs the code again.

Instead, the following procedure can be followed. After rebuilding the project, press the button or click

Run → Reset→CPU Reset, and then press the button or click Run → Restart. The project must be
terminated if the target device or the configuration is changed, and before shutting down CCS.

Running the Universal Lab on TI Hardware Kits www.ti.com

62 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Click this button to enable periodic capture of

data from the microcontroller

The variable keeps increasing

Check if these variables meet the board,

estimator, library selection

Set this variable value equal to 1 to start the

motor

Three-phase PWM duty equals to 50%. The

CMPA value equals to half of the TBPRD

Voltage offset coefficients are about 0.5.

Current offset values are near 2048 (half of

12bit ADC scale value)

Current and voltage sampling values are near

0.0 with removing offset

The sensing conversion value should be equal

to the dc bus voltage

Figure 3-30. Build Level 1: Variables in Expressions Window

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 63

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The C2000 PWM with deadband outputs to the input of the gate drive as shown in Figure 3-31

Three-phase PWM duty equals to 50% with deadtime between high and low sides

UH

UL

VH
WH

Figure 3-31. Build Level 1: PWM Output Waveforms

3.5.2 Level 2 Incremental Build

Objectives learned in this build level:

• Implements a simple scalar v/f control of motor to drive dual motor for validating current and voltage sensing
circuit, and gate driver circuit.

• Test InstaSPIN-FOC FAST or eSMO modules for motor control.

In this build level the system is running with open-loop control, so the ADC values are only used for verification
and validation, they are not actually used in the control loop of the motor. The software flow for this build level is
shown in Figure 3-32.

RG

SVM
INV

PARK

CLARKE

CLARKE

Traj

Ramp

PWM

Driver

HAL_writePwmData

User_Vq

User_Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

�ref

I�_in

I�_in

Angle

Speed

Flux

Torque

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

SpdRef

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2
Scope

Graph

Window

Var2

Var4

HAL_read

Mtr1ADCData

FAST

or

eSMO

or

ENC

or

HALL

ADC

Driver

MOnly FAST outputs

Flux and Torque

Figure 3-32. Build Level 2 Software Block Diagram - Open Loop Control

Running the Universal Lab on TI Hardware Kits www.ti.com

64 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.5.2.1 Build and Load Project

Connect the motor to the appropriate terminals on the motor driver evaluation board. Follow steps 2-7 of Section
3.5.1.1 to build and load the project. In step 4, set the DMC_BUILDLEVEL to DMC_LEVEL_2.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

3.5.2.2 Setup Debug Environment Windows

Follow the steps in Section 3.5.1.2 to import the variables into the Expressions window. For build level 2, select
the universal_lab_level2.txt file. The Expressions window appears as shown in Figure 3-33.

3.5.2.3 Run the Code

1. Power on the appropriate power supply, and gradually increase the output voltage of the power supply to get
an appropriate DC-bus voltage.

2. If using the graph tool, lab 2 uses the same graph configurations and parameters as lab 1 to monitor 2 of the
phase currents.

3. Run the project by clicking on the button, or click Run → Resume in the Debug tab. The
systemVars.flagEnableSystem should be set to 1 after a fixed time, that means the offsets calibration has
completed. The fault flags, motorVars_M1.faultMtrUse.all should be equal to 0. If this is not the case, the
user should double check the current and voltage sensing circuit in lab 1 as described in Section 3.5.1.3.

4. To verify the current and voltage sensing circuits of the motor driver, set the variable
motorVars_M1.flagEnableRunAndIdentify to 1 in the Expressions window as shown in Figure 3-33. The
motor will run with voltage/frequency (v/f) open loop. If the motor doesn't spin smoothly, tune the v/f profile
parameters in the user_mtr1.h file as shown below according to the specification of the motor. See1 for more
details on tuning the v/f profile parameters. Note: modification of these parameters will require rebuilding the
project. See step 14 of 14 for more information on rebuilding the project in debug mode.

#define USER_MOTOR1_FREQ_LOW_HZ (5.0) // Hz
#define USER_MOTOR1_FREQ_HIGH_HZ (400.0) // Hz
#define USER_MOTOR1_VOLT_MIN_V (1.0) // Volt
#define USER_MOTOR1_VOLT_MAX_V (24.0) // Volt

5. The motorVars_M1.speedRef_Hz variable is used to set the speed reference for the motor. Check the
value of the motorVars_M1.speed_Hz variable in the Expressions window to ensure that the motor speed
(motorVars_M1.speed_Hz) is close to the reference speed (motorVars_M1.speedRef_Hz) as shown in
Figure 3-33.

6. In this build level, the current sensing, voltage sensing, rotor angle estimator, and generator need to be
validated. This can be done using either the PWMDAC or the DAC128S module with an oscilloscope as
described in Section 3.4.2 or Section 3.4.3. Additionally, the DATALOG module can be used to view these
sensing waveforms. For more information on using the DATALOG to view the currents, voltages, and angle
signals, see step 7. If using the DAC128S module, configure the dac128s.ptrdata[] inputs to correspond with
the code shown in each of the following subsections. The code modification can be done by uncommenting
the appropriate code section for the DAC128S initialization and by commenting out the rest of the DAC128S
initialization that is not needed in the subsection. It will be necessary to rebuild the project after modifying the
code to correspond with each subsection. See step 14 of 14 for more information on rebuilding the project in
debug mode.
a. The first set of parameters to monitor is the phase currents. This is done by uncommenting the portion of

code shown below, which sets up the dac128s pointer data to the 3 phase currents as well as the angle
estimator variable. This code is found in the sys_main.c file. The expected current waveforms should be
similar to the waveforms shown on the oscilloscope in Figure 3-35. The current waveforms measured
at the DAC128S outputs should be almost the same as the corresponding phase current waveforms
capture by a current probe. If this is the case, that indicates the current sensing circuit is good for motor
control. If this is not the case, it may be necessary to tune the v/f parameters in the user_mtr1.h file as
described in 1.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 65

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

dac128s.ptrData[0] = &motorVars_M1.adcData.I_A.value[0]; // CH_A
dac128s.ptrData[1] = &motorVars_M1.adcData.I_A.value[1]; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.I_A.value[2]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.angleGen_rad; // CH_D
dac128s.ptrData[4] = &motorVars_M1.angleEST_rad; // CH_E, N/A
dac128s.ptrData[5] = &motorVars_M1.adcData.V_V.value[0]; // CH_F, N/A
dac128s.ptrData[6] = &motorVars_M1.adcData.V_V.value[1]; // CH_G, N/A
dac128s.ptrData[7] = &motorVars_M1.adcData.V_V.value[2]; // CH_H, N/A

dac128s.gain[0] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[1] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[2] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[3] = 4096.0f / MATH_TWO_PI;
dac128s.gain[4] = 4096.0f / MATH_TWO_PI; // NA
dac128s.gain[5] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V; // N/A
dac128s.gain[6] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V; // N/A
dac128s.gain[7] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V; // N/A
... ...
dac128s.offset[0] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[1] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[2] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[3] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[4] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[5] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[6] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[7] = (uint16_t)(0.5f * 4096.0f); // N/A

b. The second set of parameters to monitor are the phase voltages. To do this, the section of code that
sets up the dac128s pointer data to point to the phase voltage should be uncommented as shown below.
This code is found in the sys_main.c file. The output waveform shape of the phase voltage sensing
from the DAC128S module should look similar to the image shown in Figure 3-36 or Figure 3-37. If
this is the case, that indicates that the voltage sensing sircuit is working as expected. Note that the
amplitude can vary depending on the supply voltage and motor used, but the shape of the waveform
should be the same. Note the difference in the phase waveforms depending on the SVM mode used.
For the Common SVM mode, there is a voltage dip at the upper and the lower peaks of the waveform,
whereas for the Minimum SVM mode, the voltage dip only appears on the upper peak, but stays flat
on the lower peak. To change the SVM mode, select either SVM_COM_C or SVM_MIN_C from the
motorVars_M1.svmMode enumeration in the Expressions window.

dac128s.ptrData[0] = &motorVars_M1.adcData.V_V.value[0]; // CH_A
dac128s.ptrData[1] = &motorVars_M1.adcData.V_V.value[1]; // CH_B
dac128s.ptrData[2] = &motorVars_M1.adcData.V_V.value[2]; // CH_C
dac128s.ptrData[3] = &motorVars_M1.angleGen_rad; // CH_D
dac128s.ptrData[4] = &motorVars_M1.angleEST_rad; // CH_E, N/A
dac128s.ptrData[5] = &motorVars_M1.adcData.I_A.value[0]; // CH_F, N/A
dac128s.ptrData[6] = &motorVars_M1.adcData.I_A.value[1]; // CH_G, N/A
dac128s.ptrData[7] = &motorVars_M1.adcData.I_A.value[2]; // CH_H, N/A

dac128s.gain[0] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V;
dac128s.gain[1] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V;
dac128s.gain[2] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V;
dac128s.gain[3] = 4096.0f / MATH_TWO_PI;
dac128s.gain[4] = 4096.0f / MATH_TWO_PI; // N/A
dac128s.gain[5] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // N/A
dac128s.gain[6] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // N/A
dac128s.gain[7] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // N/A
... ...
dac128s.offset[0] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[1] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[2] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[3] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[4] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[5] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[6] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[7] = (uint16_t)(0.5f * 4096.0f); // N/A

Running the Universal Lab on TI Hardware Kits www.ti.com

66 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

c. The third set of parameters to monitor is the angle generator and the angle estimator parameters. To
do this, the section of code that sets up the dac128s pointer data to point to the appropriate variables
should be uncommented as shown below. This code is found in the sys_main.c file. The angle from the
angle generator and the estimator waveforms should be similar to the oscilloscope waveforms shown in
Figure 3-38. Notice that the angle of the force angle generator is very similar to the estimated rotor angle
of the FAST or eSMO estimator. This indicates that the FAST or eSMO estimator works as expected with
the motor parameters and the sampling current and voltage signals.

dac128s.ptrData[0] = &motorVars_M1.angleGen_rad; // CH_A
dac128s.ptrData[1] = &motorVars_M1.angleEST_rad; // CH_B
dac128s.ptrData[2] = &motorVars_M1.anglePLL_rad; // CH_C
dac128s.ptrData[3] = &motorVars_M1.adcData.I_A.value[0]; // CH_D
dac128s.ptrData[4] = &motorVars_M1.adcData.V_V.value[0]; // CH_E, N/A
dac128s.ptrData[5] = &motorVars_M1.adcData.I_A.value[1]; // CH_F, N/A
dac128s.ptrData[6] = &motorVars_M1.adcData.I_A.value[2]; // CH_G, N/A
dac128s.ptrData[7] = &motorVars_M1.adcData.V_V.value[1]; // CH_H, N/A

dac128s.gain[0] = 4096.0f / MATH_TWO_PI;
dac128s.gain[1] = 4096.0f / MATH_TWO_PI;
dac128s.gain[2] = 4096.0f / MATH_TWO_PI;
dac128s.gain[3] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A;
dac128s.gain[4] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V; // N/A
dac128s.gain[5] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // N/A
dac128s.gain[6] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_CURRENT_A; // N/A
dac128s.gain[7] = 2.0f * 4096.0f / USER_M1_ADC_FULL_SCALE_VOLTAGE_V; // N/A

dac128s.offset[0] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[1] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[2] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[3] = (uint16_t)(0.5f * 4096.0f);
dac128s.offset[4] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[5] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[6] = (uint16_t)(0.5f * 4096.0f); // N/A
dac128s.offset[7] = (uint16_t)(0.5f * 4096.0f); // N/A

7. If using the DATALOG module with the graph tool to check the current sensing signals, voltage sensing
signals, and the angle outputs, follow the steps described below. For more info on the datalog module, see
Section 3.4.1. Note: It will be necessary to rebuild the project in between each of the below steps after
modifying the code. See step 14 of 14 for more information on rebuilding the project in debug mode.
a. To test the phase currents for phase U and V using the DATALOG module, the following code must be

set up in the sys_main.c file.

Note
This code is already configured by default for build level 2. The phase current sampling
signals waveform displayed on the graph tool as shown in Figure 3-39.

datalogObj->iptr[0] = &motorVars_M1.adcData.I_A.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.I_A.value[1];

b. To test the phase voltages for phase U and V using the DATALOG module, the following code must be
set up in the sys_main.c file and modified to the code shown below. The phase voltage sampling signals
waveform on graph tool as shown in Figure 3-40.

datalogObj->iptr[0] = &motorVars_M1.adcData.V_V.value[0];
datalogObj->iptr[1] = &motorVars_M1.adcData.V_V.value[1];

c. Configuring DATALOG module four inputs as the following codes. The angle from the force angle
generator or estimator waveforms on the graph tool as shown in Figure 3-41. Notice that the angle of the
force angle generator is very similar as the estimated rotor angle of the FAST or eSMO estimator.

datalogObj->iptr[0] = &motorVars_M1.angleFOC_rad;
datalogObj->iptr[1] = &motorVars_M1.angleEST_rad;

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 67

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

8. Verify the over current fault protection by decreasing the value of the variable motorVars_M1.overCurrent_A,
the over current protection is implemented by the CMPSS modules. The over current fault will be trigger
if the motorVars_M1.overCurrent_A is set to a value less than the motor phase current actual value,
the PWM output will be disabled, the motorVars_M1.flagEnableRunAndIdentify is cleared to 0, and the
motorVars_M1.faultMtrUse.all will be set to 0x10 (16) as shown in Figure 3-34.

9. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
10. Once complete, the controller can now be halted, and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

11. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.
12. Power off the power supply to the inverter kit.

Click this button to enable

periodic capture of data from the

microcontroller

Check if these variables meet

the board, estimator, library

selections

Set this variable value equal to 1

to start run the motor

One/two/three of these registers

values will be non-zero if there is

fault on the kits

The threshold value of the over

current protection

Means the inverter/controller has

fault when run the motor if the

variable value is not zero

Set target speed value (Hz) to

this variable

The sensing conversion value

should be equal to the dc bus

voltage

Three-phase PWM Compare

registers value

Check if the estimation speed

(Hz) is equal/close to the setting

traget speed (Hz)

Figure 3-33. Build Level 2: Variables in Expressions Window

Running the Universal Lab on TI Hardware Kits www.ti.com

68 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Adjust the value of motorVars_M1.overCurrent_A in Expression window to trigger the over current fault as
shown in Figure 3-34.

The value will be non-zero if

there is an over-current fault

The values will be non-zero if

there is an over-current fault

Set the right current threshold

value to verify the over

current function

Figure 3-34. Build Level 2: Current Protection Setting

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing current of the motor and compare
the sampling value to the measurement value with a current probe as shown in Figure 3-35.

The feedback current sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A current

CH2 (Green) - Phase B current

CH3 (Purple) - Phase C current

The phase A current capture by

a current probe of oscilloscope

Figure 3-35. Build Level 2: Motor Phase Current Waveforms

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing voltage of the motor, and use
common mode SVPWM by setting motorVars_M1.svmMode equal to SVM_COM_C as shown in Figure 3-36.

The feedback voltage sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A voltage

CH2 (Green) - Phase B voltage

CH3 (Purple) - Phase C voltage

The phase A current capture by

a current probe of oscilloscope

SVM is COMMON mode

Figure 3-36. Build Level 2: Motor Phase Voltage Waveforms Using Common SVM Mode

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 69

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use DAC128S085EVM with an oscilloscope to monitor three phase sensing voltage of the motor, and use
minimum mode SVPWM by setting motorVars_M1.svmMode equal to SVM_MIN_C as shown in Figure 3-37.

The feedback voltage sensing value

output with PWMDAC or DAC128S

CH1 (Yellow) - Phase A voltage

CH2 (Green) - Phase B voltage

CH3 (Purple) - Phase C voltage

The phase current capture by

a current probe of oscilloscope

SVM is MINIMUM mode

Figure 3-37. Build Level 2: Motor Phase Voltage Waveforms Using Minimum SVM Mode

Use DAC128S085EVM with an oscilloscope to monitor the rotor angle of the motor from the angle generator and
the angle from the FAST estimator as shown in Figure 3-38.

The rotor angle value output with

PWMDAC or DAC128S

CH1 (Yellow) – Angle for generator

CH2 (Green) - Angle from estimator

The phase A current

capture by a current

probe of oscilloscope

The phase A current

sensing value output

with PWMDAC or

DAC128S

Figure 3-38. Build Level 2: Motor Rotor Angle and Phase Current Waveforms

Running the Universal Lab on TI Hardware Kits www.ti.com

70 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use Datalog with Graph Tool to monitor three phase sensing current of the motor as shown in Figure 3-39.

Phase B current sampling

values of the motor

Phase A current sampling

values of the motor

Reset the graph for

changing display scale

Phase A current sampling

values of the motor

Figure 3-39. Build Level 2: Motor Phase Current Waveforms With Graph Tool

Use Datalog with Graph Tool to monitor three phase sensing voltage of the motor as shown in Figure 3-40.

Phase B voltage sampling

values of the motor

Phase A voltage sampling

values of the motor

Figure 3-40. Build Level 2: Motor Phase Voltage Waveforms With Graph Tool

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 71

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use Datalog with Graph Tool to monitor rotor angle of the motor from the angle generator and angle from the
FAST estimator as shown in Figure 3-41.

Motor rotor angle from

estimator

Motor rotor angle from the

force angle generator

Figure 3-41. Build Level 2: Motor Rotor Angle Waveforms With Graph Tool

Running the Universal Lab on TI Hardware Kits www.ti.com

72 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.5.3 Level 3 Incremental Build

Objectives learned in this build level:

• Evaluate the closed current loop operation of the motor.
• Verify the current sensing parameters settings

In this build level, the motor is controlled by using i/f control that the rotor angle is generated from ramp
generator module. The software flow for this build level is shown in Figure 3-42.

SVM

Iq

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

FAST

or

eSMO

or

ENC

or

HALL

PWM

Driver

HAL_writePwmData

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

user_Iq_ref

Iq

user_Id_ref

Id

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Torque

EST_run

Rs

�

�s
�

Lsd

�

Lsq
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

RG
Traj

Ramp

�ref
SpdRef

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2Scope
Graph

Window

Var2

Var4

HAL_read

Mtr1ADCData

ADC

Driver

M
Only FAST outputs

Flux and Torque

Figure 3-42. Build Level 3 Software Block Diagram - Current Close Loop Control

3.5.3.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
3.5.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_3 in the sys_settings.h file.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

3.5.3.2 Setup Debug Environment Windows

Follow operation steps in Section 3.5.1.2 to import the variables into the Expressions window by picking
universal_lab_level3.txt. The Expressions window appears as shown in Figure 3-43.

3.5.3.3 Run the Code

1. Power on the AC or DC power supply, gradually increase output voltage at power supply to get an
appropriate DC-bus voltage.

2. Run the project by clicking on button , or click Run → Resume in the Debug tab. The
systemVars.flagEnableSystem should be set to '1' after a fixed time, that means the offsets calibration
have been done. The fault flags motorVars_M1.faultMtrUse.all should be equal to '0' , if not, the user have to
check the current and voltage sensing circuit as described in Section 3.5.1.

3. To verify run the motor with current closed-loop control, set the variable
motorVars_M1.flagEnableRunAndIdentify to '1' in the Expressions window as shown in Figure 3-43. The
motor will run with a closed-loop control using the angle from the angle generator at a setting speed in the
variable motorVars_M1.speedRef_Hz. Check the value of motorVars_M1.speed_Hz in Expressions window,
The values of both variables should be very close.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 73

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4. Connect oscilloscope probes to the EPWMDAC or DAC128S outputs and motor phase line to probe the
angles and current signals, and current. These waveforms on the oscilloscope appear as shown in Figure
3-44. Change the motorVars_M1.Idq_set_A.value[1] in the Expressions window to set the reference torque
current, the motor phase current will be increasing with the same percentage accordingly.

5. If the motor cannot run with current-closed loop control and an over current fault appears, check if the
sign of motorVars_M1.adcData.current_sf and the value of userParams_M1.current_sf are set correctly
according to the hardware board. The values of both variables are related to the definition constant
USER_M1_ADC_FULL_SCALE_CURRENT_A in the user_mtr1.h file.

6. Set the variables motorVars_M1.flagEnableRunAndIdentify to 0 to stop run the motor.
7. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

8. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.

Click this button to enable periodic

capture of data from the microcontroller

Check if these variables meet the board,

estimator, library selections

Set this variable value equal to 1 to start

run the motor

Tune these Kp or Ki of current

regulators to achieve the required

response

Set the reference torque current value to

this varaible

Means the inverter/controller has fault

when run the motor if the variable value

is not zero

Set target speed value (Hz) to this

variable

The sensing conversion value should be

equal to the dc bus voltage

Check if the estimation speed (Hz) is

equal/close to the setting traget speed

(Hz)

The threshold value of the over current

protection

Figure 3-43. Build Level 3: Variables in Expressions Window

Running the Universal Lab on TI Hardware Kits www.ti.com

74 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the angle generator and
rotor angle from the FAST estimator, and a phase current of the motor as shown in Figure 3-44.

The rotor angle value output with

PWMDAC or DAC128S

CH1 (Yellow) – Angle for generator

CH2 (Green) - Angle from estimator

The phase A current

capture by a current

probe of oscilloscope

The phase A current

sensing value output

with PWMDAC or

DAC128S

Figure 3-44. Build Level 3: Motor Rotor Angle and Phase Current Waveforms on Oscilloscope

3.5.4 Level 4 Incremental Build

Objectives learned in this build level:

• Evaluate motor identification with FAST estimators.
• Evaluate the complete motor drive with Fast based sensorless-FOC, eSMO based sensorless-FOC, encoder

based sensored-FOC or hall based sensored-FOC.
• Evaluate the additional features, such as field weakening control, flying start, MTPA, and braking.

In this build level, the outer speed loop is closed with the inner current loop for motor that the rotor angle is from
FAST, eSMO, encoder or Hall sensors modules. The software flow for this build level is shown in Figure 3-45.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

FAST

or

eSMO

or

ENC

or

HALL

PWM

Driver

ADC

Driver

HAL_writePwmData

+

+

Vq

Vd

V�_out

V�_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

V�_in

V�_in

Iq_ref

Iq

Id_ref

Id

�ref

Id

Iq

I�_in

I�_in

Angle

Speed

Flux

Torque

Rs
�

�s
�

Lsd
�

Lsq
�

�
�

�
�

��

�
�

�
�

�
�

�
�

Irated

�

�
�

�
�

�
�

Is_ref

FWC

FWC

�
�

SpdRef

�
�

Lq

Ld

Vs

Vref

�1

�2

MTPA

HAL_read

Mtr1ADCData

Var1

Var3

DACs

or

PWMDAC

DATALOG
DlogCh1

DlogCh2
Scope Graph

Window

Var2

Var4

MOnly FAST outputs

Flux and Torque

Figure 3-45. Build Level 4 Software Block Diagram - Speed and Current Close Loop Control

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 75

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3.5.4.1 Build and Load Project

Connect the motor to the related terminals on the power inverter board. Follow the operation steps in Section
3.5.1.1 to build and load project by setting DMC_BUILDLEVEL to DMC_LEVEL_4 in the sys_settings.h file.

CAUTION
Do not click Cancel, turn off the power of the board, or disconnect the emulator when loading the
code to flash.

3.5.4.2 Setup Debug Environment Windows

Follow operation steps in Section 3.5.1.2 to import the variables into the Expressions window by picking
universal_lab_level4.txt. The Expressions window appears as shown in Figure 3-46.

3.5.4.3 Run the Code

1. Set the AC source output to 0 V at 50/60Hz, turn on the AC power supply, slowly increase the input voltage
from 0-V to 220-V AC.

2. The required motor parameters must be defined in the user_mtr1.h header file as shown in the following
example code. If the motor parameters are not well know by the user, the motor identification can be used to
achieve the motor parameters if the FAST estimator is implemented in the example lab.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)
#define USER_MOTOR1_Rr_Ohm (NULL)
#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)

3. Changes the userParams.flag_bypassMotorId value to "false"in the sys_main.c file to enable the motor
identification as the following example code.

// false->enable identification, true->disable identification
 userParams_M1.flag_bypassMotorId = false;

4. Set the right identification variables value in the user_mtr1.h file according to the motor specification.

#define USER_MOTOR1_RES_EST_CURRENT_A (1.5f) // A - 10~30% of rated current of the
motor
#define USER_MOTOR1_IND_EST_CURRENT_A (-1.0f) // A - 10~30% of rated current of the
motor, just enough to enable rotation
#define USER_MOTOR1_MAX_CURRENT_A (4.5f) // A - 30~150% of rated current of the
motor
#define USER_MOTOR1_FLUX_EXC_FREQ_Hz (40.0f) // Hz - 10~30% of rated frequency of
the motor

5. Rebuild the project and load the code into the controller, run the project by clicking on button , or click
Run → Resume in the Debug tab. The systemVars.flagEnableSystem should be set to 1 after a fixed time,
that means the offsets calibration have been done and the power relay for inrush is turned on. The fault flags
motorVars_M1.faultMtrUse.all should be equal to '0' , if not, the user should check the current and voltage
sensing circuit as described in Section 3.5.1.

6. Set the variable motorVars_M1.flagEnableRunAndIdentify to' 1 in the Expressions window as shown in
Figure 3-46, the motor identification will be executed, the whole process will take about 150s. Once
motorVars_M1.flagEnableRunAndIdentify is equal to 0 and the motor is stopping, the motor parameters
have been identified. Copy the variables value in the watch window to replace the defined motor parameters
in the user_mtr1.h file as follows:
• USER_MOTOR1_Rs_Ohm = motorSetVars_M1.Rs_Ohm’s value
• USER_MOTOR1_Ls_d_H = motorSetVars_M1.Ls_d_H’s value
• USER_MOTOR1_Ls_q_H = motorSetVars_M1.Ls_q_H’s value
• USER_MOTOR1_RATED_FLUX_VpHz = motorSetVars_M1.flux_VpHz’s value

7. Set userParams_M1.flag_bypassMotorId value to 'true' to disable identification after successfully identify the
motors parameters, rebuild the project and load the code into the controller.

Running the Universal Lab on TI Hardware Kits www.ti.com

76 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

8. The example can support online identify the motor without reloading the code as the following steps.
a. Set the motorVars_M1.flagEnableRunAndIdentify to' 0' to stop run the motor.
b. Set the motorVars_M1.flagEnableMotorIdentify to '1' to enable identification.
c. Set the motorVars_M1.flagEnableRunAndIdentify to' 1' to start identify motor parameters. The

motorVars_M1.flagEnableMotorIdentify will be set to '0' automatically that means the identification is
in processing.

d. As described in the step 6 above, the new motor parameters will be identified.
9. Once complete motor parameters identification or set the correct the motor parameters in the user_mtr1.h

file. To start run the motor as the following steps.
a. Set the variables motorVars_M1.flagEnableRunAndIdentify equal to 1 again to start run the motor.
b. Set the target speed value to the variable motorVars_M1.speedRef_Hz and watch how the motor shaft

speed will follow the setting speed.
c. To change the acceleration, enter a different acceleration value for the variable

motorVars_M1.accelerationMax_Hzps.
d. Use PWMDAC or DAC128S module to display the monitoring variables as described in Section 3.4.2 or

Section 3.4.3. The motor angle and current waveforms are shown in Figure 3-47.
10. The default proportional gain (Kp) and integral gain (Ki) for the current controllers of the FOC system

are calculated in the function setupControllers(). After setupControllers() is called, the global variables
motorSetVars_M1.Kp_Id, motorSetVars_M1.Ki_Id, motorSetVars_M1.Kp_Iq, and motorSetVars_M1.Ki_Iq
are initialized with the newly calculated Kp and Ki gains. Tune the Kp and Ki value of these four variables
in Expressions Watch Window as shown in Figure 3-46 for the current controllers to achieve the expected
current control bandwidth and response. The Kp gain creates a zero that cancels the pole of the motor’s
stator and can easily be calculated. The Ki gain adjusts the bandwidth of the current controller-motor system.
When a speed controlled system is needed for a certain damping, the Kp gain of the current controller will
relate to the time constant of the speed controlled system.

11. The default proportional gain (Kp) and integral gain (Ki) for the speed controllers of the FOC system are
also calculated in the function setupControllers(). After setupControllers() is called, the global variables
motorSetVars_M1.Kp_spd and motorSetVars_M1.Ki_spd are initialized with the newly calculated Kp and Ki
gains. Tune the Kp and Ki value of these two variables in Expressions Watch Window as shown in Figure
3-46 for the speed controllers to achieve the expected current control bandwidth and response. Tuning the
speed controller has more unknowns than when tuning a current controller, the default calculated Kp and Ki
is just a reference value as a starting point.

12. Set the variables motorVars_M1.flagEnableRunAndIdentify to '0' to stop run the motor.
13. Once complete, the controller can now be halted and the debug connection terminated. Fully halting the

controller by first clicking the Halt button on the toolbar or by clicking Target → Halt. Finally, reset the

controller by clicking on or clicking Run → Reset.

14. Close CCS debug session by clicking on Terminate Debug Session or clicking Run → Terminate.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 77

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Click this button to enable periodic

capture of data from the

microcontroller

Supporting estimators

Set this variable value equal to 1 to

start motor

Setting/Identified motor electrical

parameters

Set target speed value (Hz) to this

variable

Estimation feedback speed (Hz)

The threshold value of the over

current protection

Tune these Kp or Ki of current and

speed regulators to achieve the

required response

Estimator state

Motor operation state

Using estimator

Using SVM mode

Figure 3-46. Build Level 4: Variables in Expressions Window

Running the Universal Lab on TI Hardware Kits www.ti.com

78 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator,
feedback speed of the motor, and a phase current of the motor as shown in Figure 3-47 when the motor is
running at forward rotation by setting motorVars_M1.speedRef_Hz to a positive reference value.

Rotor angle

value output

with DAC128S

Phase A current

capture by a

current probe

Phase A current

sensing value output

with DAC128S

Feedback speed

value output with

DAC128S

Figure 3-47. Build Level 4: Rotor Angle with FAST, Phase Current Waveforms at Forward Move

As illustrated in Section 3.3.2, multiple FOC algorithms can be supported in the example lab. The user can use
one or two algorithm for motor control in the lab project as shown in Table 3-7.

The user can implement FAST and eSMO estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_ESMO' in project properties as described in Section 3.3.1. Rebuild, load
and run the project as the operation steps above. The settings will be as shown in Figure 3-46.

• The systemVars.estType value equals to EST_TYPE_FAST_ESMO that means FAST and eSMO estimators
are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ESMO that means the eSMO estimator is using
for sensorless-FOC.

• The estimated rotor angles from FAST and eSMO are shown in Figure 3-48. The motor is running with FAST
at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The estimated rotor angles from FAST and eSMO are shown in Figure 3-52. The motor is running with FAST
at reversal rotation by setting motorVars_M1.speedRef_Hz to a negative value.

• The user can change the value to ESTIMATOR_MODE_ESMO to select the eSMO estimator for sensorless-
FOC. And also the user can change the value to switch the using estimator on the fly.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 79

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST and eSMO
estimator, and a phase current of the motor as shown in Figure 3-48 when the motor is running at forward
rotation by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

eSMO rotor angle

value output with

DAC128S

Figure 3-48. Build Level 4: Rotor Angle with FAST and eSMO, Phase Current Waveforms at Forward
Rotation

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST and eSMO
estimator, and a phase current of the motor as shown in Figure 3-49 when the motor is running at reversal
rotation by setting motorVars_M1.speedRef_Hz to a negative reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

eSMO rotor angle

value output with

DAC128S

Figure 3-49. Build Level 4: Rotor Angle With FAST and eSMO, Phase Current Waveforms at Reversal
Rotation

Running the Universal Lab on TI Hardware Kits www.ti.com

80 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The user can implement FAST and Encoder estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_ENC' in project properties as described in Section 3.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_FAST_ENC that means FAST and Encoder estimators
are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ENC that means the encoder estimator is using
for sensored-FOC.

• The estimated rotor angles from FAST and Encoder are shown in Figure 3-50. The motor is running with
FAST at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The user can change the value to ESTIMATOR_MODE_ENC to select the Encoder estimator for sensored-
FOC. And also the user can change the value to switch the using estimator on the fly.

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and
encoder, and a phase current of the motor as shown in Figure 3-50 when the motor is running at forward rotation
by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

Encoder rotor

angle value output

with DAC128S

Figure 3-50. Build Level 4: Rotor Angle with FAST and Encoder, Phase Current Waveforms at Forward
Rotation

The user can implement FAST and Hall sensor estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_FAST' and 'MOTOR1_HALL' in project properties as described in Section 3.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_FAST_HALL that means FAST and Hall sensor
estimators are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_FAST that means the FAST estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_HALL that means the Hall sensor estimator is
using for sensored-FOC.

• The estimated rotor angles from FAST and Hall sensor are shown in Figure 3-51. The motor is running with
FAST at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The estimated rotor angles from FAST and Hall sensor are shown in Figure 3-51. The motor is running with
Hall sensor at reversal rotation by setting motorVars_M1.speedRef_Hz to a negative value.

• The user can change the value to ESTIMATOR_MODE_HALL to select the Hall sensor estimator for
sensored-FOC. And also the user can change the value to switch the using estimator on the fly.

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 81

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and
Hall sensor, and a phase current of the motor as shown in Figure 3-51 when the motor is running at forward
rotation by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

HALL rotor angle

value output with

DAC128S

Figure 3-51. Build Level 4: Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at Forward
Rotation

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the FAST estimator and
Hall sensor, and a phase current of the motor as shown in Figure 3-52 when the motor is running at reversal
rotation by setting motorVars_M1.speedRef_Hz to a negative reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

HALL rotor angle

value output with

DAC128S

Figure 3-52. Build Level 4: Motor Rotor Angle with FAST and Hall Sensor, Phase Current Waveforms at
Reversal Rotation

Running the Universal Lab on TI Hardware Kits www.ti.com

82 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The user can implement eSMO and Encoder estimators in the project simultaneously by adding the pre-define
name 'MOTOR1_ESMO' and 'MOTOR1_ENC' in project properties as described in Section 3.3.1. Rebuild, load
and run the project as the operation steps above.

• The systemVars.estType value equals to EST_TYPE_ESMO_ENC that means eSMO and Encoder
estimators are enabled in this project.

• The motorVars_M1.estimatorMode equals to ESTIMATOR_MODE_ESMO that means the eSMO estimator is
using for sensorless-FOC, equals to ESTIMATOR_MODE_ENC that means the encoder estimator is using
for sensored-FOC.

• The estimated rotor angles from eSMO and Encoder are shown in Figure 3-53. The motor is running with
eSMO at forward rotation by setting motorVars_M1.speedRef_Hz to a positive value.

• The user can change the value to ESTIMATOR_MODE_ENC to select the Encoder estimator for sensored-
FOC. And also the user can change the value to switch the using estimator on the fly.

Use DAC128S085EVM with an oscilloscope to monitor rotor angle of the motor from the eSMO estimator and
encoder, and a phase current of the motor as shown in Figure 3-53 when the motor is running at forward rotation
by setting motorVars_M1.speedRef_Hz to a positive reference value.

Using rotor angle

value output with

DAC128S

Phase A current

capture by a

current probe

FAST rotor angle

value output with

DAC128S

Encoder rotor

angle value output

with DAC128S

Figure 3-53. Build Level 4: Rotor Angle with eSMO and Encoder, Phase Current Waveforms at Forward
Rotation

www.ti.com Running the Universal Lab on TI Hardware Kits

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 83

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/DAC128S085EVM
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4 Building a Custom Board
4.1 Building a New Custom Board
This section discusses how the user can design their own application board to drive a motor, and how to migrate
the motor control SDK software for use with their own board.

4.1.1 Hardware Setup

If using a custom board, make sure that the power supply to the C2000 microcontroller and to the gate driver is
correct, and that the JTAG emulator can be connected successfully. Modify the reference code to be compatible
with the custom board as described in the following sections, and then run the code starting with build level 1
and working the way to build level 4 as illustrated in Section 3.5.

4.1.2 Migrating Reference Code to a Custom Board

To migrate the reference code to a new TI motor driver kit or to a custom board, the user needs to configure
the hardware parameters and the motor control parameters in the user_mtr1.h file according to the motor driver
circuit, and configure the relevant peripherals in the hal.h and hal.c files as described in the following sections.

The following block diagram summarizes the function calls that are used to configure the motor control settings
and the C2000 MCU peripherals (Figure 4-1).

In this lab project, there are several HAL functions that are called only once, related to the configuration of the
Hardware. All of these functions deal with the configuration of either a peripheral or of a motor driver IC.

Initialize the HAL Handle: HAL_init()

(call in sys_main.c, define in hal.c)

Project Start

Setup HAL with user parameters:

HAL_MTR_setParams()

(call in sys_main.c, define in hal.c)

initialize motor control parameters:

initMotor1CtrlParameters()

(call in sys_main.c, define in motor1_drive.c)

Configure DRV device (if applicable)

HAL_enableDRV()

HAL_setupDRVSPI()

(call in motor1_drive.c, define in hal.c)

Configure MCU’s peripherals:

HAL_initIntVectorTable()

HAL_enableCtrlInts()

HAL_enableGlobalInts()

HAL_enableDebugInt()

(call in sys_main.c, define in hal.c)

Setup faults depending on board used:

HAL_setupFaults()

HAL_disablePWM()

(call in motor1_drive.c, define in hal.c)

Forever Loop Start

run offset calibration: runMotor1OffsetsCalculation()

(call in sys_main.c, define in motor1_drive.c)

Figure 4-1. HAL Configuration and Motor Control Setting Block Diagram

Building a Custom Board www.ti.com

84 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4.1.2.1 Setting Hardware Board Parameters

The user_mtr1.h file is where all the user parameters are stored for motor control. The maximum phase current
and phase voltage at the input to the AD converter are hardware dependent and should be based on the current
and voltage sensing circuitry and scaling at the ADC input. The number of phase current sensors and phase
voltage sensors are also defined in the user_mtr1.h file. These values are hardware-dependent.

All of the configurable parameters defined in the user_mtr1.h file can be calculated using the Motor Control
Parameters Calculation.xlsx Excel® spreadsheet. This file is included with the project file in the folder:
\solutions\universal_motorcontrol_lab\doc. Copy parameters marked in bold to the user_mtr1.h
file as shown in the following code.

//! \brief Defines the maximum voltage at the AD converter
#define USER_M1_ADC_FULL_SCALE_VOLTAGE_V (57.52845691f)

//! \brief Defines the analog voltage filter pole location, Hz
#define USER_M1_VOLTAGE_FILTER_POLE_Hz (680.4839141f) // 47nF

//! \brief Defines the maximum current at the AD converter
#define USER_M1_ADC_FULL_SCALE_CURRENT_A (47.14285714f) // gain=10

4.1.2.2 Modifying Motor Control Parameters

The parameters provided in the user_mtr1.h file for a PMSM/BLDC motor are listed as shown in the below code.
The motor parameters can be identified either from the motor data sheet or through the FAST identification
process, if the FAST module is utilized.

#define USER_MOTOR1_TYPE MOTOR_TYPE_PM
#define USER_MOTOR1_NUM_POLE_PAIRS (4)

#define USER_MOTOR1_Rs_Ohm (0.38157931f)
#define USER_MOTOR1_Ls_d_H (0.000188295482f)
#define USER_MOTOR1_Ls_q_H (0.000188295482f)
#define USER_MOTOR1_RATED_FLUX_VpHz (0.0396642499f)
#define USER_MOTOR1_MAX_CURRENT_A (6.0f)

4.1.2.3 Changing Pin Assignment

The HAL_setupGPIOs() function located in the hal.c file configures the function of the GPIO pins and sets
the direction and mode of the specified pin according to the hardware motor driver board/kit that is used.
For modifying the code for a custom board, a TI motor driver EVM that doesn't currently have universal lab
code support, or for use with a different C2000 MCU, these GPIO assignments will need to be changed to
correspond properly with the motor driver board. Be careful to set the proper pad configuration for the specified
pin, especially for GPIOs that will be used as PWM outputs. An example configuration of the EPWM1A GPIO0
pin is shown below.

// GPIO0->EPWM1A->M1_UH*
GPIO_setPinConfig(GPIO_0_EPWM1_A);
GPIO_setDirectionMode(0, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(0, GPIO_PIN_TYPE_STD);

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 85

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4.1.2.4 Configuring the PWM Module

The HAL module configures the PWM channels. The base addresses of the PWM channels that are used for
the motor controller PWM inputs are defined in the hal.h file, and the base addresses are assigned to the PWM
handles in the hal.c file. The connection diagram for the PWM signals between the LAUNCHXL-F280025C and
BOOSTXL-DRV8323RS is shown in Figure 4-2.

LaunchXL-F280025C and Boostxl-drv8323RS

Combination

INHA/UHGPIO0/EPWM1A

GPIO1/EPWM1B

GPIO2/EPWM2A

GPIO3/EPWM2B

GPIO4/EPWM3A

GPIO15/EPWM3B

INLA/UL

INHB/VH

INLB/VL

INHC/WH

INLC/WL

Figure 4-2. PWM Connection Diagram

The code to configure the PWM signals is shown below, taken from the hal.h and hal.c files that are
located in the solutions\universal_motorcontrol_lab\f28002x\drivers\include and \source folder. Motor driver
board dependent and MCU dependent changes are highlighted in bold.

1. The base addresses of the PWM modules are defined in the hal.h file as shown below.

//! \ Motor 1
#define MTR1_PWM_U_BASE EPWM1_BASE
#define MTR1_PWM_V_BASE EPWM2_BASE
#define MTR1_PWM_W_BASE EPWM6_BASE

2. The GPIOs are set up as PWM outputs in the HAL_setupGpios() function located in the hal.c file.

// GPIO0->EPWM1A->M1_UH*
GPIO_setPinConfig(GPIO_0_EPWM1_A);
GPIO_setDirectionMode(0, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(0, GPIO_PIN_TYPE_STD);

// GPIO1->EPWM1B->M1_UL*
GPIO_setPinConfig(GPIO_1_EPWM1_B);
GPIO_setDirectionMode(1, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(1, GPIO_PIN_TYPE_STD);

// GPIO2->EPWM2A->M1_VH*
GPIO_setPinConfig(GPIO_2_EPWM2_A);
GPIO_setDirectionMode(2, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(2, GPIO_PIN_TYPE_STD);

// GPIO3->EPWM2B->M1_VL*
GPIO_setPinConfig(GPIO_3_EPWM2_B);
GPIO_setDirectionMode(3, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(3, GPIO_PIN_TYPE_STD);

// GPIO4->EPWM3A->M1_WH*
GPIO_setPinConfig(GPIO_4_EPWM3_A);
GPIO_setDirectionMode(4, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(4, GPIO_PIN_TYPE_STD);

// GPIO15->EPWM3B->M1_WL*
GPIO_setPinConfig(GPIO_15_EPWM3_B);
GPIO_setDirectionMode(15, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(15, GPIO_PIN_TYPE_STD);

Building a Custom Board www.ti.com

86 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/tool/LAUNCHXL-F280025C
https://www.ti.com/tool/BOOSTXL-DRV8323RS
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3. The below code assigns the corresponding base addresses of the PWM modules to the PWM handle in
the HAL_MTR1_init() function that is located in the hal.c file. The below code does not need to be changed
when adapting the code to a new board or C2000 MCU, it is just to show how the PWM handle is initialized
in the code.

// initialize PWM handles for Motor 1
obj->pwmHandle[0] = MTR1_PWM_U_BASE; //!< the PWM handle
obj->pwmHandle[1] = MTR1_PWM_V_BASE; //!< the PWM handle
obj->pwmHandle[2] = MTR1_PWM_W_BASE; //!< the PWM handle

4. The code below shows the configuration of the PWMs that occurs in the HAL_setupPWMs() function that
is located in the hal.c file. Notice that the desired PWM period (USER_M1_PWM_TBPRD_NUM) for setting
the PWM frequency, the SOC event prescale number (USER_M1_PWM_TBPRD_NUM), and the dead-band
values (MTR1_PWM_DBRED_CNT, MTR1_PWM_DBFED_CNT) are defined in the hal.h file. The value of
these defines can be changed according to the hardware board and control requirement. The PWM counter
mode and the PWM action qualifier outputs need to be set up based on the hardware board.

void HAL_setupPWMs(HAL_MTR_Handle handle)
{
 HAL_MTR_Obj *obj = (HAL_MTR_Obj *)handle;
 uint16_t cnt;
 uint16_t pwmPeriodCycles = (uint16_t)(USER_M1_PWM_TBPRD_NUM);
 uint16_t numPWMTicksPerISRTick = USER_M1_NUM_PWM_TICKS_PER_ISR_TICK;

 for(cnt=0; cnt<3; cnt++)
 {
 // setup the Time-Base Control Register (TBCTL)
 EPWM_setTimeBaseCounterMode(obj->pwmHandle[cnt], EPWM_COUNTER_MODE_UP_DOWN);

 // setup the Action-Qualifier Output A Register (AQCTLA)
 EPWM_setActionQualifierAction(obj->pwmHandle[cnt], EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_HIGH, EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);
 EPWM_setActionQualifierAction(obj->pwmHandle[cnt], EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_HIGH, EPWM_AQ_OUTPUT_ON_TIMEBASE_PERIOD);
 EPWM_setActionQualifierAction(obj->pwmHandle[cnt], EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_LOW, EPWM_AQ_OUTPUT_ON_TIMEBASE_DOWN_CMPA);
 EPWM_setActionQualifierAction(obj->pwmHandle[cnt], EPWM_AQ_OUTPUT_A,
 EPWM_AQ_OUTPUT_LOW, EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);

 // setup the Dead-Band Generator Control Register (DBCTL)
 EPWM_setDeadBandDelayMode(obj->pwmHandle[cnt], EPWM_DB_RED, true);
 EPWM_setDeadBandDelayMode(obj->pwmHandle[cnt], EPWM_DB_FED, true);

 // select EPWMA as the input to the dead band generator
 EPWM_setRisingEdgeDeadBandDelayInput(obj->pwmHandle[cnt], EPWM_DB_INPUT_EPWMA);

 // configure the right polarity for active high complementary config.
 EPWM_setDeadBandDelayPolarity(obj->pwmHandle[cnt], EPWM_DB_RED,
EPWM_DB_POLARITY_ACTIVE_HIGH);
 EPWM_setDeadBandDelayPolarity(obj->pwmHandle[cnt], EPWM_DB_FED,
EPWM_DB_POLARITY_ACTIVE_LOW);

 // setup the Dead-Band Rising Edge Delay Register (DBRED)
 EPWM_setRisingEdgeDelayCount(obj->pwmHandle[cnt], MTR1_PWM_DBRED_CNT);

 // setup the Dead-Band Falling Edge Delay Register (DBFED)
 EPWM_setFallingEdgeDelayCount(obj->pwmHandle[cnt], MTR1_PWM_DBFED_CNT);

 }

 // setup the Event Trigger Selection Register (ETSEL)
 EPWM_setInterruptSource(obj->pwmHandle[0], EPWM_INT_TBCTR_ZERO);
 EPWM_enableInterrupt(obj->pwmHandle[0]);
 EPWM_setADCTriggerSource(obj->pwmHandle[0], EPWM_SOC_A, EPWM_SOC_TBCTR_D_CMPC);
 EPWM_enableADCTrigger(obj->pwmHandle[0], EPWM_SOC_A);

 return;
} // end of HAL_setupPWMs() function

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 87

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

5. The below code is located in the hal.h file and defines the source of the ADC start of conversion trigger. It is
important that this ePWM SOC trigger corresponds to the same ePWM SOC that was enabled in the code
shown in step 4 and the same ePWM that is associated with pwmHandle[0]. This is because these are the
ones used in step 4 to set up the trigger source. In this case, EPWM1 A is used as the SOC for the ADC.

// Three-shunt
#define MTR1_ADC_TRIGGER_SOC ADC_TRIGGER_EPWM1_SOCA // EPWM1_SOCA

4.1.2.5 Configuring the ADC Module

Similar to the previous PWM section, the ADC connections can also be changed for a custom board or a TI
motor control kit or C2000 MCU that is not supported with the universal motor control lab. The HAL module
configures the ADC channels to correctly correspond with the motor driver board. As an example, the connection
diagram for the LAUNCHXL-F280025C and BOOSTXL-DRV8323RS combination is shown in Figure 4-3. The
ADC modules configuration is described in the following steps, with potential board-specific changes highlighted
in bold. Steps 1 and 2 are essential for configuring a new motor driver board or a different C2000 MCU to run the
motor.

LaunchXL-F280025C and Boostxl-drv8323RS

Combination

ADCINA14/C4*

ADCINA15/C7*

ADCINA6*

ADCINA3*/C5

ADCINA2/C9*

ADCINC6*

ISENA

ISENB

ISENC

VSENA

VSENB

VSENC

ADCINA11*/C0

VSENVM

* means using ADC channel

Figure 4-3. ADC Connection Diagram

The code below is taken from the hal.h and hal.c files located in the
solutions\universal_motorcontrol_lab\f28002x\drivers\include and \source folders.

1. The below code shows the defines of the base addresses, assigned channels, and SOCs of the ADC
modules in the hal.h file. Note that for the SOC number, multiple ADCs can be assotiated with the same
SOC number as long as they belong to different ADC modules (in the case below, module A and module C).
It is best to try to sample all the currents and all the voltages as close together as possible, so configure the
SOC numbers with this in mind.

#define MTR1_IU_ADC_BASE ADCA_BASE // ADCA-A11*/C0
#define MTR1_IV_ADC_BASE ADCC_BASE // ADCC-A14/C4*
#define MTR1_IW_ADC_BASE ADCC_BASE // ADCC-A15/C7*
#define MTR1_VU_ADC_BASE ADCA_BASE // ADCA-A6*
#define MTR1_VV_ADC_BASE ADCA_BASE // ADCC-A3*/C5
#define MTR1_VW_ADC_BASE ADCC_BASE // ADCA-A2/C9*
#define MTR1_VDC_ADC_BASE ADCC_BASE // ADCC-C6*
#define MTR1_POT_ADC_BASE ADCA_BASE // ADCA-A12*/C1

#define MTR1_IU_ADCRES_BASE ADCARESULT_BASE // ADCA-A11*/C0
#define MTR1_IV_ADCRES_BASE ADCCRESULT_BASE // ADCC-A14/C4*
#define MTR1_IW_ADCRES_BASE ADCCRESULT_BASE // ADCC-A15/C7*
#define MTR1_VU_ADCRES_BASE ADCARESULT_BASE // ADCA-A6*
#define MTR1_VV_ADCRES_BASE ADCARESULT_BASE // ADCC-A3*/C5
#define MTR1_VW_ADCRES_BASE ADCCRESULT_BASE // ADCA-A2/C9*
#define MTR1_VDC_ADCRES_BASE ADCCRESULT_BASE // ADCC-C6*
#define MTR1_POT_ADCRES_BASE ADCARESULT_BASE // ADCA-A12*/C1

#define MTR1_IU_ADC_CH_NUM ADC_CH_ADCIN11 // ADCA-A11*/C0
#define MTR1_IV_ADC_CH_NUM ADC_CH_ADCIN4 // ADCC-A14/C4*

Building a Custom Board www.ti.com

88 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

#define MTR1_IW_ADC_CH_NUM ADC_CH_ADCIN7 // ADCC-A15/C7*
#define MTR1_VU_ADC_CH_NUM ADC_CH_ADCIN6 // ADCA-A6*
#define MTR1_VV_ADC_CH_NUM ADC_CH_ADCIN3 // ADCC-A3*/C5
#define MTR1_VW_ADC_CH_NUM ADC_CH_ADCIN9 // ADCA-A2/C9*
#define MTR1_VDC_ADC_CH_NUM ADC_CH_ADCIN6 // ADCC-C6*
#define MTR1_POT_ADC_CH_NUM ADC_CH_ADCIN12 // ADCA-A12*/C1

#define MTR1_IU_ADC_SOC_NUM ADC_SOC_NUMBER1 // ADCA-A11*/C10-SOC1-PPB1
#define MTR1_IV_ADC_SOC_NUM ADC_SOC_NUMBER1 // ADCC-A14/C4* -SOC1-PPB1
#define MTR1_IW_ADC_SOC_NUM ADC_SOC_NUMBER2 // ADCC-A15/C7* -SOC2-PPB2
#define MTR1_VU_ADC_SOC_NUM ADC_SOC_NUMBER4 // ADCA-A6* -SOC4
#define MTR1_VV_ADC_SOC_NUM ADC_SOC_NUMBER5 // ADCC-A3*/C5 -SOC5
#define MTR1_VW_ADC_SOC_NUM ADC_SOC_NUMBER5 // ADCA-A2/C9* -SOC5
#define MTR1_VDC_ADC_SOC_NUM ADC_SOC_NUMBER6 // ADCC-C6* -SOC6
#define MTR1_POT_ADC_SOC_NUM ADC_SOC_NUMBER6 // ADCA-A12*/C1 -SOC6

#define MTR1_IU_ADC_PPB_NUM ADC_PPB_NUMBER1 // ADCA-A11*/C10-SOC1-PPB1
#define MTR1_IV_ADC_PPB_NUM ADC_PPB_NUMBER1 // ADCC-A14/C4* -SOC1-PPB1
#define MTR1_IW_ADC_PPB_NUM ADC_PPB_NUMBER2 // ADCC-A15/C7*- SOC2-PPB2

2. The below code shows the defines for the interrupt sources for the ISR in the hal.h file.

// interrupt
#define MTR1_PWM_INT_BASE MTR1_PWM_U_BASE // EPWM1

#define MTR1_ADC_INT_BASE ADCA_BASE // ADCA-A14 -SOC4
#define MTR1_ADC_INT_NUM ADC_INT_NUMBER1 // ADCA_INT1-SOC4
#define MTR1_ADC_INT_SOC ADC_SOC_NUMBER4 // ADCA_INT1-SOC4

#define MTR1_PIE_INT_NUM INT_ADCA1 // ADCA_INT1-SOC4
#define MTR1_INT_ACK_GROUP INTERRUPT_ACK_GROUP1 // ADCA_INT1-CPU_INT1

3. The ADC modules are set up in the HAL_setupADCs() function that is located in the hal.c file. The setup
of the ADC that is used to sample the potentiometer is shown below as an example. If the user desires to
use extra ADC channels to sample additional signals, the ADC channels will need to be set up in a similar
manner as the code below.

// POT_M1 ADC_setupSOC(MTR1_POT_ADC_BASE, MTR1_POT_ADC_SOC_NUM, MTR1_ADC_TRIGGER_SOC,
MTR1_POT_ADC_CH_NUM, MTR1_ADC_V_SAMPLEWINDOW);

4. The ADC results are read in the HAL_readMtr1ADCData() function that is located in the hal.h file. The
reading of the ADC result from the POT input is shown as an example below. If the user adds additional
ADC channels for additional signal sampling, it will be necessary to add code similar to what is shown below
to read the results of the added ADC channels. This will also require modification of the HAL_ADCData_t
structure in order to store the data.

// read POT adc value
pADCData->potAdc = ADC_readResult(MTR1_POT_ADCRES_BASE, MTR1_POT_ADC_SOC_NUM);

4.1.2.6 Configuring the CMPSS Module

The CMPSS module is used for overcurrent monitoring for the phase currents. A threshold is set using the
CMPSS DAC, and if the output of the current sense amplifier exceeds that threshold then the CMPSS output will
trip.

If using a custom motor driver board, or migrating the code to a C2000 MCU or a TI motor driver EVM that is
not supported with the current Universal Motor Control Lab, then the connections between the ADC pins and
the CMPSS modules will need to be properly modified in the hal.h file based on the motor driver and C2000
MCU connections. For more details on the internal connections of the CMPSS module, see the Analog Pins
and Internal Connections table in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual
(Rev. A).

The HAL module configures the CMPSS modules according to the motor driver board that is used. For example,
the diagram of the connections between the LAUNCHXL-F280025C and the BOOSTXL-DRV8323RS are shown
in Figure 4-4. The configuration of the CMPSS modules are described in the following steps (Board-specific or
MCU-specific changes are indicated in bold).

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 89

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruin7
https://www.ti.com/lit/pdf/spruin7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

LaunchXL-F280025C and Boostxl-drv8323RS Combination

ADCINA14/C4*

ADCINA15/C7*

ISENA

ISENB

ISENC

ADCINA11*/C0

* means using ADC channel

CMP1_HP

CTRIP1L

Comparator 1

Digital

Filter

Digital

Filter

DAC12

DAC12

CMP1_LP

CTRIP1H

CMP3_HP

CTRIP3L

Comparator 3

Digital

Filter

Digital

Filter

DAC12

DAC12

CMP3_LP

CTRIP3H

Figure 4-4. CMPSS Connection Diagram

1. The below code shows the defines of the base addresses of the CMPSS modules for the 3 phase currents.
The code is located in the hal.h file.

#define MTR1_CMPSS_U_BASE CMPSS1_BASE
#define MTR1_CMPSS_V_BASE CMPSS3_BASE
#define MTR1_CMPSS_W_BASE CMPSS1_BASE

2. The below code shows the defines that are used to assign the desired ADC inputs to the correct CMPSS
module. This code is found in the hal.h file. Each CMPSS comparator has a high and low comparator, so the
signals must be muxed appropriately to the desired input of the desired comparator. For more information on
these connections, please refer to the Analog Pins and internal connections table in the technical reference
manual of the microcontroller that is being used. Note: for the LAUNCHXL F280025C, the available CMPSS
modules for the motor driver current sensing pins are CMPSS3 and CMPSS1, so the phase U current
and phase W current both need to share CMPSS1. This results in the limitation that phase U current only
trips the CMPSS with a positive overcurrent, and phase W current only trips the CMPSS with a negative
overcurrent. Since phase V has a dedicated CMPSS available, overcurrent on this phase will be detected for
both postitive and negative currents. If modifying the code to support a C2000 MCU device that has separate
CMPSS modules for each phase current inputs (such as in the case of the F280049C Launchpad), then the
code can be configured to trip with both high and low overcurrents on each of the phases by muxing the
same phase current ADC input to both the high and low inputs of the corresponding CMPSS module.

// CMPSS
// For single phase current sensing, DRV8323RH and RS only
#define MTR1_IDC_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_3 // CMPSS3-A14/C4*
#define MTR1_IDC_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_3 // CMPSS3-A14/C4*

#define MTR1_IDC_CMPHP_MUX 4 // CMPSS3-A14/C4*
#define MTR1_IDC_CMPLP_MUX 4 // CMPSS3-A14/C4*

// For three-phase current sensing
#define MTR1_IU_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_1 // CMPSS1-A11
#define MTR1_IU_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_1 // CMPSS1-A11, N/A

#define MTR1_IV_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_3 // CMPSS3-C4
#define MTR1_IV_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_3 // CMPSS3-C4

#define MTR1_IW_CMPHP_SEL ASYSCTL_CMPHPMUX_SELECT_1 // CMPSS1-C7, N/A
#define MTR1_IW_CMPLP_SEL ASYSCTL_CMPLPMUX_SELECT_1 // CMPSS1-C7

#define MTR1_IU_CMPHP_MUX 1 // CMPSS1-A11
#define MTR1_IU_CMPLP_MUX 1 // CMPSS1-A11

#define MTR1_IV_CMPHP_MUX 4 // CMPSS3-C4
#define MTR1_IV_CMPLP_MUX 4 // CMPSS3-C4

#define MTR1_IW_CMPHP_MUX 3 // CMPSS1-C7
#define MTR1_IW_CMPLP_MUX 3 // CMPSS1-C7

Building a Custom Board www.ti.com

90 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

3. The below code shows the setup of the CMPSS modules which occurs in the HAL_setupCMPSSs() function
that is located in the hal.c file. In this example, the CMPSS1_HP is linked to phase U current, and
CMPSS1_LP is linked to phase W current, so the CMPSS1 is configured twice to simplify the code. The
below code may not need to be modified when modifying the Universal Motor Control Lab, but it is important
to ensure that the code in the previous step is properly configured so that the HAL_setupCMPSSs() function
sets up the CMPSS modules correctly.

void HAL_setupCMPSSs(HAL_MTR_Handle handle)
{
 HAL_MTR_Obj *obj = (HAL_MTR_Obj *)handle;
... ...
 uint16_t cmpsaDACH = MTR1_CMPSS_DACH_VALUE;
 uint16_t cmpsaDACL = MTR1_CMPSS_DACL_VALUE;
... ...
 ASysCtl_selectCMPHPMux(MTR1_IU_CMPHP_SEL, MTR1_IU_CMPHP_MUX);
 ASysCtl_selectCMPLPMux(MTR1_IU_CMPLP_SEL, MTR1_IU_CMPLP_MUX);

 ASysCtl_selectCMPHPMux(MTR1_IV_CMPHP_SEL, MTR1_IV_CMPHP_MUX);
 ASysCtl_selectCMPLPMux(MTR1_IV_CMPLP_SEL, MTR1_IV_CMPLP_MUX);

 ASysCtl_selectCMPHPMux(MTR1_IW_CMPHP_SEL, MTR1_IW_CMPHP_MUX);
 ASysCtl_selectCMPLPMux(MTR1_IW_CMPLP_SEL, MTR1_IW_CMPLP_MUX);

 for(cnt=0; cnt<3; cnt++)
 {
 // Enable CMPSS and configure the negative input signal to come from the DAC
 CMPSS_enableModule(obj->cmpssHandle[cnt]);

 // NEG signal from DAC for COMP-H
 CMPSS_configHighComparator(obj->cmpssHandle[cnt], CMPSS_INSRC_DAC);

 // NEG signal from DAC for COMP-L
 CMPSS_configLowComparator(obj->cmpssHandle[cnt], CMPSS_INSRC_DAC);

 // Configure the output signals. Both CTRIPH and CTRIPOUTH will be fed by
 // the asynchronous comparator output.
 // Dig filter output ==> CTRIPH, Dig filter output ==> CTRIPOUTH
 CMPSS_configOutputsHigh(obj->cmpssHandle[cnt],
 CMPSS_TRIP_FILTER |
 CMPSS_TRIPOUT_FILTER);

 // Dig filter output ==> CTRIPL, Dig filter output ==> CTRIPOUTL
 CMPSS_configOutputsLow(obj->cmpssHandle[cnt],
 CMPSS_TRIP_FILTER |
 CMPSS_TRIPOUT_FILTER |
 CMPSS_INV_INVERTED);

 // Configure digital filter. For this example, the maxiumum values will be
 // used for the clock prescale, sample window size, and threshold.
 CMPSS_configFilterHigh(obj->cmpssHandle[cnt], 32, 32, 30);
 CMPSS_initFilterHigh(obj->cmpssHandle[cnt]);

 // Initialize the filter logic and start filtering
 CMPSS_configFilterLow(obj->cmpssHandle[cnt], 32, 32, 30);
 CMPSS_initFilterLow(obj->cmpssHandle[cnt]);

 // Set up COMPHYSCTL register
 // COMP hysteresis set to 2x typical value
 CMPSS_setHysteresis(obj->cmpssHandle[cnt], 1);

 // Use VDDA as the reference for the DAC and set DAC value to midpoint for
 // arbitrary reference
 CMPSS_configDAC(obj->cmpssHandle[cnt],
 CMPSS_DACREF_VDDA | CMPSS_DACVAL_SYSCLK | CMPSS_DACSRC_SHDW);

 // Set DAC-H to allowed MAX +ve current
 CMPSS_setDACValueHigh(obj->cmpssHandle[cnt], cmpsaDACH);

 // Set DAC-L to allowed MAX -ve current
 CMPSS_setDACValueLow(obj->cmpssHandle[cnt], cmpsaDACL);

 // Clear any high comparator digital filter output latch
 CMPSS_clearFilterLatchHigh(obj->cmpssHandle[cnt]);

 // Clear any low comparator digital filter output latch
 CMPSS_clearFilterLatchLow(obj->cmpssHandle[cnt]);

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 91

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

 }
... ...
 return;
}

4.1.2.7 Configuring Fault Protection Function

When certain faults occur, such as the fault pin from the motor driver tripping or an overcurrent event detected
on the CMSS modules, action is taken to stop the the output PWMs from the MCU. In order to accomplish
this, the ePWM muxes and the ePWM trip zones are configured to take appropriate action. The code that
accomplishes this is described in this section. Appropriate modification must be made to this code when using
a custom motor driver board, using a TI motor driver EVM that is not already supported for the Universal
Motor Control Lab, or if configuring the code for a different C2000 MCU. Possible necessary code changes are
highlighted in bold. For more detailed information on the X-BAR, see the ePWM X-BAR Mux Configuration Table
and OUTPUT X-BAR Mux Configuration Table in the TMS320F28002x Real-Time Microcontrollers Technical
Reference Manual.

1. The below code defines the Motor driver Fault GPIO input. This code is found in the hal.h file.

//! \brief Defines the gpio for the nFAULT of Power Module
#define MTR1_PM_nFAULT_GPIO 34

2. The below defines are used to set up the X-BAR to link the signals from the CMPSS modules and the
Fault GPIO to the ePWM trip zone sub module. This code is found in the hal.h file. Notice in the below
code that the phase U current X-BAR ePWM mux is configured for CTRIPL and that the phase W current
X-BAR ePWM mux is configured for CTRIPH, but the phase V current X-BAR ePWM mux is configured for
CTRIPH_OR_L. This is because the phase W and phase U current inputs share the same CMPSS module
(module 1), whereas the phase V current input has its own dedicated CMPSS module (module 3) which
allows it to be configured to trip both high or low on the same phase current input. If using a C2000 MCU
or motor driver board that allows the current inputs to have their own dedicated CMPSS module, then the
ePWM mux configuration for phase U and phase W currents need to be changed to CTRIPH_OR_L, similar
to how phase V is currently configured.

#define MTR1_XBAR_TRIP_ADDRL XBAR_O_TRIP7MUX0TO15CFG
#define MTR1_XBAR_TRIP_ADDRH XBAR_O_TRIP7MUX16TO31CFG

#define MTR1_IDC_XBAR_EPWM_MUX XBAR_EPWM_MUX05_CMPSS3_CTRIPL // CMPSS3-LP, single shunt only
#define MTR1_IDC_XBAR_MUX XBAR_MUX05 // CMPSS3-LP, single shunt only

#define MTR1_IU_XBAR_EPWM_MUX XBAR_EPWM_MUX00_CMPSS1_CTRIPH // CMPSS1-HP
#define MTR1_IV_XBAR_EPWM_MUX XBAR_EPWM_MUX04_CMPSS3_CTRIPH_OR_L // CMPSS3-HP&LP
#define MTR1_IW_XBAR_EPWM_MUX XBAR_EPWM_MUX01_CMPSS1_CTRIPL // CMPSS1-LP

#define MTR1_IU_XBAR_MUX XBAR_MUX00 // CMPSS1-HP
#define MTR1_IV_XBAR_MUX XBAR_MUX04 // CMPSS3-HP&LP
#define MTR1_IW_XBAR_MUX XBAR_MUX01 // CMPSS1-LP

#define MTR1_XBAR_INPUT1 XBAR_INPUT1
#define MTR1_TZ_OSHT1 EPWM_TZ_SIGNAL_OSHT1
#define MTR1_XBAR_TRIP XBAR_TRIP7
#define MTR1_DCTRIPIN EPWM_DC_COMBINATIONAL_TRIPIN7

3. The below code configures the ePWM X-BAR and the trip signals for the phase currents and motor fault
pin. This is done in the HAL_setupMtrFaults() function in the hal.c file. The below code may not need to be
modified when modifying the Universal Motor Control Lab, but it is important to ensure that the code in the
previous step is properly configured in order to set up the correct mux and trip values.

void HAL_setupMtrFaults(HAL_MTR_Handle handle)
{

 // Configure TRIP7 to be CTRIP5H and CTRIP5L using the ePWM X-BAR
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IU_XBAR_EPWM_MUX);

 // Configure TRIP7 to be CTRIP1H and CTRIP1L using the ePWM X-BAR
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IV_XBAR_EPWM_MUX);

 // Configure TRIP7 to be CTRIP3H and CTRIP3L using the ePWM X-BAR
 XBAR_setEPWMMuxConfig(MTR1_XBAR_TRIP, MTR1_IW_XBAR_EPWM_MUX);

Building a Custom Board www.ti.com

92 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruin7
https://www.ti.com/lit/pdf/spruin7
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

 // Disable all the mux first
 XBAR_disableEPWMMux(MTR1_XBAR_TRIP, 0xFFFF);

 // Enable Mux 0 OR Mux 4 to generate TRIP
 XBAR_enableEPWMMux(MTR1_XBAR_TRIP, MTR1_IU_XBAR_MUX | MTR1_IV_XBAR_MUX | MTR1_IW_XBAR_MUX);

 // configure the input x bar for TZ2 to GPIO, where Over Current is connected
 XBAR_setInputPin(INPUTXBAR_BASE, MTR1_XBAR_INPUT1, MTR1_PM_nFAULT_GPIO);
 XBAR_lockInput(INPUTXBAR_BASE, MTR1_XBAR_INPUT1);

 for(cnt=0; cnt<3; cnt++)
 {
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt],
 EPWM_TZ_SIGNAL_CBC6);

 //enable DC TRIP combinational input
 EPWM_enableDigitalCompareTripCombinationInput(obj->pwmHandle[cnt],
 MTR1_DCTRIPIN, EPWM_DC_TYPE_DCAH);

 EPWM_enableDigitalCompareTripCombinationInput(obj->pwmHandle[cnt],
 MTR1_DCTRIPIN, EPWM_DC_TYPE_DCBH);

 // Trigger event when DCAH is High
 EPWM_setTripZoneDigitalCompareEventCondition(obj->pwmHandle[cnt],
 EPWM_TZ_DC_OUTPUT_A1,
 EPWM_TZ_EVENT_DCXH_HIGH);

 // Trigger event when DCBH is High
 EPWM_setTripZoneDigitalCompareEventCondition(obj->pwmHandle[cnt],
 EPWM_TZ_DC_OUTPUT_B1,
 EPWM_TZ_EVENT_DCXL_HIGH);

 // Configure the DCA path to be un-filtered and asynchronous
 EPWM_setDigitalCompareEventSource(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_A,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

 // Configure the DCB path to be un-filtered and asynchronous
 EPWM_setDigitalCompareEventSource(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_B,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

 EPWM_setDigitalCompareEventSyncMode(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_A,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_INPUT_NOT_SYNCED);

 EPWM_setDigitalCompareEventSyncMode(obj->pwmHandle[cnt],
 EPWM_DC_MODULE_B,
 EPWM_DC_EVENT_1,
 EPWM_DC_EVENT_INPUT_NOT_SYNCED);

 // Enable DCA as OST
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt], EPWM_TZ_SIGNAL_DCAEVT1);

 // Enable DCB as OST
 EPWM_enableTripZoneSignals(obj->pwmHandle[cnt], EPWM_TZ_SIGNAL_DCBEVT1);

 // What do we want the OST/CBC events to do?
 // TZA events can force EPWMxA
 // TZB events can force EPWMxB
 EPWM_setTripZoneAction(obj->pwmHandle[cnt],
 EPWM_TZ_ACTION_EVENT_TZA,
 EPWM_TZ_ACTION_LOW);

 EPWM_setTripZoneAction(obj->pwmHandle[cnt],
 EPWM_TZ_ACTION_EVENT_TZB,
 EPWM_TZ_ACTION_LOW);
 }

 return;
} // end of HAL_setupMtrFaults() function

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 93

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4.1.3 Adding Additional Functionality to Motor Control Project

The example lab project provides several interface functions to start/stop the motor and set the reference speed
by using push button, potentiometer, or a communication bus like SCI or CAN.

4.1.3.1 Adding Push Buttons Functionality

It is often useful to read push buttons to allow a motor to run, stop, or simply to change the state of a global
variable when pushing a button. As an example, the user can connect GPIO23 to a button to start/stop the
motor. To do this, enable the pre-define symbol CMD_SWITCH_EN in project build properties as shown in
Figure 3-19. The GPIO state will be assigned to motorVars_M1.flagEnableRunAndIdentify. The detailed steps
are as follows.

1. Define the GPIO number in the hal.h file

#define MTR1_CMD_SWITCH_GPIO 23

2. Configure the GPIO in HAL_setupGpios() function of the hal.c file to allow this pin to be an input.

// GPIO23->Command Switch Button
GPIO_setPinConfig(GPIO_23_GPIO23);
GPIO_setDirectionMode(23, GPIO_DIR_MODE_IN);
GPIO_setPadConfig(23, GPIO_PIN_TYPE_PULLUP);
GPIO_setQualificationMode(23, GPIO_QUAL_3SAMPLE);
GPIO_setQualificationPeriod(23, 4);

3. Read the GPIO with a digital filter as follows in updateCmdSwitch() in the motor_common.c file.

if(GPIO_readPin(MTR1_CMD_SWITCH_GPIO) == 0)
{
 objMtr->cmdSwtich.lowTimeCnt++;

 if(objMtr->cmdSwtich.lowTimeCnt > objMtr->cmdSwtich.delayTimeSet)
 {
 objMtr->cmdSwtich.flagCmdRun = true;
 }

 if(objMtr->cmdSwtich.highTimeCnt > 0)
 {
 objMtr->cmdSwtich.highTimeCnt--;
 }
}
else
{
 objMtr->cmdSwtich.highTimeCnt++;

 if(objMtr->cmdSwtich.highTimeCnt > objMtr->cmdSwtich.delayTimeSet)
 {
 objMtr->cmdSwtich.flagCmdRun = false;
 }

 if(objMtr->cmdSwtich.lowTimeCnt > 0)
 {
 objMtr->cmdSwtich.lowTimeCnt--;
 }
}

4. Link the state to the motor start/stop variable in updateCmdSwitch() of the motor_common.c file.

if((objMtr->cmdSwtich.flagEnablCmd == true) && (objMtr->faultMtrUse.all == 0))
{
 objMtr->flagEnableRunAndIdentify = objMtr->cmdSwtich.flagCmdRun;
}

Building a Custom Board www.ti.com

94 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

4.1.3.2 Adding Potentiometer Read Functionality

A potentiometer is often used to allow a motor to run, stop and set the reference speed. As an example,
the user may connect ADCA12 to a potentiometer. To do this, enable the pre-define symbol CMD_POT_EN
in project build properties as shown in Figure 3-19. The results from reading the ADC will be converted to a
speed value and assigned to the variables motorVars_M1.flagEnableRunAndIdentify to start/stop the motor and
to motorVars_M1.speedRef_Hz to set the reference speed. The detailed steps are as the follows.

1. Define theADC channel for connecting to potentiometer in the hal.h file as follows:

#define MTR1_POT_ADC_BASE ADCA_BASE
#define MTR1_POT_ADCRES_BASE ADCARESULT_BASE
#define MTR1_POT_ADC_CH_NUM ADC_CH_ADCIN12
#define MTR1_POT_ADC_SOC_NUM ADC_SOC_NUMBER6

2. Configure ADC channel in function HAL_setupAdcs() of the hal.c file as follows:

// POT_M1
ADC_setupSOC(MTR1_POT_ADC_BASE, MTR1_POT_ADC_SOC_NUM, MTR1_ADC_TIGGER_SOC,
 MTR1_POT_ADC_CH_NUM, MTR1_ADC_V_SAMPLEWINDOW);

3. Read the ADC result register and scale the value in HAL_readMtr1ADCData() of the hal.h file as follows:

// read POT adc value
pADCData->potAdc = ADC_readResult(MTR1_POT_ADCRES_BASE, MTR1_POT_ADC_SOC_NUM);

4. Convert the ADC value to a speed value in updateExtCmdPotFreq() of the motor_common.c file.

4.1.3.3 Adding CAN Functionality

CAN functionality can be added into the lab project to provide the user a communication bus for sending
the start/stop command and getting the feedback running states. To utilize this, enable the pre-define symbol
CMD_CAN_EN in project build properties as shown in Figure 3-19. The detailed steps are as the followings.

1. Add the CAN source files to the project. Right-click on the project name in the CCS project explorer window,
and select “Add Files.” Next, navigate to the following folder and select “Link to Files”.

<install_location>\c2000ware\driverlib\f28002x\driverlib\can.c
2. Edit the HAL_Obj to add canHandle in the hal_obj.h header file.

typedef struct _HAL_Obj_
{
 uint32_t adcHandle[2]; //!< the ADC handles
... ...
 uint32_t canHandle; //!< the CAN handle
... ...
} HAL_Obj;

3. Initialize the CAN handles in the HAL_init() function in the hal.c file.

HAL_Handle HAL_init(void *pMemory,const size_t numBytes)
{
... ...
 // initialize CAN handle
 obj->canHandle = CANA_BASE; //!< the CAN handle
... ...
 return(handle);
} // end of HAL_init() function

4. Prototype the CAN setup function in the communication.h file as the following code.

//! \brief Sets up the CANA
//! \param[in] handle The hardware abstraction layer (HAL) handle
extern void HAL_setupCANA(HAL_Handle handle);

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 95

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

5. Define the CAN setup functions in the communication.c file as the following code.

void HAL_setupCANA(HAL_Handle halHandle)
{
 HAL_Obj *obj = (HAL_Obj *)halHandle;

 // Initialize the CAN controller
 CAN_initModule(obj->canHandle);

 // Set up the CAN bus bit rate to 200kHz
 // Refer to the Driver Library User Guide for information on how to set
 // tighter timing control. Additionally, consult the device data sheet
 // for more information about the CAN module clocking.
 CAN_setBitRate(obj->canHandle, DEVICE_SYSCLK_FREQ, 500000, 16);

 // Initialize the transmit message object used for sending CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 1
 // Message Identifier: 0x1
 // Message Frame: Standard
 // Message Type: Transmit
 // Message ID Mask: 0x0
 // Message Object Flags: Transmit Interrupt
 // Message Data Length: 8 Bytes
 CAN_setupMessageObject(CANA_BASE, TX_MSG_OBJ_ID, 0x1, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_TX, 0, CAN_MSG_OBJ_TX_INT_ENABLE,
 MSG_DATA_LENGTH);

 // Initialize the receive message object used for receiving CAN messages.
 // Message Object Parameters:
 // Message Object ID Number: 2
 // Message Identifier: 0x1
 // Message Frame: Standard
 // Message Type: Receive
 // Message ID Mask: 0x0
 // Message Object Flags: Receive Interrupt
 // Message Data Length: 8 Bytes
 CAN_setupMessageObject(obj->canHandle, RX_MSG_OBJ_ID, 0x1, CAN_MSG_FRAME_STD,
 CAN_MSG_OBJ_TYPE_RX, 0, CAN_MSG_OBJ_RX_INT_ENABLE,
 MSG_DATA_LENGTH);

 // Start CAN module operations
 CAN_startModule(obj->canHandle);

 return;
} // end of HAL_setupCANA() function

Note
The various CAN module parameters are to be initialized according to the system needs, and the
above is just a simple reference.

6. Enable the appropriate CAN peripheral clocks in the HAL setup clocks function HAL_setupPeripheralClks()
of the hal.c file.

 SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CANA);

7. Configure the related GPIOs to CAN function in HAL_setupGpios() function of the hal.c file.

 // GPIO33->CAN_TX
 GPIO_setPinConfig(GPIO_32_CANA_TX);
 GPIO_setDirectionMode(32, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(32, GPIO_PIN_TYPE_STD);
 GPIO_setQualificationMode(32, GPIO_QUAL_ASYNC);

 // GPIO33->CAN_RX
 GPIO_setPinConfig(GPIO_33_CANA_RX);
 GPIO_setDirectionMode(33, GPIO_DIR_MODE_IN);
 GPIO_setPadConfig(33, GPIO_PIN_TYPE_STD);
 GPIO_setQualificationMode(33, GPIO_QUAL_ASYNC);

8. Prototype the CAN interrupt setup function in the communication.h file.

extern void HAL_enableCANInts(HAL_Handle handle);

Building a Custom Board www.ti.com

96 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

9. Define the CAN interrupt setup function.

void HAL_enableCANInts(HAL_Handle handle)
{
 HAL_Obj *obj = (HAL_Obj *)handle;

 // Enable CAN test mode with external loopback
// CAN_enableTestMode(CANA_BASE, CAN_TEST_EXL); // Only for debug

 // Enable interrupts on the CAN peripheral.
 CAN_enableInterrupt(obj->canHandle, CAN_INT_IE0 | CAN_INT_ERROR |
 CAN_INT_STATUS);

 // enable the PIE interrupts associated with the CAN interrupts
 Interrupt_enable(INT_CANA0);

 CAN_enableGlobalInterrupt(obj->canHandle, CAN_GLOBAL_INT_CANINT0);

 // enable the cpu interrupt for CAN interrupts
 Interrupt_enableInCPU(INTERRUPT_CPU_INT9);

 return;
} // end of HAL_enableCANInts() function

10. Call the CAN setup function and the CAN interrupt setup function in the sys_main.c file.

 // setup the CAN
 HAL_setupCANA(halHandle);
 // setup the CAN interrupt
 HAL_enableCANInts(halHandle);

11. Prototype the CAN interrupt service (ISR) routine in the communication.h file.

extern __interrupt void canaISR(void);

12. Add the CAN interrupt service (ISR) routine vector to the PIE table in initCANCOM() in the communication.c
file.

 Interrupt_register(INT_CANA0, &canaISR);

13. To place the CAN ISR code in flash and run from RAM for accelerating the execution speed by adding the
following code in the communication.c file.

#pragma CODE_SECTION(canaISR, ".TI.ramfunc");

14. Define the CAN interrupt routine canaISR() in the communication.c file. Define the canaIS() function that
has been prototyped and passed to the PIE vector table. The example code below provides a function to
receive/transmit the message data with CAN and clears the interrupt in the PIE, allowing the CAN interrupt
to be triggered again.

__interrupt void canaISR(void)
{
... ...
 // Check if the cause is the transmit message object 1
 // Check if the cause is the transmit message object 1
 else if(status == TX_MSG_OBJ_ID)
 {
 //
 // Getting to this point means that the TX interrupt occurred on
 // message object 1, and the message TX is complete. Clear the
 // message object interrupt.
 //
 CAN_clearInterruptStatus(CANA_BASE, TX_MSG_OBJ_ID);

 // Increment a counter to keep track of how many messages have been
 // sent. In a real application this could be used to set flags to
 // indicate when a message is sent.
 canComVars.txMsgCount++;

 // Since the message was sent, clear any error flags.
 canComVars.errorFlag = 0;

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 97

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

 }

 // Check if the cause is the receive message object 2
 else if(status == RX_MSG_OBJ_ID)
 {
 //
 // Get the received message
 //
 CAN_readMessage(halHandle->canHandle, RX_MSG_OBJ_ID,
 (uint16_t *)(&canComVars.rxMsgData[0]));

 // Getting to this point means that the RX interrupt occurred on
 // message object 2, and the message RX is complete. Clear the
 // message object interrupt.
 CAN_clearInterruptStatus(halHandle->canHandle, RX_MSG_OBJ_ID);

 canComVars.rxMsgCount++;
 canComVars.flagRxDone = true;

 // Since the message was received, clear any error flags.
 canComVars. errorFlag = 0;
 }
... ...
 // Clear the global interrupt flag for the CAN interrupt line
 CAN_clearGlobalInterruptStatus(halHandle->canHandle, CAN_GLOBAL_INT_CANINT0);

 // Acknowledge this interrupt located in group 9
 Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP9);

 return;
}

15. Prototype and define updateCANCmdFreq() in the communication.h file and the communication.c file
separately. The CAN bus received and transmitting data is processed and linked to motor control variables in
updateCANCmdFreq().

void updateCANCmdFreq(MOTOR_Handle handle)
{
...
}

16. Call updateCANCmdFreq() in endless loop.

updateCANCmdFreq(motorHandle_M1);

if((motorVars_M1.cmdCAN.flagEnablCmd == true) && (motorVars_M1.faultMtrUse.all == 0))
{
 canComVars.flagCmdTxRun = motorVars_M1.cmdCAN.flagCmdRun;
 canComVars.speedSet_Hz = motorVars_M1.cmdCAN.speedSet_Hz;

 if(motorVars_M1.cmdCAN.flagEnablSyncLead == true)
 {
 motorVars_M1.flagEnableRunAndIdentify = motorVars_M1.cmdCAN.flagCmdRun;
 motorVars_M1.speedRef_Hz = motorVars_M1.cmdCAN.speedSet_Hz;
 }
 else
 {
 motorVars_M1.flagEnableRunAndIdentify = canComVars.flagCmdRxRun;
 motorVars_M1.speedRef_Hz = canComVars.speedRef_Hz;
 }
}

4.2 Supporting New BLDC Motor Driver Board
C2000 MCUs can be used with BLDC motor drivers for driving three-phase BLDC or PMSM motor applications.
This universal lab project can support various pre-defined BLDC motor drivers. The user can refer to the
example code in the lab project and follow the steps described in this section to implement newer or otherwise
unsupported BLDC motor drivers. This section uses DRV8323RS with SPI as an example.

Building a Custom Board www.ti.com

98 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

1. Design the driver file for the new BLDC motor driver EVM board.

If the BLDC motor driver supports SPI, refer to the existing BLDC motor driver files (drv8323s.h and
drv8323s.c) and change the registers and API function definitions where necessary in the drv8xxx.h and
drv8xxx.c files. The detailed description of the BLDC motor driver register maps can be found in the data
sheet of the BLDC motor driver device.

Create a new set of folders for the driver file, as with the DRV8323 ("\libraries\drvic\drv8323\include" and
"\libraries\drvic\drv8323\source").

2. Add the BLDC motor driver source files to the motor control project.

First, add the BLDC motor driver source files to the project you are working. There are two methods to add
the files.

Using an Editor to open the universal_motorcontrol_lab.projectspec projectspec file, add the files to the
project as follows.

<file action="link" path="SDK_ROOT/libraries/drvic/drv8323/source/drv8323s.c"
targetDirectory="src_board" applicableConfigurations="Flash_lib_DRV8323RS" />
<file action="link" path="SDK_ROOT/libraries/drvic/drv8323/include/drv8323s.h"
targetDirectory="src_board" applicableConfigurations="Flash_lib_DRV8323RS" />

Alternatively, right-click on the project name in the CCS project explorer window, and select
“Add Files.” Next, navigate to the following folder and select the designed driver files from "
\libraries\drvic\drv8323\source", and then select "Link to Files".

3. Add the header file to the include list in the hal_obj.h file.

#include "drv8323s.h"

To ensure that the header files can be correctly found, add the directory to the header files in "Project
Properties"->"Build"->"C2000 Compiler"->"Include Options"->"Add dir to #include search path".

Alternatively, add the directory to the header files by adding the following content in the
universal_motorcontrol_lab.projectspec projectspec file.

-I${SDK_ROOT}/libraries/drvic/drv8323/include

4. Edit the HAL_Obj to add the drvic interface handle and SPI handle.

Refer to the DRV8323 files to add the supporting code as follows.

Add the defines in the hal_obj.h file.

#define DRAdd the defines in hal_obj.h fileVIC_Obj DRV8323_Obj
#define DRVIC_VARS_t DRV8323_VARS_t
#define DRVIC_Handle DRV8323_Handle
#define DRVICVARS_Handle DRV8323VARS_Handle

#define DRVIC_init DRV8323_init
#define DRVIC_enable DRV8323_enable
#define DRVIC_writeData DRV8323_writeData
#define DRVIC_readData DRV8323_readData

#define DRVIC_setupSPI DRV8323_setupSPI

#define DRVIC_setSPIHandle DRV8323_setSPIHandle
#define DRVIC_setGPIOCSNumber DRV8323_setGPIOCSNumber
#define DRVIC_setGPIOENNumber DRV8323_setGPIOENNumber

Add the drvic interface handle and SPI handle to HAL_Obj:

 uint32_t spiHandle; //!< the SPI handle

 DRVIC_Handle drvicHandle; //!< the drvic interface handle
 DRVIC_Obj drvic; //!< the drvic interface object

 uint32_t gateEnableGPIO;
 // BSXL8353RS_REVA

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 99

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

5. Configure SPI for communication with the BLDC motor driver.

When using a motor driver with SPI, the SPI must be configured correctly from the MCU to match the format
needed to communicate with the BLDC motor driver device properly.

Configure the related GPIOs for SPI function in HAL_setupGPIOs() of the hal.c file. Ensure to check the
BLDC motor driver data sheet to determine if each SPI pin requires an external pullup or pull down resistor,
or if it is configured as a push-pull pin.

 // GPIO5->Connect to GPIO5 using a jumper wire->M1_DRV_SCS
 GPIO_setPinConfig(GPIO_5_SPIA_STE);
 GPIO_setDirectionMode(5, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(5, GPIO_PIN_TYPE_STD);

 // GPIO09->M1_DRV_SCLK*
 GPIO_setPinConfig(GPIO_9_SPIA_CLK);
 GPIO_setDirectionMode(9, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(9, GPIO_PIN_TYPE_PULLUP);

 // GPIO10->SPIA_SOMI->M1_DRV_SDO*
 GPIO_setPinConfig(GPIO_10_SPIA_SOMI);
 GPIO_setDirectionMode(10, GPIO_DIR_MODE_IN);
 GPIO_setPadConfig(10, GPIO_PIN_TYPE_PULLUP);

 // GPIO11->SPIA_SIMO->M1_DRV_SDI*
 GPIO_setPinConfig(GPIO_11_SPIA_SIMO);
 GPIO_setDirectionMode(11, GPIO_DIR_MODE_OUT);
 GPIO_setPadConfig(11, GPIO_PIN_TYPE_PULLUP);

Configure the SPI control registers for baud rate, data frame in HAL_setupSPI() in the hal.c file:

 // Must put SPI into reset before configuring it
 SPI_disableModule(obj->spiHandle);

 // SPI configuration. Use a 500kHz SPICLK and 16-bit word size, 25MHz LSPCLK
 SPI_setConfig(obj->spiHandle, DEVICE_LSPCLK_FREQ, SPI_PROT_POL0PHA0,
 SPI_MODE_MASTER, 400000, 16);

 SPI_disableLoopback(obj->spiHandle);

 SPI_setEmulationMode(obj->spiHandle, SPI_EMULATION_FREE_RUN);

 SPI_enableFIFO(obj->spiHandle);
 SPI_setTxFifoTransmitDelay(obj->spiHandle, 0x10);

 SPI_clearInterruptStatus(obj->spiHandle, SPI_INT_TXFF);

 // Configuration complete. Enable the module.
 SPI_enableModule(obj->spiHandle);

6. Configure the GPIOs for the other input and output pins, such as ENABLE, nFAULT. You might refer to the
example codes in HAL_setupGPIOs() , HAL_setupGate() of the hal.c file and the defines in the hal.h file as
follows:

//! \brief Defines the gpio for enabling Power Module
#define MTR1_GATE_EN_GPIO 29

//! \brief Defines the gpio for the nFAULT of Power Module
#define MTR1_PM_nFAULT_GPIO 34

7. Call the HAL_setupSPI() and HAL_setupGate() functions in HAL_MTR_setParams() of the hal.c file:

 // setup the spi for drv8323/drv8353/drv8316
 HAL_setupSPI(handle);

 // setup the drv8323s/drv8353s/drv8316s interface
 HAL_setupGate(handle);

Building a Custom Board www.ti.com

100 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

8. Call the drivers functions in the motor1_drive.c file as the following:

 // turn on the DRV8323/DRV8353/DRV8316 if present
 HAL_enableDRV(obj->halMtrHandle);

 // initialize the DRV8323/DRV8353/DRV8316 interface
 HAL_setupDRVSPI(obj->halMtrHandle, &drvicVars_M1);

9. Change the default setting value for the BLDC motor driver, if needed.

 drvicVars_M1.ctrlReg05.bit.VDS_LVL = DRV8323_VDS_LEVEL_1P700_V;
 drvicVars_M1.ctrlReg05.bit.OCP_MODE = DRV8323_AUTOMATIC_RETRY;
 drvicVars_M1.ctrlReg05.bit.DEAD_TIME = DRV8323_DEADTIME_100_NS;
 drvicVars_M1.ctrlReg06.bit.CSA_GAIN = DRV8323_Gain_10VpV;

 drvicVars_M1.ctrlReg06.bit.LS_REF = false;
 drvicVars_M1.ctrlReg06.bit.VREF_DIV = true;
 drvicVars_M1.ctrlReg06.bit.CSA_FET = false;

 drvicVars_M1.writeCmd = 1;
 HAL_writeDRVData(obj->halMtrHandle, &drvicVars_M1);

4.3 Porting Reference Code to New C2000 MCU
The Motor Control Universal Lab project can be ported to other FPU and TMU enabled C2000 MCU controllers.
Instructions on how to port the lab code are described in detail in the following steps. The F28004x MCU is
used as the example for a new target C2000 MCU. To adapt a SysConfig-enabled version of the lab, replace
universal_motorcontrol_lab with universal_motorcontrol_syscfg in all below instructions.

1. Browse to the <install_location>\solutions\universal_motorcontrol_lab folder and select
one of the existing device-specific lab folders. The "f28002x" folder will be used in this example, but any can
be utilized.

2. Create a copy of the selected device-specific lab in the
same universal_motorcontrol_lab folder, changing the name to "f28004x".
<install_location>\solutions\universal_motorcontrol_lab\f28004x will be the location of
your final ported lab, and will be referred to as <f28004x_lab_location> below.

3. The compiler uses cmd files to map the memory of the C2000 MCU. Browse to the
<f28004x_lab_location>\cmd folder and update the name of the f28002x_flash_lib_is.cmd files to
reflect the new f28004x device. Note that there are several other cmd files present in this folder- these are
unused by default and can be ignored.

4. The Universal Motor Control Lab utilizes the pin definitions present in the C2000Ware device driver files,
device.c/h. These must be updated for the new device.
a. Navigate to the C2000Ware common device support folder for the new C2000 MCU, located

at <install_location>\c2000ware\device_support\f28004x. Locate the device.h file in
the ...\common\include subfolder.

b. Copy the device.h file into the <f28004x_lab_location>\drivers\include folder, replacing the
existing file.

c. Navigate back to the C2000Ware common device support folder for the new C2000 MCU. Locate the
device.c file in the ...\common\source subfolder.

d. Copy the device.c file into the <f28004x_lab_location>\drivers\source folder, replacing the
existing file.

5. Browse to the <f28004x_lab_location>\ccs\motor_control folder and use an editor to open the
projectspec file. This file is used by CCS to generate the project folder in the user workspace and includes
references to device-specific C2000Ware source files.
a. If the SysConfig-enabled version of the lab is being used, update the bolded text below to indicate the

package of your new C2000 MCU. This line of text can be found within the device definition section of
the file, which should be the first section.

sysConfigBuildOptions --product ${C2000WARE_ROOT}/.metadata/sdk.json --device F28002x --
package 80QFP --part F28002x_80QFP"

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 101

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

b. Some C2000 MCUs have different capabilities than others. Update the file to reflect these differences.
For example, the F28002x MCU has Fast Integer Division (FINTDIV) support, while the F28004x
does not. The relevant processor option is the 'idiv_support' term. Find and delete all instances of
"--idiv_support=idiv0" since the F28004x doesn't support this function.
i. If you are uncertain what changes may need to be made, refer to the TMS320C28x Optimizing C/C+

+ Compiler v22.6.0.LTS User's Guide, section 2.3 Changing the Compiler's Behavior with Options,
table 2-1 Processor Options, which describes in detail what each option is used for.

ii. Determine what differences exist between the that device and the new C2000 MCU that you have
chosen. For assistance in this process, refer to the C2000 Real-Time Control Peripheral Reference
Guide, which describes the differences between devices and peripheral versions.

iii. Make adjustments as necessary in the projectspec file.
c. Find and replace all instances of "28002x" with "28004x" in the file.
d. Find all instances of "280025C" in the file.

i. The first result should be near the beginning of the file, specifying the project device. Update the text
in bold to correctly show the new C2000 MCU chosen for this project.

<project
 name="universal_motorcontrol_lab_f28004x"
 device="TMS320F280025C"

ii. The final two results should be in the final section of the file. The following excerpts can be found in
the 'path' for the ccxml file 'copy file' actions.

/TMS320F280025C_LaunchPad.ccxml
/TMS320F280025C.ccxml

iii. Update the text in bold to correctly indicate the generic target configuration files for the new C2000
MCU's family of devices, which can be found in the previously referenced device support folder, in
the ...\common\targetConfigs subfolder. For all F28004x devices, the bolded text should be
changed to "TMS320F280049C".

iv. All other results for "280025C" should be in comments. Updating these is suggested for
documentation accuracy, but is not critical.

6. Import the "universal_motorcontrol_lab_f28004x" project into CCS.
a. Note that when the project is imported, CCS may present an error indicating that the

f28004x_headers_nonbios.cmd file was not found. This error does not impact performance, although
it may increase difficulty in debugging. The memory allocations performed in this file are utilized only by
the debug environment watch window, described in Section 3.5.1.2 in the incrememental build stages.

b. In order to utilize the debug environment watch window fully, follow all instructions in this section related
to the f28002x_flash_lib_is.cmd file with the f28002x_headers_nonbios.cmd file as well.

7. Open the cmd file(s) and change the memory map according to the device chosen. For those entirely
unfamiliar with this type of file, refer to the TI Linker Command File Primer for an in-depth introduction and
basic usage guide.
a. It may be easier to adapt one of the generic C2000Ware cmd files, such as the

28004x_generic_flash_lnk.cmd file, than it is to adapt the cmd file for the old device. These files are
located in the ...\common\cmd subfolder of the device support folder. In this case, the original cmd file
for the project should be used as a reference.

b. If using the f28004x_headers_nonbios.cmd file, the generic C2000Ware cmd file is located in
the ...\headers\cmd subfolder of the device support folder.

8. Modify the GPIO, PWM, ADC, and CMPSS modules and defines in the hal.h file as described in Section
4.1.2 for the F28004x based hardware kit.

9. Rebuild the lab project. Any errors or warnings in the project will be displayed in the CCS Console window.
Follow the message prompts to fix any errors or warnings. There are a few differences in the driverlib APIs
between devices which must be accounted for at this point.

10. To add functions to configure and use peripherals that are present in the new C2000 MCU that were not
present in the original C2000 MCU source for these files, refer to the example functions in C2000Ware or the
MotorControlSDK. For example, the F28004x has a Programmable Gain Amplifier (PGA), while the F28002x
does not.

11. Run the project incrementally using the different build levels to test and verify functionality.

Building a Custom Board www.ti.com

102 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/ug/spru514y/spru514y.pdf
https://www.ti.com/lit/ug/spru514y/spru514y.pdf
https://www.ti.com/lit/ug/spru566q/spru566q.pdf
https://www.ti.com/lit/ug/spru566q/spru566q.pdf
https://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

12. If this project will be imported multiple times, it is a good idea to update the project's source files so that
these changes will only need to be done once. Navigate to the <f28004x_lab_location> folder.
a. In the ...\cmd subfolder, replace the f28004x_flash_lib_is.cmd file with the updated file in your

imported F28004x project.
b. In the ...\drivers\source subfolder, replace the hal.c file with the updated file in your imported

F28004x project.
c. In the ...\drivers\include subfolder, replace the hal.h file with the updated file in your imported

F28004x project.

www.ti.com Building a Custom Board

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 103

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

A Appendix A. Motor Control Parameters
The Universal Motor Control Lab has numerous defined parameters that impact system performance. The
parameters available for user manipulation in the user_mtr1.h file are listed below. Some of these parameters
are described as derived and generally should not be manipulated- the values for these parameters are
dependent on one or more other parameters.

• Hardware Parameters:
– USER_M1_NOMINAL_DC_BUS_VOLTAGE_V

This parameter defines the nominal DC bus voltage in Volts (V).

The value of this parameter must be greater than the rated motor voltage and less than the maximum
sensing DC bus voltage of the hardware.

– USER_M1_ADC_FULL_SCALE_VOLTAGE_V

This parameter defines the maximum voltage at the input to the ADC in Volts (V). This value is
represented by the maximum ADC reading.

This parameter is used to scale the ADC readings, and should be set to the maximum expected voltage at
the input to the ADC.

– USER_M1_ADC_FULL_SCALE_CURRENT_A

This parameter defines the maximum current at the input to the ADC in Amps (A). This value is
represented by the maximum ADC reading.

This parameter is used to scale the ADC readings, and should be set to the maximum expected current at
the input to the ADC.

– USER_M1_VOLTAGE_FILTER_POLE_Hz

This parameter defines the analog filter pole location, in Hz.

This parameter must be set to match the filter pole location of the hardware voltage feedback filter.
– USER_M1_VOLTAGE_FILTER_POLE_rps

This derived parameter is a radians per second conversion of USER_M1_VOLTAGE_FILTER_POLE_Hz.
– USER_M1_SIGN_CURRENT_SF

This parameter defines the sign (positive or negative) of the current scale factor derived from
USER_M1_ADC_FULL_SCALE_CURRENT_A.

If the noninverting (+) pin of the op-amp is grounded in the current feedback circuit, the value of this
parameter is -1.0f. If the inverting pin (-) is grounded, the value is +1.0f.

– USER_M1_NUM_CURRENT_SENSORS

This parameter defines the number of current sensors present in the hardware.

The calculations in this lab assume that there are either 2 or 3 current sensors. A higher or lower value will
therefore cause a compilation error.

– USER_M1_NUM_VOLTAGE_SENSORS

This parameter defines the number of voltage phase sensors present in the hardware.

The calculations in this lab assume that there are 3 voltage sensors. A higher or lower value will therefore
cause a compilation error.

– USER_M1_Ix_OFFSET_AD

The USER_M1_Ix_OFFSET_AD parameter, where 'x' is A, B, or C, represents the ADC current offset for
each respective phase, as defined by the hardware.

This value should be close to 2048.

The lab is capable of automatic offset calibration via the 'flagEnableOffsetCalc' flag. If set, the new
value for this parameter is loaded into motorVars_M1.adcData.offset_I_ad.value[2:0] after the calibration
process completes. The value in user_mtr1.h must be manually updated.

Appendix A. Motor Control Parameters www.ti.com

104 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

USER_M1_IA_OFFSET_AD; USER_M1_IB_OFFSET_AD; USER_M1_IC_OFFSET_AD
– USER_M1_Vx_OFFSET_SF

The USER_M1_Vx_OFFSET_SF parameter, where 'x' is A, B, or C, represents the ADC voltage offset for
each respective phase, as defined by the hardware. These parameters are used only for InstaSPIN-FOC
FAST and InstaSPIN-BLDC.

This value should be close to 0.5.

The lab is capable of automatic offset calibration via the 'flagEnableOffsetCalc' flag. If set, the new
value for this parameter is loaded into motorVars_M1.adcData.offset_V_sf.value[2:0] after the calibration
process completes. The value in user_mtr1.h must be manually updated.

USER_M1_VA_OFFSET_SF; USER_M1_VB_OFFSET_SF; USER_M1_VC_OFFSET_SF
– USER_M1_IDC_OFFSET_AD

This parameter defines the ADC current offsets for single-shunt hardware.

As with USER_M1_Ix_OFFSET_AD, this value can be calibrated via the 'flagEnableOffsetCalc' flag. The
new value is loaded into motorVars_M1.adcData.offset_Idc_ad.

• Timing Parameters:
– USER_SYSTEM_FREQ_Hz

This derived parameter (found in user_common.h) is a floating point conversion of the device SysClk
frequency DEVICE_SYSCLK_FREQ in Hz. DEVICE_SYSCLK_FREQ is found in the device.h file.

– USER_M1_PWM_FREQ_kHz

This parameter defines the frequency of the ePWM in kHz. Changing this value alters the control interrupt
frequency.

– USER_M1_PWM_PERIOD_usec

This derived parameter is the period of the ePWM frequency USER_M1_PWM_FREQ_kHz in
microseconds.

– USER_M1_ISR_FREQ_Hz

This derived parameter defines the control interrupt frequency in Hz.

This parameter is derived from the PWM frequency USER_M1_PWM_FREQ_kHz.
– USER_M1_ISR_PERIOD_usec

This derived parameter is the period of the control interrupt frequency USER_M1_ISR_FREQ_Hz in
microseconds.

– USER_M1_NUM_PWM_TICKS_PER_ISR_TICK

This parameter defines the number of PWM periods per interrupt. This value divides the control interrupt
frequency.

This lab assumes this value is between 1 and 3, inclusive.
– USER_M1_NUM_ISR_TICKS_PER_SPEED_TICK

This parameter defines the number of interrupt ticks per speed controller ticks. This value divides the
speed controller trigger rate. This contributes to system response time.

• Sampling Parameters:
– USER_M1_CURRENT_SF

This derived parameter calculates the scale of the ADC result bits for current readings, relative to the
actual current value in Amps (A). This calculation assumes a 12-bit ADC.

This parameter is derived from the ADC full scale current USER_M1_ADC_FULL_SCALE_CURRENT_A.
– USER_M1_VOLTAGE_SF

This derived parameter calculates the scale of the ADC result bits for voltage readings, relative to the
actual voltage value in Volts (V). This calculation assumes a 12-bit ADC. This parameter is used only by
the InstaSPIN-FOC FAST and eSMO estimators.

This parameter is derived from the ADC full scale voltage USER_M1_ADC_FULL_SCALE_VOLTAGE_V.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 105

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– USER_M1_CURRENT_INV_SF

This derived parameter is equivalent to 1 / USER_M1_CURRENT_SF for a 12-bit ADC.

This parameter is derived from the ADC full scale current USER_M1_ADC_FULL_SCALE_CURRENT_A.
– USER_M1_DCLINKSS_MIN_DURATION

This parameter defines the minimum duration in clock cycles for the single-shunt ADC readings.

Calculations for the value of this parameter are described in the motor1_drive.c file.
– USER_M1_DCLINKSS_SAMPLE_DELAY

This parameter defines the delay in clock cycles before the single-shunt ADC readings to account for
signal propagation.

Calculations for the value of this parameter are described in the motor1_drive.c file.
• Motor Properties:

– USER_MOTOR1_TYPE

This parameter defines the motor type.

The two valid values for this parameter are MOTOR_TYPE_PM (for BLDC, PMSM, SMPM, or IPM
motors) and MOTOR_TYPE_INDUCTION (for Asynchronous ACI motors)

– USER_MOTOR1_NUM_POLE_PAIRS

This parameter defines the number of pole pairs in the motor. This value is utilized to calculate motor
output power when utilizing the InstaSPIN-FOC FAST estimator.

– USER_MOTOR1_Rr_Ohm

This parameter defines the rotor resistance of the motor in Ohms for induction motors. For non-induction
motors, set to NULL. This parameter is used only by InstaSPIN-FOC FAST.

– USER_MOTOR1_Rs_Ohm

This parameter defines the stator resistance of the motor in Ohms.
– USER_MOTOR1_Ls_d_H

This parameter defines the stator inductance of the motor in the direct direction in henries (H). For PM,
this is average stator inductance.

– USER_MOTOR1_Ls_q_H

This parameter defines the stator inductance of the motor in the quadrature direction in henries (H). For
PM, this is average stator inductance.

– USER_MOTOR1_RATED_FLUX_VpHz

This parameter defines the rated flux of the motor in V/Hz (or V*s, Webers).
– USER_MOTOR1_MAGNETIZING_CURRENT_A

This parameter defines the rated current value of the motor in the direct direction in Amps for induction
motors only. For other motors, set to NULL. This parameter is used only by InstaSPIN-FOC FAST.

– USER_MOTOR1_MAX_CURRENT_A

This parameter defines the maximum current of the motor in A. This contributes to overcurrent handling.
– USER_MOTOR1_INERTIA_Kgm2

This parameter defines the moment of inertia of the mass rigidly coupled with the motor in kg · m2. This
contributes to the speed controller gain constant calculation.

– USER_M1_VD_SF

This parameter defines the initial maximum value for Vd for the Id current controller. See
USER_M1_MAX_VS_MAG_PU for more detail.

This value must be between 0.1 and 0.95.
– USER_M1_MAX_VS_MAG_PU

This parameter defines the maximum magnitude for the Voltage vector Vs in V per-unit.

Appendix A. Motor Control Parameters www.ti.com

106 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

By the definition of a vector, the relationship between the magnitude of the Voltage vector Vs and the Vd
and Vq axis components is as follows;

Vs = √(Vd2 + Vq2)

Vd is determined by the end application- for some motors, a value of 0 is a valid option. For this example,
this is defined differently depending on whether closed or open-loop control is being used. In either case,
the calculations for Vs and Vd are provided below.

In open-loop control, Vd is set to 0.3 in the voltage-frequency characterization profile.

In closed-loop control, Vd is dynamically determined by a PI controller. The maximum magnitude of |Vd|
is initially set to USER_M1_VD_SF * USER_MOTOR1_RATED_VOLTAGE_V. During motor operation, it is
instead set to USER_MOTOR1_RATED_VOLTAGE_V.

In open-loop control, Vs is set to USER_M1_MAX_VS_MAG_PU. All operations are in per-unit.

In closed-loop control, Vs is set to USER_M1_MAX_VS_MAG_PU * obj->adcData.VdcBus_V (the DC Bus
Voltage). All operations are in Volts.

– USER_M1_MAX_ACCEL_Hzps

This parameter defines the maximum acceleration magnitude for the estimation speed profiles in Hz per
second. Used only during InstaSPIN Motor ID.

This value should typically be left at the default.
– InstaSPIN-FOC FAST Parameters:
– USER_MOTOR1_RES_EST_CURRENT_A

This parameter defines the maximum current value to be used for stator resistance estimation, in Amps.

This value should be set to 10% to 40% of the rated phase current of the motor. If the motor does not
spin during the ramp-up process, increase in 5% increments until the motor is in motion during the entire
ramp-up process.

– USER_MOTOR1_IND_EST_CURRENT_A

This parameter defines the maximum current value to use for stator inductance estimation, in Amps.

This value should be set to 10%-20% of the rated phase current of the motor, just enough to enable
rotation.

– USER_MOTOR1_FLUX_EXC_FREQ_Hz

This parameter defines the flux excitation frequency used to estimate the stator inductance and flux during
motor identification, in Hz.

Typically, 5%-20% of the motor rated frequency is high enough for estimation for PMSM motors with
~10-20 microHenries stator inductance or higher. If the inductance is in the single digits of microHenries,
then a higher frequency is recommended, up to 60Hz for very low inductances.

– USER_M1_R_OVER_L_EXC_FREQ_Hz

This parameter defines the R/L excitation frequency in Hz, used during motor identification to estimate
initial values for the stator resistance and inductance. This is used to calculate current controller gains.

By default, this parameter is set to 300 Hz.
– USER_M1_IDRATED_FRACTION_FOR_L_IDENT

This parameter defines the fraction of the rated Id to use during inductance estimation.

This parameter should not be changed from the default value of 0.5.
– USER_M1_SPEEDMAX_FRACTION_FOR_L_IDENT

This parameter defines the fraction of the max speed to use during inductance estimation.

This parameter should not be changed from the default value of 1.0.
– USER_M1_R_OVER_L_KP_SF

This parameter defines the scale factor for Kp in the FOC current controllers.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 107

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter should not be changed from the default value of 0.02.
– USER_M1_IDRATED_DELTA_A

This parameter defines the Id delta current to use during estimation, in A.

This parameter should not be changed from the default value of 0.0001.
– USER_M1_FORCE_ANGLE_FREQ_Hz

If the force angle startup option is enabled, this parameter defines the force angle startup frequency in Hz.
This value is used during motor startup.

Typical force angle startup speed is +-1 Hz.
– USER_MOTOR1_FREQ_NEARZEROLIMIT_Hz

If the force angle startup option is enabled, this parameter defines the speed range within which the
force-angle startup process is used.

For most applications, the default value of 5Hz is sufficient.
– USER_M1_PW_GAIN

This parameter defines the PowerWarp gain for computing the Id reference value for induction motors.

This parameter should not be changed from the default value of 1.0.
– USER_M1_DCBUS_POLE_rps

This parameter defines the pole location for the software DC bus filter in radians/second.

This parameter should not be changed from the default value of 100.
– USER_M1_SPEED_POLE_rps

This parameter defines the pole location for the software frequency estimator filter in radians/second.

For most applications, the default value of 100rps is sufficient. For high-speed motors, performance may
be improved by increasing this value up to 500rps.

– USER_M1_EST_FLUX_HF_SF

This parameter defines the scale factor for flux estimation.

This parameter can range from 0.1 to 1.25. For most PMSM motors, a value of 1.0 is sufficient. For higher
frequency lower inductance motors, a lower value may be used.

– USER_M1_EST_BEMF_HF_SF

This parameter defines the scale factor for Back-EMF (BEMF) estimation.

If using the InstaSPIN-FOC FAST estimator, this parameter should not be chagned from the default value
of 1.

Otherwise, this parameter can range from from 0.5 to 1.25. For most PMSM motors, a value of 1.0 is
sufficient. For higher frequency lower inductance motors, a lower value may be used.

– USER_MOTOR1_Ls_d_COMP_COEF

This parameter defines the Ls d-axis compensation coefficient. Motor inductance decreases with respect
to the amplitude of the applied stator current. To simplify calculations, a linear relationship is assumed.

Where Ls is the motor stator inductance Ld and Ls1 is the motor stator inductance after compensation,

Ls1 = Ls * (1 -(Ls Compensation Coefficient))

This parameter should be set according to the inductance vs current model provided by the motor
manufacturer.

– USER_MOTOR1_Ls_q_COMP_COEF

This parameter is identical to USER_MOTOR1_Ls_d_COMP_COEF, except it refers to Lq instead of Ld.
– USER_MOTOR1_Ls_MIN_NUM_COEF

This parameter defines the minimum inductance of the motor.

Appendix A. Motor Control Parameters www.ti.com

108 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter should be set according to the inductance vs current model provided by the motor
manufacturer.

– USER_MOTOR1_RSONLINE_WAIT_TIME

Rs online calibration is used to recalibrate the stator resistance Rs while the motor is running in closed-
loop. However, given that Rs changes slowly over time, and the Rs online calibration process injects
d-axis current that does not generate torque, the process is only enabled intermittently.

This parameter defines the wait time between Rs Online calibration cycles in 5ms periods.

This parameter's default value is typically sufficient.
– USER_MOTOR1_RSONLINE_WORK_TIME

This parameter defines the duration of the Rs Online calibration cycle in 5ms periods.

This parameter's default value is typically sufficient.
• Open Loop Voltage/Frequency Profile Parameters:

– USER_MOTOR1_FREQ_LOW_Hz

This parameter defines the low frequency boundary of the open-loop Voltage/Frequency profile in Hz.

This value defines the lower limits of the linear region of the Voltage/Frequency profile of the motor. Within
the linear region, to calculate the applied voltage necessary to achieve a chosen motor speed is incredibly
simple. Beyond the lower limit, this relationship is no longer linear.

This parameter should be set to approximately 10% of the rated motor frequency.
– USER_MOTOR1_FREQ_HIGH_Hz

This parameter defines the high frequency boundary of the open-loop Voltage/Frequency profile in Hz.

This value defines the upper limits of the linear region of the Voltage/Frequency profile of the motor. Within
the linear region, to calculate the applied voltage necessary to achieve a chosen motor speed is incredibly
simple. Voltage should not increase beyond the rated motor voltage.

This parameter should be set to the rated motor frequency.
– USER_MOTOR1_VOLT_MIN_V

This parameter defines the voltage value that generates a speed of USER_MOTOR1_FREQ_LOW_Hz in
the motor, in V.

This parameter should be set to approximately 15% of the rated motor voltage.
– USER_MOTOR1_VOLT_MAX_V

This parameter defines the voltage value that generates a speed of USER_MOTOR1_FREQ_HIGH_Hz in
the motor, in V.

This parameter should be set to the rated motor voltage.
• Motor Encoder Parameters:

– USER_MOTOR1_NUM_ENC_SLOTS

This parameter defines the number of encoder slots in the motor quadrature encoder.

This parameter should be set according to the encoder used.
– USER_MOTOR1_ENC_POS_MAX

This derived parameter defines the maximum value of the position counter for the eQEP module.

This parameter is derived from the number of encoder slots (USER_MOTOR1_NUM_ENC_SLOTS).
– USER_MOTOR1_ENC_POS_OFFSET

This parameter defines the offset number of the encoder at position zero.
• eSMO Estimator Parameters:

– USER_MOTOR1_KSLIDE_MAX

This parameter defines the maximum value of the time-dependent eSMO Kslide gain variable.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 109

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter must be set greater than the maximum back-EMF at the maximum motor frequency, in
per-unit. The default value is sufficient for most applications. This parameter may vary between 0.1 and
10.

– USER_MOTOR1_KSLIDE_MIN

This parameter defines the initial value of the time-dependent eSMO Kslide gain variable.

This parameter must be set greater than the maximum back-EMF at the maximum motor frequency, in
per-unit. The default value is sufficient for most applications. This parameter may vary between 0.1 and
10.

– USER_MOTOR1_PLL_KP_MAX

This parameter defines the maximum gain for the eSMO PLL.

This parameter must be set greater than the maximum back-EMF at the maximum motor frequency, in
per-unit. The default value is sufficient for most applications. This parameter may vary between 0.1 and
10.

– USER_MOTOR1_PLL_KP_MIN

This parameter defines the minimum gain for the eSMO PLL.

This parameter must be set greater than the maximum back-EMF at the maximum motor frequency, in
per-unit. The default value is sufficient for most applications. This parameter may vary between 0.1 and 5.

– USER_MOTOR1_PLL_KP_SF

This parameter defines the scale factor applied to the per-unit motor speed. This controls the gain of the
eSMO PLL.

This parameter should be set to (USER_MOTOR1_PLL_KP_MAX - USER_MOTOR1_PLL_KP_MIN) /
(fscale * fmax). In most cases, the default value is sufficient.

– USER_MOTOR1_BEMF_THRESHOLD

This parameter defines the threshold of estimated current error for the eSMO sliding mode controller.

This parameter should be equal to the maximum motor Back-EMF (BEMF) divided by the motor's rated
voltage, and should range between 0.3 and 0.5. In most cases, the default value of 0.5 is sufficient.

– USER_MOTOR1_BEMF_KSLF_FC_Hz

This parameter defines the cutoff frequency of the low pass filter for the eSMO estimated back-EMF.

This parameter is equal to the cutoff frequency * 2 * PI() * Ts (timescale). In most cases, the default value
is sufficient.

– USER_MOTOR1_THETA_OFFSET_SF

This parameter defines the coefficient applied to the back-EMF filter compensation factor.

This parameter should be set between 0.5 to 1.5, inclusive. The default value of 1 is sufficient in most
cases.

– USER_MOTOR1_SPEED_LPF_FC_Hz

This parameter sets the cutoff frequency of the low-pass filter used to calculate speed. Given that this filter
is applied to per-unit values, this parameter only influences the eSMO output in very high noise scenarios.

The default value of 200Hz is sufficient in most cases. Otherwise, this parameter should be set between
100 and 400.

• InstaSPIN-BLDC Parameters:
– USER_MOTOR1_RAMP_START_Hz

This parameter defines the minimum speed when the motor runs in open-loop, in Hz.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be 0.5%-1% of the rated motor speed.

– USER_MOTOR1_RAMP_END_Hz

This parameter defines when the BEMF zero-cross point for commutation begins to be considered, in Hz.

Appendix A. Motor Control Parameters www.ti.com

110 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be 10%-20% of the rated motor speed.

– USER_MOTOR1_RAMP_DELAY

This parameter defines how long the system runs the motor in open-loop, in seconds.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 5-20s.

– USER_MOTOR1_ISBLDC_INT_MAX

This parameter defines the maximum threshold of integration voltage for commutation point detection,
percent of the nominal.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 0.01-0.15.

– USER_MOTOR1_ISBLDC_INT_MIN

This parameter defines the minimum threshold of integration voltage for commutation point detection,
percent of the nominal.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 0.005-0.1.

– USER_MOTOR1_ISBLDC_I_START_A

This parameter defines the current to start the motor in open-loop, in A.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 5%-20% of the rated current.

– USER_MOTOR1_ISBLDC_DUTY_START

This parameter defines the PWM duty to start the motor in open-loop, in percent.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 5%-20% duty.

• Field Weakening Control (FWC) Parameters:
– USER_M1_FWC_KP

This parameter defines the Kp gain of the PI regulator for FWC.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 0.01-0.1.

– USER_M1_FWC_KI

This parameter defines the Ki gain of the PI regulator for FWC.

The specific value for this parameter should be based on motor or system test on performance
requirements. This value could be between 0.01-0.1.

– USER_M1_FWC_MAX_ANGLE

This parameter defines the maximum vector angle for FWC, in degrees.

This parameter should be defined between 0 and -45 degrees. A large negative value will set a higher
negative current on the d-axis for FWC.

– USER_M1_FWC_MIN_ANGLE

This parameter defines the minimum vector angle for FWC, in degrees.

This parameter should not be changed from its default value of 0.
• Startup and Running State Parameters:

– USER_MOTOR1_RATED_VOLTAGE_V

This parameter defines the rated voltage of the motor, in V.

This parameter could be set to USER_M1_NOMINAL_DC_BUS_VOLTAGE_V / sqrt(2).

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 111

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– USER_MOTOR1_FREQ_MAX_Hz

This parameter defines the maximum rotational speed of the motor in Hz.

This parameter is system-dependent, and may be higher than the rated speed of the motor. A value of
100% to 150% of the rated speed of the motor is typical. Specific values should be decided according to
system performance requirements.

– USER_MOTOR1_ALIGN_CURRENT_A

This parameter defines the current used to run motor rotor alignment, in A.

This parameter should be set to 5%-50% of the rated current of the motor. Specific values should be
decided according to system performance requirements.

– USER_MOTOR1_FLUX_CURRENT_A

This parameter defines the current used to run the motor in forced open-loop, in A.

This parameter should be set to 5%-50% of the rated current of the motor. Specific values should be
decided according to system performance requirements.

– USER_MOTOR1_STARTUP_CURRENT_A

This parameter defines the current, in A, used to run the motor in closed-loop when the speed is below the
defined startup speed (USER_MOTOR1_SPEED_START_Hz).

This parameter should be set to 10%-100% of the rated motor current.
– USER_MOTOR1_TORQUE_CURRENT_A

This parameter defines the initially assigned value for motor startup current, in A.
– USER_MOTOR1_SPEED_START_Hz

This parameter defines the startup speed threshold of the motor, in Hz.

This parameter should be set higher than the minimum rotation speed of the motor, and typically falls
between 10%-50% of the rated motor speed.

– USER_MOTOR1_SPEED_FORCE_Hz

This parameter defines the force open-loop speed threshold of the motor, in Hz.

This parameter should be set higher than the minimum rotation speed of the motor, and typically falls
between 5%-30% of the rated motor speed.

– USER_MOTOR1_ACCEL_START_Hzps

This parameter defines the motor acceleration during startup.

This parameter should be set less than the maximum acceleration of the motor
(USER_MOTOR1_ACCEL_MAX_Hzps), and otherwise should be set according to system performance
requirements.

– USER_MOTOR1_ACCEL_MAX_Hzps

This parameter defines the maximum acceleration of the motor.

This parameter should be set according to system performance requirements and motor hardware
limitations.

– USER_MOTOR1_SPEED_FS_Hz

This parameter defines the flying-start speed threshold of the motor, in Hz.

This parameter should be set higher than the minimum rotation speed of the motor, and typically falls
between 0.1%-5% of the rated motor speed.

– USER_MOTOR1_BRAKE_CURRENT_A

When braking is enabled, this parameter defines the motor current during the braking state.

This parameter should be set between 10%-50% of the rated motor current, according to system
performance requirements.

Appendix A. Motor Control Parameters www.ti.com

112 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– USER_MOTOR1_BRAKE_TIME_DELAY

This parameter defines the delay of the motor braking state in 5ms periods.

This parameter should be set according to system performance requirements, and typically falls between
1-300s, converted to 5ms periods.

– USER_M1_STOP_WAIT_TIME_SET

This parameter defines the minimum waiting time to start the motor from a stopped state, in 5ms periods.

This parameter should be set higher than 0.1s, converted to 5ms periods.
– USER_M1_RESTART_WAIT_TIME_SET

This parameter defines the minimum waiting time to start the motor from a fault state, in 5ms periods.

This parameter should be set higher than 0.1s, converted to 5ms periods.
– USER_M1_START_TIMES_SET

This parameter defines the duration of the motor rotor alignment state, in 5ms periods.

This parameter should be set between 1s-30s, converted to 5ms periods.
• Motor Protection Parameters:

– USER_M1_IS_OFFSET_AD_DELTA

This parameter defines the error threshold for the ADC offset for the phase currents. If offset calibration
is enabled, the system checks to ensure that all ADC offset values for current measurement circuits are
within this delta from the initially defined parameters (USER_M1_Ix_OFFSET_AD). If the calculated ADC
offset is beyond this delta from the initially defined parameter, this indicates a software error or hardware
fault, and the system enters a fault handling state. This parameter is not used when utilizing single-shunt
measurement.

This parameter should be set between 0 to 200, inclusive, to allow sufficient range while still catching
errors. To achieve a lower error delta, a higher accuracy sensing circuit may be required.

– USER_M1_VA_OFFSET_SF_DELTA

This parameter defines the error threshold for the ADC offset for the phase voltages. If offset calibration
is enabled, the system checks to ensure that all ADC offset values for voltage measurement circuits are
within this delta from the initially defined parameters (USER_M1_Vx_OFFSET_SF). If the calculated ADC
offset is beyond this delta from the initially defined parameter, this indicates a software error or hardware
fault, and the system enters a fault handling state. This parameter is only used for InstaSPIN-FOC FAST
and InstaSPIN-BLDC.

This parameter should be set between 0 to 200, inclusive, to allow sufficient range while still catching
errors. To achieve a lower error delta, a higher accuracy sensing circuit may be required.

– USER_M1_OVER_VOLTAGE_FAULT_V

This parameter defines the over-voltage threshold for the motor and inverter hardware, in Volts. A DC bus
voltage greater than this value indicates a software error or hardware fault has resulted in the calculated
DC bus voltage going above the user-defined safe or expected range, and the system enters a fault
handling state.

This parameter should be set to a hardware-dependent value less than the full scale ADC voltage
(USER_M1_ADC_FULL_SCALE_VOLTAGE_V).

– USER_M1_OVER_VOLTAGE_NORM_V

This parameter defines the lower threshold that indicates that a DC bus over-voltage fault (see
USER_M1_OVER_VOLTAGE_FAULT_V) is no longer present, in V.

This parameter should be set to a hardware-dependent value less than the over-voltage fault threshold
(USER_M1_OVER_VOLTAGE_FAULT_V). Typically, this is several Volts below the over-voltage fault
threshold, to ensure that the system has reliably returned to a safe or expected state.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 113

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– USER_M1_UNDER_VOLTAGE_FAULT_V

This parameter defines the under-voltage threshold for the motor and inverter hardware, in Volts. A
DC bus voltage greater than this value indicates a software error or hardware fault has resulted in the
calculated DC bus voltage going below the user-defined safe or expected range, and the system enters a
fault handling state.

This parameter should be set to a hardware-dependent value, typically, a few Volts above the minimum
required to spin the motor.

– USER_M1_UNDER_VOLTAGE_NORM_V

This parameter defines the upper threshold that indicates that a DC bus under-voltage fault (see
USER_M1_UNDER_VOLTAGE_FAULT_V) is no longer present, in V.

This parameter should be set to a hardware-dependent value greater than the under-voltage fault
threshold (USER_M1_UNDER_VOLTAGE_FAULT_V). Typically, this is a few Volts above the under-
voltage fault threshold, to ensure that the system has reliably returned to a safe or expected state.

– USER_M1_LOST_PHASE_CURRENT_A

This parameter defines the current threshold for the lost phase fault, in A. Beyond the minimum speed
threshold for this error (USER_M1_FAIL_SPEED_MIN_HZ), the absolute value of any phase currents
being beneath this value indicates a software error or hardware fault, and the system enters a fault
handling state.

This parameter should be set to a motor-dependent value according to system performance requirement.
Typically, this value is between 0.1% to 10% of the rated current of the motor.

– USER_M1_UNBALANCE_RATIO

This parameter defines the ratio threshold indicating a phase unbalance fault. If the ratio between the
largest to smallest RMS phase current value is beyond this ratio, this indicates a software error or
hardware fault, and the system enters a fault handling state.

This parameter should be set to a motor-dependent value according to system performance requirement.
Typically, this value is a percent value between 5% and 25%. The default value of 20% should typically be
sufficient for this application.

– USER_MOTOR1_OVER_CURRENT_A

This parameter defines the over-current threshold of the motor, in A. This value is used to calculate the
CMPSS peripheral's DAC values, which in turn trigger the PWM's trip zone fault handling.

This parameter should be set to a motor and system-dependent value that is typically 50% to 300% of the
rated motor current.

NOTE: If this value of this parameter is set greater than the maximum peak current value of the motor,
defined as 47.5% of the ADC full scale current in this example, this parameter is ignored and the
maximum peak current is used instead.

– USER_M1_OVER_LOAD_POWER_W

This parameter defines the over-power threshold for the motor and inverter hardware, in W. In the motor
running state, if the calculated power of the motor is above this value, this indicates a software error or
hardware fault, and the system enters a fault-handling state.

This parameter should be set to a motor-dependent value, typically 50% to 200% of the rated motor
power. This value must be less than the maximum output power that the motor can produce without
exceeding its thermal rating.

– USER_M1_STALL_CURRENT_A

This parameter defines the current threshold for the RMS motor stator current, in A, when the
calculated motor speed is beneath the speed threshold (USER_M1_FAIL_SPEED_MIN_HZ). When the
motor current is above the fault checking threshold (see USER_M1_FAULT_CHECK_CURRENT_A), this
indicates the minimum value for the motor stator current, and values beneath this parameter indicates
a failed motor startup fault condition. A value above this parameter always indicates a motor stall fault
condition.

Appendix A. Motor Control Parameters www.ti.com

114 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter should be set to a motor-dependent value, typically 50% to 300% of the motor rated
current. This value should be lower than the maximum peak current of the motor, defined as 47.5% of the
ADC full scale current in this example.

Note
The failed motor startup and motor stall conditions should not both be active.

– USER_M1_FAULT_CHECK_CURRENT_A

This parameter defines the current threshold for several motor faults, in A. When the RMS motor stator
current is below this value, the unbalanced phase current fault, over-speed fault, and failed startup faults
are not checked.

This parameter should be set to a motor-dependent value according to system performance requirements.
This value is typically 0.1% to 20% of the rated motor current.

– USER_M1_FAIL_SPEED_MAX_HZ

This parameter defines the maximum speed of the motor in Hz. If the calculated speed is above this value,
this indicates a software error or hardware fault, and the system enters a fault-handling state.

This parameter should be set to a motor-dependent value according to system performance requirements.
This value is typically 200% to 500% of the rated speed of the motor.

– USER_M1_FAIL_SPEED_MIN_HZ

This parameter defines the minimum speed threshold of the motor, in Hz. Certain faults are only checked
when the motor is above or below this value. The stall current and failed motor startup faults are only
checked when the motor speed is below this value. The lost phase fault is only checked when the motor
speed is above this value.

This parameter should be set to a motor-dependent value according to system performance requirements.
This value is typically 1% to 10% of the rated motor speed, and must be higher than the minimum rotation
speed of the motor.

– USER_M1_VOLTAGE_FAULT_TIME_SET

This parameter defines the duration time to set or clear the over and under-voltage faults, in 5ms periods.
When the fault condition is detected for longer than this period, the error flag is set. When the fault
condition is not present for longer than this period, the error flag is reset.

This parameter should be set according to system performance requirements. This value is typically
between 0.02 to 3.0s. The default value should be sufficient for most applications.

– USER_M1_OVER_LOAD_TIME_SET

This parameter defines the duration time to set the over load power fault, in 5ms periods. When the fault
condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 0.01 to 1.0s. The default value should be sufficient for most applications.

– USER_M1_STALL_TIME_SET

This parameter defines the duration time to set the motor stall current fault, in 5ms periods. When the fault
condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 0.01 to 2.0s. The default value should be sufficient for most applications.

– USER_M1_UNBALANCE_TIME_SET

This parameter defines the duration time to set the motor unbalanced phase current fault, in 5ms periods.
When the fault condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 0.05 to 5.0s. The default value should be sufficient for most applications.

– USER_M1_LOST_PHASE_TIME_SET

This parameter defines the duration time to set the motor lost phase current fault, in 5ms periods. When
the fault condition is detected for longer than this period, the error flag is set.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 115

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter should be set according to system performance requirements. This value is typically
between 0.05 to 5.0s. The default value should be sufficient for most applications.

– USER_M1_OVER_SPEED_TIME_SET

This parameter defines the duration time to set the motor over-speed fault, in 5ms periods. When the fault
condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 0.05 to 5.0s. The default value should be sufficient for most applications.

– USER_M1_STARTUP_FAIL_TIME_SET

This parameter defines the duration time to set the failed motor startup fault, in 5ms periods. When the
fault condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 1.0s to 20.0s. The default value should be sufficient for most applications.

– USER_M1_OVER_CURRENT_TIMES_SET

This parameter defines the duration time to set the motor over-current fault, in 5ms periods. When the
fault condition is detected for longer than this period, the error flag is set.

This parameter should be set according to system performance requirements. This value is typically
between 0.01s to 0.5s. The default value should be sufficient for most applications.

• PI Regulator Gain Tuning Parameters:
– General PI Tuning Notes

Typical initial Kp and Ki of the speed and current regulators are calculated based on motor parameters.
These runtime values for the gain will be changed according to the motor running speed or vector current
after startup.

The gain of the PI regulator is set according to the following rules:

Kp Gain Ki Gain Condition

Kp* = Kp * G(p_start) Ki* = Ki * G(i_start) Motor startup

Kp* = Kp * G(p_low) Ki* = Ki * G(i_low) After startup and condition low

Kp* = Kp * G(p_high) Ki* = Ki * G(i_high) After startup and condition high

Kp* = Kp * (G(p_low) + H(p_low) *
(condition state))

Ki* = Ki * (G(i_low) + H(i_low) * (condition
state))

No other conditions matched

Where:

• H(p_slope) = (G(p_high) - G(p_low)) / (condition range)
• H(i_slope) = (G(i_high) - G(i_low)) / (condition range)
• Condition low =

– Speed regulator: ω(e) < ω(e_low)
– Current regulator: i(s) < i(s_low)

• Condition high =
– Speed regulator: ω(e) > ω(e_high)
– Current regulator: i(s) > i(s_high)

• Condition state =
– Speed regulator: ω(e) - ω(e_low)
– Current regulator: i(s) -i(s_low)

• Condition range =
– Speed regulator: ω(e_high) - ω(e_low)
– Current regulator: i(s_high) -i(s_low)

Appendix A. Motor Control Parameters www.ti.com

116 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

– USER_MOTOR1_GAIN_SPEED_LOW_Hz

This parameter defines the low speed threshold for adjusting Kp* and Ki* of the speed PI regulator.

This parameter should be set between 10% to 30% of the rated speed of the motor, according to motor
and application requirements.

– USER_MOTOR1_GAIN_SPEED_HIGH_Hz

This parameter defines the high speed threshold for adjusting Kp* and Ki* of the speed PI regulator.

This parameter should be set between 60% to 100% of the rated speed of the motor, according to motor
and application requirements.

– USER_MOTOR1_Kx_SPD_START_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_start to adjust the Kx* of the
speed PI regulator for startup.

This parameter should be set between 0.1 to 2.0 according to motor and application requirements, and
should be lower than Gx_low in most application.

USER_MOTOR1_Kp_SPD_START_SF; USER_MOTOR1_Ki_SPD_START_SF
– USER_MOTOR1_Kx_SPD_LOW_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_low to adjust the Kx* of the
speed PI regulator.

This parameter should be set between 0.1 to 10.0 according to motor and application requirements, and
should generally be higher than Gx_high.

USER_MOTOR1_Kp_SPD_LOW_SF; USER_MOTOR1_Ki_SPD_LOW_SF
– USER_MOTOR1_Kx_SPD_HIGH_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_high to adjust the Kx* of the
speed PI regulator.

This parameter should be set between 0.1 to 5.0 according to motor and application requirements, and
should generally be lower than Gx_low.

USER_MOTOR1_Kp_SPD_HIGH_SF; USER_MOTOR1_Ki_SPD_HIGH_SF
– USER_MOTOR1_GAIN_IQ_LOW_A

This parameter defines the low current threshold is_low to adjust the gains of the q-axis current PI
controller.

This parameter should be set to 10% to 50% of the rated current of the motor, according to system
performance, motor, and application requirements.

– USER_MOTOR1_GAIN_IQ_HIGH_A

This parameter defines the high current threshold is_high to adjust the gains of the q-axis current PI
controller.

This parameter should be set to 50% to 100% of the rated current of the motor, according to system
performance, motor, and application requirements.

– USER_MOTOR1_Kx_IQ_START_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_start to adjust the gains of the
q-axis current PI controller during startup.

This parameter should be set to 0.1 to 5.0 according to system performance, motor, and application
requirements.

USER_MOTOR1_Kp_IQ_START_SF; USER_MOTOR1_Ki_IQ_START_SF
– USER_MOTOR1_Kx_IQ_LOW_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_low to adjust the gains of the
q-axis current PI controller during startup.

www.ti.com Appendix A. Motor Control Parameters

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 117

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

This parameter should be set to 0.1 to 10.0 according to system performance, motor, and application
requirements, and should be higher than Gx_high.

USER_MOTOR1_Kp_IQ_LOW_SF; USER_MOTOR1_Ki_IQ_LOW_SF
– USER_MOTOR1_Kx_IQ_HIGH_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx_high to adjust the gains of the
q-axis current PI controller during startup.

This parameter should be set to 0.1 to 5.0 according to system performance, motor, and application
requirements, and should be lower than Gx_low.

USER_MOTOR1_Kp_IQ_HIGH_SF; USER_MOTOR1_Ki_IQ_HIGH_SF
– USER_MOTOR1_Kx_ID_SF

Where Kx is either Kp or Ki, this parameter defines the gain coefficient Gx to adjust the gains of the d-axis
current PI controller.

This parameter should be set between 0.1 to 5.0 according to system performance, motor, and application
requirements.

USER_MOTOR1_Kp_ID_SF; USER_MOTOR1_Ki_ID_SF
• Potentiometer Control Parameters:

– USER_M1_POT_ADC_MIN

When potentiometer speed control is enabled, this parameter defines the minimum allowable ADC value
for the potentiometer. If the ADC reading is below this value, the motor speed is set to 0.

This parameter should be set such that ADC noise cannot result in a value above this when the motor is
intended to be disabled.

– USER_M1_POT_ADC_MAX

When potentiometer speed control is enabled, this parameter defines the maximum allowable ADC value
for the potentiometer. If the ADC reading is above this value, the motor speed is set to the maximum.

This parameter should be set to the maximum possible ADC value (4096 in this example) offset by
USER_M1_POT_ADC_MIN. In this example, that's 4096U-200U.

– USER_M1_POT_SPEED_SF

When potentiometer speed control is enabled, this derived parameter defines the exact relationship
between ADC reading and motor speed.

This parameter is derived from the minimum and maximum potentiometer ADC values
(USER_M1_POT_ADC_MIN and USER_M1_POT_ADC_MAX), as well as the motor maximum speed
(USER_MOTOR1_FREQ_MAX_Hz).

– USER_M1_POT_SPEED_MIN_Hz

When potentiometer speed control is enabled, this derived parameter defines the minimum frequency of
the motor in Hz. When the potentiometer ADC reading results in a nonzero value that is below this speed,
the motor speed is set to this value instead.

This parameter is set to 10% of the motor maximum speed (USER_MOTOR1_FREQ_MAX_Hz).
– USER_M1_POT_SPEED_MAX_Hz

When potentiometer speed control is enabled, this derived parameter defines the maximum frequency of
the motor in Hz. When the potentiometer ADC reading results in a value that is above this speed, the
motor speed is set to this value instead.

This parameter is set to 50% of the motor maximum speed (USER_MOTOR1_FREQ_MAX_Hz).
– USER_M1_WAIT_TIME_SET

When potentiometer speed control is enabled, this parameter defines the wait period between speed
updates in 1ms periods.

This parameter should be set to a value which allows for rapid adjustments, while not allowing noise to
excessively influence calculations. The default value of 500ms is sufficient for most applications.

Appendix A. Motor Control Parameters www.ti.com

118 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

• Speed Pulse Control Parameters:
– USER_M1_SPEED_CAP_MIN_Hz

When cmd pulse speed control is enabled, allowing the motor speed to be calculated from a speed pulse
on an input GPIO, this parameter defines the minimum frequency of the motor in Hz. When the calculated
motor speed is below this value, the motor speed is instead set to 0.

This parameter should be set according to the minimum motor rotation speed, and by default is not
derived automatically.

– USER_M1_SPEED_CAP_MAX_Hz

When cmd pulse speed control is enabled, allowing the motor speed to be calculated from a speed pulse
on an input GPIO, this parameter defines the maximum frequency of the motor in Hz. When the calculated
motor speed is above this value, the motor speed is instead set to 0.

This parameter should be set according to the maximum rated motor speed, and by default is not derived
automatically.

Note
A calculated speed above the maximum does NOT set the speed to the maximum as it does in
the potentiometer control mode, instead it disables the motor.

– USER_M1_CAP_WAIT_TIME_SET

When cmd pulse speed control is enabled, allowing the motor speed to be calculated from a speed pulse
on an input GPIO, this parameter defines the wait period between speed updates in 1ms periods.

This parameter should be set to a value which allows for rapid adjustments, while not allowing noise to
excessively influence calculations. The default value of 200ms is sufficient for most applications.

• Switch Control Parameter:
– USER_M1_SWITCH_WAIT_TIME_SET

When cmd switch control is enabled, allowing the motor to be enabled or disabled with a switch, this
parameter defines the minimum wait period between switch state updates in 1ms periods.

This parameter should be set to a value which allows for rapid adjustments, while not allowing noise to
excessively influence calculations. The default value of 50ms is sufficient for most applications.

References
• Texas Instruments: Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs)
• Texas Instruments: The Essential Guide for Developing With C2000 Real-Time Microcontrollers
• Texas Instruments: Hardware Design Guidelines for TMS320F28xx and TMS320F28xxx
• Texas Instruments: C2000 MCU JTAG Connectivity Debug
• Texas Instruments: Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x
• Texas Instruments: Sensorless-FOC for PMSM With Single DC-Link Shunt
• Texas Instruments: C2000™ Software Frequency Response Analyzer (SFRA) Library User’s Guide
• Texas Instruments: C2000Ware motor control SDK getting started guide
• General information on C2000 real-time MCUs - C2000™ Overview
• C2000 Products - C2000™ Products
• C2000 Design and Development Resources – C2000™ Design & Development

www.ti.com References

SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Motor Control SDK Universal Project and Lab 119

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruiv6
https://www.ti.com/lit/pdf/spracn0
https://www.ti.com/lit/pdf/SPRAAS1
https://www.ti.com/lit/pdf/spracf0
https://www.ti.com/lit/pdf/spraa88
https://www.ti.com/lit/pdf/spract7
https://www.ti.com/lit/pdf/spruik4
https://www.ti.com/lit/pdf/spruio7
http://ti.com/C2000
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/products.html
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/design-development.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (September 2021) to Revision A (April 2024) Page
• Added Section 2... 4
• Updated Section 3.1: Added support for the following TI hardware: F28003x LP & CC, F280013x LP & CC,

and DRV8329AEVM...24
• Updated Section 3.2. Added support for the following TI hardware: F28003x LP & CC, F280013x LP & CC,

and DRV8329AEVM...27
• Updated Section 3.4. Instructions adjusted for clarity...55
• Updated Section 3.5. Instructions adjusted for clarity...60
• Updated Section 4. Instructions adjusted for clarity..84
• Added Appendix A..104

Revision History www.ti.com

120 Motor Control SDK Universal Project and Lab SPRUJ26A – SEPTEMBER 2021 – REVISED APRIL 2024
Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJ26
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJ26A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Motor Control Theory
	2.1 Mathematical Model and FOC Structure of PMSM
	2.2 Field Oriented Control of PM Synchronous Motor
	2.3 Sensorless Control of PM Synchronous Motor
	2.3.1 Enhanced Sliding Mode Observer with Phase Locked Loop
	2.3.1.1 Design of ESMO for PMSM
	2.3.1.2 Rotor Position and Speed Estimation With PLL

	2.4 Hardware Prerequisites for Motor Drive
	2.4.1 Motor Phase Voltage Feedback

	2.5 Additional Control Features
	2.5.1 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
	2.5.2 Flying Start

	3 Running the Universal Lab on TI Hardware Kits
	3.1 Supported TI Motor Evaluation Kits
	3.2 Hardware Board Setup
	3.2.1 LAUNCHXL-F280025C Setup
	3.2.2 LAUNCHXL-F280039C Setup
	3.2.3 LAUNCHXL-F2800137 Setup
	3.2.4 TMDSCNCD280025C Setup
	3.2.5 TMDSCNCD280039C Setup
	3.2.6 TMDSCNCD2800137 Setup
	3.2.7 TMDSADAP180TO100 Setup
	3.2.8 DRV8329AEVM Setup
	3.2.9 BOOSTXL-DRV8323RH Setup
	3.2.10 BOOSTXL-DRV8323RS Setup
	3.2.11 DRV8353RS-EVM Setup
	3.2.12 BOOSTXL-3PHGANINV Setup
	3.2.13 DRV8316REVM Setup
	3.2.14 TMDSHVMTRINSPIN Setup

	3.3 Lab Software Implementation
	3.3.1 Importing and Configuring Project
	3.3.2 Lab Project Structure
	3.3.3 Lab Software Overview

	3.4 Monitoring Feedback or Control Variables
	3.4.1 Using DATALOG Function
	3.4.2 Using PWMDAC Function
	3.4.3 Using External DAC Board

	3.5 Running the Project Incrementally Using Different Build Levels
	3.5.1 Level 1 Incremental Build
	3.5.1.1 Build and Load Project
	3.5.1.2 Setup Debug Environment Windows
	3.5.1.3 Run the Code

	3.5.2 Level 2 Incremental Build
	3.5.2.1 Build and Load Project
	3.5.2.2 Setup Debug Environment Windows
	3.5.2.3 Run the Code

	3.5.3 Level 3 Incremental Build
	3.5.3.1 Build and Load Project
	3.5.3.2 Setup Debug Environment Windows
	3.5.3.3 Run the Code

	3.5.4 Level 4 Incremental Build
	3.5.4.1 Build and Load Project
	3.5.4.2 Setup Debug Environment Windows
	3.5.4.3 Run the Code

	4 Building a Custom Board
	4.1 Building a New Custom Board
	4.1.1 Hardware Setup
	4.1.2 Migrating Reference Code to a Custom Board
	4.1.2.1 Setting Hardware Board Parameters
	4.1.2.2 Modifying Motor Control Parameters
	4.1.2.3 Changing Pin Assignment
	4.1.2.4 Configuring the PWM Module
	4.1.2.5 Configuring the ADC Module
	4.1.2.6 Configuring the CMPSS Module
	4.1.2.7 Configuring Fault Protection Function

	4.1.3 Adding Additional Functionality to Motor Control Project
	4.1.3.1 Adding Push Buttons Functionality
	4.1.3.2 Adding Potentiometer Read Functionality
	4.1.3.3 Adding CAN Functionality

	4.2 Supporting New BLDC Motor Driver Board
	4.3 Porting Reference Code to New C2000 MCU

	A Appendix A. Motor Control Parameters
	References
	Revision History

