{'z‘ TeEXAS
INSTRUMENTS

MSP50C30

Mixed-Signal Processor

User’s Guide

2000 Mixed-Signal Products
SPSU012A

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI's publication of information regarding any third party’s products or services does
not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This manual describes the MSP50C30 speech synthesizing device. The ob-
ject of this user’s guide is to provide the information needed to implement a
speech synthesizer design using a MSP50C30 device.

How to Use This Manual
This document contains the following chapters:

Chapter 1 Introduction to the MSP50C30
This chapter describes the MSP50C30 features, D/A options, pin assign-
ments and descriptions, and gives a brief introduction to linear predictive
coding.

Chapter 2 MSP50C30 Device Architecture
This chapter describes the architecture of the MSP50C30 with a separate
sections for speech synthesis, interrupts, power control, initialization, and
clocks.

Chapter 3 MSP50C30 Assembler
This chapter contains a detailed description of the MSP50C30 assembler.

Chapter 4 MSP50x3x Instruction Set
This chapter provides the instruction set for the MSP50C30.

Chapter 5 Applications
This chapter describes various hints and useful advice for designing ap-
plications for the MSP50C30.

Read This First iii

How to Use This Manual

Chapter 6

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix |

Customer Information

This chapter describes customer information including development
cycles structure, speech development/production sequence, mechanical
information, and ordering information.

Script Preparation and Speech Development Tools
This appendix describes script preparation and development tools for the
MSP50C30.

MSP50C3x Versus TSP50C1x
This appendix contains information about switching from a TSP50C1x
family device to a MSP50C3x family device.

Quick Guide to Programming the MSP50C3x
This appendix contains information about programming the MSP50C3x.

Using the PSA and SSA Routines
This appendix contains the code for using of PSA and SSA routines when
writing code for the MSP50C30.

Using the PSA and SSA With the TSEGA, LBR, CALL, and BRA
Instructions

This appendix contains code that demonstrates the use of the PSA and
SSA routines with TSEGA, LBR, CALL, and BRA instructions.

Pseudo-CALL Instruction

This appendix contains the code for one way of accessing a subroutine
from different locations in the PSA address space. It also demonstrates
a pseudo—CALL instruction operating in the SSA region.

Calling Divide from PSA
This appendix contains the code for how to call one routine (divide) from
different parts of the PSA space and demonstrates pseudo-CALL in SSA
region.

The CSM30003 Catalog Device
This appendix contains information on the CSM30003 catalog device.

MSP50C3x Family Data Sheet

This appendix contains the data sheet for the MSP50C3x family of de-
vices. This data sheet lists the absolute maximum ratings, recommended
operation conditions, and the electrical characteristics for the MSP50C3x
devices.

Notational Conventions

Notational Conventions

This document uses the following conventions.

U

Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s.

Here is a sample program listing:

0349 0059 6B SPEAK2 LUAA —Get word
0350 005A 60 ANEC StopWord —End phase?
005B FF

Syntax descriptions use the following notational conventions in this guide:

B A reserved keyword (an instruction, command, or directive) is shown
in bold capital letters and must be entered as shown.

B An optional field is indicated by brackets and italics and describes the
type of information required:
[label]

B User-supplied contents are indicated by angle brackets and italics
and describe the type of information that must be entered:

<num>
B A required blank is indicated by a caret (*).

The following syntax example demonstrates the notational conventions
used in this guide.

[<label>]"ABAAC ~...[<comment>]

A lower case h at the end of a numeric value indicates that the value is hex-
adecimal (e.g., 01FAh, 032Bh, and OFFh).

All addresses in this manual are in hexadecimal format unless otherwise
noted. All other are numbers are in decimal format unless otherwise noted.

Abbreviations:

'04: MSP50C04

'06: MSP50C06

'10: MSP50C10

'11: MSP50C11

'12: MSP50C12

'13: MSP50C13

'14: MSP50C14

'19: MSP50C19

LSB, MSB: Least significant and most significant bits
LSbyte, MSbyte: Least significant and most significant bytes

Read This First Y,

Information About Cautions

(1 Port A refers to pins PAO — PA7 operating together.

Port B refers to pins PBO and PB1 operating together.

[

[Individual bits of a register are indicated with the register abbreviation fol-
lowed by a decimal point and the bit number (e.qg., bit 5 of the A register
is A.5 or bit 2 of the mode register is MR.2).

(1 *X is the contents of the location pointed to by the address stored in
X register.

(1 A indicates the old contents of the A register

Information About Cautions

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Trademarks
IBM, PC, PC/XT, PC/AT are trademarks of IBM Corporation.

vi

Contents

Introduction to The MSP50C30 it e 1-1
1.1 MSP50C30 DEVICE . . ottt ettt e e e e e e e e 1-2
1.2 APPLICALIONS . ..ot 1-2
1.3 DESCHIPON ottt 1-3
14 FRAMUIES ..t 1-4
15 DIA OPLONS . .ot 1-4
1.6 Terminal Assignments and Signal Descriptions, 1-5
1.7 MSP50C30 Mask Optionsttt e e e 1-10
1.7.1 Clock Select Optiont e e e 1-10
1.7.2 DAC OPliON « ottt e 1-10
MSP50C30 Device ArchiteCture 2-1
2.1 MSP50C30 ArChiteCtUre ot e 2-2
2.1.1 Read-Only Memory (ROM) e 2-4
2.1.2 Program COUNTENt e e e 2-5
2.1.3 MSP50C30 Random Access Memory (RAM) 2-6
2.1.4 MSP50C30 Memory-Mapped Registersc.ciiiiiiiiiinaan.. 2-8
2.1.5 Speech Address Register (SAR) 2-9
2.1.6 Parallel-to-Serial Register i 2-9
2.1.7 Input/ Output POrtS 2-10
2.1.8 MOOE REQIStEIS . .t 2-11
2.1.9 Program Segment Address Register (PSA)t 2-15
2.1.10 Speech Segment Address Register (SSA) 2-15
2.1.11 Internal ROM Page Control Register (IRPC)t 2-15
2.2 I EITUPES ..ot 2-16
MSP50C30 ASSEMbDIEr . o 3-1
3.1 MSP50C30 ASSEMDIEr . .o 3-2
3.1.1 TABSIZE DIreCliVE . . . oottt e e 3-2
3.1.2 COPY DIreCtVE . .ottt e e e 3-2
3.1.3 Arithmetic EXPressions 3-2
3.1.4 Placing Binary Data Above #FFFF 3-2
3.1.5 EXTRNL DIreCtiVE . .. e e e e 3-2
3.1.6 Support for Code SEgmMENtSttt e 3-2
MSP50X3X INStrUCLION Set . .. oo e 4-1
4.1 InStruction FOrMAL oo e e 4-2
4.2 MSP50C30 Assembly INStructions i e 4-3

Vii

Running Title—Attribute Reference

viii

APPlICAtIONS .o 5-1
5.1 Using an External ROM With the MSP50C30ot 5-2
5.1.1 Using the PSAto Access an External ROM 5-2
5.1.2 Using the SSAto Access an External ROM 5-4
5.1.3 Using the IRPC to Access an External ROM 5-6
Customer INformation 6-1
6.1 Development CyCleo e e 6-2
6.2 Summary of Speech Development/Production Sequence 6-3
6.3 Mechanical Infformation 6-4
6.4 Ordering INfOrmation 6-6
6.5 New Product Release FOrm e 6-7
Script Preparation and Speech Development Tools A-1
A.1l MSP50C30 Speech Development TOOISt A-2
MSP50C3X Versus TSPSOCLX ...ttt e e e e B-1
B.1 Summary of Changes From TSP50CIx Family oo, B-2
B.2 Upgrading a TSP50C1x Program to a MSP50C3x Program B-3
B.2.1 Normal Operationt B-3
B.2.2 LPC . B-5
B.2.3 PCOM B-6
Quick Guide to Programming the MSP50C3x ccciiiiiinininnenn.....C-1
C.1 A Quick Guide to Programming the MSP50C30ciiiiiii e C-2
C.1.1 General Information C-2
C.1.2 Usingthe PSA . C-2
C.1.3 Usingthe SSA . C-3
Using the PSA and SSA ROULINES i e e e D-1
D.1 Usingthe PSA and SSA ROULINES it D-2
Using PSA and SSA With the TSEGA, LBR, CALL and BRA Instructions E-1
E.1 Using the PSA and SSA With the TSEGA, LBR, CALL, and BRA Instructions E-2
Pseudo-CALL INStrUCHiON ... e e e e F-1
F.1 Pseudo-CALL INSITUCHIONt e e e F-2
Calling Divide from P S A . o e e G-1
G.1 Calling Divide from PSA G-2
The CSM30003 Catalog DeVICE . ..ottt e e e e H-1
H.1 The CSM30003 Catalog DevVvICe e H-2
H.2 CSM30003 Functionality e H-3
MSP50C3x Family Data Sheet e e -1
1.1 MSP50C3x Family Data Sheet i e [-2

PN e
SN O SN

> >
N P

Figures

MSP50C30 Functional Block Diagram 1-3
MSPS50C30 PINOUL . ..ottt e et e e e e e e e e e e e 1-6
MSP50C30 System Block Diagramt 2-3
MSP50C30 RAM Map .ottt e e e e e e e e e e 2-7
Speech Development CyCle e e e e 6-2
WIN S DS e e A-2
EMUSOC30 ..ttt e et et A-3

Contents [

Tables

1-1 MSP50x3x Device Family 1-2
1-2 MSP50C30 D/A OPtiONS . oot ittt et e e e e e e e e e 1-4
1-3 MSP50C30 100-Pin Package Terminal Functions, 1-5
1-4 Pad Locations on the MSP50C30 Die FOrmt i 1-7
2-1 Reserved Internal ROM LOCations e 2-4
2-2 Memory-Mapped RegiSters 2-8
2-3 /O REGISIEIS . ettt e 2-10
2-4 /O Terminal FUNCIONS e e e e 2-11
2-5 Mode ReQISIEr L ..o 2-13
2-6 MOde REQISIEr 2 . . 2-14
4-1 MSP50C30 INStruCtion Set 4-3
4-2 MSP50C30 Instruction Table 4-6
B-1 Interrupt Vectors for the TSP50C1x and the MSP50C3Xo v B-3
B-2 I/0 Ports for the TSP50C1x and the MSP50C3Xt B-4

Notes and Cautions

External ROM Adresso e e e e e 2-4
COrE AN ottt 2-5
Accessing RAM Above FFRh o 2-6
Refer to MSP50X3X USEr'S GUIAE e e 2-9
Changing Active Page Before a GET i 2-9
Transfers From /0O Port RegiSters oo e 2-10
/O Terminal AddreSSinNgottt e e e e e e e 2-10
Unused I/O Terminals e e e e e e 2-11
Be Careful Using the ORCM on an Unvoiced Bit 2-12
Internal Vectors in Different SEgmMents 5-4
Using Prototype Devices in Production SysStemsttt et 6-3
Required and Recommended EqQUIpMENt i e A-2
TP SO LD i B-5
LBR Instruction and Branching ACross PSA SEgMENtSttt D-7
Returning From One PSA Segmenttothe Other i, D-7
CSMB0003 POrt D3 . .ottt e e H-3
CSM30003 Branches to External ROM or EPROM e H-3

Contents Xi

Xii

Chapter 1

Introduction to The MSP50C30

The MSP50C30 is based off of the MSP50x3x family with some significant
differences. The major difference is that the MSP50C30 is able to utilize an
external ROM (up to 8 MB) for program and data storage.

Topic Page
1.1 MSP50C30 DEVICE . .ottt ettt 1-2
1.2 Applications 1-2
1.3 DESCHPLON .ttt ettt e e e 1-3
1.4 FEaAtUIES ..o 1-4
1.5 DIA OPONS ottt e 1-4
1.6 Terminal Assignments and Signal Descriptions ~ 1-5
1.7 MSP50C30 Mask OptionNsiii e 1-10

1-1

MSP50C30 Device

1.1 MSP50C30 Device

The MSP50C30 device is part of the MSP50x3x family of speech synthesizer
devices with some added features and capabilities.

Table 1-1. MSP50x3x Device Family

Device Amount of ROM/PROM Features
MSP50C30 4K bytes mask ROM, upto 8M 28 1/O lines, 23 address lines, 8 data lines from external
bytes external ROM ROM
MSP50C32 16K bytes mask ROM 9/10 I/O lines
MSP50C33 32K bytes mask ROM 9/10 1/O lines
MSP50C34 64K bytes mask ROM 9/10 I/O lines in package, 24 1/O lines in die form
MSP50P34 64K bytes PROM 9/10 1/0O lines
MSP50C37 16K bytes mask ROM 18 I/O lines, A/D converter/analog amplifier
MSP50P37 16K bytes PROM 18 1/0 lines, A/D converter/analog amplifier

1.2 Applications

The MSP50C30, like the rest of the MSP50x3x family, is flexible and
programmable, making it suitable for a wide variety of applications. Its even
lower system cost opens up new applications for solid-state speech. These

include:

Learning aids
Toys
Games

Talking books

[N Y Y Y

Navigation systems
Fitness equipment
Voice mailboxes

Equipment for the handicapped

1.3 Description

Decription

The MSP50C30 can be divided into several functional blocks (see Figure 1-1).
The ALU and RAM are shared by the two speech synthesizers and the micro-
computer.

The MSP50C30 implements an LPC-12 speech-synthesis algorithm using two
12-pole lattice filters. The internal microprocessor fetches speech data from
the internal or external ROM, decodes the speech data, and sends the de-
coded data to the synthesizer. The microprocessor also interpolates
(smoothes) the speech data between fetches. The microprocessor can calcu-
late a PCM waveform which can be added to the output of one of the two lattice
filters to create composite PCM+LPC waveforms.

The general-purpose microprocessor in the MSP50C30 is also capable of a
variety of logical, arithmetic, and control functions and can be used for the non-
synthesis tasks of the application as well.

The MSP50C30 incorporating a built-in oscillator and an external ROM ad-
dress generator, has the capability to directly drive a 32-Q speaker.

Figure 1-1. MSP50C30 Functional Block Diagram

Port A
Port B
Port C
Port D

Microcomputer

AAAA

YYVY

<+» ALU <+» Dual Speech
o Synthesizers
<+» RAM <+»
Microprocessor DAC-
DAC DAC+
Timing
ROM > . b
l Oscillator I

Address
Generator

A
\ 4
A
\ 4

A

A 4

External
ROM

Introduction to the MSP50C30 1-3

Features

1.4 Features

1.5 D/A Options

The MSP50C30 contains all of the same key features of the MSP50x3x family
plus a few of its own.

[0 External ROM interface (up to 8M bytes)
[0 32 12-hit words and 992 bytes of RAM (total 1K bytes RAM)
[281/0 Terminals

The MSP50C30 device offers two D/A (digital-to-analog) output options to
match different applications just as the MSP50x3x family does. As shown in
Table 1-2, Option 1 can directly drive a 32-Q speaker.

Option 1 is the two-pin push pull option and option 2 is the single-pin double-
ended option. Please refer to the MSP50x3x manual for more information on
the D/A Options for the MSP50C30.

Table 1-2. MSP50C30 D/A Options

1-4

D/A Options Available Speaker Drive
Option 1 32-Q direct drive
Option 2 Drives an operational amplifier

Terminal Assignments and Signal Descriptions

1.6 Terminal Assignments and Signal Descriptions

The MSP50C30 is currently available in a 100-pin quad flatpack and in die
form. Table 1-3 provides terminal function descriptions. Figure 1-2 shows the
pinout of the MSP50C30 in the PJM package. Table 1-4 gives the pad loca-

tions on the MSP50C30 in die form.

Table 1-3. MSP50C30 100-Pin Package Terminal Functions

Terminal Terminal
Name Number /O Signal Description
DAC+ 67 O D/A output. When D/A Option 1 is selected, DAC+ pulses high for posi-
tive output values. It remains low when negative values are output.
DAC- 68 O D/A output. When D/A Options 1 is selected, DAC— pulses high for neg-
ative output values. It remains low when positive values are output.
When D/A Option 2 is selected, this terminal is driven low.
ID7 — IDO 14-21 I Data input
INIT 22 I Initialize input. When INIT goes low, the clock stops, the MSP50C30
goes into low-power mode, the program _counter is set to 0, and the
contents of the RAM are retained. An INIT pulse of 1 us is sufficient to
reset the processor.
OSC IN 49 I Clock input. When not in use, OSC IN should be tied to Vgg.
OSC OUT 57 - Clock return. When the internal clock option is selected, This terminal
is the B1 I/O terminal.
OAO0-OA22 74,83-98, 7-12 (@] 23-bit output address
PAO-PA7 24, 32-37, 40 /0 8-hit bidirectional I/O port
PBO-PB7 41-48 /0 2-bit bidirectional 1/0 port. When the external clock option is selected,
B1 is not available, since terminal 7 is used for the OSC OUT function.
PCO-PC7 58-65 I/O 8-bit bidirectional I/0 port
PDO-PD3 70-73 I/O 4-bit bidirectional I/0 port
Vpbb 23, 69 — 5-V supply voltage
Vss 13, 66 — Ground

Introduction to the MSP50C30 1-5

Terminal Assignments and Signal Descriptions

Figure 1-2. MSP50C30 Pinout

PJM PACKAGE
(TOP VIEW)
983899 C w0t ma o
DOULLLCLCLCILCLCLILILCIILIILCICCOO
ZZ000000000O0O0O0O0O0O0O0OZZ
OO0O0000000000000000mn
/) OO ON~NOWLILTNNAO D OMNOLS NN o
SOCD@OCD@OOCDOOOOOOOOOOOOOOOWOO
NC O 1 80 |J NC
NC [2 79 FJ NC
NC] 3 78 J NC
NC] 4 77 & NC
NC O 5 76 |1 NC
NC [6 75 & NC
OAl17 O 7 74 [J OAO
OA18 [] 8 73 & PD3
OA19]9 72 2 PD2
0A20 [10 71 & PD1
OA21] 11 70 & PDO
OA22 [} 12 69 [J Vbp
Vgg [} 13 68 |1 DAC—
ID7] 14 67 | DAC+
ID6] 15 66 |1 Vss
ID5 [16 65 [J PC7
ID4 O 17 64 |1 PC6
ID3 [18 63 |1 PC5
ID2] 19 62 [1 PC4
ID1] 20 61 [J PC3
IDO O 21 60 2 PC2
INIT H 22 59 [0 PC1
Vpp O 23 58 |1 PCO

PAO [24 57 J OSC ouT
NC O 25 56 |1 NC
NC [26 55 [J NC
NC [27 54 [J NC
NC] 28 53 [NC
NC] 29 52 |1 NC
NC [30 51 |1 NC
HeRIBREBRIIFIITILESTRSR
Do oooogoooydg
QHNOOQ‘LO&OU()NOHNM#LOGDI\ZQ
Z L s s zzER R RREER 2
%)
O

1-6

Terminal Assignments and Signal Descriptions

Table 1-4. Pad Locations on the MSP50C30 Die Form

Lower Left 1

Upper Right T

Pad X \% X Y
Pad Name Pinout ¥ (microns) (microns) (microns) (microns) Description

OA 18 1 123.00 4799.00 273.00 4949.00 Output Address, terminal 18
OA_19 2 120.75 4516.75 270.75 4666.75 Output Address, terminal 19
OA 20 3 120.75 4233.00 270.75 4383.00 Output Address, terminal 20
OA 21 4 120.75 3950.75 270.75 4100.75 Output Address, terminal 21
OA 22 5 120.75 3667.00 270.75 3817.00 Output Address, terminal 22

Vgs 6 49.00 3384.50 199.00 3534.50 Ground

ID_7 7 120.75 3105.00 270.75 3255.00 Input Data, terminal 7

ID_6 8 120.75 2822.00 270.75 2972.00 Input Data, terminal 6

ID_5 9 120.75 2539.00 270.75 2689.00 Input Data, terminal 5

ID_4 10 120.75 2256.00 270.75 2406.00 Input Data, terminal 4

ID_3 11 120.75 1973.00 270.75 2123.00 Input Data, terminal 3

ID_2 12 120.75 1690.00 270.75 1840.00 Input Data, terminal 2

ID_1 13 120.75 1407.00 270.75 1557.00 Input Data, terminal 1

ID_0 14 120.75 1124.00 270.75 1274.00 Input Data, terminal O

INIT 15 148.75 837.25 298.75 987.25 Initialization

Vpp 16 185.25 554.25 335.25 704.25 5-V Supply Voltage

PAO 17 188.25 120.75 338.25 270.75 A Port I/O, terminal 0

PA1 18 471.25 120.75 621.25 270.75 A Port I/O, terminal 1

PA2 19 754.25 120.75 904.25 270.75 A Port /O, terminal 2

PA3 20 1037.25 120.75 1187.25 270.75 A Port /O, terminal 3

PA4 21 1320.25 120.75 1470.25 270.75 A Port I/O, terminal 4

PA5 22 1603.25 120.75 1753.25 270.75 A Port I/O, terminal 5

PA6 23 1886.25 120.75 2036.25 270.75 A Port I/O, terminal 6

PA7 24 2169.25 120.75 2319.25 270.75 A Port I/O, terminal 7

PBO 25 2452.25 120.75 2602.25 270.75 B Port I/O, terminal O

PB1 26 2735.25 120.75 2885.25 270.75 B Port 1/O, terminal 1

PB2 27 3018.25 120.75 3168.25 270.75 B Port I/O, terminal 2

PB3 28 3301.25 120.75 3451.25 270.75 B Port I/O, terminal 3

PB4 29 3584.25 120.75 3734.25 270.75 B Port I/O, terminal 4

T Coordinates are in respect to a specific corner of the device.

fpPad pinout does not correspond to package pin number.

Introduction to the MSP50C30 1-7

Terminal Assignments and Signal Descriptions

Table 1-4. Pad Locations on the MSP50C30 Die Form (Continued)

Lower Left T

Upper Right T

Pad X Y X Y
Pad Name Pinout¥ (microns) (microns) (microns) (microns) Description
PB5 30 3867.25 120.75 4017.25 270.75 B Port I/O, terminal 5
PB6 31 4150.25 120.75 4300.25 270.75 B Port I/0O, terminal 6
PB7 32 4433.25 120.75 4583.25 270.75 B Port I/O, terminal 7
OSC_IN 33 4716.25 120.75 4866.25 270.75 Clock Input
OSC_OouT 34 5009.25 120.75 5159.25 270.75 Clock Output
PCO 35 5128.00 555.00 5278.00 705.00 C Port I/O, terminal 0
PC1 36 5128.00 838.00 5278.00 988.00 C Port I/O, terminal 1
PC2 37 5128.00 1121.00 5278.00 1271.00 C Port I/O, terminal 2
PC3 38 5128.00 1404.00 5278.00 1554.00 C Port I/O, terminal 3
PC4 39 5128.00 1687.00 5278.00 1837.00 C Port I/O, terminal 4
PC5 40 5128.00 1970.00 5278.00 2120.00 C Port I/O, terminal 5
PC6 41 5128.00 2253.00 5278.00 2403.00 C Portl/O, terminal 6
PC7 42 5128.00 2536.00 5278.00 2686.00 C Port I/O, terminal 7
VSS 43 5199.50 2817.75 5349.50 2967.75 Ground
DA-1 44 5126.25 3101.50 5276.25 3251.50 DJ/A Output
DA-2 45 5126.25 3384.50 5276.25 3534.50 DJ/A Output
Vpbp 46 5063.50 3667.25 5213.50 3817.25 5-V Supply Voltage
PDO a7 5128.00 3951.00 5278.00 4101.00 D Port I/O, terminal 0
PD1 48 5128.00 4234.00 5278.00 4384.00 D Port I/O, terminal 1
PD2 49 5128.00 4517.00 5278.00 4667.00 D Port I/O, terminal 2
PD3 50 5128.00 4800.00 5278.00 4950.00 D Port I/O, terminal 3
OA 0 51 5037.50 5235.00 5187.50 5385.00 Output Address, terminal 0
OA_ 1 52 4753.75 5235.00 4903.75 5385.00 Output Address, terminal 1
OA 2 53 4471.50 5235.00 4621.50 5385.00 Output Address, terminal 2
OA_3 54 4187.75 5235.00 4337.75 5385.00 Output Address, terminal 3
OA 4 55 3905.50 5235.00 4055.50 5385.00 Output Address, terminal 4
OA_5 56 3621.75 5235.00 3771.75 5385.00 Output Address, terminal 5
OA 6 57 3339.50 5235.00 3489.50 5385.00 Output Address, terminal 6
OA_7 58 3055.75 5235.00 3205.75 5385.00 Output Address, terminal 7
OA 8 59 2773.50 5235.00 2923.50 5385.00 Output Address, terminal 8

T Coordinates are in respect to a specific corner of the device.

¥Pad pinout does not correspond to package pin number.

1-8

Table 1-4. Pad Locations on the MSP50C30 Die Form (Continued)

Terminal Assignments and Signal Descriptions

Pad Name

OA 9
OA_10
OA_ 11
OA_12
OA 13
OA_14
OA_15
OA_16
OA_17

Pad
Pinout ¥

60
61
62
63
64
65
66
67
68

Lower Left T Upper Right T

X Y X Y
(microns) (microns) (microns) (microns)
2489.75 5235.00 2639.75 5385.00
2207.50 5235.00 2357.50 5385.00
1923.75 5235.00 2073.75 5385.00
1641.50 5235.00 1791.50 5385.00
1357.75 5235.00 1507.75 5385.00
1075.50 5235.00 1225.50 5385.00
791.75 5235.00 941.75 5385.00
509.50 5235.00 659.50 5385.00
225.75 5235.00 375.75 5385.00

Description

Output Address, terminal 9

Output Address, terminal 10
Output Address, terminal 11
Output Address, terminal 12
Output Address, terminal 13
Output Address, terminal 14
Output Address, terminal 15
Output Address, terminal 16
Output Address, terminal 17

T Coordinates are in respect to a specific corner of the device.

* Pad pinout does not correspond to package pin number.

Introduction to the MSP50C30 1-9

MSP50C30 Mask Options

1.7 MSP50C30 Mask Options

The MSP50C30 can be configured to suit different applications with a variety
of mask options.

1.7.1 Clock Select Option

1.7.2 DAC Option

1-10

The MSP50C30 has two mask-selectable clock options: an internal oscillator
option and an external oscillator option.

The internal oscillator is recommended when the lowest-cost solution is
required and the absolute accuracy of the oscillator is a secondary
consideration. The internal clock is trimmed at probe to standard frequencies
of 15.36 MHz and 19.2 MHz. The frequency of the internal clock can be
switched between these two values in the software by setting and clearing the
SPEED bit in Mode Register 2.

The external oscillator mask option is recommended when an accurate
frequency standard is important. Either a ceramic resonator or quartz crystal
can be connected between the OSC IN and OSC OUT lines with appropriate
capacitors to provide the desired frequency clock. Alternatively, the OSC IN
terminal may be driven with an externally derived clock signal. When the
external oscillator option is used, the SPEED bit in Mode Register 2 has no
function. The SETOFF instruction and INIT terminal disable the operation of
the clock circuit.

Refer to the MSP50x3x Manual for the figures.

The DAC for the MSP50C30 can be selected as either a two-pin push pull or
a one-pin analog. See section 1.5, D/A Options, for more information.

Chapter 2

MSP50C30 Device Architecture

This chapter describes the architecture and function of the MSP50C30 device
including RAM, ROM, registers, flags, and the DAC.

Topic Page
2.1 MSP50C30 ArchiteCture 2-2
2.2 INterruptS —-- - m s m i m e 2-16

2-1

MSP50C30 Architecture

2.1 MSP50C30 Architecture

2-2

As shown in the block diagram of Figure 2—1, the major components of the
MSP50C30 are a speech synthesizer, an 8-bit microprocessor, an internal
ROM (4K), and input/output ports.

The system clock can be generated internally or driven externally. When the
internal clock is used, the clock operates under software control and can be
programmed to one of two frequencies, 19.2 MHz (used when LPC is
operating at 10,000 samples per second) or 15.36 MHz (for 8,000 samples per
second). See section 1.7 for more information about clock selection.

When LPC synthesis is disabled, instructions are fetched by the
microprocessor at 1/16 of the clock frequency. These instructions control the
actions of the MSP50C30. By placing different instruction patterns in the ROM,
the MSP50C30 can be programmed to accomplish a wide variety of tasks. To
generate speech, the processor accesses speech data from either the internal
or external ROM. Once the data has been read, the processor must unpack
and decode the individual speech parameters and store the results in a
dedicated section of the RAM.

The synthesizer shares access to the RAM and addresses the individual
parameter locations as needed when generating speech. Each LPC
synthesizer uses approximately one quarter of the available instruction cycles
when enabled. The instruction execution rate slows to 3/4 when one LPC
synthesizer is enabled and to 1/2 when both LPC synthesizers are enabled.

Figure 2—1. MSP50C30 System Block Diagram

16-Bit Data Bus

MSP50C30 Architecture

D/A Register

| D/A Output

Excitation

R

Synthesizer Stack

MSP50C30 Device Architecture

—<—>-| Integer Flag |—<—>—| Integer Flag’ |
4> ALU | Status Flag [« Status Flag’ |
<> A <+ A Register Stack <
<> B <4+» B Register Stack
<+» X <+—» X Register Stack
<+» Timer
» Prescaler
> Mode (1 and 2)
> P/S Buffer _>_| P/S Register |—
< Random Number
<+» 32 x 12-Bit RAM
<4+ 992 x 8-Bit RAM
<+ 4 x 8-Bit /0 (A Port) —» Port A
<+ 4 x 2-Bit 1/0 (B Port) —» PortB
4 x 8-Bit I/0 (C Port) —» PortC
4 x 2-Bit 1/0 (D Port) —» Port D
<
Data
<—>—| Speech Segment Address |—>— Address
Lines
<—>-| Program Segment Address |—>— Output > External ROM
-« Internal ROM Page Control |—p——| Address (8 MB Max)
-<—>-| Program Counter | >
A
\ 4
| 7-LevelStack | A
| Speech Address |
< 4K-Byte | | ROM - ‘ -
N yte Internal RO —4—| Pitch Counter 1 | —l Pitch Counter 2 |
e 384-Byte Excitation ROM A A
G | PitchRegister1 | [Pitch Register2 |
dl | .
u L

MSP50C30 Architecture

2.1.1 Read-Only Memory (ROM)

The MSP50C30 has 4K bytes of internal ROM and can support up to 8M bytes
of external ROM. Certain locations in the internal ROM, described in
Table 2—-1, are reserved for specific purposes.

Table 2—1. Reserved Internal ROM Locations

Address Function

0000h Execution start location after INIT rising edge

0002h Execution start location after I/O wakeup falling edge
0010h — 001Fh Interrupt start locations (see Section 2.2, Interrupts)
OFDBh — OFFFh Texas Instruments test code

1000h — 1200h Excitation Code

In order to use the first 4K bytes of ROM space on the external ROM device,
a one must be written to bit zero of the memory mapped register at FEEh
(IRPC). When this is done, the address space between 000000h and 000FFFh
is devoted to the lower 4K bytes of the external ROM. When clearing bit zero
(default) of the IRPC, the address space between 000000h and O00FFFh is
devoted to the internal ROM. The addresses higher than 000FFFh are always
devoted to the external ROM, except in the case of the excitation code. See
Section 2.1.11 for more information on the IRPC.

The ROM (both internal and external) can be accessed in the following four
ways:

[The program counter addresses processor instructions (see MSP50x3x
manual for instruction definitions).

[The GET instruction transfers 1 to 8 bits from the ROM to the A register.
The GET counter is initialized by the LUAPS instruction. The SAR (speech
address register), PSA (program segment address), and SSA (speech
segment address) point to the location in ROM to be used.

[The LUAA instruction transfers a byte from the ROM (location dependent
on the PSA, SSA, and IRPC) into the A register. The value in the A register
when LUAA is executed points to the ROM address to be used.

[The LUAB instruction transfers a byte from the ROM (location dependent
on the PSA, SSA, and IRPC) into the B register. The value in the A register
when LUAB is executed points to the ROM address to be used.

Note: External ROM Address

The excitation ROM will be contained within the internal ROM starting at
location 1000h.

2-4

MSP50C30 Architecture

2.1.2 Program Counter

The MSP50C30 has a 16-bit program counter that points to the next instruction
to be executed. After the instruction is executed, the program counter is nor-
mally incremented to point to the next instruction.

The MSP50C30 also has a 23-bit composite program counter to access the
entire ROM (internal and external). This composite address is created by com-
bining the ROM address provided by the core with one of the two memory
mapped registers as follows:

if (CA < 8000h)
OA=CA+ (PSA<<12)
else
OA = (CA & 7FFFh) + (SSA << 15)

where CA is the Core Address, PSA is the Program Segment Address, SSA
is the Speech Segment Address, and OA is the Output Address.

Note: Core Address

The core address (CA) is the offset into the ROM space, which could be the
program counter, the contents of the pitch period counter, the contents of the
speech address register, the results of a lookup instruction, or the excitation
ROM offset.

As a result of the above calculation, a segmented address is created using the
PSA (ideally used for the program space) with overlapping 32K byte segments
with an offset of 4K bytes as follows:

Segment 0: OK < address < 32K
Segment 1: 4K < address < 36K
Segment 2: 8K < address < 40K
Segment 3: 12K < address < 44K
etc.

Uoooo

The segmented address using the SSA (ideally used for the speech data
space) with nonoverlapping 32K byte segments are as follows:

(1 Segment 0: OK < address < 32K
(1 Segment 1: 32K < address < 64K
[etc.

See Sections 2.1.9 and 2.1.10 for more information on the program segment
address (PSA) and the speech segment address (SSA).

When an interrupt occurs, the program counter is loaded with the interrupt vec-
tor address for the current page where execution resumes. See Section 2.2,

MSP50C30 Device Architecture 2-5

MSP50C30 Architecture

Interrupts, for more information. The following instructions modify the program
counter.

BR Branch

BRA Branch to address in A register

SBR Short branch

RETN Return from subroutine

RETI Return from interrupt

CALL Subroutine call

BR Long branch across segment boundaries (new opcode)

Uooouood

2.1.3 MSP50C30 Random Access Memory (RAM)

2-6

The MSP50C30 has 1024 locations of general purpose RAM (Figure 2-2).
The first 16 RAM locations, which are 12 bits wide, are used by the first synthe-
sizer when it is enabled. The next 16 RAM locations, which are also 12 bits
wide, are used by the second synthesizer when it is enabled. The blocks of
RAM associated with a synthesizer is released to general use when the syn-
thesizer is not enabled. The remaining 992 RAM locations are 8 bits wide.
When not synthesizing, the entire RAM can be used for algorithm data storage.
The I/O control registers are mapped into the RAM address space from OFOh
to OFFh when the I/O MAP bit in mode register 2 is low. When the /O MAP bit
is high, RAM is mapped into OFOh to OFFh. For more information, see sub-
section 2.1.7, Input/Output Ports. The upper 20 RAM locations (FECh — FFFh)
are dedicated to memory mapped registers.

Note: Accessing RAM Above FFh

RAM locations 100h — 3FFh can only be accessed indirectly. In other words,
TAMD, TMAD, and TMXD may not be used to access these RAM locations.

Figure 2-2. MSP50C30 RAM Map

1110 9 8 7 6 5 4 3 2 1 0 Address

001h — 00Fh

011h — 01Eh

020h — OEFh

OFOh
OF1h
OF2h
OF3h

OF4h
OF5h

OF6h
OF7h
OF8h

OF9h
OFAh

OFBh
OFCh

OFDh
OFEh

OFFh
100h — 3FFh

FECh
FEDh
FEEh
FEFh

FEOh — FF3h
FF4h — FF7h

FFEh
FFFh

1 Direct and indirect memory address
¥ Indirect memory address only

MSP50C30 Architecture

Channel 1 Synthesizer RAMT
Channel 2 Synthesizer RAMT

General-Purpose RAMT
I/O MAP is Low! 1/O MAP is High

Port D DIR FO RAM
Port D PER F1 RAM

Port D DDR F2 RAM
Port D DOR F3 RAM

Port C DIR F4 RAM

Port C PER F5 RAM
Port C DDR F6 RAM

Port C DOR F7 RAM

Port B DIR F8 RAM
Port B PER F9 RAM
Port B DDR FA RAM
Port B DOR FB RAM
Port A DIR FC RAM
Port A PER FD (RAM)
Port A DDR FE (RAM)

POt ADOR FF (RAM)
General-Purpose RAM*

Program Segment Address Control — PSA
Speech Segment Address Control — SSA

Internal ROM page Control — IRPC
Wake-Up Control Register

Speech Synthesis Registers
Speech Synthesis Registers, Temporary

Mode Register 1
Mode Register 2

MSP50C30 Device Architecture 2-7

MSP50C30 Architecture

2.1.4 MSP50C30 Memory -Mapped Registers

Several internal registers are mapped into the RAM address space. Table 2—2
shows the memory-mapped register allocations for the MSP50C30 device.

Table 2—-2. Memory-Mapped Registers

2-8

Address Function

FOh Port D Input Register (see subsection 2.1.7)

Fih Port D Pullup Enable Register (see subsection 2.1.7)

F2h Port D Data Direction Register (see subsection 2.1.7)

F3h Port D Data Output Register (see subsection 2.1.7)

F4h Port C Input Register (see subsection 2.1.7)

F5h Port C Pullup Enable Register (see subsection 2.1.7)

F6h Port C Data Direction Register (see subsection 2.1.7)

F7h Port C Data Output Register (see subsection 2.1.7)

F8h Port B Input Register (see subsection 2.1.7)

F9h Port B Pullup Enable Register (see subsection 2.1.7)

FAh Port B Data Direction Register (see subsection 2.1.7)

FBh Port B Data Output Register (see subsection 2.1.7)

FCh Port A Input Register (see subsection 2.1.7)

FDh Port A Pullup Enable Register (see subsection 2.1.7)

FEh Port A Data Direction Register (see subsection 2.1.7)

FFh Port A Data Output Register (see subsection 2.1.7)

FECh Program Segment Address Control

FEDh Speech Segment Address Control

FEEh Internal ROM Page Control

FEFh Wake-Up Select Register

FFOh Y1S (16 bit) (synthesizer control registers)
FF1h PITCH2 (16 bits) (synthesizer control register)
FF2h Y1 (16 bits) (synthesizer control register)
FF3h PITCH (16 bits) (synthesizer control register)
FF4h TEMP (16 bits) (synthesizer control register)
FF5h TEMP (16 bits) (synthesizer control register)
FF6h TEMP (16 bits) (synthesizer control register)
FF7h TEMP (16 bits) (synthesizer control register)
FFEh Mode Register 1 (see subsection 2.1.8)

FFFh Mode Register 2 (see subsection 2.1.8)

MSP50C30 Architecture

Note: Refer to MSP50x3x User’s Guide

Please refer to the MSP50x3x Mixed-Signal Processor User’s Guide (Litera-
ture Number SPSUO006B) for information on the following topics:

Arithmetic logic unit (ALU)

A register

X register

B register

Status flag

Integer mode flag

Timer register

Timer prescale register

Pitch register and pitch period counter
Power control and initialization
Clocks

Program counter stack

oo oooo

2.1.5 Speech Address Register (SAR)

The speech address register (SAR) is a 16-bit register that points to data in the
ROM. The LUAPS instruction transfers the value in the A register to the speech
address register and loads the parallel-to-serial register with the ROM value
pointed to by the SAR, SSA, PSA, and IRPC. This value is calculated by
looking at the values in the SAR, SSA, PSA, and IRPC (see note below). The
GET instruction can then bring 1 to 8 bits at a time from the parallel-to-serial
register into the accumulator. Whenever the parallel-to-serial register
becomes empty, it is loaded with the ROM value pointed to by the SAR, and
the SAR is incremented.

Note: Changing Active Page Before a GET

When any of the four registers (SAR, SSA, PSA, and IRPC) are changed,
the next fetch from ROM will be affected.

2.1.6 Parallel-to-Serial Register

The 8-bit parallel-to-serial register is used primarily to unpack speech data. It
can be loaded with 8 bits of data from the ROM pointed to by the speech
address register, SSA, PSA, & IRPC, or the internal RAM pointed to by the X
register. The LUAPS instruction initializes the parallel-to-serial register and
zeroes its bit counter. GET instructions can then transfer 1 to 8 bits from the
parallel-to-serial register to the accumulator. When the parallel-to-serial

MSP50C30 Device Architecture 2-9

MSP50C30 Architecture

register is empty, it is automatically reloaded with the next consecutive
address’s data. When the GET is from the RAM, however, the X register is not
automatically incremented. The RAMROM bit in mode register 1 controls the
source of the parallel-to-serial register.

2.1.7 Input/ Output Ports

In the MSP50C30 device, 28 bidirectional lines (8-bit Port A, 8-bit Port B, 8-bit
Port C, and 4-bit Port D) are available for interfacing with external devices.
Each bit is individually programmable as an input or output under the control
of the respective data-direction register. In addition, each output bit can be
individually programmed using the pullup enable register for one of two output
modes—push pull or open-drain (no pullup). Each input bit can be
programmed by the same register for resistive pullup or high impedance. The
four registers associated with each of the four 1/0 ports are memory mapped.
All 8 bits of ports A, B, and C and 4 bits of port D are available on the outside
of the chip.

Note: Transfers From I/O Port Registers

Transfers from any of the 1/0 port registers to the A register leave the upper
8 bits (bits 15 — 8) undetermined.

I/O Terminal Addressing

It is recommended that the 1/0 terminals be addressed directly using the
TAMD, TMAD, or TAM instructions. Using the ANDCM or ORCM
instructions to set or reset bits may produce glitches on other bits.

Table 2-3. I/0 Registers

2-10

Location
Register Type Port A PortB PortC PortD
Data Input Register (DIR) Read Only FCh F8h F4h FOh

Pullup Enable Register (PER) Read/Write | FDh F9h F5h Filh
Data Direction Register (DDR) Read/Write FEh FAh F6h F2h
Data Output Register (DOR) Read/Write FFh FBh F7h F3h

MSP50C30 Architecture

Table 2—4. I/0 Terminal Functions

I/O Terminal Function DOR DDR PER Terminal State
Input, high impedance X 0 0 High impedance
Input, internal pullup X 0 1 Passive pullup
Output, active pullup 0 1 0 0
Output, active pullup 1 1 0 1
QOutput, open drain 0 1 1 0
Output, open drain 1 1 1 High impedance

A read of the DDR, PER, and DOR registers indicates the last value written to
them. A read of the DIR always indicates the actual signal level on the 1/O
terminal, which is true even when the DDR is set to output. This allows true
bidirectional data flow without having to switch the port between input and
output. To avoid high current conditions, this should only be attempted on
terminals set for open drain with a 1 written to the data register.

Unused I/O Terminals

Any unused I/O terminals which are programmed as inputs should
be tied high or low. Floating 1/O terminals can cause leakage
current.

Leaving a high-impedance I/O terminal unconnected could cause power
consumption to rise while the processor is in run mode. The power
consumption is between VDD and VSS with no increase in current through the
input. This should cause no problem with device functionality.

When the part is in standby more, unconnected high-impedance terminals
have no effect on either power consumption or device functionality.

If the PCM1 and LPC1 mode register bits are both cleared and ENAL1 (level
1 interrupt) is set, a high-to-low transition on B1 causes a level-1 interrupt. (The
B1 pulse must have minimum width of 1 us.) This condition can generate an
interrupt with an external event.

2.1.8 Mode Registers

There are two 8-bit memory mapped mode registers that control the
MSP50C30. The contents of the first mode register are cleared to 0 and the
contents of the second mode register are set to 09h upon power-up reset,
wake-up, or when the INIT pulses low. The contents of the two mode registers
are not saved during a subroutine call or interrupt.

MSP50C30 Device Architecture 2-11

MSP50C30 Architecture

Mode register 1 is memory mapped to RAM address FFEh and mode register
2 is memory mapped to RAM address FFFh. The contents of either mode
register can be copied to the A register using the TMA instruction after setting
the X register to the appropriate value. Individual bits of either mode register
can be tested using the TSTCM instruction or modified using the ANDCM or
ORCM instructions. The TAMODE instruction transfers the bottom bits of the
A register to mode register 1 only.

2.1.8.1 Mode Register 1

2-12

Mode register 1 controls the first synthesizer channel, the interrupt mode, the
slave mode, and the GET mode. The usage of the mode register 1 bits are
given in Table 2-5.

The ENA1 and ENA2 bits in mode register 1 enable or disable the level-1 and
level-2 interrupts respectively. If an interrupt condition occurs while the
corresponding ENA1 or ENA2 bit in mode register 1 is cleared to 0, an interrupt
pending latch is set, and the execution of the interrupt is delayed until the
interrupt is enabled.

The LPC1, PCM1, and UNVOICEL bits control the activity of the first synthesis
channel. See Section on Speech Synthesis in the MSP50X3X manual.

Note: Be Careful Using the ORCM on an Unvoiced Bit

When using the ORCM instruction on the UNVOICEL bit, the LPC bit should
also be set to avoid a glitch in LPC (i.e. ORCM, UNV+LPC1)

The slave bit enables a special I/O mode designed to enable the MSP50C30
to operate as a slave microprocessor under the control of an external master
coprocessor. See the MSP50C3X Manual for more information.

The RAMROM bit selects the data source for GET instructions. When
RAMROM is low, the GET instruction accesses the ROM (internal or external).
When RAMROM is high, the GET instruction accesses the internal RAM
location selected by the X register.

Table 2-5. Mode Register 1

MSP50C30 Architecture

Bit Name Bit Low Bit High
0 ENA1 Disables the level-1 interrupt Enables the level-1 interrupt
1 LPC1 Disables the channel 1 LPC processor — all Enables the channel 1 LPC processor —
instruction cycles used by the microprocessor 25% of instruction cycles dedicated to
service this channel. RAM locations 01h —
OFh are dedicated to the LPC synthesis.
2 PCM1 Disables the PCM mode for channel 1 Enables the PCM mode for channel 1
3 ENA2 Disables the level-2 interrupt Enables level-2 interrupt
4 Reserved Leave this bit at 0 Do not set this bit
5 RAMROM Enables data source for GET instructions to Enables the data source for the GET
be ROM (internal or external) instructions to be internal RAM
6 SLAVE Enables I/O master operation. All available Enables the I/O slave operation. Terminal

1/0 terminals are controlled by the internal
microprocessor

BO becomes hardware chip enable strobe,
and B1 becomes R/W, Port A is controlled

by BO and B1

7 UNVOICE1 Enables the pitch-controlled excitation
sequence when in LPC mode (PCM1 low,

voiced) on channel 1

Enables the random excitation sequence
when in LPC mode (PCML1 low, voiced) on
channel 1

2.1.8.2 Mode Register 2

Mode register 2 controls the second synthesizer channel, the 1/0O map, the
channel selected, and the internal oscillator speed. It also reports the status
of the two pitch period counters. The usage of the Mode register 2 bits are
given in Table 2-6.

The LPC2, PCM2, and UNVOICE?2 bits control the activity of the second
synthesis channel. See section on Speech Synthesis in the MSP50X3X
manual for more information.

The PPC1 and PPC2 bits report the status of the two pitch period counters
used for LPC synthesis. They are both initialized to 1 upon power up, INIT, or
wake-up. PPC1 is set to 1 when the pitch period counted for channel 1
decrements below 200h. PPC2 is set high when the pitch period counter for
channel 2 decrements below 200h. They only get cleared to 0 by an explicit
write to the register using either the TAM instruction or the ANDCM instruction.
Both bits are set to 1 upon INIT and subsequently need to be set in software
before starting LPC synthesis.

The CHANNEL bit selects which channel the TASYN addresses. When
CHANNEL is 0, the TASYN loads the pitch register for channel 1. When
CHANNEL is set to 1, the TASYN instruction loads the pitch register for
channel 2.

MSP50C30 Device Architecture 2-13

MSP50C30 Architecture

The SPEED bit controls the speed of the internal oscillator. When this bit is
cleared to 0, the internal oscillator generates a 15.36-MHz clock and synthesis
operates at 8,000 samples/second. When this bit is set to 1, the internal
oscillator generates a 19.2-MHz clock and synthesis operates at a 10,000
samples/second rate. When the external oscillator mask option is in effect, the
SPEED bit has no effect.

The 1/0_MAP bit controls the RAM address spaces located at FOh through
FFh. When this bit is cleared to O (the default condition), the 1/O ports (ports
A, B, C, and D) are mapped into these locations. When this bit is set to 1, the
I/O ports are hidden and RAM is mapped into these addresses. The RAM and
the ports maintain separate storage locations so that different data can be
maintained in the RAM location and the port latch while using the same

address.

Table 2—-6. Mode Register 2

Bit Name Bit Low Bit High
0 PPC1 Cleared low using software Set high when PPC decrements below
200h on channel 1 or by program init or
wakeup
1 LPC2 Disables LPC mode Enables LPC mode on channel 2 — 25%
of the instruction cycles are dedicated to
service this channel. RAM locations 11h
— 1Eh are dedicated to LPC synthesis.
2 PCM2 Disables PCM mode Enables PCM mode on channel 2
3 PPC2 Cleared low using software Set high when PPC decrements below
200h on channel 2 or by program init or
wakeup
4 CHANNEL Synthesizer channel 1 selected. The TASYN Synthesizer channel 2 selected. the
instruction addresses first channel. TASYN instruction addresses the
second channel.
5 SPEED Selects internal clock speed of 15.36 MHz Selects internal clock speed of 19.2 MHz
(8,000 samples/second sample rate) (10,000 samples/second sample rate)
6 1/10 MAP I/O ports (ports A, B, C, and D) are mapped into 1/O ports are hidden and RAM is mapped
0xFOh through OxFFh. into 0xFOh through OxFFh.
7 UNVOICE2 Enables the pitch-controlled excitation Enables the random excitation sequence

sequence when in LPC mode (PCM1 low,
voiced) on channel 2

when in LPC mode (PCM1 low, voiced)
on channel 2

2-14

MSP50C30 Architecture

2.1.9 Program Segment Address Register (PSA)

The program segment address register is used to control which page the
program should execute from. If the core address is less than 8000h, then the
value in the PSA register (left-shifted by 12) is added to the core address for
the resulting 23 bit output address. The program space is therefore made up
of overlapping 32K byte segments with an offset of 4K bytes. For example,
segment 0 is from OK to 32K, segment 1 is from 4K to 36K, etc.

When the PSA is changed, the effect of the change will be delayed for 2
instruction cycles. This will allow the following code to work correctly:

CLA

ACAAC #FEC
TAX

TCA NewBlock
TAM

LBR New Address

Please see Chapter 5 for more information on how to use the PSA.

Note:

It is important that the LBR immediately follow the TAM which loads the new
value to the PSA.

2.1.10 Speech Segment Address Register (SSA)

The speech segment address register is used to control which page the
program should get data from. If the core address is greater than 8000h, then
the value in the SSA register (left-shifted by 15) is added to the core address
(ANDed with 7FFFh) for the resulting output address. Therefore, the data
space is made up of non-overlapping 32K byte segments. For example,
segment 0 is from OK to 32K, segment 1 is from 32K to 64K, etc.

The GET, LUAA, LUAPS, LUAB are all affected by what is in the SSA.
When the SSA is changed, the effect is immediate. Please see Chapter 5 for
more information on how to use the SSA.

2.1.11 Internal ROM Page Control Register (IRPC)

The internal ROM page control register, located at RAM location FEEh, is used
to designate where the lower 4K of the address range will operate from. Since
the internal ROM can have code in its lower 4K and the external ROM may also
have code in its lower 4K, the MSP50C30 must know which of the two to

MSP50C30 Device Architecture 2-15

Interrupts

2.2

2-16

Interrupts

operate from. Writing a one to the IRPC will allow execution from the lower 4K
of the external ROM. Writing a zero to the IRPC will allow execution from the
lower 4K of the internal ROM. The IRPC is cleared upon INIT. When the IRPC
is changed, the effect is immediate. See Chapter 5 for more information on
how to use the IRPC.

The MSP50C30 has two interrupts: the level-1 interrupt and the level-2
interrupt. Both are enabled and disabled by bits in mode register 1. The level-1
interrupt has higher priority and has more hardware support. When a level-1
interrupt occurs, the program counter is placed on the program counter stack,
and the status flag, integer mode flag, A register, B register, and X register are
all saved in dedicated storage registers. Then the program counter is loaded
with the interrupt start location for the current page of execution (current page
determined by value in PSA or SSA) and execution of the interrupt routine
begins. For example, if an interrupt happens when execution is on page 2, then
the interrupt start location is 2000h + normal interrupt vector address. When
the interrupt routine returns, all of these registers are restored, and the
program counter is popped from the stack.

See the MSP50x3x manual for more information on interrupts.

Chapter 3

MSP50C30 Assembler

This chapter describes the differences between the ASMX (MSP50C3X
Assembler) and the new ASM30 (MSP50C30 Assembler).

Topic Page

3.1 MSP50C30 Assembleriiii 3-2

3-1

MSP50C30 Assembler

3.1 MSP50C30 Assembler

The ASM30 assembler is used specifically for MSP50C30 development. It is
similar to the ASMX assembler used for the 50C3X family with the exceptions
discussed in the following sections.

3.1.1 TABSIZE Directive

The TABSIZE directive used in the ASMX assembler is not supported in this
version of the assembler.

3.1.2 COPY Directive

The filename used with the COPY directive should not contain single quotes.
Example: COPY a.byt

3.1.3 Arithmetic Expressions

Arithmetic expressions should contain no spaces between arguments and
arithmetic operators.

3.1.4 Placing Binary Data Above #FFFF

The ASM30 assembler does allow values larger than #FFFF in an AORG
statement. The following is allowed with ASM30: AORG #20000. (ASMX only
allows up to #FFFF to be used with the AORG.)

3.1.5 EXTRNL Directive

The directive EXTRNL has been added to support internal and external code
within the same source file. When using this directive, the 50C30 assembler
(ASM30) will produce two output binary files, one for the internal code and one
for the external code. The default mode is internal at the start of the source file
and the resulting assembled binary data will be placed into a file with the .BIN
extension. When the (new) directive EXTRNL is encountered, the mode is
switched to external, the .BIN file is closed, the location counter is reset to zero,
and the remaining binary output data is placed into a file with a .EXT extension.
A single symbol table is used for both modes, so branches between internal
and external codes are supported. Symbols must be unique across both
codes.

3.1.6 Support for Code Segments

3-2

Three new opcodes have been added to the assembler to support code
segments. These opcodes work with the PSA segments, not with the SSA
segments.

MSP50C30 Assembler

3.1.6.1 SEGMNT Directive

The SEGMNT directive partitions the code into segments. When the SEGMNT
directive is encountered, an implied AORG takes place at the start of the next
12-bit page. BR, CALL, and SBR commands cannot cross a segment bound-
ary. This directive is not meant to be used to partition data segments, since
data segments start on every 15-bit page and code segments start on every
12-bit page. The AORG directive may still be used to separate code segments
also.

3.1.6.2 TSEGA Command

The TSEGA command will extract the 8-bit program segment value from the
operand and load it into the A register (see example below). The purpose of
this is to extract the value to load to the PSA and to facilitate the LBR command.

3.1.6.3 LBR Command

The LBR command allows a long branch between code segments. The follow-
ing is an example of an LBR command. The only significant difference be-
tween the BR and LBR commands is that the BR command does not permit
branches across segment boundaries and the LBR does.

PSA equ #FEC ;define program segment address
register

extrnl ;switch mode to generate external code
cla
acaac PSA
tax ;point X register to PSA (#FEC)
tsega abc ;load the 8 bit segment value to A
tam ;store into the PSA
Ibr abc ;branch across pages to location
segmnt ;set beginning of next page

ébc

Refer to the MSP50x3x Manual for more information on the ASMX assembler.

Note:

It is important that the PSA register be changed immediately before the LBR
instruction with no intervening instructions. The effect of the change in the
PSA register is delayed exactly two instruction cycles to permit time to
execute the LBR branch.

MSP50C30 Assembler 3-3

3-4

Chapter 4

MSP50x3x Instruction Set

There are 61 different MSP50C3x instructions (Table 4-1 and Table 4-2).
Each instruction takes either one or two instruction cycles to execute. Each
instruction cycle consists of 16 clock cycles; therefore, a clock speed of
19.2 MHz translates to 1,200,000 instructions per second. When one synthe-
sis channel is enabled for LPC, approximately one out of every four instruction
cycles is taken for synthesis calculations. This causes the instruction cycle rate
for the program to drop to approximately 900,000 cycles per second. When
both synthesis channels are enabled for LPC, approximately two out of every
four instruction cycles are taken for synthesis calculations. The program
instruction cycle rate for this case is approximately 600,000 cycles per second.

Topic Page
4.1 Instruction Format 4-2
4.2 TSP50C30 Assembly Instructions —ccooiiiiiinan.. 4-3

4-1

Instruction Format

4.1

4-2

Instruction Format

The source code instruction format is:
[<label>]*< opcode mnemonic >"[<operand>]" [;<comment>]

The fields are:
[A 10-character optional label field
[A 6-character opcode mnemonic field

[An opcode-dependent operand field
[An optional comment field

Each of the fields is separated by one or more tabs or spaces.

4.2 MSP50C30 Assembly Instructions

MSP50C30 Assembly Instructions

The following section contains descriptions, opcodes, hex opcodes, and sta-
tus flag information for the assembly instructions used to program the
MSP5C30. Table 4-1 lists the assembly instructions in alphabetical order with
operand size in bits, instruction cycles required, status conditions, number of
bytes required, opcode, and a description.

Table 4—1. MSP50C30 Instruction Set

Operand Size (Bits)

Instruction Cycles Required

Status (1 Always Set, C Conditional, N/A Does Not Apply)
Number of Bytes Required
Opcode (Hex)
Mnemonic Description

ABAAC 1 C 1 2C Add B register to A register
ACAAC 12 2 C 2 70 Add constant to A register
AGEC 8 2 © 2 63 A greater than or equal to constant
AMAAC 1 © 1 28 Add memory to A register
ANDCM 8 2 1 2 65 AND constant and memory
ANEC 8 2 C 2 60 A register not equal to constant
AXCA 8 2 1 2 68 A register times constant
AXMA 1 1 1 39 A register times memory
AXTM 1 1 1 38 A register times timer
BR 13 2 1 2 40 Branch if status set
BRA 1 1 1 1F Branch always to address in A register
CALL 12 2 1 2 00 Call if status set
CLA 1 1 1 2F Clear A register
CLB 1 1 1 24 Clear B register
CLX 1 1 1 20 Clear X register
DECMN 1 @ 1 27 Decrement memory
DECXN 1 © 1 22 Decrement X register
EXTSG 1 1 1 3C Extended-sign mode
GET 3 2 C 1 30 Get bits

MSP50x3x Instruction Set

4-3

MSP50C30 Assembly Instructions

Table 4-1. MSP50C30 Instruction Set (Continued)

Operand Size (Bits)
Instruction Cycles Required
Status (1 Always Set, C Conditional, N/A Does Not Apply)
Number of Bytes Required
Opcode (Hex)
Mnemonic Description
IAC 1 C 1 3A Increment A register
IBC 1 C 1 25 Increment B register
INCMC 1 © 1 26 Increment memory
INTGR 1 1 1 3B Set integer mode
IXC 1 Cc 1 21 Increment X register
LUAA 2 1 1 6B Look up A register, result to A register
LUAB 2 1 1 6D Look up A register, result to B register
LUAPS 2 1 1 6C Start parallel-to-serial transfer
ORCM 8 2 1 2 64 OR constant with memory
RETI 1 C 1 3E Return from interrupt
RETN 1 1 1 3D Return from subroutine
SALA 1 C 1 2E Shift A register left
SALA4 1 1 1 1B Shift A register left 4 bits
SARA 1 1 1 15 Shift A register right
SBAAN 1 © 1 2D Subtract B register from A register
SBR 7 1 1 1 80 Short branch if status set
SETOFF 1 N/A 1 3F Turn processor off
SMAAN 1 C 1 29 Subtract memory from A register
TAB 1 1 1 1A Transfer A register to B register
TAM 1 1 1 16 Transfer A register to memory
TAMD 8 2 1 2 6A Transfer A register to memory direct
TAMIX 1 1 1 13 Transfer A register to memory, increment X register
TAMODE 1 1 1 1D Transfer A register to mode register
TAPSC 1 1 1 19 Transfer A register to prescale register
TASYN 1 1 1 1C Transfer A register to synthesizer register

MSP50C30 Assembly Instructions

Table 4-1. MSP50C30 Instruction Set (Continued)

Operand Size (Bits)

Instruction Cycles Required
Status (1 Always Set, C Conditional, N/A Does Not Apply)
Number of Bytes Required
Opcode (Hex)
Mnemonic Description
TATM 1 1 1 1E Transfer A register to timer register
TAX 1 1 1 18 Transfer A register to X register
TBM 1 1 1 2A Transfer B register to memory
TCA 8 2 1 2 6E Transfer constant to A register
TCX 8 2 1 2 62 Transfer constant to X register
TMA 1 1 1 11 Transfer memory to A register
TMAD 8 2 1 2 69 Transfer memory to A register direct
TMAIX 1 1 1 14 Transfer memory to A register, increment X register
TMXD 8 2 1 2 6F Transfer memory direct to X register
TRNDA 1 1 1 2B Transfer random number to A register
TSTCA 8 2 C 2 67 Test constant and A register
TSTCM 8 2 @ 2 66 Test constant and memory
TTMA 1 1 1 17 Transfer timer to A register
TXA 1 1 1 10 Transfer X register to A register
XBA 1 1 1 12 Exchange A register and B register
XBX 1 1 1 23 Exchange B register and X register
XGEC 8 2 C 2 61 X register greater than or equal to constant

MSP50x3x Instruction Set 4-5

MSP50C30 Assembly Instructions

Table 4-2 lists the instructions by opcode.

Table 4-2. MSP50C30 Instruction Table

MSB
LSB 0 1 2 3 4 5 6 7 8-F
0 CALL TXA CLX GET1 BR BR ANEC ACAAC SBR
1 CALL T™MA IXC GET2 BR BR XGEC ACAAC SBR
2 CALL XBA DECXN GET3 BR BR TCX ACAAC SBR
3 CALL TAMIX XBX GET 4 BR BR AGEC ACAAC SBR
4 CALL TMAIX cLB GET5 BR BR ORCM ACAAC SBR
5 CALL SARA IBC GET®6 BR BR ANDCM ACAAC SBR
6 CALL TAM INCMC GET7 BR BR TSTCM ACAAC SBR
7 CALL TTMA DECMN GETS8 BR BR TSTCA ACAAC SBR
8 CALL TAX AMAAC AXTM BR BR AXCA ACAAC SBR
9 CALL TAPSC SMAAN AXMA BR BR TMAD ACAAC SBR
A CALL TAB TBM IAC BR BR TAMD ACAAC SBR
B CALL SALA4 TRNDA INTGR BR BR LUAA ACAAC SBR
C CALL TASYN ABAAC EXTSG BR BR LUAPS ACAAC SBR
D CALL TAMODE SBAAN RETN BR BR LUAB ACAAC SBR
E CALL TATM SALA RETI BR BR TCA ACAAC SBR
F CALL BRA CLA SETOFF BR BR TMXD ACAAC SBR

Please refer to the MSP50x3x User’s Guide (SPSUO006) for a detailed descrip-
tion of each instruction.

4-6

Chapter 5

Applications

This chapter contains information on using an external ROM with the
MSP50C30. Code examples are given throughout this chapter.

Topic Page

5.1 Using an External ROM With the MSP50C30 5-2

5-1

Using an External ROM with the MSP50C30

5.1 Using an External ROM With the MSP50C30

The MSP50C30 contains 3 memory mapped registers, PSA, SSA, and IRPC
that provide easy access to an external ROM. In order to understand these
three registers, we will give a little background behind them. The purpose of
the IRPC register is to provide access to the lower 4K of both the internal ROM
and the external ROM. If this register did not exist, then the bottom 4K of the
external ROM would not be accessible. The PSA register allows for overlap-
ping 4K segments which provide the user with a way to keep certain subrou-
tines called within one segment. This register is optimized for code access, but
it can certainly be used to access both code and data. The SSA register is opti-
mized to access data which is far removed from the current code segment. As
with the PSA, there is no reason this register cannot also be used to access
code as well as data. Together these two registers allow code and data of up
to 64K to be accessed without having to change segments.

5.1.1 Using the PSA to Access an External ROM

5-2

The following is an example of using the PSA, accessing page 2, and execut-
ing from that page.

a cla
acaac #fec
tax
tsega al
tam
lbr al
segmnt ;start of segment 1
segmnt ;start of segment 2
al cla
acaac (table&#FFF) ;must mask off upper 4 bits
luaa :load #34 into A
luab ;load #12 into B
aorg #2410
table byte #12 #34 #56
byte #78,#9A #BC

When the PSA is loaded with a value, that segment becomes current and all
addresses used (below #8000) are offset from that segment start. For exam-
ple, in the above code, the long branch could have been made to 0 instead of
al because the segment was set to 2, all addresses are offset starting at
#2000.

Using an External ROM with the MSP50C30

Caution must be exercised when using LUAA, LUAB, and LUAPS. These
instructions look at the core address and decide whether to use the PSA or the
SSA. When looking up from tables, the address must be taken into account.
If the table is at address #2410 and the PSA is set to 2, then only the lower 12
bits need to be loaded to read from the table because the table is offset #410
from the beginning of segment 2. If the upper 4 bits are not masked off, the
assembler will generate a warning.

The following code shows how to make a CALL to another page:

tca 3 ;currently in segment 0
tamd num
call fm_synth ;call subroutine
tca 4
tamd num
call fm_synth ;call subroutine
cla
fm_synth
cla
acaac #fec ;point to PSA
tax
tsega fm_synthl ;extract segment number from address
tam ;load segment to PSA register
Ibr fm_synthl ;long branch to new address
fm_rtn retn ;return from original CALL
segmnt ;start of segment 1
segmnt ;start of segment 2
. ;include interrupt vectors
if being used
fm_synthl intgr ;beginning of subroutine
tmad num
sala
stop . ;end of subroutine
cla
acaac #fec
tax ;point to PSA
cla
tam ;load original segment
(O in this case)
Ibr fm_rtn ;long branch to return routine

Because the CALL is only 12 bits, the CALL must be made to a location in the
current segment. From there, the PSA set and a long branch are executed to

Applications 5-3

Using an External ROM with the MSP50C30

the target location. The same case is true for the return from the subroutine.
A long branch must be made back to the original segment and then the RETN
should be executed.

Note: Internal Vectors in Different Segments

If interrupts are being used on any other segment than 0, the interrupt vectors
must be placed within the segment. When interrupts happen, the PSA value
is taken into account. See Section 2.2 for more information.

Note:

All interrupts must be disabled while executing the LBR instruction, which
branches across segment boundaries. If this is not done, it is possible for an
interrupt to happen immediately following the change in the PSA register (but
before executing the LBR instruction), resulting in the page change happen-
ing without the proper LBR instruction. The interrupts can be re-enabled on
the other side of the LBR instruction, if required.

5.1.2 Using the SSA to Access an External ROM

The following is an example of how to use the SSA:

aorg #1000
a tca 1 ;use 1 st element in speech table

sala

sala ;shift twice for offset into
speech table

acaac speech ;add table address to offset

tamd temp ;store address temporarily

luab ;dummy luab since value is a byte

iac

luaa ;get segment value from table

tamd segment ;store segment value

cla

acaac #fed ;point to SSA register

tax

tmad segment ;retrieve stored segment value

tam ;store segment into SSA

tmad temp ;retrieve speech table address

iac ;increment to point to speech
address

iac

luab ;get MSB of speech address

iac

luaa ;get LSB of speech address

xba

sala4

salad

Using an External ROM with the MSP50C30

abaac ;combine MSB and LSB
luaps ;load speech address register
get 4
get 4

speéch

data 0,(vocOFFF)|#8000 ;segment O, phrase O
data O, (voclFFF)|#8000 ;segment O, phrase 1
data 1, (voc2FFF)|#8000 ;segment 1, phrase 2
data 1, (voc3FFF)|#8000 ;segment 1, phrase 3
data 2, (voc4FFF)[#8000 ;segment 2, phrase 4
data 2, (voc5FFF)[#8000 ;segment 2, phrase 5
data 3, (voc6FFF)|#8000 ;segment 3, phrase 6
data 3, (voc7FFF)|#8000 ;segment 3, phrase
data 4, (voc8FFF)|#8000 ;segment 4, phrase 8

aorg #3000 ;SSA segment O
vocO copy vocO.byt
vocl copy vocl.byt

aorg #3000 ;SSA segment 1
voc2 copy voc2.byt

aorg #B000 ;still SSA segment 1
voc3 copy voc3.byt

aorg #10000 ;SSA segment 2
voc4d copy voc4d.byt
voch copy voch.byt

aorg #18000 ;SSA segment 3
voc6 copy voc6.byt

aorg #1A000 ;still SSA segment 3
voc7 copy voc7.byt

aorg #20000 ;SSA segment 4
voc8 copy voc8.byt

Because the most significant bit signals to use the SSA, #8000 must be ORed
to every address to make sure that bit is set. The speech address register only
accepts 16 bits, so when the most significant bit is set, the SSA is shifted left
15 bits and added to the speech address register value (minus the top bit). See
Section 2.1.2 for the equations calculating this output address.

If vocO was at vocO0.byt (without adding #8000) and the PSA was set to 2, the
speech address register would contain #3000. Since this address is less than
#8000, the PSA would be shifted left 12 bits and added to the speech address
register value resulting in an output address of #5000, which is incorrect. For
this reason, the #8000 is added to each address to make sure that the SSA
is used. It is not incorrect to use the PSA for speech data, it just takes a little
more careful planning.

Since the speech table is located below #8000, the LUAA, LUAB, and LUAPS
will load from the current segment according to the PSA. In this example, the
speech table address is less than 12 bits, so it is unnecessary to mask the
upper 4 bits.

Applications 5-5

Using an External ROM with the MSP50C30

5.1.3 Using the IRPC to Access an External ROM

5-6

The function of the IRPC is to designate access to the lower 4K of either the
internal ROM or the external ROM. When a 1 is written to this register (#FEE),
any address accessed below 4K will be from the external ROM. When a 0 is
written to this register, an address accessed below 4K will be from the internal
ROM. The following code demonstrates how to access the lower 4K of the ex-
ternal ROM.

a cla ;beginning of internal ROM
clx
br #1000 ;branch to external ROM
br #1000
extrnl ;reset address to 0 for external ROM
start
cla ;start of external ROM
clx
ram_loop
tamix
Xgec max_ram
br ram_exit
br ram_loop
ram_exit
b cla
acaac #fec
tax ;pointto PSA
tsega d ;extract segment value from address
tam ;store segment value in PSA
lbor d ;branch to beginning of segment
loaded
aorg #1000
c cla
acaac #fee
tax ;point to IRPC
tca 1
tam ;set IRPC for lower 4K of external
<more code> ;branch does not have to
;happen immediately
br start
segmnt ;start of segment 2
segmnt ;start of segment 3
d tca 1
tamd temp

In the previous example, if the IRPC had not been set in code segment c, the
branch to start would have branched to address 0 in the internal ROM.

Chapter 6

Customer Information

This chapter includes customer information on development cycle organiza-
tion, development and production sequence, mechanical information and
packaging availability, ordering information, and example ordering forms.

Topic Page
6.1 Development CyClet 6-2
6.2 Summary of Speech Development/Production Sequence 6-3
6.3 Mechanical Information 6-4
6.4 Ordering Information i 6-6
6.5 New Product Release FOrms 6-7

6-1

Development Cycle

6.1 Development Cycle

The MSP50C30 development cycle is more complex than microprocessor de-
velopment, because it adds speech development to the normal microproces-
sor development cycle. (Figure 6-1). The software design cycle is similar to
that for other microprocessors. Speech development is discussed in Appendix
A, Script Preparation and Speech Development Tools.

Figure 6—1. Speech Development Cycle

Speech Specification

Speech Analysis

Speaker Recording Script Software Hardware
Selection Preparation Design Design
Speech Recording Software Prototype
Writing Construction

Speech Editing

Speech Evaluation

Software Debugging

System Evaluation

Summary of Speech Development/Production Sequence

6.2 Summary of Speech Development/Production Sequence

The following is a summary of the speech development /production sequence:

1)

2)

3)

4)

5)

For the speech development group at Tl to accept a custom device pro-
gram, the customer must submit a new product release form (NPRF). This
form describes the custom features of the device (e.g., customer informa-
tion, prototype and production qualities, symbolization). The NPRF is
completed by product engineering and product marketing personnel with-
in TI. A copy of the NPRF can be found in sections 6.5, New Product Re-
lease Form.

Tl generates the prototype photomask and processes, manufactures, and
tests 25 prototype devices for shipment to the customer. Limited quantities
in addition to the 25 prototypes may be purchased for use in customer
evaluation. All prototype devices are shipped against the following dis-
claimer: It is understood that, for expediency purposes, the initial 25 proto-
type devices (and any additional prototype devices purchased) were as-
sembled on a prototype (i.e., not production-qualified) manufacturing line
whose reliability has not been characterized. Therefore, the anticipated in-
herent reliability of these devices cannot be expressly defined.

The customer verifies the operation and quality of these prototypes and
responds with either written customer prototype approval or disapproval.

A nonrecurring mask charge that includes the 25 prototype devices is in-
curred by the customer.

A minimum purchase may be required during the first year of production.

Note: Using Prototype Devices in Production Systems

Texas Instruments recommends that prototype devices not be used in pro-
duction systems because their expected end-use failure rate is undefined

but is predicted to be greater than standard qualified production.

Customer Information 6-3

Mechanical Information

6.3 Mechanical Information

The MSP50C30 is available in a 100-pin quad flatpack and in die form. See
Table 1-3 for pad coordinates for the MSP50C30 die. The following figure
shows the mechanical data for the 100-pin package.

6-4

Mechanical Information

PJIM (R-PQFP-G100) PLASTIC QUAD FLATPACK

ST el
oA AATER AR A RR AR

81 =— 1§5oﬁr
% % 14,20 17,45
g E 12,35TYPF’80 ng
100%\@ ‘EQJL
SRR REGREREREAERERRRRGRGRLLLL
1 30
,|< 18,85 TYP =||

,16 NOM

|

Gage

N
[(e]
o

N
[
o

SAl

— 3,40 MAX

vy

20,20 0
19,80
23,45
22,95

Plane

4040022/B 03/95

NOTES: A. Alllinear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022

Customer Information

Ordering Information

6.4 Ordering Information

Because the MSP50C30 is a custom device, it receives a distinct identification

as follows:
CSM 30 XXX X X
Gate Code Family ROM Code Revision Package or Die
CSM — Custom Member Letter PJM — 100-Pin Quad Flat Pack
Synthesizer Y — Die

With Memory

6-6

New Product Release Form

6.5 New Product Release Form

The new product release form is used to track and document all the steps in-
volved in implementing a new speech code onto one of the parent speech de-
vices. Blank forms are provided in this section (the addresses on these forms
are subject to change). Copy the new product release forms (NPRF) provided
or get one from your Tl field sales office to initiate the implementation process.
The next step is to complete Section 1. As seen on the blank forms, Section
1 allows you to choose the parent device for your particular code, as well as
the options pertinent to the parent device you wish to use. Section 1 also allows
you to choose your own customer part number used for ordering your parts.
If no customer part number is indicated, then TI defaults to the CSM30xxxxx
part number for ordering purposes. Completion of the company name, project
name, and option fields is mandatory. Completion of all other fields in Section
1 is optional. After completion of Section 1, you must submit the NPRF (along
with your speech code) to the speech products group via your local Tl field
sales office.

Once the speech products group receives the speech code and the NPRF, you
have completed the initial steps involved in implementing this code onto pro-
duction devices. Since all parent speech devices are mask programmable, the
speech code must first be converted into a format that the speech products
mask vendor can use to generate this new mask. This format is called a PG
output. Once this PG output is generated, the original speech code is recon-
structed from the PG output file and sent back to you for recheck. This recheck
ensures that the PG output file was generated correctly. Along with the recon-
structed speech code, the NPRF is also returned to you with Section 2 com-
pleted by TI. In this section, Tl assigns your own CSM30xxxx part number and,
in the case of packaged devices, Tl also proposes a symbol format to you. If
you wish to deviate from the suggested symbol format, you must consult Tl for
requested changes.

After you verify the reconstructed speech code and accept the proposed sym-
bol format, you are required to sign section 3 as authorization for Tl to generate
the mask, prototypes, and risk units in accordance with the pertinent purchase
order. You then send or fax the NPRF to the speech products group via the lo-
cal Tl field sales office. Tl should have the prototypes shipped to you approxi-
mately six weeks after receiving the NPRF with section 3 signed. Once you
receive these prototypes, you verify the functionality of the prototypes, sign
section 4, and send the NPRF (with section 4 signed) back to TI. At this point,
you can start ordering production units.

Customer Information 6-7

New Product Release Form

NEW PRODUCT RELEASE FORM FOR MSP50C30

SECTION 1. OPTION SELECTION
This section is to be completed by the customer and sent to Tl along with
the microprocessor code and speech data.

Company: Division:

Project Name: Purchase Order #:
Management Contact: Phone:(__)
Technical Contact : Phone:()
Customer Part Number:

D/A Output (check one):

__ 2 pin push—pull (2D)
____Single pin double ended (1A)
Oscillator (check one):

____Internal (Two ranges selected by software:
1) 15.36 MHz (14.89 MHz — 15.82 MHz)
2) 19.2 MHz (18.62 MHz — 19.77 MHz))

__ External
Package Type (check one):
__ PJM (100 pin QFP)

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER
This section is to be completed by TI.

Tl Part Number: (CSM30xxxY or CSM630xxxPJM)

SECTION 2B. PACKAGE UNIT SYMBOLIZATION
This section is to be completed by the customer.
The first line of the symbolization is fixed. Except EIA#/Logo.
The second and third lines are to be filled in by the customer.

Top Side Symbolization (100pin 'PJM’)
+ + LLLL: LOT TRACE CODE
| 2?2 YMLLLLT | YM: DATE CODE
| <optional 13 char>| T: ASSY SITE
I
+

<optional 11 char>| ???: TI EIANO. or
+ TI LOGO

For 100 PIM’ packages, the customer may choose between Tl EIA No. 980 or the Tl
LOGO on the first line. 2nd line is typically the TI Part Number.

* * * * *kkkkkkkk * * * * *kkkkkkkk * *

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS
This section is to be completed by the customer and sent to Tl after
the following criteria have been met:

1) The customer has verified that the TI computer generated data matches the
original data.

2) The customer of the symbolization format in Section 2B (Applies to packaged
devices only).
original data.

6-8

New Product Release Form

| hereby certify that the Tl generated verification data has been checked and
found to be correct, and | authorize Tl to generate masks, prototypes, and
risk units in accordance with purchase order in section 1 above. In addition,
in the instance that this is a packaged device, | also authorize Tl to use the
symbolization format illustrated in section 2B on all devices with the part
number indicated in section 2A.

By: Title:
Date:
(FAX this form to 214-480-7301. Attn: Code Release Team)

SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION
This section is to be completed by the customer after prototype devices
have been received and tested.

| hereby certify that the prototype devices have been received and tested and
found to be acceptable, and | authorize TI to start normal production in
accordance with purchase order #

By: Title:
Date:

*kkdkk * *kkdokk * Fkkdokk

Return to: Texas Instruments, Inc.
Attn: Code Release Team
P.O. Box 660199, M/S 8718
Dallas, TX 75266—-0199

OR Fax to: (214)480-7301
Attn: Code Release Team

Have Questions?:
CALL: Code Release Team
(214)480-4444

OR E-MAIL: code—rel@msp.sc.ti.com

Customer Information

6-10

Appendix A

Script Preparation and Speech Development

Topic Page
A1 MSP50C30 Speech Development Tools A-2

A-1

MSP50C30 Speech Development Tools

A.1 MSP50C30 Speech Development Tools

The following figures show the various development tools available and list the features of

each.

Figure A-1. WINSDS

WINSDS Features

I N I A N I

4

WINSDS PC (At-Class Computer)

High-speed speech analysis (real time) for LPC and MELP
Graphical and numerical speech editing for LPC and MELP
Microphone and line-level inputs

Headphone and line outputs

Supports TSP50C0x/1x and MSP50C3x devices

Requires an AT—class computer (a 100-MHz 486 is recommended) with
a VGA card and Windows™ 3.1, 3.11, or Windows 95™

Uses TMS32031 Digital Signal Processor

Note: Required and Recommended Equipment

A hard disk drive is required and a tape backup system is strongly recom-
mended for the WINSDS development system.

A-2

Figure A-2. EMU50C30

EMU50C30 Features

U U uou o odod

I

MSP50C30 Speech Development Tools

EMU50C30 PC (At-Class Computer)

In-circuit emulation

Hardware breakpoints

Single step

Examine/modify registers/memory
Includes assembler

Requires one ISA card slot in AT-class computers (486 — 66MHz or better
recommended)

Optional real-time trace
Built-in 1M memory to emulate external ROM

Optional memory expansion cards (4M and 8M)

Speech Development Tools A-3

A-4

Appendix B

MSP50C3x Versus TSP50C1x

This appendix contains information about switching from a TSP50C1x family
device to a MSP50C3x family device.

Topic Page
B.1 Summary of Changes From TSP50C1x Family B-2
B.2 Upgrading a TSP50C1x Program to a MSP50C1x Program B-3

B-1

Summary of Changes from TSP50C1x Family

B.1 Summary of Changes From TSP50C1x Family

B-2

[0 Support dual LPC capability

RAM size is 256 locations

32 12-bit RAM locations

Design part for double clock speed (19.2 MHz)

Double mode register to 2 memory mapped 8-bit registers

Add dual LPC algorithm

Add 2nd Pitch period counter

PPC < 0x200 sets the bit in the mode register instead of triggering an
interrupt

Level 1 interrupt in LPC mode happens every 30 instruction cycles.

[Increase ROM size

Increase Program Counter register width to 16 bits
Increase A register width to 16 bits

Increase B register width to 16 bits

Increase SAR width to 16 bits

Increase ROM size to 64K bytes

Adjust for SSA, PSA, and IRPC usage

[Miscellaneous

No support for external ROM mode

Improved internal oscillator design

Improved D/A output design

Designed part for increased Vpp range (3.3V — 6.5V)

Remap A port to 0XFCh — OxFFh RAM range

Remap B port to 0xF8h — OxFBh RAM range

Added wakeup function

3 oscillator modes (internal, external, and crystal/ceramic)

Status gets set by SETOFF, INIT terminal low, and interrupt

Fix DECMN instruction so that true decrement happens on 12-bit
RAM

Fix ANDCM instruction so that operation on 12-bit RAM location does
not affect the upper 4 bits

SETOFF does not change the 1/O state

Memory map mode registers

1/0O ports are paged in and out of the memory map by the IO_MAP bit
in the mode register

Interrupt vector location is changed

Upgrading a TSP50C1x Program to a MSP50C3x Program

B.2 Upgrading a TSP50C1x Program to a MSP50C3x Program

Assumptions:

This section documents the changes necessary to upgrade a TSP50C1x pro-
gram to a MSP50C3x program. This file assumes that none of the additional
features of the MSP50C3x are being used. for example, the wakeup function
does not exist on the TSP50C1x, so code changes necessary to accommo-

date the wakeup function are not included.

Uoooo

B.2.1 Normal Operation

Remap interrupt vectors

The wakeup function is not used
Only the A and B ports are used
Only 128 RAM locations or less are used
Only 16K ROM locations are used
All program code is in the lower 4K bytes of ROM

The interrupt vectors are I/O mapped in a different sequence on the

MSP50C3x than they are on the TSP50C1x.

Table B—1.Interrupt Vectors for the TSP50C1x and the MSP50C3x

Address

Type

TSP50C1x

MSP50C3x

0x0010
0x0012
0x0014
0x0016
0x0018
0x001A
0x001C
0x001E

Level 2 Interrupt
Level 2 Interrupt
Level 2 Interrupt
Level 2 Interrupt
Level 1 Interrupt
Level 1 Interrupt
Level 1 Interrupt
Level 1 Interrupt

PCM=0,LPC=1
PCM=0,LPC=0
PCM=1,LPC=1
PCM=1,LPC=0
PCM=0,LPC=1
PCM=0,LPC=0
PCM=1,LPC=1
PCM=1,LPC=0

PCM =0, LPC=0
PCM =0, LPC=1
PCM=1, LPC=0
PCM =1, LPC=1
PCM =0, LPC=0
PCM =0, LPC=1
PCM =1, LPC=0
PCM =1, LPC=1

Remap I/0 ports

The 1/O ports are 1/0 mapped to different RAM locations on the MSP50C3x
than they are on the TSP50C1x.

MPS50C1x Versus TSP50C1x B-3

Upgrading a TSP50C1x Program to a MSP50C3x Program

Table B-2.1/0O Ports for the TSP50C1x and the MSP50C3x

Port TSP50C1x Address ~ MSP50C3x Address
Port A Input Register 0x80 OxFC
Port A Pullup Register 0x81 OxFD
Port A Tristate Register 0x82 OXFE
Port A Output Register 0x83 OxFF
Port B Input Register 0x84 0xF8
Port B Pullup Register 0x85 0xF9
Port B Tristate Register 0x86 OxFA
Port B Output Register 0x87 OxFB

Adjust code for 16-bit register size

The A and B ports are 14 hits wide on the TSP50C1x family and are 16 bits
wide on the MSP50C3x family. Any code depending on the 14-bit size of the
TSP50C1x family must be adjusted. For example, a common way of excising
bits at the most significant portion of the data word is to left shift the data in the
A register, then right shift to properly justify the data. An additional 2 bits of shift
would be needed on the MSP50C3x family.

Select clock speed

On the TSP50C1x family, the clock speed is fixed. On the MSP50C3x family,
the internal clock speed is switchable. If the internal clock option is used on
the MSP50C3x, then the speed needs to be set in software.

Adjust code for 12-bit RAM location

On the TSP50C1x family, RAM locations 0x10h through Ox1Fh are 8 bits wide.
On the MSP50C3x family, these RAM locations are 12 bits wide. Any use of
these RAM locations that assumes an 8-bit width needs to be fixed.
Adjust for clock speed
The MSP50C3x family operates at a clock speed that is twice that of the
TSP50C1x family. Any clock speed dependence must be adjusted.
TSP60C18 support removed

The support for the TSP60C18/81 speech ROM has been removed. The ex-
ternal ROM bit has been removed from the mode register. To use an external
ROM, the interface must be done in software.

B-4

Upgrading a TSP50C1x Program to a MSP50C3x Program

Adjust code for 12-bit X register size

On the TSP50C1x family, the X register is 8 bits wide. On the MSP50C3x fami-
ly, the X register is 12 bits wide. Any use of the X register that assumes an 8-bit

width needs to be fixed.

Converting TSP50C19 code

B.2.2 LPC

There is no paging on the MSP50C3x family.

Adjust code for different LPC interrupt

On the TSP50C1x family, the LPC interrupt was caused by the underflow of
the pitch period counter. On the MSP50C3x family, the LPC interrupt is invoked
at a 20-kHz rate by the system clock. The underflow of the pitch period counter
causes a bit to be set to 1 in mode register 2.

Modify the MSP50C3x code to periodically poll the mode register for the PPC
bit to be set and then clear the bit and either branch or call the interpolation
routine.

Clear memory-mapped register prior to turning on LPC

RAM locations 0xFFOh, OxFF1h, OxFF2h, and OxFF4h should be cleared to 0
prior to turning on the LPC. The RAM location OxFF3h should be set to 0x162h.

Replace the excitation function with the MSP50C3x excitation function.

Thie excitation function is the same as the TSP50C1x excitation function ex-
cept that the unvoiced portion (#3A80) is sign extended to 16 bits (#FA80). The
voiced portion of the excitation function may need to be multiplied by 2 to get
the same volume as the TSP50C1x.

Move the excitation function

In TSP50C1x programs (except the TSP50C19), the excitation function needs
to be moved from 0x4000 to 0x8000 when using the MSP50C33 or to 0x10000
when using the MSP50C34.

Note: TSP50C19

On the TSP50C19, the excitation function already has been moved to
0x8000h.

MPS50C1x Versus TSP50C1x B-5

Upgrading a TSP50C1x Program to a MSP50C3x Program

B.2.3 PCM

Adjust data for the different register size

B-6

On the TSP50C1x family, the TASYN instruction loaded the PCM data to a reg-
ister 14 bits wide. The least significant 2 bits were unused and the most signifi-
cant 2 bits were used for sign extension.

On the MSP50C3x family, the TASYN instruction loads the PCM data to a reg-
ister 16 bits wide. The least-significant two bits are unused. The most signifi-
cant two bits are used for overflow with the third most-significant bit being used
for sign extension.

Appendix C

Quick Guide to Programming the MSP50C3x

This appendix contains information about programming the MSP50C30.

Topic Page

C.1 A Quick Guide to Programming the MSP50C30 C-2

C-1

A Quick Guide to Programming the MSP50C30

C.1 A Quick Guide to Programming the MSP50C30

The MSP50C30 has a PSA (program segment address) register and a SSA
(speech segment address) register. These allow easy access to program code
and data located anywhere in the 8M byte address space of the MSP50C30.

Typically, program code is placed in the first 1M byte of ROM and accessed
through the PSA register. It is possible to write code in the SSA region (above
1M byte) but in a rather limited fashion.

Speech data may be placed anywhere in ROM (subject to the SSA segment
boundaries) and accessed through the SSA register.

A PSA segment is 32K bits in length and is overlapping, with a 4K-bit offset
between successive segments. An SSA segment is 32K bits in length and is
non-overlapping.

C.1.1 General Information

[0 The MSP50C30 has 4K bytes of internal ROM and can address up to
8M bytes of external ROM.

[0 Program execution starts in internal ROM at #0000 (cold reset) or #0002
(warm reset). Program code in the external ROM can be reached by
executing BR #1000 from internal ROM

[0 At power up, the IRPC (internal ROM page control) register is cleared to
zero. This allows access to the 4K bytes of internal ROM. When executing
from external ROM, access the lower 4K bytes of external ROM by setting
the IRPC to one.

C.1.2 Using the PSA

C-2

[0 Access the PSA register through the X register (see the following
example).

CLA

ACAAC #FEC
TAX

TSEGA PSLABEL
TAM

Extract the PSA segment number of a particular address by using TSEGA

L

(1 To reach a different PSA segment, change the PSA register and then im-
mediately execute an LBR. Alternately, use XBAfollowed by BRA

[After writing to the PSA register, there is a 2-cycle delay before the change
takes effect. This is intended for the LBR, or XBABRAInstructions. Instruc-
tions other than these can cause unpredictable results.

a

C.1.3 Using the SSA
EI

A Quick Guide to Programming the MSP50C30

It is acceptable to single-step through an LBR but do not single-step
through XBABRA Instead, run to an appropriate breakpoint.

The CALL instruction takes a 12-bit address, therefore, all subroutines
must be located within the first 4K bytes of a PSA segment.

The LBR instruction takes a 13-bit address, therefore, the desired branch
address offset within a PSA segment must be in the range of #0000 to
#1FFF.

The 13-bit (8K bytes) boundary of the LBR must be kept in mind when
moving between segments. For example, if the offset within a PSA
segment is #4128 and a return to the original PSA segment with offset
#0010 is desired, then the offset of #4128 must first be changed (using
BSR to an offset of less than #2000. The PSA can then be modified and
a LBR #10 executed.

The segment compiler directive starts a new PSA segment.

Access the SSA register through the X register (see the following exam-
ple).

CLA

ACAAC #FED

TAX

TCA SSALABEL/#8000
TAM

Extract the SSA segment number of a particular address by dividing by
#8000.

To reach the SSA region, execute a BRAwith bit 15 of the A register set
high. For example, if the SSA register is set to 33 and the A register con-
tains #8000, performing a BRAchanges the program counter to #108000.

Only BRA will work (with bit 15 of the A register set high) in the SSA region.
The BR SBR LBR, and CALL instruction will not work.

Do not change the PSA register while in the SSA region. Instead, return
to the previous PSA segment and then modify the PSA register as desired.

The segment compiler directive is not applicable to SSA segments.

Quick Guide to Programming the MSP50C30 C-3

c-4

Appendix D

Using the PSA and SSA Routines

This appendix contains the code for using of PSA and SSA routines when
writing code for the MSP50C30. There are four routines; the first three use the
PSA, the last routine uses the SSA. The SSA routine is located above 1M byte;
therefore, the EMU30 requires a memory expansion card in order to run this
program.

Topic Page

D.1 Using the PSA and SSA Routines

D-1

Using the PSA ans SSA Routines

D.1 Using the PSA and SSA Routines

SPLBR.ASM
The following code shows how to make use of the PSA and SSA when writing
code for the C30. There are four routines; the first three use the PSA, the last
routine uses the SSA. Note that the SSA routine is located above 1M byte;
therefore, the EMU30 will require a memory expansion card in order to run this
program.
call jump7 ;jump to PSA segment 7, #07000
call jumpl? ;jump to PSA segment 17, #11000
call jump33 ;jump to PSA segment 33, #21000
call jumpssa ;jump to SSA segment 37, #128000
loophere br loophere

The program segment address (PSA) register is set to the segment address
of the psa7 routine. This is achieved using the TSEGA command, which ex-
tracts the 8-bit program segment from a given address. The LBR instruction
branches across program segments to the address offset, psa7, within the
seventh segment.

* Jump to PSA 7 and come back
*

jump7 cla

acaac #fec ;point to PSA

tax

tsega psa7 ;get segment number

tam set PSA

lbr psa7 ;this MUST follow the TAM

In PSA segment 7 the A, B and X registers are setto 1, 2, and 3 respectively.

* psa7
*

* Set the A, B and X registers then LBR back to the calling
* routine in PSA segment 0.

* * * *

aorg #7000
segmnt

psa7 tca 1 ;set A=1, B=2, X=3
tab
ibc
tcx 3
* 0x07006
*A=1, B=2, X=3
In order to return to the zeroth segment the PSA is set to 0, and a LBR executed
back to the segment from which psa7 was called.

D-2

Using the PSA ans SSA Routines

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega longrtn ;want to go to PSA segment O

tam

Ibr longrtn ;long branch there

The longrtn label is in PSA segment zero.
*

* A generic RETN statement used by all returns from LBR routines
*

longrtn retn ;do a long branch back here, then return

This returns to the main program loop.

call jumpl? ;jump to PSA segment 17, #11000

call jump33 ;jump to PSA segment 33, #21000

call jumpssa ;jump to SSA segment 37, #128000
loophere br loophere

The procedure for branching to PSA 17 is the same as the branch to PSA 7,
except the PSA is obviously set to 17 rather than 7.

*

* Jump to PSA 17 and do a CALL whilst there
*

jumpl7 cla

acaac #fec ;point to PSA

tax

tsega psal7 ;get segment number

tam :set PSA

lor psal7 :this MUST follow the TAM

In PSA segment 17 the A, B and X registers are set to 4, 5 and 6 respectively.

* psal7
*

* Set the A, B and X registers and then do a CALL within the
* same segment.

* * * * * *

aorg #11000

segmnt
psal7 tca 4 ;set A=4, B=5, X=6
tab
ibc
tex 6
* 0x11006
* A=4, B=5, X=6

A call to a subroutine within the same segment is then executed. This routine
performs integer division, whereby the contents of A are divided by the con-
tents of B, with the answer being stored in A and the remainder in B.

Using the PSA ans SSA Routines D-3

Using the PSA ans SSA Routines

tca 5 ;do 17 div5s

tab

tca 17

call divide ;call divide routine in same segment

* 0x1100d
* A=3, B=2, X=5

The divide routine is located at #11600 which is also in PSA segment 17.
aorg #11600

divide clx reset counter
divloop shaan ;doA—=B
sbr divdone ;if negative we have finished
ixc :else increment counter
sbr divloop
sbr divioop
divdone abaac ;get remainder in A
Xbx ;put answer in A and remainder in B
xba
retn

In order to return to the zeroth segment the PSA is set to 0, and a LBR executed
back to the segment from which psal7 was called.

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega longrtn ;want to go to PSA segment 0

tam

Ibr longrtn ;long branch there

The longrtn label is in PSA segment zero.

* A generic RETN statement used by all returns from LBR routines

*

longrtn retn ;do a long branch back here, then return
Control then returns to the main program loop.

call jump33 ;jump to PSA segment 33, #21000

call jumpssa ;jump to SSA segment 37, #128000
loophere br loophere

The procedure for branching to PSA 33 is the same as the branch to PSA 7,
except the PSA is obviously set to 33 rather than 7.

*

* Jump to PSA 33 and then to PSA 255 and return
*

jump33 cla
acaac #fec ;point to PSA
tax
tsega psa33 ;get segment number
tam ;set PSA
lbr psa33 :this MUST follow the TAM

D-4

Using the PSA ans SSA Routines

In PSA segment 33 the A, B and X registers are setto 7, 8 and 9 respectively.

* * * * *

* psa33
*

* Set the A, B and X registers then continue to LBR up to #ff000
* which is the psa255 routine.

aorg #21000

segmnt
psa33 tca 7 ;set A=7, B=8, X=9
tab
ibc
tex 9
* 0x21006
* A=7, B=9, X=9
The highest PSA segment (255) is reached by setting the PSA register accord-
ingly.
cla ;now set up PSA for LBR up to #ff000
acaac #fec
tax
tsega psa255 ;want to go to PSA segment 255
tam
Ibr psa255 ;long branch there
In PSA segment 255 the A, B and X registers are set to #a, #b and #c respec-
tively.
* psa255
*

* Set the A, B and X registers then LBR back to the original
* routine which first called psa33.

*kkkkkkkk * * Fkkkkk * * * *

aorg #ff00O
segmnt

psa255 tca 10 :set A=a, B=b, X=c
tab
ibc
tcx 12

* 0xff006
* A=a, B=b, X=c

The zeroth segment is returned to in the usual way.

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega longrtn ;want to go to PSA segment O

tam

Ibr longrtn ;long branch there

Using the PSA ans SSA Routines D-5

Using the PSA ans SSA Routines

*

The longrtn label is in PSA segment zero.

* A generic RETN statement used by all returns from LBR routines
*

longrtn retn ;do a long branch back here, then return
Control then returns to the main program loop.
call jumpssa ;jump to SSA segment 37, #128000
loophere br loophere

The procedure for branching to a location in the speech segment address
(SSA) space is different. The SSA register is set to the required value, 37 in
this case, but to reach an address above 1M byte the BRA instruction must be
used. Setting the MSB (bit 15) high forces the SSA register to be used in the
calculation of the new program counter value. This gives an actual address
of

(#7fff & BRA address) + (SSA << 15)

*

So here the new address is simply (#0412 + 37 << 15), which equals #128412.

* Jump to SSA 37 and return
*

jumpssa cla
acaac #fed ;point to SSA
tax
tca (ssa37/SSASEG)
tam ;set SSA to 37th segment
cla :now form 16 bit address
clb
acaac ssa37&#f ;LSB 8 bits
xba
acaac ((ssa37fff)+#8000)/#100
salad ;MSB with top bit set high
salad :shift left 8
abaac ;add LSB 8 bits
bra :branch to #128412
In SSA segment 37 the A, B and X registers are set to #d, #e and #f respective-
ly.
* ssa37

*

* Set the A, B and X registers then BRA back to the PSA segment

* zero.
aorg #128412
ssa37 tca 13 ;set A=d, B=e, X=f
tab
ibc
tcx 15

D-6

Using the PSA ans SSA Routines

*0x128418
* A=d, B=e, X=f
In order to return to the zeroth PSA segment a BRA instruction is executed.
This time the MSB (bit 15) is set low so that the SSA is ignored in the program
counter calculation. Since the PSA is currently O, the return address is simply
equal to longrtn.

* Return to PSA region and original CALL

cla ;get address of return in PSA 0
acaac longrtn ;branch there, ignoring SSA value
bra

The longrtn label is in PSA segment zero.

* A generic RETN statement used by all returns from LBR routines
*

longrtn retn ;do a long branch back here, then return
The program then waits in an infinite loop.

loophere br loophere

Note: LBR Instruction and Branching Across PSA Segments

The LBR instruction is used to branch across PSA segments. Because the
LBR takes a 13-bit address, the entry into the segment is limited to the first
8K hytes. For example, an LBR from #0049 to #10000 (PSA 16) is valid but
an LBR from #0049 to #17F42 (also PSA 16) produces an error “BR or LBR
out of 8K page range”. However, if the #17F42 is in a segment starting at
#16000 or #17000 then the LBR will work.

Note: Returning From One PSA Segment to the Other

The same constraint, outlined in the previous note, applies when returning
from one PSA segment to the other. For example, if a segment begins at
#10000 and ends at #17FFF then in order to return from #17Fxx to #004B
it is necessary to use BRA to move to the first 8K of the segment at #10000,
and then use LBR to jump to #004B in PSA 0.

The following code demonstrates the correct usage of LBR. Essentially, the
program starts in PSA 16 at #10000, does a BRA to reach #17F42 within the
same segment, then a BRA back to #10014 before doing an LBR to PSA 0.

aorg #10000

segmnt

psal6 tca 1 ;set A=1, B=2, X=3

tab

ibc

tcx 3

Using the PSA ans SSA Routines D-7

Using the PSA ans SSA Routines

* 0x10006
*A=1, B=2, X=3

In order to reach the #17Fxx region the BRA instruction must be used. LBR
will not work because an 8K page boundary is crossed.

cla ;now form 16 bit address
clb

acaac adrl7f&#ff ;LSB 8 bits

xba

acaac (adrl7ffff)/#100

sala4

salad :shift left 8

abaac ;add LSB 8 bits

bra ;branch to #1742

At #17F42 the A, B and X registers are set to 7, 8 and 9 respectively.
aorg #17f42

adrl7f tca 7 :set A=7, B=8, X=9
tab
ibc
tcx 9

Trying to return to the #10000 region with LBR will cause a compiler error.

*

* This will not compile because the LBR is outside the 8K limit.
* Need to BRA back to the first 8K of the segment and then LBR
* pack to PSA 0.

*

* cla ;now set up PSA for LBR back to start
* acaac #fec

* tax

* tsega longrtn ;want to go to PSA segment 0

* tam

* Ibr longrtn ;long branch there *ERROR***

Instead a BRA must be executed, in this case back to #10014.

cla :now form 16 bit address
clb

acaac psal6rtn&#ff :LSB 8 bits

xba

acaac (psalértn&#T7fff)/#100

sala4

sala4 ;shift left 8

abaac ;add LSB 8 bits

bra :branch to #10014

Finally the LBR can be used to return to PSA 0, to the longrtn at #4B.

D-8

Using the PSA ans SSA Routines

*

* 0x10014
* BRA here from higher up in the same segment
*
psalértn cla ;now set up PSA for LBR back to start
acaac #fec
tax
tsega longrtn ;want to go to PSA segment 0
tam
Ibr longrtn ;long branch there

Using the PSA ans SSA Routines D-9

D-10

Appendix E

Using PSA and SSA With the TSEGA, LBR,
CALL and BRA Instructions

This appendix contains code that demonstrates the use of the PSA and SSA
routines with TSEGA, LBR, CALL and BRA instructions.

Topic Page

E.1 Using the PSA and SSA with the TSEGA, LBR, CALL, and BRA
INStTUCHIONS . . E-2

E-1

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

E.1 Using the PSA and SSA With the TSEGA, LBR, CALL, and BRA
Instructions

* splbr.asm

*

* 27th May 1998
*

* Demonstrates usage of the PSA and SSA, with TSEGA,
* LBR, CALL and BRA instructions.

*

* jump? call and branch to PSA 7, #7000

*jumpl?7 call and branch upto PSA 17, #11000
*jump33 call and branch upto PSA 33, #11000

* jumpssa call and branch upto SSA 37, #128000

*

* Set breakpoints and observe the registers.
*

* ADDRESS A B X

* 7006 1
* 11006 4
* 1100d 3
* 21006 7
* ff006 a b c
* 128418 d e f
*

* Set a breakpoint at #34 which is the finish point.
OPTION BUNLIST,DUNLIST,PAGEOF

Fkkkkk *% * *kkkhkkkhkkhhkkkhkk *% * *kkkkkkkkkk

* 8 bit RAM variables

* * * * *kkkkkkkk * * * *kkk

* Constants

PSASEG equ #1000 ;PSA segment size
SSASEG equ #8000 ;SSA segment size

* General Purpose Constant Definitions

* * * * *

*

* DEVICE CONSTANTS

*

MAX_RAM EQU #EF ;Highest RAM location
*

* 1/O Port Definitions

*

INPUT_A EQU #FC
PULLUP_A EQU #FD
DIRECT_A EQU #FE
OUTPUT_A EQU #FF
INPUT_B EQU #F8
PULLUP_B EQU #F9
DIRECT B EQU #FA
OUTPUT_B EQU #FB

E-2

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

;Timer Underflow, PCM=0, LPC=0
:Timer Underflow, PCM=0, LPC=0
;Timer Underflow, PCM=0, LPC=1
:Timer Underflow, PCM=0, LPC=1
;Timer Underflow, PCM=1, LPC=0
:Timer Underflow, PCM=1, LPC=0
:Timer Underflow, PCM=1, LPC=1
:Timer Underflow, PCM=1, LPC=1

INPUT_C EQU #F4

PULLUP_C EQU #F5

DIRECT_C EQU #F6

OUTPUT_C EQU #F7

INPUT_D EQU #FO

PULLUP_D EQU #F1

DIRECT_D EQU #F2

OUTPUT_D EQU #F3

*.

* Start of program

*.

* AORG #0000

* Interrupt vectors
AORG #0010
SBR INT2_00
SBR INT2_00
SBR INT2_01
SBR INT2_01
SBR INT2_10
SBR INT2_10
SBR INT2_11
SBR INT2_11
SBR INT1_00 ;Pin (B1) goes low interrupt
SBR INT1_00 ;Pin (B1) goes low interrupt
SBR INT1 01 ;Clock interrupt, PCM=0, LPC=1
SBR INT1_01 ;Clock interrupt, PCM=0, LPC=1
SBR INT1_10 ;Clock interrupt, PCM=1, LPC=0
SBR INT1_10 ;Clock interrupt, PCM=1, LPC=0
SBR INT1 11 ;Clock interrupt, PCM=1, LPC=1
SBR INT1_11 ;Clock interrupt, PCM=1, LPC=1

INT1_10

INT1_01

INT2_10

INT2_00

INT2_01

INT2_11

INT1_00

INT1 11 CLA
RETI

* Do program INITs

GO

CLA

intgr

ACAAC #FFO

TAX
CLA
TAM
TAM
TAM
TAM

call

IX
IX
IX
IX

jump?7

;Clear Memory mapped Registers

;jump to PSA segment 7, #07000

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions E-3

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

call jumpl7
call jump33
call jumpssa

loophere br loophere

*

* Jump to PSA 7 and come back
*

jump?7 cla
acaac #fec
tax
tsega psa7
tam
lbr psa7

*

* Jump to PSA 17 and do a CALL whilst there
*

jumpl7 cla
acaac #fec
tax
tsega psal7
tam
Ibr psal7

*

* Jump to PSA 33 and then to PSA 255 and return
*

jump33 cla
acaac #fec
tax
tsega psa33
tam
lbr psa33

*

* Jump to SSA 37 and return

jumpssa cla
acaac #fed
tax
tca (ssa37/SSASEG)
tam

cla

clb

acaac ssal37&#ff

xba

acaac ((ssa37fff)+#8000)/#100
sala4

sala4

abaac

bra

E-4

;jump to PSA segment 17, #11000
;jump to PSA segment 33, #21000

;jump to SSA segment 37, #128000

;point to PSA
;get segment number

:set PSA
:this MUST follow the TAM

;point to PSA
;get segment number

;set PSA
;this MUST follow the TAM

;point to PSA
;get segment number

;set PSA
;this MUST follow the TAM

;point to SSA

;set SSA to 37th segment
:now form 16 bit address
:LSB 8 bits

;MSB with top bit set high
:shift left 8

;add LSB 8 bits
:branch to #128412

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

*

* A generic RETN statement used by all returns from LBR routines
*

longrtn retn ;do a long branch back here, then return

F*kkkkkkkkkkkkkkk *% *% *kkkkkkkhkkhhkkkkkk *% *

* PSA Segment 1 — equivalent to aorg #1000
*

* Program Entry Point

*

* The program in the internal ROM branches to here. Clear
* the RAM and do some initialization.

*kkkkk * F*kkdkk

aorg #1000

segmnt

CLA

tca #08 ;set D3 as output
tamd direct_d

cla

tamd pullup_d
tamd output _d

CLA
ACAAC #FEE ;set Internal ROM Page Control
TAX ; (IRPC) so we can access
TCA 1 . lower 4K of external ROM
TAM
TMAD O
CLA ;Initialize mode register
TAMODE
CLX

RAM_LOOP TAMIX ;Initialize All RAM to zeros

XGEC MAX_RAM
SBR RAM_EXIT
SBR RAM_LOOP

RAM_EXIT TAM ;initialize last RAM location (FF)
TCA #AA
TAMD DIRECT_A ;set even bits as inputs
TAMD DIRECT_B ; and odd as outputs

TAMD DIRECT_C

TAMD OUTPUT_A

TAMD OUTPUT_B

TAMD OUTPUT_C

TCA #55

TAMD PULLUP_A ;turn pullups on for inputs
TAMD PULLUP_B

TAMD PULLUP_C

CLA

ACAAC #FEC
TAX

TCA 0
TAM

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions E-5

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

*

* Now do a long branch back to the start of the external ROM
* program, where we do some branches in the PSA and SSA.
*

LBR GO

* psa’
*

* Set the A, B and X registers then LBR back to the calling
* routine in PSA segment 0.

* F*kkdkk *kkdkkkkkkk

aorg #7000
segmnt
psa7 tca 1 ;set A=1, B=2, X=3
tab
ibc
tex 3
* 0x07006
* A=1, B=2, X=3
cla ;now set up PSA for LBR back to start
acaac #fec
tax
tsega longrtn ;want to go to PSA segment 0
tam
Ibr longrtn ;long branch there
* psal7

* Set the A, B and X registers and then do a CALL within the
* same segment.

aorg #11000
segmnt
psal7 tca 4 ;set A=4, B=5, X=6
tab
ibc
tcx 6

* 0x11006

* A=4, B=5, X=6
tca 5 :do 17 div5
tab

tca 17
call divide :call divide routine in same segment

* 0x1100d

* A=3, B=2, X=5
cla ;now set up PSA for LBR back to start
acaac #fec

tax
tsega longrtn ;want to go to PSA segment O

tam
Ibr longrtn ;long branch there

E-6

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

aorg #11600

divide clx :reset counter

divioop shaan doA—=B
shr divdone ;if negative we have finished
iXc ;else increment counter
sbr divloop
sbr divloop

divdone abaac ;get remainder in A
xbx ;put answer in A and remainder in B
xba
retn

* psa33

*

* Set the A, B and X registers then continue to LBR up to #ff000
* which is the psa255 routine.

Kkkkkkkkkkkkkkhkkkkkkhkkkkkkkhkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkkkkkkkkkkk

psa33

* 0x21006

*A=7, B=9, X=9

aorg #21000

segmnt
tca 7 ;set A=7, B=8, X=9

tab

ibc

tex 9

cla ;now set up PSA for LBR up to #ff000
acaac #fec

tax

tsega psa255 ;want to go to PSA segment 255
tam

Ibr psa255 ;long branch there

*kkkokk

* psa255
*

* * *% * * *kkkkkkkk * * * *

* Set the A, B and X registers then LBR back to the original
* routine which first called psa33.

*

* * * * * * * *

aorg #ff00O
segmnt
psa255 tca 10 :set A=a, B=b, X=c
tab
ibc
tex 12
* Oxff006
* A=a, B=b, X=c
cla ;now set up PSA for LBR back to start
acaac #fec
tax
tsega longrtn ;want to go to PSA segment 0
tam
Ibr longrtn ;long branch there

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

E-7

Using the PSA ans SSA with the TSEGA, LBR, CALL, and BRA Instructions

* Fkk * * Fkk *

* ssa37

*

* Set the A, B and X registers then BRA back to the PSA segment

* zero.
aorg #128412
ssa37 tca 13 ;set A=d, B=e, X=f
tab
ibc
tcx 15
*0x128418
* A=d, B=e, X=f
* Return to PSA region and original CALL
cla ;get address of return in PSA 0
acaac longrtn ;branch there, ignoring SSA value
bra

E-8

Appendix F

Pseudo-CALL Instruction

This appendix contains the code for one way of accessing a subroutine from
different locations in the PSA address space. It also demonstrates a pseudo-
CALL instruction operating in the SSA region. The SSA routine is located
above 1M byte, therefore the EMU30 requires a memory expansion card in or-
der to run this program.

Topic Page

F1 Pseudo-CALL Instructionttt F-2

F-1

Pseudo-CALL Instruction

F.1 Pseudo-CALL Instruction
SPCALL.ASM

The following code shows one way of accessing a subroutine from different
locations in the PSA address space. It also demonstrates a pseudo-CALL
instruction operating in the SSA region. Note that the SSA routine is located
above 1M byte, therefore the EMU30 will require a memory expansion card
in order to run this program.

call jump7 ;jump to PSA segment 7, #07000

call jump255 ;jump to PSA segment 255, #ff000

call jumpssa ;jump to SSA segment 33, #108000
loophere br loophere

The program segment address (PSA) register is set to the segment address
of the psa7 routine. This is achieved using the TSEGA command, which ex-
tracts the 8-bit program segment from a given address. The LBR instruction
branches across program segments to the address offset, psa7, within the
seventh segment.

* Jump to PSA 7 and come back
*

jump?7 cla

acaac #fec ;point to PSA

tax

tsega psa7 ;get segment number

tam ;set PSA

lbr psa7 :this MUST follow the TAM

In PSA segment 7 the A, B and X registers are set to 1, 2 and 3 respectively.

* psa7
*

* Set the A, B and X registers then LBR back to the calling
* routine in PSA segment 0.

* * * *

aorg #7000
segmnt

psa7 tca 1 ;set A=1, B=2, X=3
tab
ibc
tcx 3

* 0x07006
*A=1, B=2, X=3

The divide routine in the second PSA segment (at #2000) is then called.

tca 6 :do 10 div 6
tab
call div7

F-2

Pseudo-CALL Instruction

In order to reach a subroutine in a different segment it is necessary to LBR
there. In this case, because the divide routine is called from other locations
as well, the segment number of the calling segment must be saved in callseg,
an 8-bit RAM variable.

*

* A subroutine to call the divide routine at #2000. Need to branch
* there then branch back. Do a RETN to get back to the original
* calling point in this segment.

*

div7 tsega psa7 ;set return segment
tamd callseg
cla
acaac #fec ;point to PSA
tax
tsega divide ;get segment offset
tam :set PSA
Ibr divide ;go and divide in PSA 2

The program counter is then set to #2000 and the division (10 by the contents
of B) performed.

* divide

*

* Divide A by B and leaves the remainder in B. The A register
* is corrupted when doing a LBR here and back, so the routine
* is not much use.

aorg #2000
segmnt
divide tca 10 :do 10 divB
clx ;reset counter
divioop sbaan :doA—=B
sbr divdone ;if negative we have finished
ixc :else increment counter

sbr divloop
sbr divloop

divdone abaac ;get remainder in A
xbx ;put answer in A and remainder in B
xba

*

* Set a breakpoint here at #200b to see the result.
*10 div X gives A, remainder B
*

In order to return to the correct program segment, a branch is taken to the
zeroth segment where the return address is calculated.

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega divrtn ;want to go to PSA segment O

tam

lbr divrtn ;long branch there

Pseudo-CALL Instruction F-3

Pseudo-CALL Instruction

The value of callseg is examined and the return address (13 bit offset inside
the appropriate segment) then used in the LBR instruction. Another way of
achieving the same affect would be to store the return address in RAM, and
branch there directly from the divide routine.

divrtn tmad callseg ;see which segment did the call

*

* This code decides where to return to, ie which PSA segment.
* The ’divide’ routine at #2000 always returns here, then we

* have to return to the place that called 'divide’ in the first

* place. Either PSA 0, 7 or 255.

*

anec #00 :PSA 0?
sbr dr7

* Return to current segment

retn ;yes, just return
dar7 anec #07 PSA 7?
shr dr255

* Returnto PSA 7

cla
acaac #fec ;point to PSA
tax
tsega div7rtn ;get segment offset
tam ;set PSA
lbr div7rtn ;go back to #7000
dr255 anec #ff :PSA 2557
sbr drquit
* Return to PSA 255
cla
acaac #fec ;point to PSA
tax
tsega div255rtn ;get segment offset
tam :set PSA
lbr div255rtn ;go back to #ff000

* Give up and return to PSA 0

drquit retn ;if in doubt, return

In this case the return address is div7rtn in the seventh PSA segment. Execut-
ing a RETN here returns from the original CALL DIV7 instruction. Program
execution continues, and returns to the zeroth segment.

div7rtn retn ;get here with a LBR from PSA 2

In order to return to the zeroth segment the PSA is set to 0, and a LBR executed
back to the segment from which psa7 was called.

F-4

Pseudo-CALL Instruction

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega longrtn ;want to go to PSA segment 0

tam

Ibr longrtn ;long branch there

The longrtn label is in PSA segment zero.

* A generic RETN statement used by all returns from LBR routines
*
longrtn retn ;do a long branch back here, then return

This returns to the main program loop.

call jump255 ;jump to PSA segment 255, #ff000
call jumpssa ;jump to SSA segment 33, #108000
loophere br loophere

The procedure for branching to PSA 255 is the same as the branch to PSA 7,
except the PSA is obviously set to 255 rather than 7. The code is virtually the
same apart from the fact that the segment numbers are different. After jumping
to PSA 255, jumping to the divide routine, jumping to PSA 0, jumping back to
PSA 255, and then finally jumping back to PSA 0, the main program loop is
reached once again.

call jumpssa ;jump to SSA segment 33, #108000
loophere br loophere

The procedure for branching to a location in the speech segment address
(SSA) space is different. The SSA register is set to the required value, 33 in
this case, but to reach an address above 1M byte the BRA instruction must be
used. Setting the MSB (bit 15) high forces the SSA register to be used in the
calculation of the new program counter value. This gives an actual address of:

(#7fff & BRA address) + (SSA << 15)
So here the new address is simply (#0000 + 33 << 15), which equals #108000.

*

* Jump to SSA 33 and return
*

jumpssa cla

acaac #fed ;point to SSA

tax

tca (ssa33/SSASEG)

tam ;set SSA to 33rd segment

cla

acaac #3800

sala4 :set MSB #8000 to force use of SSA
bra :branch to #108000

Pseudo-CALL Instruction F-5

Pseudo-CALL Instruction

In SSA segment 33 the A, B and X registers are set to 1, 2 and 3 respectively.

* ssa33
*

* Some executable code at a high address in ROM, above 1MByte.
* Sets the A B X registers to various values and does a 'CALL’

* to a routine, before returning to PSA 0.

* Only BRA can be used to move around in this region (> 1MB) so
* writing code will be tricky.

* * * *

aorg #108000 ;SSA 33
ssa33 tca 1 ;set A=1, B=2, X=3
tab
ibc
tcx 3
* #108006
* A=1, B=2, X=3

The BR, SBR, LBR and CALL instructions cannot be used in the SSA address
space. Therefore the only way to branch around is to use BRA. A pseudo-
CALL can be performed by storing the return address in RAM.

*

* Prepare to do a call to a subroutine, without using CALL

*

tca 11 ;want to return 11 bytes ahead
acaac ($�fff) ;current offset

tamd ssastack ;save as a 12 bit address

tca #80 ;equivalent of a CALL instruction
sala4

sala4

acaac (highcall&#O0fff)

bra ;do the 'CALL’

The highcall routine sets the A, B and X registers to 4, 5 and 6 respectively.

*
* A subroutine which returns, without using RETN

*

highcall tca 4 :set A=4, B=5, X=6
tab
ibc
tcx 6

* 0x108f06
* A=4, B=5, X=6

The return process gets the 12-bit address offset, adds #8000 so that the most
significant bit (bit 15) is set, and then does a BRA. Since bit 15 is high the
branch takes account of the value in the SSA register. In other words, the pro-
gram counter remains in this SSA address space.

F-6

Pseudo-CALL Instruction

* Begin RETN process

tmad ssastack ;get 12 bit return offset

tab

tca #80 ;:need to set #8000

sala4

sala4

abaac :set MSB and add address
bra :return from call

The program returns to address #108013, and then sets the A, B and X

registers to 7, 8 and 9 respectively.

* #108013
* Return to here, A is #8013, B is #13, X is #6
tca 7 ;set A=7, B=8, X=9
tab
ibc
tex 9
* 0x108019
* A=7, B=9, X=9

In order to return to the zeroth PSA segment a BRA is executed to the longrtn
address. Because bit 15 is low, the SSA register is ignored and the program
counter becomes equal to the longrtn address offset inside PSA 0.

* Everything is OK so far, now want to return to the PSA 0 space.
* L eave the SSA alone and just branch, this takes us back to the
* zeroth PSA segment.

cla
acaac longrtn ;assume 12 bit address
bra

The longrtn label is in PSA segment zero.

*

* A generic RETN statement used by all returns from LBR routines

*

longrtn retn ;do a long branch back here, then return
The program then waits in an infinite loop.

loophere br loophere

Pseudo-CALL Instruction

F-7

F-8

Appendix G

Calling Divide from PSA

This appendix contains the code for how to call one routine (divide) from differ-
ent parts of the PSA space and demonstrates pseudo-CALL in SSA region.

Topic Page

G.1 Calling Divide from PSA G-2

G-1

Calling Divide from PSA

G.1 Calling Divide from PSA

* spcall.asm
*

* 27th May 1998
*

* Shows how to call one routine (divide) from different

* parts of the PSA space. Also demonstrates pseudo—CALL
*in SSA region.

*

* jump? call and branch to PSA 7, #7000

* jump255 call and branch upto PSA 255, #ff000
* jumpssa call and branch upto SSA 33, #108000
*

* Set breakpoints and observe the registers.

*

* ADDRESS A B X

* 200b 1 4 6
* 2 2 4
*108006 1 2 3
*108f06 4 5 6
*108019 7 8 9

*

* Set a breakpoint at #32 which is the finish point.
OPTION BUNLIST,DUNLIST,PAGEOF

* 12 bit RAM variables

ssastack equ #01 :save ssa offset for 'CALL’

* * * * *

* 8 bit RAM variables

* *kkdkk *kkdkkkkkkk

callseg equ #20 ;PSA segment of calling routine

* Constants
PSASEG equ #1000 ;PSA segment size
SSASEG equ #8000 ;SSA segment size

* General Purpose Constant Definitions

*

* DEVICE CONSTANTS

*

MAX_RAM EQU #EF ;Highest RAM location
*

* /O Port Definitions

*

INPUT_A EQU #FC
PULLUP_A EQU #FD
DIRECT_A EQU #FE
OUTPUT_A EQU #FF

G-2

Calling Divide from PSA

INPUT_B EQU #F8
PULLUP_B EQU #F9
DIRECT_B EQU #FA
OUTPUT_B EQU #FB
INPUT_C EQU #F4
PULLUP_C EQU #F5
DIRECT_C EQU #F6
OUTPUT_C EQU #E7
INPUT_D EQU #FO
PULLUP_D EQU #F1
DIRECT_D EQU #F2
OUTPUT_D EQU #F3
*.

* Start of program

*.

*

AORG #0000

* Interrupt vectors

INT1_10
INT1_01
INT2_10
INT2_00
INT2_01
INT2_11
INT1_00
INTL_11

AORG #0010

SBRINT2_00

SBR INT2_00
SBR INT2 01
SBR INT2 01
SBR INT2_10
SBR INT2_10
SBR INT2_11
SBR INT2_11
SBR INT1_00
SBR INT1_00
SBR INT1_01
SBR INT1 01
SBR INT1_10
SBR INT1_10
SBR INT1_11
SBR INT1 11

CLA
RETI

:Timer Underflow, PCM=0, LPC=0

;Timer Underflow, PCM=0, LPC=0
;Timer Underflow, PCM=0, LPC=1
:Timer Underflow, PCM=0, LPC=1
:Timer Underflow, PCM=1, LPC=0
‘Timer Underflow, PCM=1, LPC=0
;Timer Underflow, PCM=1, LPC=1
:Timer Underflow, PCM=1, LPC=1
;Pin (B1) goes low interrupt

;Pin (B1) goes low interrupt
;Clock interrupt, PCM=0, LPC=1
;Clock interrupt, PCM=0, LPC=1
;Clock interrupt, PCM=1, LPC=0
;Clock interrupt, PCM=1, LPC=0
;Clock interrupt, PCM=1, LPC=1
;Clock interrupt, PCM=1, LPC=1

Calling Divide from PSA

G-3

Calling Divide from PSA

* * * *

* Do program INITs

* *kkkkkkkk *

GO CLA

intgr

ACAAC #FFO
TAX

CLA

TAMIX

TAMIX

TAMIX

TAMIX

call jump7
call jump255

call jumpssa

loophere br loophere

* Jump to PSA 7 and come back
*

jump7 cla
acaac #fec
tax
tsega psa7
tam
Ibr psa7

*

* Jump to PSA 255 and come back
*

jump255 cla
acaac #fec
tax
tsega psaz255
tam
lbr psa255

*

* Jump to SSA 33 and return
*

jumpssa cla
acaac #fed
tax

tca (ssa33/SSASEG)

tam

cla

acaac #800
salad

bra

*

;Clear Memory mapped Registers

;jump to PSA segment 7, #07000

;jump to PSA segment 255, #ff000

;jump to SSA segment 33, #108000

;point to PSA
;get segment number

;set PSA
;this MUST follow the TAM

;point to PSA

;get segment number
;set PSA
;this MUST follow the TAM

;point to SSA

;set SSA to 33rd segment

:set MSB #8000 to force use of SSA
;:branch to #108000

* A generic RETN statement used by all returns from LBR routines

*

longrtn retn

G-4

;do a long branch back here, then return

*

Calling Divide from PSA

* This code decides where to return to, ie which PSA segment.
* The 'divide’ routine at #2000 always returns here, then we
* have to return to the place that called 'divide’ in the first

* place. Either PSA 0, 7 or 255.
*

divrtn tmad callseg
anec #00
shr dar7
* Return to current segment
retn
dr7 anec #07
sbr dr255
* Return to PSA 7
cla
acaac #fec
tax
tsega div7rtn
tam
lor div7rtn
dr255 anec #ff
sbr drquit
* Return to PSA 255
cla
acaac #fec
tax
tsega div255rtn
tam

lbr div255rtn
* Give up and return to PSA 0

drquit retn

;see which segment did the call
:PSA 0?

;yes, just return
‘PSA 7?

;point to PSA

;get segment offset
:set PSA
;go back to #7000

;PSA 2557

;point to PSA
;get segment offset

;set PSA
;go back to #ff000

:if in doubt, return

* PSA Segment 1 — equivalent to aorg #1000
*

* Program Entry Point
*

* The program in the internal ROM branches to here. Clear

* the RAM and do some initialization.

aorg #1000
segmnt

Calling Divide from PSA G-5

Calling Divide from PSA

CLA

tca #08 ;set D3 as output
tamd direct_d

cla

tamd pullup_d
tamd output_d

CLA
ACAAC #FEE ;set Internal ROM Page Control
TAX ; (IRPC) so we can access
TCA 1 ; lower 4K of external ROM
TAM
TMAD O
CLA ;Initialize mode register
TAMODE
CLX

RAM_LOOP TAMIX ;Initialize All RAM to zeros

XGEC MAX_RAM
SBR RAM_EXIT
SBR RAM_LOOP

RAM_EXIT TAM ;initialize last RAM location (FF)
TCA #AA
TAMD DIRECT_A ;set even bits as inputs
TAMD DIRECT_B ; and odd as outputs

TAMD DIRECT_C

TAMD OUTPUT_A

TAMD OUTPUT_B

TAMD OUTPUT_C

TCA #55

TAMD PULLUP_A ;turn pullups on for inputs
TAMD PULLUP_B

TAMD PULLUP_C

CLA

ACAAC #FEC
TAX

TCA 0
TAM

*

* Now do a long branch back to the start of the external ROM
* program, where we do some branches in the PSA and SSA.
*

LBR GO

* divide

*

* Divide A by B and leaves the remainder in B. The A register
* is corrupted when doing a LBR here and back, so the routine
*is not much use.

Fkkkkk *% * *kkkkkkkhkkkkk * *% * *kkkkkkkkkk

aorg #2000
segmnt

G-6

Calling Divide from PSA

divide tca 10 ;do 10 div B
clx ;reset counter

divioop shaan :doA—=B
sbr divdone ;if negative we have finished
ixc ;else increment counter

sbr divloop
sbr divloop

divdone abaac ;get remainder in A
xbx :Put answer is in A and remainder in B
xba

*

* Set a breakpoint here at #200b to see the result.
*10 div X gives A, remainder B
*

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega divrtn ;want to go to PSA segment O

tam

lbr divrtn ;long branch there

* * * * * * *

* psa’7
*

* Set the A, B and X registers then LBR back to the calling
* routine in PSA segment 0.

* * * * * * * *

aorg #7000
segmnt

psa7 tca 1 ;set A=1, B=2, X=3
tab
ibc
tex 3

* 0x7006
*A=1, B=2, X=3

tca 6 :do 10 div 6
tab
call div7

cla ;now set up PSA for LBR back to start
acaac #fec

tax

tsega longrtn ;want to go to PSA segment 0

tam

Ibr longrtn ;long branch there

*
* A subroutine to call the divide routine at #2000. Need to branch

* there then branch back. Do a RETN do get back to the original

* calling point in this segment.
*

Calling Divide from PSA

G-7

Calling Divide from PSA

div7 tsega psa7 ;set return segment
tamd callseg
cla
acaac #fec ;point to PSA
tax
tsega divide ;get segment offset
tam :set PSA
Ibr divide ;g0 and divide in PSA 2
div7rtn retn ;get here with a LBR from PSA 2
* psa255
*

* Set the A, B and X registers then LBR back to the original
* routine which first called psal7.

aorg #ff000
segmnt
psa255 tca 4 ;set A=4, B=5, X=6
tab
ibc
tex 6
* 0xff006
* A=4, B=5, X=6
tca 4 :do 10 div 4
tab
call div255 ;call divide routine
cla ;now set up PSA for LBR back to start
acaac #fec
tax
tsega longrtn ;want to go to PSA segment 0
tam
lbr longrtn ;long branch there
div255 tsega psa255 ;set return segment
tamd callseg
cla
acaac #fec ;point to PSA
tax
tsega divide ;get segment offset
tam ;set PSA
lbr divide ;g0 and divide in PSA 2

div255rtn retn

Fkkkkk *% * * *kkdhkkkhkkkkk *% * *kkkkkkkkkk

* ssa33

*

* Some executable code at a high address in ROM, above 1MByte.
* Sets the A B X registers to various values and does a 'CALL’

* to a routine, before returning to #f100 region.

* Only BRA can be used to move around in this region (> 1MB) so
* writing code will be tricky.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkhkkkkhkkkkhkkkk

G-8

Calling Divide from PSA

aorg #108000 ;SSA 33
ssa33 tca 1 ;set A=1, B=2, X=3
tab
ibc
tex 3

* #108006
*A=1, B=2, X=3
*

* Prepare to do a call to a subroutine, without using CALL
*

tca 11 ;want to return 11 bytes ahead
acaac ($&#Offf) ;current offset
tamd ssastack ;save as a 12 bit address
tca #80 ;equivalent of a CALL instruction
sala4
salad
acaac (highcall&#Offf)
bra :do the 'CALL’
* #108013
* Return to here, A is #8013, B is #13, X is #6
tca 7 ;set A=7, B=8, X=9
tab
ibc
tex 9
* 0x108019

* A=7, B=9, X=9
* Everything is OK so far, now want to return to the PSA 0 space.

* | eave the SSA alone and just branch, this takes us back to the
* zeroth PSA segment.

cla
acaac longrtn ;assume 12 bit address
bra

aorg #108f00

*

* A subroutine which returns, without using RETN
*

highcall tca 4 :set A=4, B=5, X=6
tab
ibc
tex 6

* 0x108f06

* A=4, B=5, X=6

* Begin RETN process

tmad ssastack ;get 12 bit return offset

tab

tca #80 :need to set #8000

sala4

sala4d

abaac ;set MSB and add address
bra return from call

Calling Divide from PSA

G-9

G-10

Appendix H

The CSM30003 Catalog Device

This appendix contains information on the CSM30003 catalog device.

Topic Page
H.1 The CSM30003 Catalog Deviceccoriiiiiiinneinnenn.. H-2
H.2 CSM30003 Functionalityo H-3

H-1

The CSM30003 Catalog Device

H.1 The CSM30003 Catalog Device

H-2

CSM30003 is the part number of TI's catalog part that is based on the
MSP50C30. This catalog part is designed to have all of the software and
speech data reside in an external ROM. The code for this device is written to
allow interfacing with any size standard ROM or EPROM up to 64 Mbits. The
following list summarizes the key benefits of this device.

(1 Supports rapid prototyping and ramp-up to production, because this cata-
log part can be used with readily available ROMs.

[0 Supports long speech duration with a wide range of synthesizers that al-
low speech quality and system cost to be optimized to the application.

(1 Interfaces easily to peripherals because of the large number of general-
purpose I/O terminals.

(1 Enables complex game play because of microcontroller functionality.
[Saves cost by avoiding the need for external crystal and amplifier.

In addition to the CSM30003 catalog part, customers can develop their own
custom codes based on the MSP50C30, or they can develop custom codes
based on other MSP50C3x family members (e.g., MSP50C32, MSP50C33,
MSP50C34).

CSM30003 Functionality

H.2 CSM30003 Functionality

The CSM30003 is designed to connect to an external ROM. The 23 address
lines of the CSM30003 connect to the address lines of the external ROM or
EPROM. The 8 data lines of the CSM30003 connect to the data lines of the
external ROM or EPROM. Port D3 of the CSM30003 is dedicated to enabling
and disabling the external ROM or EPROM; and should be connected to the
ENA line of the ROM or EPROM in most applications.

Immediately upon WAKEUP or INIT, the CSM30003 programs the D3 port to
a totem-pole output in a low-state. This output should be used to drive the ENA
line of the external ROM. The program then branches to Address 0x1000h in
the external ROM for an INIT or branches to address 0x1002h in the external
ROM for a WAKEUP and begins executing the program code located at that
address. The RAM is not cleared.

A branch to address 0x0043h of the internal ROM places the device into a low
power state by:

1) Setting Port D3 to a high state to place the external ROM into a low power
state.

2) Clearing the IOMAP bit in mode register 2

3) Executing a SETOFF to place the CSM30003 into a low power state.

CSM30003 Port D3

Port D3 is programmed as a totem-pole output low state. Take care not
to change this state in software programmed to the external ROM. If this
state is disturbed, the external ROM may be placed into a low-power
state, disturbing operation of the system.

CSM30003 Branching to External ROM or EPROM

When the CSM30003 branches to the external ROM or EPROM, the
addresses in the range between 0x0000h and OxOFFFh are mapped into
the internal ROM. To access this address range in the external ROM or
EPROM it is necessary to write a 1 into the IRPC register.

The CSM30003 Catalog Device H-3

H-4

Appendix |

MSP50C3x Family Data Sheet

This appendix contains data sheet information for the MSP50C3x mixed-
signal processor family.

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

® |[nterface to External ROM/EPROM
(Up to 8 MBytes)
® 3-Bit Microprocessor with 61 instructions
® 32 Twelve-Bit Words and 992 Bytes of RAM
® 4K Internal ROM
description

3.3V to 6.5V CMOS Technology for Low
Power Dissipation

28 Software-Configurable 1/O Lines
10-kHz or 8-kHz Speech Sample Rate

The MSP50C30 combines an 8-bit microprocessor, two speech synthesizers, ROM, RAM, and I/O in a low-cost
single-chip system. The architecture uses the same arithmetic logic unit (ALU) for the two synthesizers and the
microprocessor, thus reducing chip area and cost and enabling the microprocessor to do a multiply operation
in 0.8 us. The MSP50C30 features two independent channels of linear predictive coding (LPC), which
synthesize high-quality speech at a low data rate. Pulse-code modulation (PCM) can produce music or sound
effects. For more information, see the MSP50C30 User’s Guide (Tl literature number SPSU012).

PJM PACKAGE

(TOP VIEW)
Sﬂggﬁﬂamwwom¢mmﬁ
DOLOULLCLCLCLCILCLLLILIILLILCI<COO
ZZ0000000O0O0O0O0O0OO0O0O0O0OZZ2
OO0000000000000000000

/) OO~ OULITONATO DN OL T O N
O OO OO O OO O O O 00 00 0 W 0 0 W
NCOf1 T 80 |1 NC
NC [2 79 FJ NC
NC [3 78 J NC
NC] 4 77 & NC
NC O 5 76 |J NC
NC [] 6 75 1 NC
OAl7 OO 7 74 J OAO
OA18 [] 8 73 & PD3
OA19 [9 72 & PD2
0OA20 [10 71 & PD1
OA21 11 70 J PDO
OA22 [] 12 69 1 VDD
Vgg] 13 68 |1 DAC—
ID7] 14 67 | DAC+
ID6 [] 15 66 |1 Vss
ID5 [16 65 [J PC7
ID4 [} 17 64 [J PC6
ID3 [18 63 |1 PC5
ID2] 19 62 [1 PC4
ID1] 20 61 [J PC3
IDO] 21 60 2 PC2
INIT H 22 59 J PC1
Vpp O 23 58 [J PCO
PAO O] 24 57 |J OSC OUT
NC [25 56 [J NC
NC] 26 55 [0 NC
NC [27 54 |1 NC
NC] 28 53 O NC
NC] 29 52 [NC
NC [30 51 [0 NC
BRI RRERIIIIIILESTRSR
Do gooOgg
OdNMINO HOONOINMOIOONZO
Z E s s z=ER R RRRRRECZ
)
(@]

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments

warranty. Prod

ing does not

testing of all parameters.

ily include

*9 TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

Copyright 0 1998, Texas Instruments Incorporated

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

absolute maximum ratings over operating free-air temperature range T
Supply voltage range, Vpp (See NOte 1) o -0.3Vto8V
Supply current, Ipp Or Igg (SEE NOtE 2) ... ot 100 mA
Input voltage range, Vi (see Note 1) i e -0.3VtoVpp+0.3V
Output voltage range, Vo (see Note 1) -0.3VtoVpp+03V
Storage temperature FaNgEettt -30°C to 125°C

T Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to ground.

2. The total supply current includes the current out of all the 1/O terminals and DAC terminals as well as the operating current of the
device.

recommended operating conditions (MSP50C30)

MIN MAX | UNIT

VDD Supply voltage T 33 6.5 v
Vpp =3.3V 25 3.3

ViH High-level input voltage Vpp=5V 3.8 5 \Y,
Vpp=6V 45 6
Vpp=3.3V 0 0.65

VL Low-level input voltage Vpp=5V 0 1 Y,
Vpp=6V 0 13

TA Operating free-air temperature Device functionality 0 70 °C

Rspeaker Minimum speaker impedance Direct speaker drive using 2 pin push-pull DAC option 32 Q

T Unless otherwise noted, all voltages are with respect to Vgs,.

{'f TEXAS
INSTRUMENTS

-4 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air

temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
J— Vpp=35V 2
VT+ Positive-going threshold voltage (INIT) VoD =6V 34 \Y
J— Vpp=35V 1.6
V71— Negative-going threshold voltage (INIT) VoD =6V 23 \Y
— Vpp =35V 0.4
Vhys Hysteresis (V14— V1) (INIT) VoD=6V 11 \%
lkg Input leakage current (except for OSC IN) 2 pA
Istandby Standby current (m low, SETOFF) 10 HA
Vpp =33V, 21
Ipp’ Supply current Vpp =5V, 3.1 mA
Vpp =6V, 4.5
Vpp =3.3V, VoH =275V -4 -12
Vpp =5V, VoH =45V -5 -14 mA
IoH High-level output current (PA, PB) zsg ; 2:\/ zg: ; iz X :: :;2
Vpp=5YV, VoH =3.33V -14 —40 mA
Vpp =6V, VoH=4V -20 -51
Vpp=3.3V, VoL=05V
Vpbp=5V, VoL=05V mA
loL Low-level output current (PA, PB) zzg ; EZV zgt ; ii z 10 19
Vpbp=5V, VoL =167V 20 29 mA
Vpp=6V, VoL=2V 25 35
Vpp=3.3V, VoH =275V -30 -50
Vpbp=5V, VoH =45V -35 —60 mA
IOH High-level output current (D/A) XEE ; 2ZV zg: ; 22 z ::8 :22
Vpp =5V, VoH =4V -90 -140 mA
Vpp =6V, VoH=5V -100 -150
Vpp =33V, VoL=05V 50 80
Vpp=5V, VoL=05V 70 90 mA
Vpp =6V, VoL=05V 80 110
loL Low-level output current (D/A) VoD =33V, VoL=1V 100 120
Vpp =5V, VoL=1V 140 mA
Vpp =6V, VoL=1V 150
e I
Vpbp=5V, Ta = 25°C,
fosc(low) ~ Oscillator frequency? Target frequency = 15.36 MHz 1489 1536 15.86| MHz
Vpbp=5V, Ta = 25°C,
fosc(nign) Oscillator frequency? Target frequency = 19.2 MHz 18.62 19.2 19.7| MHz

1t Operating current assumes all inputs are tied to either Vgg or Vpp with no input currents due to programmed pullup resistors. The DAC output
and other outputs are open circuited.
*The frequency of the internal clock has a temperature coefficient of approximately —0.2 %/°C and a Vpp coefficient of approximately +1%/V.

*9 TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

switching characteristics

PARAMETER TEST CONDITIONS MIN NOM MAX | UNIT
Eg PD?APC’ Vpp=3.3V, CL=100pF 10% to 90% 50
tr Rise time ’ ns
OA Vpp=3.3V, CL=50pF 10% to 90% 50
) Eg PS/APC’ Vpp=3.3V, CL=100pF 10% to 90% 50
tf Fall time ! ns
OA Vpp=3.3V, Cp=50pF, 10% to 90% 50
timing requirements
| MmN mAx | uniT
Initialization
UNIT INIT pulsed low while the MSP50x3x has power applied (see Figure 1) | 1 us
Wakeup
tsu(wakeup) Setup time prior to wakeup terminal negative transition (see Figure 2) | 1 us
External Interrupt
fclock = 15.36 MHz 1
tsy(interrupt) Setup time prior to B1 terminal negative transition (see Figure 3) Telock = 19.2 MHZ 15 us
Writing (Slave Mode)
tsu1(B1) Setup time, B1 low before BO goes low (see Figure 4) 20 ns
tsu(d) Setup time, data valid before BO goes high (see Figure 4) 100 ns
th1(B1) Hold time, B1 low after BO goes high (see Figure 4) 20 ns
th(d) Hold time, data valid after BO goes high (see Figure 4) 30 ns
ty Pulse duration, BO low (see Figure 4) 100 ns
tr Rise time, BO (see Figure 4) 50 ns
tf Fall time, BO (see Figure 4) 50 ns
Reading (Slave Mode)
tsu2(B1) Setup time, B1 before BO goes low (see Figure 5) 20 ns
th2(B1) Hold time, B1 after BO goes high (see Figure 5) 20 ns
tdis Output disable time, data valid after BO goes high (see Figure 5) 0 30 ns
tw Pulse duration, BO low (see Figure 5) 100 ns
tr Rise time, BO (see Figure 5) 50 ns
tf Fall time, BO (see Figure 5) 50 ns
tg Delay time for BO low to data valid (see Figure 5) 50 ns
External ROM
ta(ROM) ROM access time 400 ns

{'f TEXAS
INSTRUMENTS

-6 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

PARAMETER MEASUREMENT INFORMATION

INIT
fe— tnir
Figure 1. Initialization Timing Diagram
Wakeup
f——»— tsy(wakeup)
Figure 2. Wakeup Terminal Setup Timing Diagram
B1

je——»— tsy(interrupt)

Figure 3. External Interrupt Terminal Setup Timing Diagram

& AN\ [/

tsu1(B1) [¢— ¥ }Hi th1(B1)

\
o N /
| —»| t
tf—b‘ ﬂ_ r
ﬂ_‘“—tsu(d)—ﬂ \
)

\
PA ’< Data Valid >—

Figure 4. Write Timing Diagram (Slave Mode)

*9 TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 -7

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

PARAMETER MEASUREMENT INFORMATION

S/ N\

tsu2(B1) [¥ —»| [4— tho(B1
| W | | (B1)
BO
AN V4
N /
ty —» ‘4— >
| —» | tgis

PA \ Data Valid >—

Figure 5. Read Timing Diagram (Slave Mode)

{'f TEXAS
INSTRUMENTS

-8 POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265

MSP50C30
MIXED-SIGNAL PROCESSOR

SPSS021 NOVEMBER 1998

MECHANICAL DATA
PJIM (R-PQFP-G100) PLASTIC QUAD FLATPACK

AR

23,45
22,95

i
QR
19:80 \

4040022/B 03/95

NOTES: A. Alllinear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022

{'f TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 ® DALLAS, TEXAS 75265 -9

I-10

