ABSTRACT

The LAUNCHXL-F280039C is a low-cost development board for the Texas Instruments C2000™ Real-Time Microcontroller series of F28003x devices. It is designed around the TMS320F280039C real-time MCU and highlights the control, analog, and communications peripherals, as well as the integrated nonvolatile memory. The LaunchPad also features two independent BoosterPack XL expansion connectors (80-pins), on-board Controller Area Network (CAN) transceiver supporting both standard CAN (DCAN) and CAN-FD (MCAN), two 5 V encoder interface (eQEP) connectors, FSI connector, power-domain isolation, and an on-board XDS110 debug probe.

Figure 1-1 highlights the key features of the F28003x LaunchPad.

FIGURE 1-1. F28003x LaunchPad Board Overview
Table of Contents

1 Board Overview
1.1 Kit Contents.......................................................................................................................... 3
1.2 Features.................................................................................................................................. 3
1.3 Specifications......................................................................................................................... 3
1.4 Using the F28003x LaunchPad............................................................................................... 4
1.5 Booster Packs......................................................................................................................... 4
1.6 Hardware Revisions............................................................................................................... 5
2 Software Development
2.1 Software Tools and Packages............................................................................................... 5
2.2 F28003x LaunchPad Demo Program..................................................................................... 6
2.3 Programming and Running Other Software on the F28003x LaunchPad........................... 7
3 Hardware Description
3.1 Functional Description and Connections........................................................................... 10
3.2 Debug Interface.................................................................................................................... 14
3.3 Alternate Routing................................................................................................................. 14
4 Board Design
4.1 Schematic............................................................................................................................ 16
4.2 PCB Layout........................................................................................................................ 16
4.3 BOM..................................................................................................................................... 20
4.4 LAUNCHXL-F280039C Board Dimensions...................................................................... 21
5 Frequently Asked Questions................................................................................................ 22
6 References
6.1 Reference Documents......................................................................................................... 23
6.2 Other TI Components Used in This Design...................................................................... 24

List of Figures
Figure 1-1. F28003x LaunchPad Board Overview........................................................................ 1
Figure 2-1. LaunchPad XDS110 COM Port.................................................................................. 6
Figure 2-2. LaunchPad Demo Serial Terminal - TI Logo............................................................... 7
Figure 2-3. LaunchPad Demo Serial Terminal - ADC Sampling.................................................. 7
Figure 3-1. F28003x LaunchPad Development Kit Block Diagram........................................... 9
Figure 3-2. LaunchPad Power Distribution Diagram................................................................. 10
Figure 3-3. LaunchPad Power Plane Diagram......................................................................... 11
Figure 4-1. Top Signal - Layer 1............................................................................................... 17
Figure 4-2. GND - Layer 2......................................................................................................... 18
Figure 4-3. PWR - Layer 3......................................................................................................... 19
Figure 4-4. Bottom Signal - Layer 4........................................................................................ 20
Figure 4-5. F28003x LaunchPad Dimensions and Component Locations.............................. 21
Figure 5-1. Target Configuration Advanced Options................................................................. 22
Figure 5-2. Target Configuration Included in the Demo Project.............................................. 23

List of Tables
Table 1-1. LAUNCHXL-F280039C Specifications...................................................................... 3
Table 1-2. Featured Booster Packs for the F28003x LaunchPad................................................ 4
Table 3-1. Power Domain Shunts............................................................................................... 11
Table 3-2. Power LED Indication Descriptions....................................................................... 11
Table 3-3. Boot Select Switch Table - S3.................................................................................. 12
Table 3-4. SCI UART Select Table - S2.................................................................................... 15
Table 3-5. QEP Select Table - S5............................................................................................ 15

Trademarks
C2000™, and LaunchPad™, and Code Composer Studio™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
1 Board Overview

1.1 Kit Contents

The F28003x Series LaunchPad Development Kit contains these items:

- C2000 F28003x Series LaunchPad development board (LAUNCHXL-F280039C)
- USB Type-A male to USB Type-C™ male cable
- Pinout Map

1.2 Features

The F28003x LaunchPad has these features:

- C2000 Series F280039CPNS (100-pin) microcontroller:
  - With Configurable Logic Block (CLB) capability
- On-board XDS110 debug probe
- Two user-controlled LEDs
- One microcontroller reset switch
- Selectable power domains:
  - USB (isolated)
  - BoosterPack
  - External power supply
- CAN connector with on-board CAN transceiver
  - Supports both standard CAN (DCAN) and CAN-FD (MCAN)
- Two independent Enhanced Quadrature Encoder Pulse (QEP)-based encoder connectors
- FSI peripheral connector
- Two independent BoosterPack XL standard connectors (80-pins) featuring stackable headers to maximize expansion through the BoosterPack ecosystem

1.3 Specifications

Table 1-1 summarizes the F28003x LaunchPad specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Supply Voltage</td>
<td>5 V&lt;sub&gt;DC&lt;/sub&gt; from one of the following sources:</td>
</tr>
<tr>
<td></td>
<td>• USB Connector (USB101) - USB Type-C™ cable connected to PC or other compatible power source.</td>
</tr>
<tr>
<td></td>
<td>• BoosterPack 1</td>
</tr>
<tr>
<td></td>
<td>• BoosterPack 2</td>
</tr>
<tr>
<td></td>
<td>• Auxiliary power connectors</td>
</tr>
<tr>
<td>Dimensions</td>
<td>5.5 in x 2.3 in x .425 in (13.97 cm x 5.84 cm x 10.8 mm) (L x W x H)</td>
</tr>
<tr>
<td>Break-out Power Output</td>
<td>3.3 V&lt;sub&gt;DC&lt;/sub&gt; to BoosterPacks, limited by output of TPS7A3701 LDO. This 3.3-V plane is shared with on-board components. Total output power limit of TPS7A3701 is 1 Amp.</td>
</tr>
<tr>
<td>Assumed Operating Conditions</td>
<td>This kit is assumed to run at standard room conditions. The EVM should run at approximately standard ambient temperature and pressure (SATP) with moderate-to-low humidity.</td>
</tr>
</tbody>
</table>
1.4 Using the F28003x LaunchPad

The recommended steps for using the F28003x LaunchPad are:

1. **Follow the instructions in Section 2.2 to begin running the LaunchPad demo program.** Within just a few minutes, you can control and monitor the F28003x LaunchPad with the pre-programmed quick start application. Additionally, the FAQ section included in this document can be helpful if there are any issues that might quickly be addressed.

2. **Experiment with Booster Packs.** This development kit conforms to the latest revision of the BoosterPack pinout standard. It has two independent BoosterPack sites to enable a variety of expansion opportunities, such as two boosterpacks being used simultaneously. For more information about the TI LaunchPad and BoosterPack standard, see the TI LaunchPad web page at [http://www.ti.com/launchpad](http://www.ti.com/launchpad).

3. **Take the first step towards developing your own control applications.** The F28003x LaunchPad is supported by the C2000Ware development package. After C2000Ware is installed, look for \F28003x\examples\launchxl_F280039C in the installation directory to find the pre-configured example applications for this board. Any of the other examples found within the \F28003x\examples directory can be used with minor modifications to run on the LaunchPad as well. For more details about software development, see Section 2.
   a. For applications, features and benefits information, see the C2000™ F28003x Real-Time Microcontrollers applications, features, and benefits.
   b. Check out this technical article featuring C2000 Real-Time Microcontrollers about how developers can take advantage of the scalability and sustainability benefits these devices bring.

4. **Customize and integrate the hardware to align to your end application.** This development kit can be used as a reference for building your own custom boards and circuits based on C2000 F28003x series microcontrollers. The LaunchPad also functions as a foundation for expansion with custom Booster Packs and other circuits. This document can serve as a starting point for such projects.

5. **Get Trained.** Review and download hours of written and video training materials on C2000 Real-time Microcontrollers and related LaunchPads.
   a. See Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs)
   b. See the TI Training and Videos page
   c. See the C2000 Academy page

1.5 Booster Packs

The LAUNCHXL-F280039C provides a simple and inexpensive way to develop applications with the F28003x series microcontroller. Booster Packs are pluggable add-on boards for the LaunchPad ecosystem that follow a pin-out standard created by Texas Instruments. The TI and third-party ecosystem of Booster Packs greatly expands the peripherals and potential applications that you can explore with the F28003x LaunchPad.

Some examples of Booster Packs that are compatible with the F28003x LaunchPad are listed in Table 1-2. Please note that this is not an exhaustive list of hardware supported Booster Packs.

<table>
<thead>
<tr>
<th>BoosterPack/Board</th>
<th>Application and Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTXL-3PHGANINV</td>
<td>Features a 48-V/10-A three-phase GaN inverter with precision in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.</td>
</tr>
<tr>
<td>BOOSTXL-DRV8323RS</td>
<td>DRV8323RS/H Three-Phase, 15A smart gate driver with buck, shunt amps (SPI or Hardware Interface) Evaluation Module.</td>
</tr>
<tr>
<td>BOOSTXL-DRV8323RH</td>
<td></td>
</tr>
<tr>
<td>TMDSFSIADAPEVM</td>
<td>FSI adapter board assists in understanding the functionality of the C2000’s FSI communications peripheral. Enables evaluation of the peripheral for decentralized and point-to-point real-time control system use cases, such as those in industrial drives, servo, sensing networks, and solar system and industrial power.</td>
</tr>
<tr>
<td>DRV8353RS-EVM</td>
<td>15A, 3-phase brushless DC drive stage based on the DRV8353RS gate driver and CSD19532Q5B NexFET™ MOSFETs.</td>
</tr>
<tr>
<td>DRV8316REVM</td>
<td>DRV8316REVM provides three half-H-bridge integrated MOSFET drivers for driving a three-phase brushless DC (BLDC) motor with 8-A Peak current drive, for 12-V/24-V DC rails or battery powered applications.</td>
</tr>
</tbody>
</table>
Table 1-2. Featured BoosterPacks for the F28003x LaunchPad (continued)

<table>
<thead>
<tr>
<th>BoosterPack/Board</th>
<th>Application and Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTXL-BUCKCONV</td>
<td>Digital Power Buck Converter BoosterPack for learning the basics of digital power control with C2000 microcontrollers. The buck converter power stage supports dynamic loads and converts an external 9-VDC power supply to a configurable DC output voltage.</td>
</tr>
<tr>
<td>BOOSTXL-POSMGR</td>
<td>PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to absolute encoders and analog sensors like resolvers and SinCos transducers.</td>
</tr>
<tr>
<td>BOOSTXL-SHARP128</td>
<td>Sharp® 128x128 Memory LCD and microSD Card BoosterPack, controlled using SPI. Display sensor readings, time, graphics, or other information using the LCD screen.</td>
</tr>
</tbody>
</table>

Note
Software support for the BoosterPacks and boards listed will vary.

Users can also design their own BoosterPacks for the F28003x LaunchPad. Ensure that compatibility requirements are met by referencing the signal pin mapping in the LAUNCHXL-F280039C Pinout Map or LAUNCHXL-F280039C Schematic.

1.6 Hardware Revisions

This section contains an abbreviated revision history of the LAUNCHXL-F280039C as well as known issues with each revision.

1.6.1 Revision A

The first production revision of the LAUNCHXL-F280039C was released in April 2022. This revision can be identified by the "MCU103A" silkscreen labeling on the back side of the EVM between the BoosterPack Connector site 1 towards the top of the board.

Issues and concerns that have been identified on the EVM are listed below:

Known issues:
- No issues to report at this time of initial release.

Special notes and considerations to be aware of:
- Nothing to report at this time of initial release.

2 Software Development

This section provides general information about software development, as well as instructions for programming the LaunchPad. Software tools and packages for C2000 real-time controllers, like the F28003x, are listed in the C2000 Evaluation & Development page.

2.1 Software Tools and Packages

Code Composer Studio (CCS) is a free integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio™ (CCS) provides a feature rich environment for developing, programming, and debugging code on the C2000 family of MCUs. C2000WARE is a repository of device-specific drivers, bit-field support files, libraries, peripheral examples, utilities, hardware files, and documentation for C2000 MCUs. C2000WARE provides a solid foundation to begin development and evaluation of the F28003x device on the LAUNCHXL-F280039C and minimize software development time.

Software Development Kits (SDKs) are provided to make it easy to evaluate C2000 MCUs within specific system use cases and reduce overall development time. The Motor Control SDK (C2000WARE-MOTORCONTROL-SDK) is targeted for various motor control applications, such as industrial drives. The Digital Power SDK (C2000WARE-DIGITALPOWER-SDK) is targeted for digital power system development for various AC-DC, DC-DC and DC-AC power supply applications.
2.2 F28003x LaunchPad Demo Program

The LAUNCHXL-F280039C includes a TMSF280039CSPZ device pre-programmed with a demo program. When the LaunchPad is powered on the demo program begins with an LED blink sequence on LED4 and LED5. After a few seconds the device switches into an ADC sampling mode.

Every 1 second the ADC samples pin ADCINA6 and the sampled value is represented as follows: If the sample is above mid-scale (2048), the red LED4 will illuminate. If the sample is below mid-scale, the green LED5 will illuminate.

In addition to the LED indicators, ADC sample results are also displayed on your PC through the USB/UART connection. To view the UART information on your PC, first determine the COM port associated with the LaunchPad. To do this in Windows open the Device Manager. Look for an entry under Ports (COM and LPT) titled "XDS110 Class Application/User UART (COMX)", where X is a number. Remember this number for when you open a serial terminal.

![Figure 2-1. LaunchPad XDS110 COM Port](Image)

The demo application's UART data was tested using PuTTY, which is a free and open-source terminal emulator. To view the UART data in a serial terminal program open the COM port found using the Windows Device Manager with the following settings.

115200 Baud, 8 data bits, no parity, 1 stop bit.

After properly opening the serial port in your serial terminal, reset the LaunchPad by pressing the S1 reset button and observe the serial terminal to see the TI logo in ASCII art.
After a few moments, the ADC value sampled on the ADCINA6 pin will appear in the bottom right corner of the terminal and be updated each second. Using a jumper wire connect the ADCINA6 header to a 3.3V, GND, or other 0-3.3V signal to see the on-screen value change.

2.3 Programming and Running Other Software on the F28003x LaunchPad

The software packages described in Section 2.1 include example projects that can be loaded and run on the F28003x LaunchPad. If you installed the C2000WARE software to the default installation path of C:\ti\c2000\C2000Ware_<version>, you can find driverLib based example applications in C:\ti\c2000\C2000Ware_<version>\examples\F28003x. The on-board XDS110 is used with the On-Chip Flash Programmer tool to program applications to the F28003x LaunchPad.

Follow these steps to program example applications onto the F28003x LaunchPad development kit using the on-board XDS110 debug probe:

1. Install Code Composer Studio (CCS) on a PC running Microsoft Windows.
2. Connect the USB-A cable plug in to an available USB port on the PC and plug the USB Type-C™ plug to the port (USB101) on the F28003x LaunchPad.
3. Verify the following LEDs are illuminated:
   a. LED7, at the top left of the board, indicating 5 V USB power.
   b. LED0 indicating 3.3 V power to the XDS110 debug probe.
   c. LED1 indicating 3.3 V power to the F280039C MCU.
4. Install Windows XDS110 and Virtual COM Port drivers if prompted. Installation instructions can be found at XDS110 Product Page.
5. Run CCS on the PC.
6. Import a F28003x project from C2000WARE, or another installed software package, into the CCS workspace.
7. Add the _LAUNCHXL_F280039C predefined symbol to the imported DriverLib example project in order for the software to use relevant F28003x LaunchPad signals.
   a. Open the projects Properties → Expand the Build tab → Expand the C2000 Compiler tab → Select Predefined Symbol → Add _LAUNCHXL_F280039C pre-define NAME.
8. Right click the project name and select Rebuild Project in CCS.
9. Launch the LAUNCHXL-F280039C Target Configuration file and connect to the F28003x device. Ensure that the Target Configuration file is configured to use the 2-pin cJTAG advanced configuration. For additional details, see FAQ section.
10. Click 'Load Program' and select the program’s binary to load. The binary will be loaded onto the device and can now be run and debugged.
3 Hardware Description

The F28003x LaunchPad includes a F280039CSPZ MCU, which is well suited for advanced real-time control applications. A large number of these peripherals are made available to users via the on-board accessories and the BoosterPack connectors. This section explains how those peripherals operate and interface to the MCU.

Figure 3-1 shows a high-level block diagram of the F28003x LaunchPad:
3.1 Functional Description and Connections

3.1.1 Microcontroller

The TMS320F280039CSPZ is a 32-bit floating-point microcontroller with 384KB Flash memory, 69KB RAM, a programmable Control Law Accelerator (CLA) for offloading tasks, and operates at 120 MHz. It includes advanced control peripherals, differentiated analog, and various communications peripherals. The device has been optimized for high-performance real-time control applications. For more details, see the TMS320F28003x Real-Time Microcontrollers Data Sheet.

Most of the microcontroller's signals are routed to 0.1 inch (2.54 mm) pitch headers laid out to comply with the TI BoosterPack standards, with a few exceptions. The F28003x MCU's internal multiplexer allows different peripheral functions to be assigned to each of the General-Purpose Input/Output (GPIO) pins. The multiplexing options can be found in the device-specific data sheet. When adding external circuitry, consider the additional load on the development board's power rails.

The F28003x LaunchPad is factory-programmed with a quick start demo program. The quick start program resides in the on-chip Flash memory and executes each time power is applied, unless the application has been replaced with a user program. For details on the LaunchPad's demo program, see Section 2.2.

3.1.2 Power Domains

The F28003x LaunchPad has several power domains that can be connected or isolated from each other with removable shunts. The different 3.3 V and 5 V power domains are further described in Figure 3-2 and Figure 3-3.

Figure 3-2. LaunchPad Power Distribution Diagram
Figure 3-3. LaunchPad Power Plane Diagram

Table 3-1 describes the usage of the different removable shunts on the LaunchPad board.

Table 3-1. Power Domain Shunts

<table>
<thead>
<tr>
<th>Shunt Identifier</th>
<th>Usage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP1, +5V0</td>
<td>Connects the +5 V power from the USB-C connector (+5V0_USB) to the +5 V power on the XDS110 side of the board (+5V0_XDS110). Bridges the power and ground isolations between the two board sides.</td>
</tr>
<tr>
<td>JP1, GND</td>
<td>Connects the board Ground on the isolated USB-C connector side of the board (USB_GND) to the rest of the board ground (GND). Bridges the power and ground isolations between the two board sides.</td>
</tr>
<tr>
<td>JP2, +5V0</td>
<td>Connects the +5 V power on the XDS110 side of the board (+5V0_XDS110) to the +5 V power on the F280039C side of the board (+5V0_MCU).</td>
</tr>
<tr>
<td>JP2, +3V3</td>
<td>Connects the +3.3 V power on the XDS110 side of the board (+3V3_XDS110) to the +3.3 V power on the F280039C side of the board (+3V3_MCU).</td>
</tr>
</tbody>
</table>

3.1.3 LEDs

Power indicator LEDs (red) are included on the F28003x LaunchPad board. Table 3-2 shows descriptions of each LED.

Table 3-2. Power LED Indication Descriptions

<table>
<thead>
<tr>
<th>LED No.</th>
<th>Indication Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED7</td>
<td>+5 V power from the USB Type-C™ connector</td>
</tr>
<tr>
<td>LED0</td>
<td>+3.3 V power on the XDS110 side of the PCB</td>
</tr>
<tr>
<td>LED1</td>
<td>+3.3 V power on the F28003x side of the PCB</td>
</tr>
<tr>
<td>LED6</td>
<td>+5 V power on the F28003x side of the PCB</td>
</tr>
</tbody>
</table>

Two user LEDs are provided on the board: LED4 (red) and LED5 (green). These user LEDs are connected to GPIO20 and GPIO22 of the F280039C, respectively. The signals are connected to the SN74LVC2G07DBVR LED driver IC and are connected in an active low configuration; that is, drive the GPIO low to turn on the LED and high to turn it off. These LEDs are dedicated for use by the software application.
Two blue LEDs, LED2 and LED3, are connected to the XDS110 debug probe. These indicate debugger activity and are not controllable by any application software.

### 3.1.4 Encoder Connectors

The F28003x LaunchPad includes two headers, J12 and J13, which are used for connecting linear or rotary incremental encoders. These headers take 5 V input signals that are stepped down to 3.3 V and wired to the F280039C MCU. These signals are connected to the eQEP modules on the device when switch S5 is set appropriately, see Table 3-5. Each header has the EQEPA, EQEPB, and EQEPI signals available for each eQEP module (1 and 2) as well as pins for GND and 5 V.

### 3.1.5 FSI

The F28003x MCU features the Fast Serial Interface (FSI) communications peripheral. The FSI enables robust high-speed communications and is intended to increase the amount of information transmitted while reducing the cost to communicate over an isolation barrier. The FSI signals TXCLK, TXD0, TXD1, RXCLK, RXD0, and RXD1 are available on J11. This header is set up in such a way that adding jumpers on the pins will connect the TX to RX channels for external loopback and evaluation. Additionally, there are two GND signals on the connector that can be used for a wrapped-pair connection to an external board with FSI. The GPIOs connected to this header are only routed to the J11 FSI connector on this board, they are not routed to the boosterpack headers.

The LAUNCHXL-F280039C does not include any on-board isolation devices for the FSI signals. If interested in evaluating the FSI peripheral with isolation devices, or differential drivers/receivers, please see the TMDSFSIADAPEVM plug on board.

### 3.1.6 CAN

The F28003x LaunchPad includes a connector (J14) for a CAN network. GPIO4 and GPIO5 are routed from the F280039CPNS to J14 through the on-board CAN Transceiver. Both standard CAN and CAN-FD Mux options exist on these F28003x device pins. Switch S4 is used to route GPIO4 and GPIO5 to either the CAN transceiver and connector or the boosterpack headers. For more details, see Section 3.3.4.

### 3.1.7 CLB

The configurable logic block (CLB) is a collection of blocks that can be interconnected using software to implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance existing peripherals through a set of interconnections, which provide a high level of connectivity to existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be connected to other internal peripheral signals of the device or external GPIO pins. In this way, the CLB can be configured to perform small logical functions to augment device peripheral inputs and outputs. Through the CLB, functions that would otherwise be accomplished using external logic devices, such as FPGAs or CPLDs, can now be implemented inside the C2000 MCU.

For more information on the CLB see the C2000™ Configurable Logic Block (CLB) training series.

### 3.1.8 Boot Modes

The F280039C boot ROM contains bootloading software that executes every time the device is powered on or reset. Two pins, GPIO24 and GPIO32, are wired to the Boot Select switch (S3). By default, both pins are set HIGH (1) so the device will boot from Flash. For more information on the F28003x boot modes, see the TMS320F28003x Real-Time Microcontrollers Data Sheet.

#### Table 3-3. Boot Select Switch Table - S3

<table>
<thead>
<tr>
<th>Boot Mode</th>
<th>GPIO24 (LEFT)</th>
<th>GPIO32 (RIGHT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot from Parallel GPIO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boot from SCI / Wait boot</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Boot from CAN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Boot from Flash (default)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
3.1.9 BoosterPack Sites
The F28003x LaunchPad features two fully independent BoosterPack XL connectors. Both BoosterPack sites 1 and 2 are compliant with the BoosterPack standard. To expand the functions available to the user on this LaunchPad, some signals are also routed to alternate locations on the board. These alternate routes can be selected by manipulating the onboard switches or by adding / removing 0 Ω resistors. This is described in Section 3.3.

The GPIO pin numbers as well as the BoosterPack compliant features can be viewed in the LAUNCHXL-F280039C Pinout Map (SPRUJ30). Each GPIO has multiple functions available through the F28003x device’s GPIO mux. Some specific functions have been listed in the Pinout Map; the full GPIO mux table can be found in the TMS320F28003x Real-Time Microcontrollers Data Sheet.

All of the analog signals (denoted ADCIN) of the F28003x MCU are routed to the J1/J3 and J5/J7 BoosterPack headers on the left side of the board. Close to the respective BoosterPack header each ADC input signal has component pads for a series resistor and parallel capacitor to create an RC filter. By default a 0 ohm resistor is populated and the capacitor is left un-populated. Users may wish to populate these components with specific values in order to filter out noise arriving at the device’s ADC input.

3.1.10 Analog Voltage Reference Header
The analog subsystem of the F28003x allows for flexible voltage reference sources. The ADC modules are referenced to the VREFHIx and VREFLOx pin voltages. VREFHIx can either be driven externally or can be generated by an internal bandgap voltage reference. An external voltage can be supplied to header J15 as an external voltage source for VREFHIx. Note that there is no signal conditioning circuitry in place for the voltage reference. For best performance, some additional circuitry may be required.

3.1.11 Other Headers and Jumpers
The LaunchPad has multiple jumpers to select different power sources for the board. This LaunchPad also provides a way to isolate the connected USB from the device, allowing for safe operation and debugging in higher voltage applications.

3.1.11.1 USB Isolation Block
JP1 is provided to enable isolation between the device and the connected USB in higher-voltage applications. The area of isolation is defined by the white outline in the upper-left corner of the LaunchPad. JP1 has two removable shunts to separate the GND and 5 V power of the USB region and the XDS110 and F28003x MCU region of the LaunchPad. By default, both shunts are populated and the power is supplied by the connected USB, meaning that the USB is NOT isolated from the XDS110 and F28003x MCU regions. If power isolation is desired, remove the supplied shunts from JP1. In this configuration, one of the two external power options below are required:

- An external 5 V supply to power the 3.3 V LDO (TPS7A3701), which provides 3.3 V to the XDS110 and F28003x MCU regions of the board.
- An external 3.3 V supply to power the XDS110 and F28003x MCU regions of the board.

Some applications may not require 5 V to be supplied to the MCU region. In an isolated power application with JP1 shunts removed, supplying 5 V to the XDS110 and F28003x MCU regions is optional.

3.1.11.2 BoosterPack Site 2 Power Isolation
JP8 is included to isolate 3.3 V and 5 V from the BoosterPack site 2 headers. This might be required if two BoosterPacks are simultaneously connected to the LaunchPad and both provide power to the LaunchPad. If this is the case, power can be isolated by removing the shunts on JP8 and there will be no contention between the two BoosterPacks.
3.1.11.3 Alternate Power

Additional jumpers are provided outside of the BoosterPack connector for additional external power connections for 3.3 V or 5 V. These can be used to supply an external board or for powering the LaunchPad with an external supply. When using these connection points, ensure that no other power supplies are connected.

- JP4 and JP6 are provided as extra connection points for a 3.3 V supply to be connected to the LaunchPad.
- JP5 and JP7 are provided as extra connection points for a 5 V supply to be connected to the LaunchPad.

3.2 Debug Interface

3.2.1 XDS110 Debug Probe

The F28003x LaunchPad includes an on-board XDS110 Debug Probe. The XDS110 allows for the programming and debugging of the F280039C using Code Composer Studio (CCS), or any other supported tool chains. In the default configuration, the XDS110 is only wired to support 2-pin cJTAG mode. This uses only the TMS and TCK JTAG pins and allows the TDI and TDO pins of the F28003x device to be reallocated for other application needs. TDI and TDO are available on GPIO35 and GPIO37. These pins are not routed to the debug probe by default, but can be connected by populating resistors R44 and R45.

3.2.2 XDS110 Output

The connector J102 is provided to debug an external target with the on-board XDS110 debug probe. This connector allows the LaunchPad to be used as a stand-alone XDS110 debug probe. For mating connector and cable see Samtec FFSD or equivalent.

If the LaunchPad is being used in this manner, ensure that all of the jumpers are removed from J101. This isolates the JTAG signals from going to the F280039C MCU. UART TX and RX signals from the XDS110 device are also included on this connector.

3.2.3 Virtual COM Port

When plugged into a USB host, the XDS110 enumerates as both a debugger and a virtual COM port. J101 allows the user to connect the SCI UART from the F280039C to the debug probe to be passed on to the USB host. By default the F28003x SCIA maps to the virtual COM port of the XDS110 using GPIO28 and GPIO29. Alternately, GPIO15 and GPIO56 can be used for SCIB. This is accomplished by manipulating the on-board switch S2. For the appropriate switch settings, see Section 3.3.2.

3.3 Alternate Routing

3.3.1 Overview

The F280039C MCU is a very versatile device in a mid-size package. To balance compatibility with BoosterPack standards, as well as showcasing the versatility of the F280039C, some complexity was added to the design. Most features aligning with the BoosterPack standard are available by default. The additional functions are configured using switches or static resistors which can be added or removed. This section covers the alternate functions and how to enable them. Note that by enabling certain alternate features, standard BoosterPack functionality may be lost. The switches and resistors are configured such that it is not possible to connect multiple functions to the same header.

3.3.2 UART Routing

This LaunchPad allows for one of two sets of pins to be used for the SCIA UART routed to the virtual COM port of the XDS110. By default, GPIO28 (SCIA_RX) and GPIO29 (SCIA_TX) are routed to the virtual COM port and not available on the BoosterPack connector. Alternately, GPIO15 (SCIB_RX) and GPIO56 (SCIB_TX) can be routed to the virtual COM port. When UART functionality is not needed at the virtual COM port, the GPIOs can be routed to the BoosterPack connectors for BoosterPack standard functions.
The routing destination of these signal pairs are selected using the on-board switch S2, as described below in Table 3-4.

<table>
<thead>
<tr>
<th>SEL1 (Left)</th>
<th>SEL2 (Right)</th>
<th>GPIO28/29</th>
<th>GPIO15/56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>XDS110 COM Port</td>
<td>BP Headers</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>XDS110 COM Port</td>
<td>No Connect</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>BP Headers</td>
<td>BP Headers</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BP Headers</td>
<td>XDS110 COM Port</td>
</tr>
</tbody>
</table>

### 3.3.3 EQEP Routing

The LaunchPad has the ability to connect to two independent linear or rotary encoders through the F28003x on-chip eQEP interfaces: Header J12 is connected to eQEP1 and header J13 is connected to eQEP2. By default, this connection is not active and the GPIOs are routed to the BoosterPack connectors. The 5 V eQEP input signals from the J12 and J13 connectors are stepped down through a TI SN74LVC8T245 Level Translator (U13) to 3.3 V. The signals are then routed through TI SN74LV4053A Triple 2-Channel Analog Multiplexer/ Demultiplexer ICs (U11/U14). Switch S5 controls the select inputs of the ICs to configure the eQEP signal destinations to be either the J12/J13 connectors or BoosterPack headers, as described below in Table 3-5.

<table>
<thead>
<tr>
<th>QEP1 SEL (LEFT)</th>
<th>QEP2 SEL (RIGHT)</th>
<th>QEP1 Signals (GPIO40/41/59)</th>
<th>QEP2 Signals (GPIO14/55/57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (down)</td>
<td>0 (down)</td>
<td>J12</td>
<td>J13</td>
</tr>
<tr>
<td>0 (down)</td>
<td>1 (up)</td>
<td>J12</td>
<td>BP Headers</td>
</tr>
<tr>
<td>1 (up)</td>
<td>0 (down)</td>
<td>BP Headers</td>
<td>J13</td>
</tr>
<tr>
<td>1 (up)</td>
<td>1 (up)</td>
<td>BP Headers</td>
<td>BP Headers</td>
</tr>
</tbody>
</table>

### 3.3.4 CAN Routing

The LaunchPad can be connected to a CAN bus through J14. GPIO4 and GPIO5 are routed to the on-board TI TCAN332DR 3.3V CAN Transceiver, U15. By setting S4 to DOWN (on), GPIO4 and GPIO5 are routed to the transceiver. If S4 is set to UP (off), the GPIOs are routed to the BoosterPack connectors (default case).

### 3.3.5 FSI Routing

One set of GPIOs with available FSI functionality are directly connected to the FSI header, J11. The traces from the device to the FSI header are made short to ensure higher signal integrity, as FSI signals can switch at frequencies up to 120MHz on f28003x devices.

### 3.3.6 X1/X2 Routing

The F280039C crystal oscillator output signal, X2, is multiplexed with GPIO18 and the crystal oscillator input, X1, is multiplexed with GPIO19. By default, the Launchpad uses an on-board crystal oscillator, Y2, as the clock source for the on-chip Phase-Locked Loop (PLL) that requires both X1 and X2 signals of the MCU. To balance the requirement of having cleanly routed oscillator signals and bringing all possible GPIOs to the BoosterPack connectors, both GPIO18/X2 and GPIO19/X1 can be routed to the BoosterPack connectors through 0 Ω resistors. If GPIO18 or GPIO19 are needed at the BoosterPack connectors, the on-chip zero-pin oscillators must be used as the clock source for the on-chip PLL. For more information on the X1/X2 configurations, see the TMS320F28003x Real-Time Microcontrollers Data Sheet.

If GPIO18 functionality is needed at the BoosterPack Connector:
1. Remove R32 to separate GPIO18 from Y2.
2. Populate R36 to connect GPIO18 to the BoosterPack connector

If GPIO19 functionality is needed at the BoosterPack Connector:
1. Remove R33 to separate GPIO19 from Y2.
2. Populate R37 to connect GPIO19 to the BoosterPack connector.
3.3.7 PWM DAC

The LaunchPad provides up to four PWM DAC signals at the BoosterPack headers using GPIO0 (BP pin 40) and GPIO1 (BP pin 39) on site 1 and GPIO12 (BP pin 80) and GPIO13 (BP pin 79) on site 2. The intended purpose of the PWM DAC signals are to utilize PWMs of the F28003x device as digital-to-analog converters (DAC). This method involves low-pass filtering the PWM signal to remove its high-frequency components and ideally leave only the DC component. For more information, see the Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x Digital Signal Control.

By default the RC filter is not populated. Instead a0 ohm resistor is populated and the capacitor is left un-populated.

4 Board Design

The entire LAUNCHXL-F280039C design files are available for download at this link: LAUNCHXL-F280039C design files.

4.1 Schematic

The LaunchPad's schematic can be found at this link: LAUNCHXL-F280039C Schematic.

4.2 PCB Layout

The layout source files for the LAUNCHXL-F280039C are included in the LAUNCHXL-F280039C design files download.
Figure 4-1. Top Signal - Layer 1
Figure 4-3. PWR - Layer 3
4.3 BOM

The BOM for the LAUNCHXL-F280039C is included in the LAUNCHXL-F280039C design files download.
4.4 LAUNCHXL-F280039C Board Dimensions

Figure 4-5 is a dimensional drawing of the F28003x LaunchPad that shows the location of selected features of the board as well as the component locations.

Figure 4-5. F28003x LaunchPad Dimensions and Component Locations
Frequently Asked Questions

1. Can other programming and debug tools (such as an XDS200 debug probe) be used with the F28003x LaunchPad?
   a. The F28003x LaunchPad utilizes an on-board XDS110 debug probe in a 2-pin cJTAG configuration. cJTAG only uses the TMS and TCK pins of the debug probe. TDI and TDO are present on TJ101 and can be connected to a debug probe through jumper wires, if necessary.

2. What versions of Code Composer Studio can be used to develop software for the F28003x LaunchPad?
   a. The on-board XDS110 debug probe is compatible with Code Composer Studio development environment version 6.1.0 and later.

3. Why can't I connect to the LaunchPad in Code Composer Studio?
   a. Are shunts present on J101 for TCK and TMS?
   b. Is the XDS110 and the F280039C MCU powered? Are LED0 and LED1 illuminated? For further details on powering the LaunchPad, see Section 3.1.2.
   i. If JP1 shunts are disconnected, the power provided through the USB is isolated from the rest of the board. Ensure that 3.3 V is supplied to any of the available connectors on the target side of the isolation.
   c. Is the USB-C cable connected to the PCB and is the USB region receiving power? Is LED7 illuminated?
   i. The USB region must be powered with the 5 V from the USB cable. LED7 will illuminate when 5V USB power is connected. The USB isolation chip requires 5 V on the USB side to operate and pass the signals across the isolation barrier.
   d. Ensure that the target configuration is set up to use cJTAG in 2-pin advanced mode. Open the Target Configuration file (.ccxml) in Code Composer Studio. Click on the Advanced tab and select cJTAG (1149.7) 2-pin advanced modes from the drop-down labeled JTAG/SWD/cJTAG Mode. Leave the Target Scan Format as OSCAN2 format. Alternately, a working Target configuration file is included in the launcxl_ex1_F280039C_demo project "TMS320F280039C_LaunchPad.ccxml". You can use this without modifications.

![Figure 5-1. Target Configuration Advanced Options](image-url)
4. Why is the serial connection not working?
   a. Are shunts present on J101 for TXD and RXD?
   b. Are you using the correct COM port?
      i. Right click on My Computer and select Properties. Navigate to the Hardware tab in the dialog box and open the device manager. Scroll to Ports (COM & LPT) and expand this entry. Is XDS110 Class Application/User UART listed? If so, read the COM number to the right of the entry; this is the COM number you should be using.
   c. Are you using the correct baud rate? Most, if not all, of the examples are configured for a baud rate of 115200 when the CPU is running at 120 MHz. If you have changed the PLL settings or developed your own code you may have to recalculate the baud rate for your specific application. For information on how to do this, see the TMS320F28003x C2000 Real-Time Microcontrollers Technical Reference Manual.
   d. Does the UART channel wired to the debug probe match the UART channel configured in software?
      i. The F28003x LaunchPad provides an option for one of two possible UART channels to be routed to the debug probe through J101. Ensure that S2 is configured to the appropriate UART channel for the application software. For details, see Section 3.3.2.

6 References
6.1 Reference Documents

In addition to this document, the following references are available for download at www.ti.com.

- TMS320F280039C C2000 Real-Time Microcontrollers
- Texas Instruments: TMS320F28003x C2000 Real-Time Microcontrollers Datasheet
- Texas Instruments: Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs)
- Texas Instruments: TMS320F28003x C2000 Real-Time Microcontrollers Silicon Errata
- Texas Instruments: LAUNCHXL-F280039C LaunchPad Pinout Map
- C2000Ware for C2000 MCUs
- Application Specific Designs & Evaluation with C2000 Real-Time Microcontrollers
- C2000WARE Quick Start Guide
- Texas Instruments Code Composer Studio
- Texas Instruments LaunchPad Development Environment
6.2 Other TI Components Used in This Design

This LaunchPad uses various other TI components for its functions. A consolidated list of these components with links to their TI product pages is shown below.

- **MSP432E401Y SimpleLink™ 32-bit Arm Cortex-M4F MCU**
- **TCAN332 3.3 V CAN Transceiver**
- **SN74LV4053A Triple 2-Channel Analog Multiplexer/Demultiplexer IC**
- **SN74LVC2G07 Dual Buffer/Driver With Open-Drain Output**
- **TPD4E004 4-Channel ESD Protection Array for High-Speed Data Interfaces**
- **TPD4E05U06 4-Channel ESD Protection Array for USB, HDMI & High Speed Interfaces**
- **TPS3702 High-Accuracy, Fixed-Threshold OV/UV Monitor**
- **TPS7A37 1-A, high-accuracy, ultra-low-dropout voltage regulator with reverse current protection & enable**
- **SN74LVC8T245 8-Bit Dual-Supply Bus Transceiver with Configurable Voltage-Level Shifting and Three-State Outputs**
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated