# $\mathsf{OMAP}^{\scriptscriptstyle\mathsf{TM}}$

# OMAP5432 Multimedia Device Silicon Revision 2.0 Evaluation Module

**Texas Instruments OMAP™ Family of Products** 

# **Reference Guide**



Literature Number: SWCU130 May 2013

### **WARNING: EXPORT NOTICE**

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorisation from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. This provision shall survive termination or expiration of this Agreement.

According to our best knowledge of the state and end-use of this product or technology, and in compliance with the export control regulations of dual-use goods in force in the origin and exporting countries, this technology is classified as follows:

US ECCN: 5E991 EU ECCN: EAR99

And may require export or re-export license for shipping it in compliance

with the applicable regulations of certain countries.



## **Contents**

| Pre | face    |                                           | 6         |
|-----|---------|-------------------------------------------|-----------|
| 1   | OMAP5   | 432 EVM Introduction                      | 9         |
|     | 1.1     | OMAP5432 EVM Overview                     | . 9       |
|     | 1.2     | Overview of the OMAP5432 EVM Kit Contents | . 9       |
| 2   | OMAP5   | 432 EVM Architecture                      | 10        |
|     | 2.1     | Overview of the OMAP5432 EVM Architecture | 10        |
|     | 2.2     | System Clock Distribution                 | 14        |
|     | 2.3     | OMAP5432 ES2.0 Processor                  | 14        |
|     | 2.4     | TWL6037 Power Companion IC                | 14        |
|     | 2.5     | TWL6040 Audio Companion IC                | 17        |
|     | 2.6     | SYSBOOT Configuration                     | 18        |
|     | 2.7     | Input Power Circuitry                     | 19        |
|     | 2.8     | Standard Volatile Memory                  | 20        |
|     | 2.9     | Debug UART Interface                      | 20        |
|     | 2.10    | Micro-SD Card Connector                   | 21        |
|     | 2.11    | Display Interfaces                        | 22        |
|     | 2.12    | Bluetooth/WLAN/NFC Interfaces             | 26        |
|     | 2.13    | Audio Interfaces                          | 27        |
|     | 2.14    | USB Interfaces                            | 28        |
|     | 2.15    | Expansion Connectors                      | 31        |
|     | 2.16    | Camera Expansion                          | 36        |
|     | 2.17    | JTAG Connector (J1)                       | 38        |
|     | 2.18    | LED Indicators                            | 39        |
|     | 2.19    | User Interface Features                   | 41        |
|     | 2.20    | I <sup>2</sup> C Device Mapping           | 42        |
| 3   | OMAP5   | 432 EVM Software Interface                | 43        |
|     | 3.1     | Readable Board Revision                   | 43        |
|     | 3.2     | Pin Multiplexing                          | 43        |
|     | 3.3     | OMAP5432 EVM Key Components               | 48        |
| 4   | Test/De | bug Information                           | <b>50</b> |
|     | 4.1     | Clock Signal Access                       | 50        |
|     | 4.2     | Power Rail Signal Monitoring/Access       | 53        |
|     | 13      | OMAD5/32 EVM Interface Signal Access      | 56        |



## **List of Figures**

| 1  | OMAP5432 EVM Architectural Block Diagram                           | 11 |
|----|--------------------------------------------------------------------|----|
| 2  | OMAP5432 EVM (Top View)                                            | 12 |
| 3  | OMAP5432 EVM (Bottom View)                                         | 13 |
| 4  | TWL6037 Power Companion IC Package Diagram (Bottom View)           | 15 |
| 5  | SYSBOOT Switch Location                                            | 18 |
| 6  | Input Power Circuitry Block Diagram                                | 20 |
| 7  | UART Communication Block Diagram                                   | 21 |
| 8  | SDMMC1 Card Cage Block Diagram                                     | 22 |
| 9  | HDMI Interface Block Diagram                                       | 23 |
| 10 | DSI Display on Expansion Connector (J20)                           | 24 |
| 11 | Parallel Display on Expansion Connector (J20)                      | 26 |
| 12 | Pandaboard5 WLAN/Bluetooth Interface Block Diagram                 | 27 |
| 13 | Audio Interface Block Diagram                                      | 28 |
| 14 | USBOTG Interface Block Diagram                                     | 29 |
| 15 | USBB2 Interface Block Diagram                                      | 30 |
| 16 | USBB3 Interface Block Diagram                                      | 31 |
| 17 | Expansion Connectors - J20 and J21 (Bottom Side of PCB)            | 32 |
| 18 | Generic Expansion Connector – J17 (Top Side of PCB)                | 35 |
| 19 | 14-pin JTAG Connector (J1)                                         | 39 |
| 20 | LED Locations                                                      | 41 |
| 21 | High-Speed Audio Clock Probe Point (h_SYSCLK)                      | 51 |
| 22 | USB Phy Ref Clock Probe Point (H_FREFCLK_1)                        | 52 |
| 23 | Camera Module Clock Probe Point (H_FREFCLK_0)                      | 52 |
| 24 | 32KHz Audio Clock Probe Point (CLK32K_PAUD)                        | 53 |
| 25 | OMAP5432 ES2.0 Current Measurement Probe Points (Back Side of PCB) | 54 |
| 26 | DDR3 Current Measurement Probe Points (Top Side of PCB)            | 55 |
| 27 | TWL6037 SMPS Output Probe Points                                   | 55 |
| 28 | TWL6040 PDM Interface Probe Points                                 | 56 |
| 29 | USBB2 HSIC Interface Probe Points                                  | 57 |
| 30 | LISBR3 HSIC Interface Probe Points                                 | 57 |



#### www.ti.com

## **List of Tables**

| 1  | OMAP5432 EVM Features                                              | 9  |
|----|--------------------------------------------------------------------|----|
| 2  | SYSBOOT[3:0] Definitions                                           | 18 |
| 3  | HDMI GPIO Definitions                                              | 23 |
| 4  | WLAN/Bluetooth Module GPIO Definitions                             | 27 |
| 5  | USB Host Port GPIO Definitions                                     | 30 |
| 6  | Main Expansion Connector Pin Definitions (J20)                     | 32 |
| 7  | GPMC Expansion Connector Pin Definitions (J21)                     | 34 |
| 8  | Generic Expansion Connector Pin Definitions (J17)                  | 35 |
| 9  | Camera Expansion Connector Pin Definitions (J2)                    | 36 |
| 10 | Dual CSI/Parallel Camera Expansion Connector Pin Definitions (J18) | 37 |
| 11 | JTAG Connector Pinout (J1)                                         | 39 |
| 12 | OMAP I <sup>2</sup> C1 Device Addresses                            | 42 |
| 13 | OMAP I <sup>2</sup> C2 Device Addresses                            | 42 |
| 14 | OMAP I <sup>2</sup> C3 Device Addresses                            | 42 |
| 15 | OMAP I <sup>2</sup> C4 Device Addresses                            | 43 |
| 16 | OMAP I <sup>2</sup> C5 Device Addresses                            | 43 |
| 17 | Board ID Read Values                                               | 43 |
| 18 | OMAP5432 ES2.0 Pin Multiplexing                                    | 43 |
| 19 | Camera Expansion Connector (J20) Pin Multiplexing Options          | 48 |
| 20 | Key H/W Components                                                 | 49 |
| 21 | Power Management Capabilities                                      | 53 |



## Read This First

This manual should be used by software and hardware developers for evaluation of the OMAP5432 ES2.0 chipset. This document describes the OMAP5432 evaluation module (EVM) hardware. This document also gives the user information about the different interfaces on the OMAP5432 EVM. For specific support, please refer to TI recommended 3rd parties. Please note that not all hardware features are supported by the released software.

#### **Related Documentation:**

OMAP543x ES2.0 Technical Reference Manual



www.ti.com Trademarks

#### **Trademarks**

OMAP is a trademark of Texas Instruments Incorporated.

ARM is a registered trademark of ARM Limited. Cortex is a trademark of ARM Limited.

Android is a trademark of Google, Inc.

Linux is a registered trademark of Linus Torvalds.

POWERVR is a trademark of Imagination Technologies Limited.

All other trademarks are the property of their respective owners.

### **History**

The following table summarizes the revisions to the OMAP5432 EVM Reference Manual (SWCU130).

| Version | Literature Number | Date     | Notes   |
|---------|-------------------|----------|---------|
| *       | SWCU130           | May 2013 | See (1) |

<sup>(1)</sup> OMAP5432 Evaluation Module System Reference Module (SWCU130) — Initial release.



# OMAP5432 EVM System Reference Guide

This document is the System Reference Manual for the OMAP5432 EVM, a low cost OMAP5432 ES2.0 based board. This document provides detailed information on the overall design and usage of the OMAP5432 EVM from the System perspective.

#### **CAUTION**

The OMAP5432 EVM may reach elevated temperatures. Avoid handling the OMAP5432 EVM while power is applied, especially in areas shown in OMAP5432 High-Temperature Regions.





**OMAP5432 High-Temperature Regions** 



#### 1 OMAP5432 EVM Introduction

#### 1.1 OMAP5432 EVM Overview

OMAP5432 EVM is an OMAP5432 ES2.0 platform designed to provide access to as many of the powerful features of the OMAP5432 Multimedia Processor as possible, while maintaining a low cost. This will allow the user to develop software to utilize the features of the powerful OMAP5432 processor. In addition, by providing expandability via onboard connectors, the OMAP5432 EVM supports development of additional capabilities/functionality. See Table 1 for a listing of the OMAP5432 EVM features.

**Device or Module Features or Description** Processor OMAP5432 ES2.0 2GB (implemented using 4x Micron 4Gb DDR3L devices Onboard DDR3L (MT41K256M16HA-125:E) Non-volative Memory 4GB EMMC/iNAND Ultra device (Sandisk P/N SDIN7DP2-4G) TI (TWL6037 Power Management Companion IC) **PMIC** 14-pin JTAG **GPIO Pins Debug Support LEDs** UART via micro-USB connector 5.0" x 3.97" (127.00mm x 100.84 10 layers (8 Routing) **PCB** mm) 2 blue LEDs (GPIO-controlled), 5 green LEDs (I2C-controlled), one tri-color RGB LED (I2C-controlled), Green Debug Power LED, Red Power Input Indicators Voltage Indicator HS USB 3.0 OTG Port USB3.0 connector, supports optional plug-in of micro-USB connector Three USB HS Ports, two to onboard connector, one provided via 0.1" **HS USB Host Port** pitch header 3.5mm, Stereo out 3.5mm, Stereo In **Audio Connectors** Headset Jack (earphone/microphone) 4-bit Micro-SD card cage, push/push **SDIO Connector** User Interface 1-User defined button Reset Button HDMI via native OMAP HDMI interface DSI Display Expansion (DSIPORTA and DSIPORTC) via 100-pin Video expansion connector Parallel Display Expansion (DPI) via 100-pin expansion connector **Power Connector** DC Power Single MIPI CSI-2 camera and/or parallel camera/dual MIPI CSI-2 sensors Camera supported via camera expansion connectors For information, see Generic, Main, Camera, and GPMC Expansion Expansion Connector(s)

sections of this document

Table 1. OMAP5432 EVM Features

### 1.2 Overview of the OMAP5432 EVM Kit Contents

The OMAP5432 EVM kit contains the following items:

- 1 OMAP5432 EVM
- · Board packing material
- 1 Shipping Box

The following items can be used with the OMAP5432 EVM, but are NOT included in the kit:

- USB Cable (micro-AB to Type A)
- HDMI Cable (Type D)
- DC wall supply (+5Vdc up to +15Vdc)

#### **External Power Supply**



The use of an external power supply is required to power this EVM. Selection should always take into consideration a power supply that provides a suitable level of protective electrical safety isolation and is certified as appropriate, to local product regulatory compliance requirements.

#### 2 OMAP5432 EVM Architecture

This chapter explains the architecture of the OMAP5432 EVM.

#### 2.1 Overview of the OMAP5432 EVM Architecture

The OMAP5432 EVM uses the following major components:

- M OMAP5432 ES2.0 Processor
- M TWL6037 Power Management Companion Device
- M TWL6040 Audio Companion Device
- M DDR3L Memory
- M HDMI Connector (Type D) for OMAP5432 HDMI Transmitter output
- M Audio Input & Output Connectors (3.5mm)
- M Micro-SD Card Cage (push-push)
- M UART via micro-AB USBOTG Connector
- M WL1857 Module 802.11b/g/n, Bluetooth, NFC

The Platform also includes connectors that can be used for additional functionality and/or expansion purposes. They are indicated by the blue blocks in Figure 1, and include: .

- M Single CSI-2 Camera Connector (J2)
- M Dual CSI-2/Parallel Camera Connector (J18)
- M Main Expansion Connector (J20)
- M GPMC Expansion Connector (J21)
- M Generic Expansion Connector (J17)
- M Power Measurement (J19)

The core components of the OMAP5432 EVM will be discussed in this section of the document. This would include the OMAP5432 ES2.0 Processor and its external DDR3L memory, the input clock circuitry, the TWL6037 Power Companion IC, and the TWL6040 Audio Companion IC. The functional interfaces will be discussed in later sections of the document.

Figure 1 is the architectural block diagram of the OMAP5432 EVM.



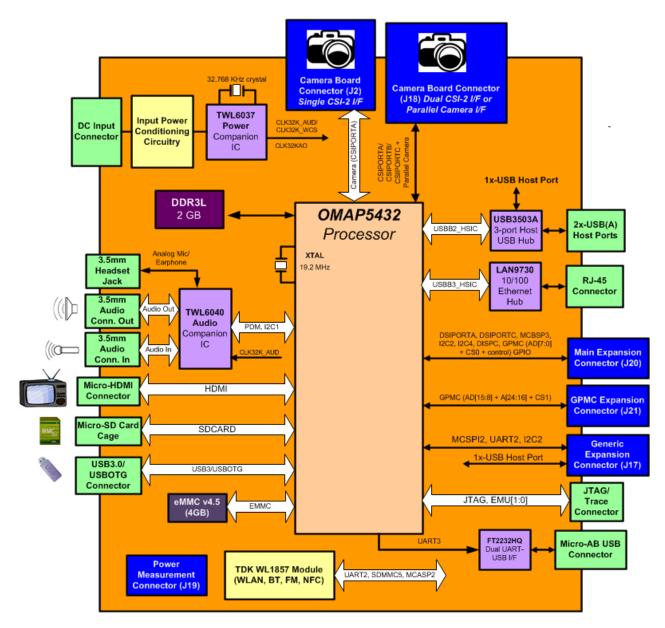



Figure 1. OMAP5432 EVM Architectural Block Diagram

Figure 2 shows the OMAP5432 EVM top view, and Figure 3 shows the bottom view.

OMAP5432 EVM Architecture www.ti.com

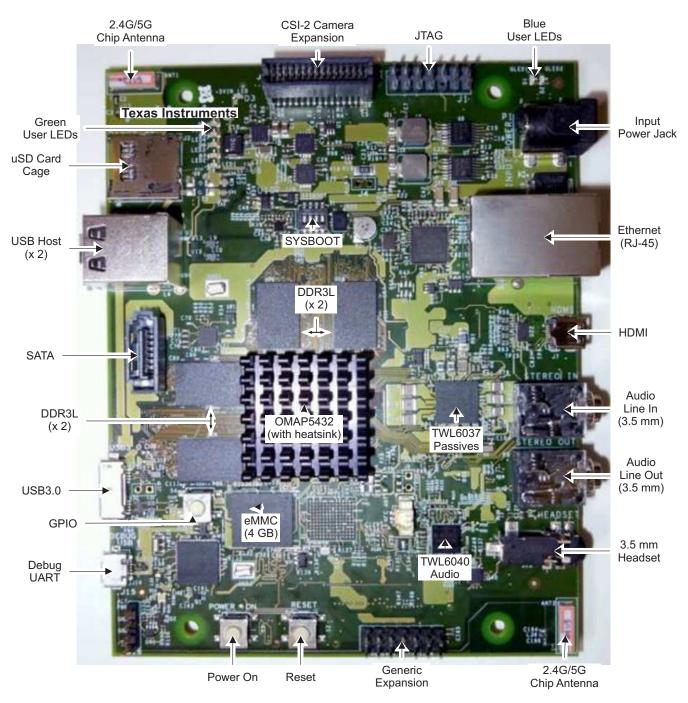



Figure 2. OMAP5432 EVM (Top View)



### CSI/Parallel Camera Expansion



Power Measurement

Main GPMC Expansion

Figure 3. OMAP5432 EVM (Bottom View)



#### 2.2 System Clock Distribution

The OMAP5432 EVM implements a 19.2 MHz crystal that directly drives the FREF XTAL IN ball (L32) and FREF\_XTAL\_OUT ball (M32) of the OMAP5432 ES2.0 processor. This clock is used as an input to the PLLs within the OMAP5432 ES2.0 processor so that it can generate all the internal clock frequencies required for system operation. The OMAP5432 generates a square wave clock output on the FREF\_XTAL\_CLK output (ball L33), which is used as an input to the TWL6040 Audio Companion IC. Additionally, there are two clock outputs that are programmable by system software (FREF CLK0 OUT/ball M31 and FREF CLK1 OUT/ball P31).

#### 2.3 OMAP5432 ES2.0 Processor

The heart of OMAP5432 EVM is the OMAP5432 ES2.0 processor. The OMAP5432 high-performance multimedia application device is based on enhanced OMAP™ architecture and uses 28-nm technology. The architecture is designed to provide best-in-class CPU performance, video, image, and graphics processing.

The device supports high-level operating systems (OS) such as:

- Android™
- Linux® and others.

The device is composed of the following subsystems:

- Cortex™-A15 microprocessor unit (MPU) subsystem, including two ARM® Cortex-A15 cores
- Digital signal processor (DSP) subsystem
- Image and video accelerator high-definition (IVA-HD) subsystem
- Cortex-M4 image processing unit (IPU) subsystem, including two ARM Cortex-M4 microprocessors
- Display subsystem
- Audio back-end (ABE) subsystem
- Imaging subsystem (ISS), consisting of image signal processor (ISP) and still image coprocessor (SIMCOP) block
- 3D-graphics accelerator subsystem, including POWERVR™ SGX544 dual-core Debug subsystem

The device includes state-of-the-art power management techniques required for high-performance mobile products. Comprehensive power management is integrated into the device. The device also integrates:

- On-chip memory
- External memory interfaces
- Memory management
- Level 3 (L3) and level 4 (L4) interconnects
- System and connecting peripherals

#### TWL6037 Power Companion IC 2.4

The TWL6037 power companion IC is packaged in a 9.15mm x 9.15 mm, 108-pin QFN package that provides many functions used on the Platform. The QFN package has two rows of pads with 0.55mm pitch and 0.5mm pitch, with the package diagram shown in Figure 4. The feature list of the major functions/interfaces provided by the TWL6037 device that are utilized on the OMAP5432 EVM ES2.0 platform are listed below.

- A power management system (FSM)
- 1 HS-I2C interface (≤ 2.4Mbits/s) for all IC GP control commands (CTL-I2C)
- 1 HS-I2C interface (≤ 2.4Mbits/s) for all Smart-Reflex Class 3 control commands (SR-I2C)
- A 32kHz RC oscillator for a fast device start-up
- A high-performance crystal oscillator, for 32.768kHz external crystal
- A Real Time Clock (RTC) resource
- Power supply resources:
  - 11 Low Drop Out (LDO) regulators



- 7 configurable step down converters
- 1 boost converter (for generating VBUS when OTG interface is in host mode)
- 3 general-purpose enables for possible platform upgrades (REGEN1, SYSEN1, SYSEN2)

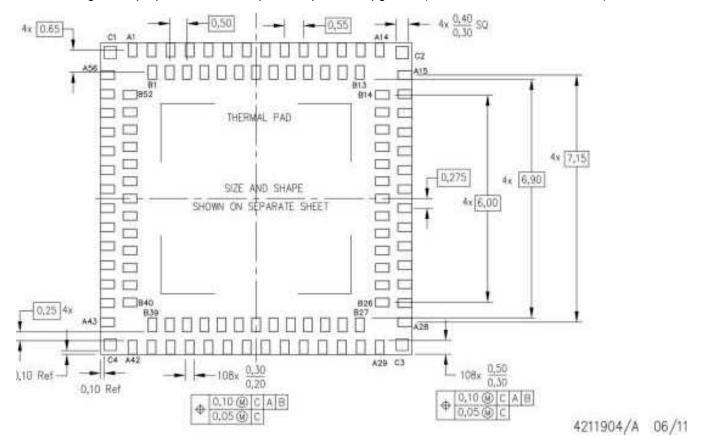



Figure 4. TWL6037 Power Companion IC Package Diagram (Bottom View)

#### 2.4.1 TWL6037 VDD\_OPP\_MPU (SMPS1/2/3) Outputs

The OMAP5432 EVM board implements a triple-phase SMPS to provide the MPU voltage to the OMAP5432 ES2.0 device. This configuration connects the SMPS1, SMPS2 and SMPS3 step-down converters of the TWL6037 in parallel to provide up to 9A of current to the VDD\_OPP\_MPU supply pins on the OMAP5432 ES2.0 device. The default voltage of all of these supplies is 1.05V, and each should be adjusted as required by S/W for the desired processor OPP. A current measurement resistor (R213) is included on the input of this SMPS.

#### 2.4.2 TWL6037 VDD\_OPP\_MM (SMPS4/5) Outputs

The OMAP5432 EVM board implements a dual-phase SMPS to provide the MM (multi-media) voltage to the OMAP5432 ES2.0 device. This configuration connects the SMPS4, and SMPS5 step-down converters of the TWL6037 in parallel to provide up to 4A of current to the VDD\_OPP\_MM supply pins on the OMAP5432 ES2.0 device. The default voltage of all of these supplies is 1.05V, and each should be adjusted as required by S/W for the desired processor OPP. A current measurement resistor (R211) is included on the input of this SMPS.



#### 2.4.3 TWL6037 VDD DDR3L (SMPS6) Output

The TWL6037 SMPS6 step down converter provides the 1.35V required for the OMAP5432 ES2.0 DDR3 power pins, as well as the supply pins on the DDR3L devices. With the TWL6037 BOOT0 line tied to a logic '0', this supply will output 1.35V, and with BOOT0 tied to a logic '1', the supply will output 1.5V. This allows the usage of either DDR3L devices or standard DDR3 parts. This supply is capable of providing up to 3A of current. A current measurement resistor (R61) is included on the output of this SMPS.

#### 2.4.4 TWL6037 VDDS 1V8 MAIN (SMPS7) Output

The TWL6037 SMPS7 step down converter provides the 1.8V used as the main I/O voltage for the OMAP5432 EVM platform. It drives the VDDS\_1V8 balls on the OMAP5432 ES2.0 device, as well as many other onboard pins requiring a 1.8V logic supply. This SMPS is capable of providing up to 2A of current.

### 2.4.5 TWL6037 VDD\_OPP\_CORE (SMPS8) Output

The OMAP5432 EVM board implements a SMPS to provide the core voltage to the OMAP5432 ES2.0 device. This configuration utilizes the SMPS8 step-down converter of the TWL6037 to provide up to 1A of current to the VDD\_OPP\_CORE supply pins on the OMAP5432 ES2.0 device. The default voltage of this supply is 1.05V, and should be adjusted as required by S/W for the desired processor OPP.

#### 2.4.6 TWL6037 VDDA\_2V1\_AUD (SMPS9) Output

The TWL6037 SMPS9 step down converter is used solely to provide the 2.1V pre-regulated supply used by the TWL6040 audio companion IC to generate its own power outputs. This SMPS is capable of providing up to 1A of current.

#### 2.4.7 TWL6037 Boost Converter (SMPS10) Output

The TWL6037 contains a boost converter that provides two outputs which are both +5Vdc outputs. The first output (SMPS10\_OUT1) is capable of providing 500mA of current, and serves as the USB charge pump when the OMAP USBOTG port is operating a USB host. The second +5V output (SMPS10\_OUT2) is capable of providing 100mA of current and is used as the input voltage to the internal 3.3V USB LDO.

#### 2.4.8 TWL6037 LDO Power Resources

The TWL6037 power companion IC also provides 11 LDOs that are available for external use on the OMAP5432 EVM board. These LDOs are discussed in the following paragraphs.

The LDO1\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDDAPHY\_CAM, which is connected to the VDDA\_CSIPORTA, VDDA\_CSIPORTB, and VDDA\_CSIPORTC input pins (balls N3, AA7, and J5, respectively) on the OMAP5432 ES2.0 processor.

The LDO2\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 300mA of current, and drives net VCC\_2V8\_DISP, which is a 2.8V rail which is connected only to expansion connectors J15 and J16.

The LDO3\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDDAPHY\_MDM, which is only connected to the VDDA\_LLI\_1 input pin (ball AJ17) on the OMAP5432 ES2.0 processor.

The LDO4\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDDAPHY\_DISP, which is connected to the VDDA\_DSIPORTA, VDDA\_DSIPORTC, and VDDA\_HDMI input pins (balls AA33, AE33, and AN25, respectively) on the OMAP5432 ES2.0 processor.

The LDO5\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDDA\_1V8\_PHY, which is a 1.8V rail that sources the following OMAP5432 balls:

- VDDS\_USBHS18 (ball AE18)
- VDDA\_USBSS18 (ball AE19)



- VDDA SATA (ball E9)
- VDDA\_DPLL\_UNIPORT\_LLI (ball AF17)
- VDDA\_DPLL\_HDMI (ball AF24)
- VDDA\_DPLL\_UNIPORT\_CSI (ball H14)

The LDO6\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDDS\_1V2\_MAIN, which is only connected to the OMAP5 wakeup power pin (VDDA\_LDO\_EMU\_WKUP, ball N25) and VDDS\_HSIC ball (N26) on the OMAP5432 ES2.0 processor. For OMAP5432 EVM implementation, this rail will be enabled at powerup and set to 1.2V, and should not be changed.

The LDO7\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDD\_VPP, which is only connected to the E-Fuse programming voltage input pin (VPP1, ball AD9) on the OMAP5432 ES2.0 processor.

The LDO8\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 200mA of current, and drives net VDD\_3v0, which is currently not used on the OMAP5432 EVM board.

The LDO9\_OUT supply is a programmable LDO that can be adjusted from 0.9V to 3.3V in 50mV steps. It can provide up to 50mA of current, and drives net VCC\_DV\_SDIO, which is connected to the VDDS\_SDCARD input pin (ball E5) on the OMAP5432 ES2.0 processor.

The USB\_OUT LDO is a fixed 3.3V, 35mA LDO that provides voltage to the OMAP5432 ES2.0 that it uses for its internal USB transceiver (net VDDA\_3V\_USB). The only ball powered by this LDO is the VDDA\_USBHS33 ball (ball AN21).

The VRTC LDO is internal LDO that is brought out to pin B48 on the TWL6037 Power IC for decoupling. It's only connection on the OMAP5432 EVM PCB is for pull-ups tied to the TWL6037 BOOT[1:0] pins.

The VANA LDO is internal LDO that is brought out to pin A49 on the TWL6037 Power IC for decoupling. It has no other connection on the PCB.

#### 2.4.9 TWL6037 Clock Circuitry

The TWL6037 has a 32.768 KHz crystal connected across its OSC32KIN and OSC32KOUT balls. This crystal is used by the TWL6037 to generate two output 32.768 KHz, 1.8V square wave clock outputs.

These outputs are:

- CLK32KGAO: always on clock connected to the SYS32K input of the OMAP5432 ES2.0 processor.
- GPIO\_5: This clock is buffered and driven to the CLK32K input of the TWL6040 Audio Companion IC. This clock will be off by default at reset, and must be configured and enabled by software via I2C.

#### 2.5 TWL6040 Audio Companion IC

The TWL6040 device is a small (6 x 6 mm, 0.5mm pitch) 120 ball PBGA that provides many functions, primarily audio, used on the Platform. Shown below is a feature list of the major functions/interfaces provided by the TWL6040 device.

- A audio management system
  - PDM Interface for Audio and control
  - Analog Microphone Interface
  - Headset speaker (32 ohm) and microphone
  - Earpiece Output
  - Aux Output
  - Hands-free 8 ohm driver
  - Dual Vibrator
- Misc Control
  - GPO
  - Power on/off



- Power
  - Internal LDOs
  - Internal negative charge pump

#### 2.6 SYSBOOT Configuration

The OMAP5432 ES2.0 Processor has five SYSBOOT inputs. These inputs are sampled after a board reset, and determine the booting and operating mode of the OMAP5432 Processor. The upper input (h\_SYSBOOT\_4) controls the clocking modes of the part, and is currently set to '0' through a 10Kresistor to ground and should not be changed.

The lower four inputs, h\_SYSBOOT\_[3:0] determine the type and order of memory or peripheral booting. h\_SYSBOOT\_3 determines whether memory or peripheral booting is preferred ('0' -> Peripheral, 1-> Memory). The SYSBOOT definitions may be found in the OMAP5430 TRM, but are included here for convenience. See Table 2 for the SYSBOOT definitions for the OMAP5432 EVM board.

Note that the SYSBOOT\_0 switch is aligned with the '1' position on the slide switch, and that setting a switch to the "ON" position will set the corresponding SYSBOOT input high into OMAP.

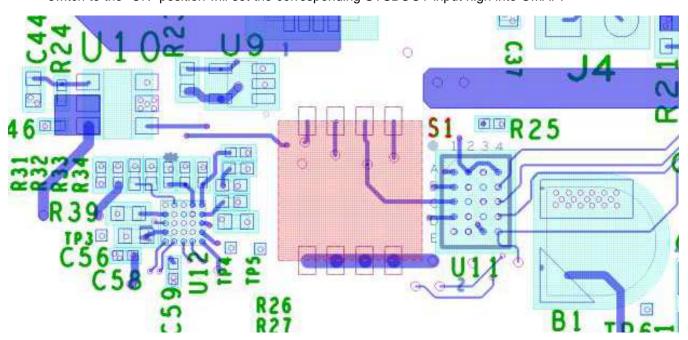



Figure 5. SYSBOOT Switch Location

Table 2. SYSBOOT[3:0] Definitions

| CVCDOOT[2.0]  | Booting Devices Order          |          |      |  |  |
|---------------|--------------------------------|----------|------|--|--|
| SYSBOOT[3:0]  | 1st                            | 2nd      | 3rd  |  |  |
| 0000          | USB                            | eMMC     | N/A  |  |  |
| 0001          | USB                            | NAND     | N/A  |  |  |
| 0010          | USB                            | SD       | eMMC |  |  |
| 0011          | USB                            | SATA     | SD   |  |  |
| 0100          | USB                            | UART     | XIP  |  |  |
| 0101          | UART                           | OneNAND  | N/A  |  |  |
| 0110 Reserved |                                | Reserved |      |  |  |
| 0111          | Fast XIP (wait monitoring OFF) | UART     | USB  |  |  |
| 1000          | eMMC                           | USB      | N/A  |  |  |
| 1001          | NAND                           | USB      | N/A  |  |  |



|  | Table 2. SYSBOOT | [3:0] Definitions | (continued) |
|--|------------------|-------------------|-------------|
|--|------------------|-------------------|-------------|

| SYSBOOT[3:0] | Booting Devices Order                   |     |     |  |
|--------------|-----------------------------------------|-----|-----|--|
| 3136001[3.0] | 1st                                     | 2nd | 3rd |  |
| 1010         | SD eMMC USB                             |     |     |  |
| 1011         | SATA                                    | USB |     |  |
| 1100         | XIP USB UART                            |     |     |  |
| 1101         | OneNAND UART N/A                        |     |     |  |
| 1110         | Reserved                                |     |     |  |
| 1111         | Fast XIP (wait monitoring OFF) UART USB |     |     |  |

#### 2.7 Input Power Circuitry

The input power circuitry may be found on sheet 10 of the board schematic. This circuitry provides the main 3.7V and 3.3V operating voltages for the board (VSYS\_BRD and VCC\_3V3\_MAIN, respectively). It also provides a load switch or SMPS that provides the 5V supply for the board that powers the host ports. A block diagram of this circuitry is shown in Figure 6 on the next page. The OMAP5432 EVM can be run with a DC wall supply ranging from +5Vdc to +15Vdc plugged into the input power jack at P1.

The block labeled "Input Voltage Detect/Power Enable Logic" in Figure 5 contains a supervisor IC and a comparator. This logic may be found on sheet 16 of the board schematic. The supervisor keeps both load switches (U4 and U8) disabled until the input supply has reached its valid operating voltage. The comparator is used to compare the divided down input to the internal reference of the comparator. If the input voltage from the jack is below approximately 5.60V, load switch U4 is enabled (driving the main 5V power rail DC\_5V with the jack input), and if it is > 5.60V then load switch U18 is enabled (driving the main 5V power rail DC\_5V with the SMPS 5V output). The enables to the load switches are complementary, so that only one may be enabled at a time (the exception to this is during the initial board power sequence, when both enables are high, which disables both load switches). The TPS54426 SMPS buck-converter at U8 is capable of providing up to 4A of output current @ 5V.

The board also provides a second TPS54426 SMPS buck-converter at U3 which is used to provide the main 3.3V supply for the board (VCC\_3V3\_MAIN). This rail is enabled by SYSEN1 from the TWL6037 Power Companion IC.



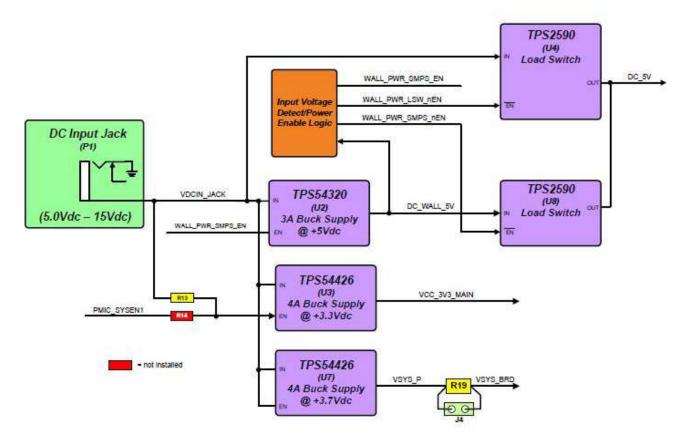



Figure 6. Input Power Circuitry Block Diagram

#### 2.8 Standard Volatile Memory

The OMAP5432 ES2.0 processor supports two DDR3 channels, accessible only via external memory devices. Each channel supports two chip-selects, so eight memory devices are provisioned on the PCB. The memory device used is Micron P/N MT41K256M16HA-125IT:E. This device is a 4Gb device, so up to 32Gb (4GB) of DDR3 can be supported. However, the current PCB only has the devices on CS0 populated for each channel, so the total amount of DDR3 provided is 16Gb (2GB).

The Micron DDR3 memory used is DDR3L (1.35V supply voltage). Regular DDR3 memory (1.5V supply voltage) could be utilized, but the voltage divider for the feedback into the supply SMPS @ U12 would need to be changed to provide 1.5V instead of 1.35V.

#### 2.9 Debug UART Interface

The OMAP5432 EVM provides a dual-port USART device (FTDI part number FT2232HQ). This provides up to two UART terminal interfaces out via a single USBOTG micro-AB connector located at J14. Driver software to utilize this device must be downloaded from the FTDI website. The first (lowest numbered) port of this device is connected to UART3 from the OMAP5432 ES2.0 processor, while the second port is unused. There are voltage translators provided to convert the 1.8V logic level UART signals to/from OMAP5432 ES2.0 to the 3.3V signals required by the USART.

When a micro-AB cable is plugged into J14, the VBUS from the host provides input voltage to the 3.3V LDO at U34 that powers the USART chip. Teraterm or another terminal emulation program should be used to connect to the first of the two USB serial ports found. To use this UART interface, the serial port settings should be applied as follows:

BAUD RATE: 115200

DATA: 8 bit



PARITY: noneSTOP: 1bit

• FLOW CONTROL: none

See Figure 7 for a block diagram of the OMAP5432 EVM UART circuitry.

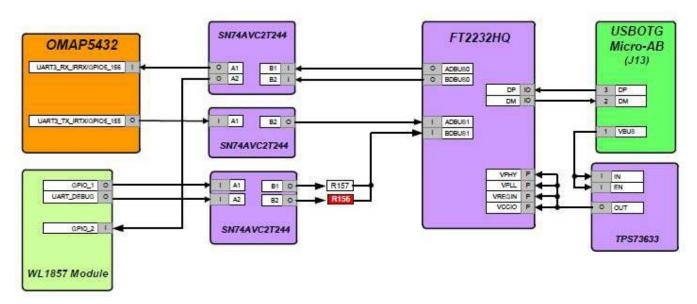



Figure 7. UART Communication Block Diagram

#### 2.10 Micro-SD Card Connector

The OMAP5432 EVM supports removable memory storage via an onboard micro-SD card cage. It is a four-bit card cage that supports 1.8V or 3.0V cards. Card detect functionality is supported via GPIO5\_152 of the OMAP5432 ES2.0 processor. See Figure 8 for a block diagram of the interface signaling to the card cage. The resistors shown in Figure 8 are 33 ohm series termination resistors.



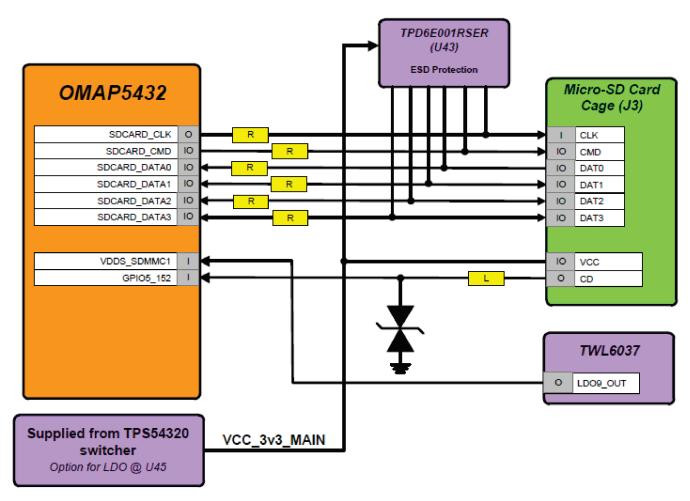



Figure 8. SDMMC1 Card Cage Block Diagram

#### 2.11 Display Interfaces

The OMAP5432 EVM provides many options for connecting a display to the platform. These options are:

- Via the OMAP5432 ES2.0 internal HDMI phy connected to the micro-HDMI connector at J7
- Via the OMAP5432 ES2.0 DSIPORTA and/or DSIPORTC interface(s), connected via an external display PCB connected to the Main Expansion Connector J20 (Hirose P/N FX6-100P-0.8SV2)
- Via the OMAP5432 ES2.0 parallel display interface (DISPC) via Main expansion connectors J20 (Hirose P/N FX6-100P-0.8SV2)

#### 2.11.1 HDMI connector

The OMAP5432 EVM provides a High-Definition Multimedia Interface (HDMI) via an industry-standard Type D connector at location J7. The interface is provided using the internal HDMI module provided by the OMAP5432 ES2.0. See Figure 9 for a block diagram of the OMAP5432 EVM HDMI circuitry. This interface includes a Texas Instruments TPD12S016 HDMI Port Protection/Interface device. A datasheet OMAP5432 EVM System Reference Manual Revision 0.5 April 18, 2013 DOC-21164 Page 26 of 65 for the TPD12S016RKTR may be found at <a href="http://www.ti.com/product/tpd12s016">http://www.ti.com/product/tpd12s016</a>. The high-speed differential clock and data lines are connected straight from OMAP through common mode chokes to the ESD protection device, to the connector, so that any ESD event experienced at the connector will be absorbed before damaging the OMAP5432 ES2.0 device I/Os.



In addition to providing ESD protection on the signals coming from the connector, this device performs voltage translation on the control signals in the HDMI interface (SCL, SDA, CEC, and HPD) from the 1.8V levels of the OMAP5432 ES2.0 to the 5V levels required by a TV set. See Table 3 for the GPIOs used on the HDMI interface and a description of their function. These GPIOs are sourced from the GPIO expander connected to the I2C5 interface from OMAP.

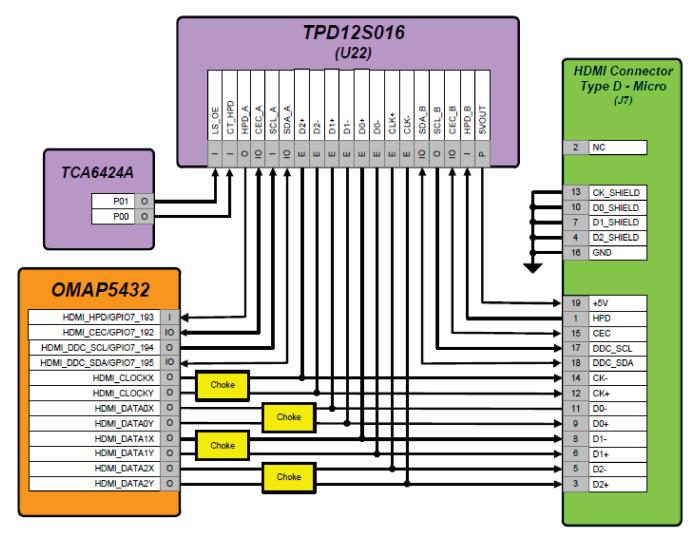



Figure 9. HDMI Interface Block Diagram

**Table 3. HDMI GPIO Definitions** 

| GPIO         | Signal Name | Description                       |
|--------------|-------------|-----------------------------------|
| GPIO_Exp P01 | HDMI_LS_OE  | TPD12S016 Level Shifter<br>Enable |
|              |             | 1 = Enabled, 0 = Disabled         |
| GPIO_Exp P00 | CT_ HPD     | TPD12S016 Load Switch<br>Enable   |
|              |             | 1 = Enabled, 0 = Disabled         |



#### 2.11.2 DSI Expansion via Expansion Connector (J20)

Another display option for the OMAP5432 EVM is via the DSIPORTA and DSIPORTC interfaces provisioned via a 100-pin Expansion Connector mounted on the backside of the PCB (J20). This connector is a Hirose part (part number FX6-100P-0.8SV91). See Figure 10 on page 28 for the pinout of DSI Expansion signals contained on this connector. This connector provides the capability to support either two separate LCD interfaces (one using DSIPORTA and the other using DSIPORTC), or a single large display panel that requires the use of both DSI interfaces.

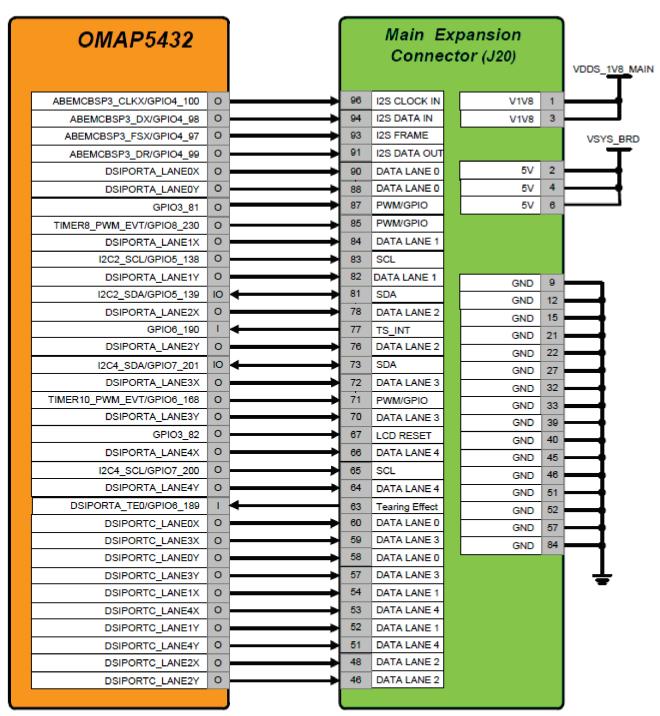



Figure 10. DSI Display on Expansion Connector (J20)



As a note to potential PCB designers using the DSI Expansion Connector to support a single large display panel using both DSI interfaces, the DSIPORTA and DSIPORTC interfaces are length matched within each interface, but due to PCB routing congestion on the OMAP5432 EVM, the interfaces were not matched to one another. On the current OMAP5432 EVM layout, the DSIPORTC interface pairs are approximately 220 mils (5.588 mm) longer than their DSIPORTA counterparts. This mismatch should be adjusted on any application board using both DSI interfaces to drive a single large display panel by making the DSIPORTA pairs longer than the DSIPORTC pairs by a similar amount.

#### 2.11.3 Parallel Display Expansion via Expansion Connector

The final display option for the OMAP5432 EVM is through the OMAP5432 ES2.0 parallel display interface (DPI), provisioned via the 100-pin Main Expansion connector.

In Figure 11, the majority of the display signals connected to J19 are connected through zero ohm resistors (designated in Figure 11 as "Rmux"). The zero ohm resistors are provisioned so that this connector can be used to provision an alternate audio codec (replacing the onboard TWL6040 device). The details of this muxing are discussed in paragraph .



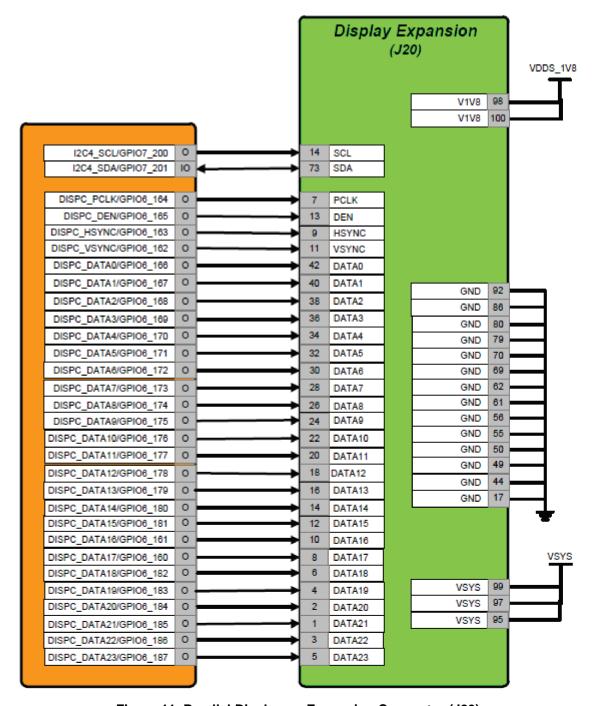



Figure 11. Parallel Display on Expansion Connector (J20)

#### 2.12 Bluetooth/WLAN/NFC Interfaces

OMAP5432 ES2 interfaces with a module (TDK preliminary part number R078C) that provides a Bluetooth interface, a 2.4/5 GHz 802.11b/g/n interface, an NFC interface, and an FM interface. This module may be found on sheet 8 of the schematics (reference designator U33). It uses Texas Instruments' WiLinkTM 8.0 solution. Please note that this portion of the design is not currently shipped with the OMAP5432 EVM.

See Figure 12 for a diagram of the OMAP5432 ES2 connectivity to this module. See Table 4 for a description of the GPIOs used to interface to the module and their function.



The OMAP5432 interfaces are connected to the TDK WiLink™ module as follows:

- WLSDIO: WLAN SDIO interface
- UART5: Bluetooth Host Control Interface
- McBSP1: Bluetooth Audio Digital PCM Path
- McBSP2: FM I2S Interface

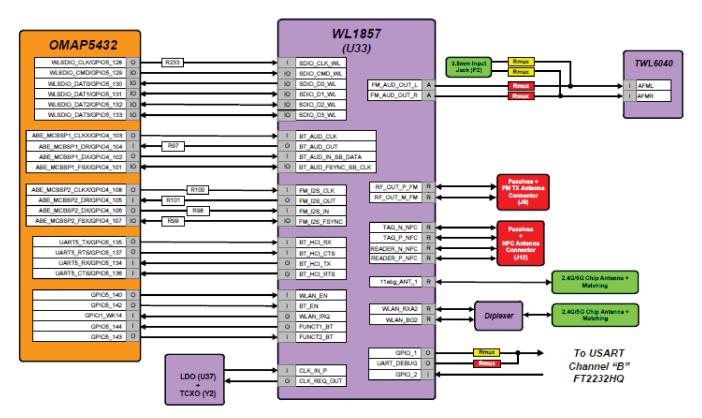



Figure 12. Pandaboard5 WLAN/Bluetooth Interface Block Diagram

| GPIO       | Dir. | Signal Name | Description               |
|------------|------|-------------|---------------------------|
| GPIO5 140  | 0    | WLAN EN     | 802.11b/g Enable          |
| GF105_140  | 0    | WLAIN_EIN   | 1 = Enabled, 0 = Disabled |
| GPIO5 142  | 0    | BT EN       | Bluetooth Enable          |
| GF105_142  | 0    | DI_EN       | 1 = Enabled, 0 = Enabled  |
| GPIO5_143  | 0    | BT_WAKEUP   | Blutetooth Wakeup         |
| GPIO5_144  | 1    | HOST_WU     | Host Wakeup               |
| GPIO1_WK14 | I    | WLAN_nIRQ   | WLAN Interrupt Input      |

**Table 4. WLAN/Bluetooth Module GPIO Definitions** 

#### 2.13 Audio Interfaces

#### 2.13.1 TWL6040 Audio Companion IC

See Figure 13 for a block diagram of the audio connectivity on the OMAP5432 EVM. In this block diagram, the signals with a red background in the box specifying their direction are analog I/Os while all others are 1.8V digital I/Os.



The OMAP5432 EVM provides two 3.5mm audio jack connections to provide line in and line out capability via the TWL6040 Audio Companion IC. It also provides a headset connector that supports 3.5mm headsets. There is a TS3A225ERTER device on the headset microphone lines, which performs automatic detection and swapping of the mic and ground portions of the audio jack to support all types of headsets (i.e. tip/ring/mic/sleeve as well as tip/ring/sleeve/mic). The digital path for audio back to the OMAP5432 ES2.0 processor is through the MCPDM interface.

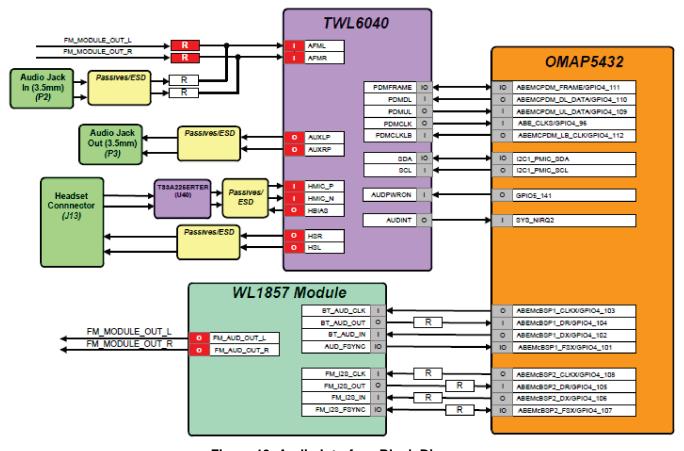



Figure 13. Audio Interface Block Diagram

#### 2.14 USB Interfaces

The OMAP5432 EVM utilizes three USB interfaces. The first is the USB3.0 interface from the internal transceiver within OMAP to the USB3.0 connector at J11. The second interface utilizes the two-wire HSIC interface (USBB2) to an onboard phy (SMSC P/N USB3503A-1-GL-TR), which provides three DP/DM USB Host Ports (two of which are connected to the Dual Type-A connector at J6). The third interface utilizes the two-wire HSIC interface (USBB3) to an onboard phy (SMSC P/N LAN9730-ABZJ), which provides a 10/100 Ethernet interface via the RJ-45 connector at J5. Each of these interfaces will be discussed in more detail in the following paragraphs.

#### 2.14.1 USBOTG Interface

The OMAP5432 EVM uses the USB3.0 transceiver within the OMAP5432 ES2.0 that is connected to an industry-standard USB3.0 connector (J11) as shown in Figure 14. The VBUS from the connector is connected to the TWL6037 companion Power IC, which can provide VBUS power via the SMPS10 boost converter in host mode.



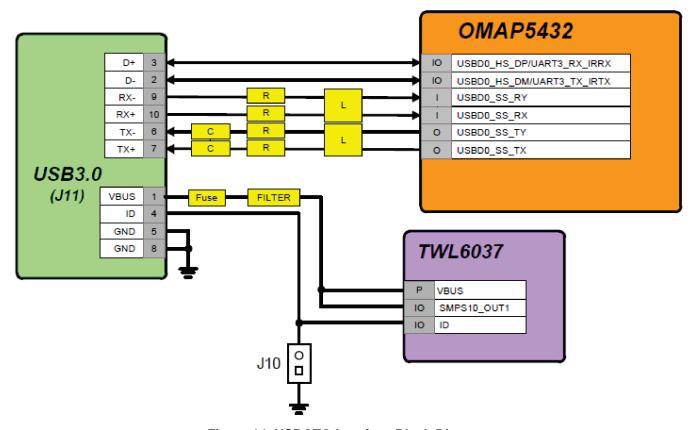



Figure 14. USBOTG Interface Block Diagram

#### 2.14.2 USBB2 HSIC Interface (USB Host Ports)

The OMAP5432 EVM uses the two-wire OMAP5432 ES2.0 USBB2 HSIC interface connected to an SMSC USB3503A-1-GL-TR phy. This Phy converts the two-wire HSIC interface to three downstream DP/DM host port pairs. Two of these ports are connected to the dual USB Type-A connector at J6, while the third is connected to expansion connector J17. See Figure 15 for a block diagram of the OMAP5432 EVM USBB2 interface connectivity.

NOTE: The reference clock to the USB3503A is sourced from the FREF\_CLK1\_OUT output of OMAP5432 ES2.0, and this OMAP output must be programmed for a clock frequency of 19.2 MHz for proper operation



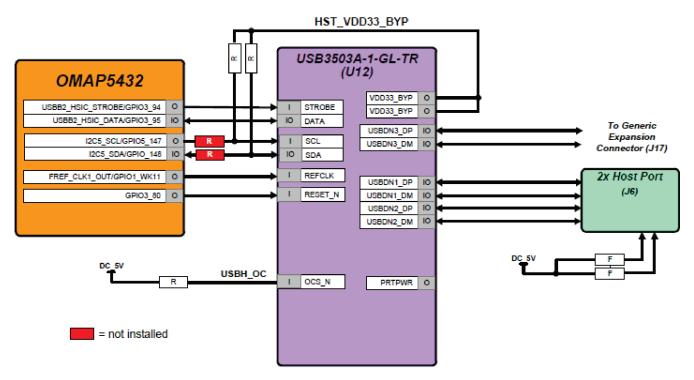



Figure 15. USBB2 Interface Block Diagram

See Table 5 for the definition of the GPIOs used to provide USB Host Port functions.

**GPIO** Signal Name Dir. Description USB Host Port Hub Reset **GPIO3 80** 0 H\_USBH\_NRESET 0 = Hub and Phy held in reset 1 = Normal operation This pin needs to be used as GPIO1\_WK11 0 H\_FREFCLK\_1 FREF\_CLK1\_OUT, and programmed to output 19.2 MHz

**Table 5. USB Host Port GPIO Definitions** 

#### 2.14.3 USBB3 HSIC Interface (Ethernet)

The OMAP5432 EVM uses the two-wire OMAP5432 USBB3 HSIC interface connected to an SMSC Phy chip (part number LAN9730-ABZJ). This Phy uses the HSIC interface to provide a 10/100 Base-T Ethernet interface via receive/transmit pairs sourced and received through isolation transformers included inside the industry standard tab up RJ-45 connector at J5. The 93AA56AT device at U17 is a serial EEPROM that can be used to store the MAC address and other information. It is not populated on the OMAP5432 EVM board, so this information must be programmed by S/W. See Figure 16 for a block diagram of the USBB3 interface connectivity.



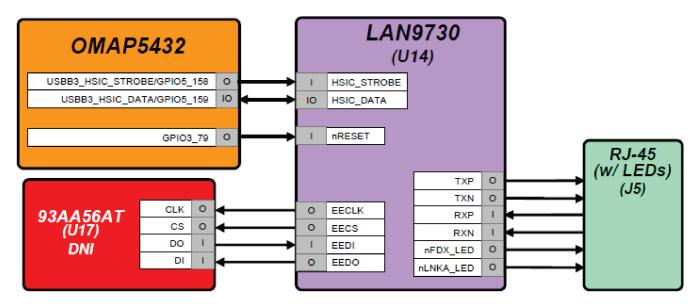



Figure 16. USBB3 Interface Block Diagram

#### 2.15 Expansion Connectors

The OMAP5432 EVM provides 5 expansion connectors to enable users to interface custom designed or purchased peripheral boards with the OMAP5432 ES2.0 processor. These connectors consist of:

- J20 a 100-pin, 0.8mm pitch SMT connector mounted on the back side of the PCB
- J21 a 20-pin, 0.8mm pitch SMT connector, also mounted on the back side of the PCB
- J17 a 14-pin, 0.1" pitch through-hole header, mounted on the top side of the PCB
- J2 a 30-pin, 0.Xmm pitch SMT connector mounted on the top side of the PCB
- J18 a 60-pin, 0.Xmm pitch SMT connector mounted on the top side of the PCB

These connectors will be discussed in the following paragraphs.

#### 2.15.1 Main Expansion Connector (J20)

The OMAP5432 EVM provides a single 100-pin SMT expansion connector, which provides the majority of the platform expansion capability. This connector used on the OMAP5432 EVM is a 0.8mm pitch SMT connector (Hirose P/N FX6-100P-0.8SV91). The appropriate mating connector for an interface board should be chosen from the Hirose datasheet. The placement of this connector on the OMAP5432 EVM PCB is shown in Figure 17. On this diagram, pin 1 of the connector is located bottom left, pin 2 is top left and odds/evens go down the bottom and top of the connector, respectively.

See Table 6 for the pinout of the Main Expansion Connector. Table 6 shows the primary function that is available on the connector pin, along with the alternate function that can be selected by changing the OMAP5432 ES2.0 pin multiplexing.



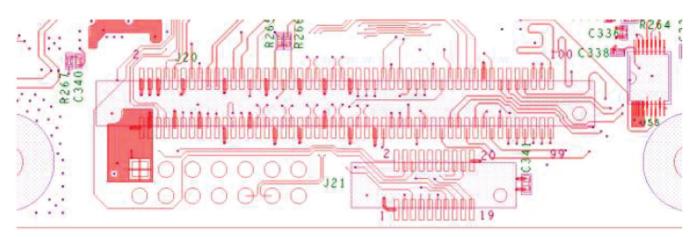



Figure 17. Expansion Connectors - J20 and J21 (Bottom Side of PCB)

Table 6. Main Expansion Connector Pin Definitions (J20)

| J20<br>Pin # | OMAP<br>Ball # | Primary Function         | Secondary Function | Description of OMAP5432<br>EVM Usage                                                                               |
|--------------|----------------|--------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|
| 100          |                | VDDS_1V8_MAIN            |                    | 1.8V I/O Power                                                                                                     |
| 99           |                | VSYS_BRD                 |                    | 3.7Vdc Input Power                                                                                                 |
| 98           |                | VDDS_1V8_MAIN            |                    | 1.8V I/O Power                                                                                                     |
| 97           |                | VSYS_BRD                 |                    | 3.7Vdc Input Power                                                                                                 |
| 96           | AE27           | H_MCBSP3_CLKX            | GPIO4_100          | McBSP3 Clock/GPIO                                                                                                  |
| 95           |                | VSYS_BRD                 |                    | 3.7Vdc Input Power                                                                                                 |
| 94           | AE29           | H_MCBSP3_DX              | GPIO4_98           | McBSP3 Transmit Data/GPIO                                                                                          |
| 93           | AF28           | H_MCBSP3_FSX             | GPIO4_97           | McBSP3 Frame Sync/GPIO                                                                                             |
| Mult.        |                | GND                      |                    | Signal Ground (ground is on<br>pins 17,44,49,50,<br>55,56,61,62,68,69,74,79,80,86,<br>89, and 92 of this connector |
| 91           | AE28           | H_MCBSP3_DR              | GPIO4_99           | McBSP3 Receive Data/GPIO                                                                                           |
| 90           | AD31           | H_DSIPORTA_LANBOX        |                    | DSI Port A Lane 0+                                                                                                 |
| 88           | AD32           | H_DSIPORTA_LANBOY        |                    | DSI Port A Lane0-                                                                                                  |
| 87           | F14            | GPIO3_81                 | GPMC_NCS2          | GPIO or GPMC Chip select                                                                                           |
| 85           | AD7            | GPIO8_230                | TIMER8_PWM_EVT     | GPIO or Display/Backlight PWM                                                                                      |
| 84           | AC31           | H_DSIPORTA_LANE1X        |                    | DSI Port A Lane 1+                                                                                                 |
| 83           | AL33           | H_I2C2_SCL               |                    | I2C Serial Clock                                                                                                   |
| 82           | AC32           | H_DSIPORTA_LANE1Y        |                    | DSI Port A Lane 1-                                                                                                 |
| 81           | AM32           | H_I2C2_SDA               |                    | I2C Serial Data                                                                                                    |
| 78           | AB32           | H_DSIPORTA_LANE2X        |                    | DSI Port A Lane 2+                                                                                                 |
| 77           | AJ33           | H_TIMER9_PWM/GPIO6_190   | GPIO6_190          | Display/Backlight PWM or GPIO                                                                                      |
| 76           | AB31           | H_DSIPORTA_LANE2Y        |                    | DSI Port A Lane2-                                                                                                  |
| 75           | AK30           | H_DSIPORTC_TE0/GPIO6_191 | GPIO6_191          | DSI Port C Tearing Effect or GPIO                                                                                  |
| 73           | AJ20           | H_I2C4_SDA               |                    | I2C Serial Data                                                                                                    |
| 72           | AA32           | H_DSIPORTA_LANE3X        |                    | DSI Port A Lane 3+                                                                                                 |
| 71           |                | H_TIMER10_PWM/GPIO6_188  | GPIO6_188          | Display/Backlight PWM or GPIO                                                                                      |
| 70           | AA31           | H_DSIPORTA_LANE3Y        |                    | DSI Port A Lane3-                                                                                                  |



Table 6. Main Expansion Connector Pin Definitions (J20) (continued)

| J20   | OMAP   | n Expansion Connector Pir              | . , ,              | Description of OMAP5432                    |
|-------|--------|----------------------------------------|--------------------|--------------------------------------------|
| Pin # | Ball # | Primary Function                       | Secondary Function | EVM Usage                                  |
| 67    | G14    | GPIO3_82                               | GPMC_NCS3          | GPIO or GPMC Chip select                   |
| 66    | y32    | H_DSIPORTA_LANE4X                      |                    | DSI Port A Lane 4+                         |
| 65    | AJ21   | H_I2C4_SCL                             |                    | I2C Serial Clock                           |
| 64    | Y31    | H_DSIPORTA_LANE4Y                      |                    | DSI Port A Lane 4-                         |
| 63    | W33    | H_DSIPORTA_TE0/GPIO6_189               | GPIO6_189          | DSI Port A Tearing Effect or GPIO          |
| 60    | AJ31   | H_DSIPORTC_LANE0X                      |                    | DSI Port C Lane 0+                         |
| 59    | AF32   | H_DSIPORTC_LANE3X                      |                    | DSI Port C Lane3+                          |
| 58    | AJ32   | H_DSIPORTC_LANE0Y                      |                    | DSI Port C Lane 0-                         |
| 57    | AF31   | H_DSIPORTC_LANE3y                      |                    | DSI Port C Lane 3-                         |
| 54    | AH32   | H_DSIPORTC_LANE1X                      |                    | DSI Port C Lane 1+                         |
| 53    | AE32   | H_DSIPORTC_LANE4X                      |                    | DSI Port C Lane 4+                         |
| 52    | AH31   | H_DSIPORTC_LANE1Y                      |                    | DSI Port C Lane 1-                         |
| 51    | AE31   | H_DSIPORTC_LANE4Y                      |                    | DSI Port C Lane 4-                         |
| 48    | AG32   | H_DSIPORTC_LANE2X                      |                    | DSI Port C Lane 2+                         |
| 47    | N27    | H_GPMC_WAIT0                           | GPIO2_45           | GPMC Wait Input                            |
| 46    | AG31   | H_DSIPORTC_LANE2Y                      |                    | DSI Port C Lane2-                          |
| 45    | J29    | H_GPMC_nWP                             | GPIO2-35           | GPMC Write Protect                         |
| 43    | F13    | H_GPMC_NWE                             | GPIO3_84           | GPMC Write Enable                          |
| 42    | AL17   | H_DISPC_DATA0                          | GPIO6_166          | Parallel Display Data Bit 0                |
| 41    | N9     | H_GPMC_NOE                             | GPIO3_85           | GPMC Output Enable                         |
| 40    | AM17   | H_DISPC_DATA1                          | GPIO6_167          | Parallel Display Data Bit 1                |
| 39    | F25    | H_GPMC_nBE0_CLE                        | GPIO2_34           | GPMC Byte Enable/Command<br>Latch Enable   |
| 38    | AN17   | H_DISPC_DATA2                          | GPIO6_168          | Parallel Display Data Bit 2                |
| 37    | E25    | H_GPMC_nADV_ADV                        | GPIO2_33           | GPMC Address Valid/Address<br>Latch Enable |
| 36    | AL16   | H_DISPC_DATA3                          | GPIO6_169          | Parallel Display Data Bit 3                |
| 35    | J28    | H_GPMC_CLK                             | GPIO2_36           | GPMC Clock                                 |
| 34    | AM16   | H_DISPC_DATA4                          | GPIO6_170          | Parallel Display Data Bit 4                |
| 33    | E26    | H_GPMC_AD7                             | GPIO2_44           | GPMC Address/Data Bit 7                    |
| 32    | AL15   | H_DISPC_DATA5                          | GPIO6_171          | Parallel Display Data Bit 5                |
| 31    | F26    | H_GPMC_AD6                             | GPIO2_43           | GPMC Address/Data Bit 6                    |
| 30    | AM15   | H_DISPC_DATA6                          | GPIO6_172          | Parallel Display Data Bit 6                |
| 29    | E27    | H_GPMC_AD5                             | GPIO2_42           | GPMC Address/Data Bit 5                    |
| 28    | AN15   | H_DISPC_DATA7                          | GPIO6_173          | Parallel Display Data Bit 7                |
| 27    | E29    | H_GPMC_AD4                             | GPIO2_41           | GPMC Address/Data Bit 4                    |
| 26    | AL14   | H_DISPC_DATA8                          | GPIO6_174          | Parallel DIsplay Data Bit 8                |
| 25    | G29    | H_GPMC_AD3                             | GPIO2_40           | GPMC Address/Data Bit 3                    |
| 24    | AM14   | H_DISPC_DATA9                          | GPIO6_175          | Parallel Display Data Bit 9                |
| 23    | H29    | H_GPMC_AD2                             | GPIO2_39           | GPMC Address/Data Bit 2                    |
| 22    | AM12   | H_DISPC_DATA10                         | GPIO6_176          | Parallel Display Data Bit 10               |
| 21    | H28    | H_GPMC_AD1                             | GPIO2_38           | GPMC Address/Data Bit 1                    |
| 20    | AL11   | H_DISPC_DATA11                         | GPIO6_177          | Parallel Display Data Bit 11               |
| 19    | J27    | H_GPMC_AD0                             | GPIO2_37           | GPMC Address/Data Bit 0                    |
| 18    | AM11   | H_DISPC_DATA12                         | GPIO6_178          | Parallel Display Data Bit 12               |
| 16    | AN11   | H_DISPC_DATA13                         | GPIO6_179          | Parallel Display Data Bit 13               |
| 15    | P32    | H_GPMC_nCS0                            | GPIO2_32           | GPMC Chip select 0                         |
| -     | +      | _= = = = = = = = = = = = = = = = = = = |                    |                                            |



Table 6. Main Expansion Connector Pin Definitions (J20) (continued)

| J20<br>Pin # | OMAP<br>Ball # | Primary Function | Secondary Function | Description of OMAP5432<br>EVM Usage |
|--------------|----------------|------------------|--------------------|--------------------------------------|
| 14           | AL10           | H_DISPC_DATA14   | GPIO6_180          | Parallel Display Data Bit 14         |
| 13           | AM18           | H_DISPC_DEN      | GPIO6_165          | Parallel Display Data Enable         |
| 12           | AM10           | H_DISPC_DATA15   | GPIO6_181          | Parallel Display Data Bit 15         |
| 11           | AL12           | H_DISPC_VSYNC    | GPIO6_162          | Parallel Display Vertical Sync       |
| 10           | AM13           | H_DISPC_DATA16   | GPIO6_161          | Parallel Display Data Bit 16         |
| 9            | AL13           | H_DISPC_HSYNC    | GPIO6_163          | Parallel Display Horizontal<br>Sync  |
| 8            | AN13           | H_DISPC_DATA17   | GPIO6_160          | Parallel Display Data Bit 17         |
| 7            | AL18           | H_DISPC_PCLK     | GPIO6_164          | Parallel Display Pixel Clock         |
| 6            | AN9            | H_DISPC_DATA18   | GPIO6_182          | Parallel Display Data Bit 18         |
| 5            | AN7            | H_DISPC_DATA23   | GPIO6_187          | Parallel Display Data Bit 23         |
| 4            | AM9            | H_DISPC_DATA19   | GPIO6_183          | Parallel Display Data Bit 19         |
| 3            | AL8            | H_DISPC_DATA22   | GPIO6_186          | Parallel Display Data Bit 22         |
| 2            | AL9            | H_DISPC_DATA20   | GPIO6_184          | Parallel Display Data Bit 20         |
| 1            | AM8            | H_DISPC_DATA21   | GPIO6_185          | Parallel Display Data Bit 21         |

### 2.15.2 **GPMC Expansion Connector (J21)**

In addition to the 100-pin SMT expansion connector on the back side of the PCB, the OMAP5432 EVM provides a 20-pin SMT expansion connector, also mounted on the back side of the PCB, which provides the capability to support the full-up GPMC bus. The 100-pin connector can support GPMC operation for 8-bit NAND flash (with the GPMC control signals, and lower 8-bits of the address/data bus), but J21 must be used to support other memory devices (e.g. NOR flash, or OneNAND). This connector is a 0.8mm pitch SMT connector (Hirose P/N FX6-20P-0.8SV91). The appropriate mating connector should be chosen from the Hirose datasheet. The placement of this connector on the OMAP5432 EVM PCB is shown in Figure 17. On this diagram, pin 1 of the connector is located bottom left, pin 2 is top left and odds/evens go down the bottom and top of the connector, respectively.

**Table 7. GPMC Expansion Connector Pin Definitions (J21)** 

| J21<br>Pin # | OMAP<br>Ball#    | Primary Function | Secondary FUnction | Description of OMAP5432<br>EVM Usage |  |
|--------------|------------------|------------------|--------------------|--------------------------------------|--|
| 20           |                  | GND              |                    | Signal Ground                        |  |
| 19           | G33              | H_GPMC_AD15      | GPIO2_63           | GPMC Address/Data Bit 15             |  |
| 18           | F20              | H_GPMC_NCS1      | GPIO3_77           | GPMC Chip Select 1                   |  |
| 17           | G32              | H_GPMC_AD14      | GPIO2_62           | GPMC Address/Data Bit 14             |  |
| 16           | F17              | H_GPMC_A24       | GPIO3_78           | GPMC Address Bit 24                  |  |
| 15           | H31              | H_GPMC_AD13      | GPIO2_61           | GPMC Address/Data Bit 13             |  |
| 14           | F21              | H_GPMC_A23       | GPIO4_120          | GPMC Address Bit 23                  |  |
| 13           | G31              | H_GPMC_AD12      | GPIO2_60           | GPMC Address/Data Bit 12             |  |
| 12           | E21              | H_GPMC_A22       | GPIO4_119          | GPMC Address Bit 22                  |  |
| 11           | J31              | H_GPMC_AD11      | GPIO2_59           | GPMC Address/Data Bit 11             |  |
| 10           | H21              | H_GPMC_A21       | GPIO4_118          | GPMC Address Bit 21                  |  |
| 9            | H32              | H_GPMC_AD10      | GPIO2_58           | GPMC Address/Data Bit 10             |  |
| 8            | G21              | H_GPMC_A20       | GPIO4_117          | GPMC Address Bit 20                  |  |
| 7            | J33              | H_GPMC_AD9       | GPIO2_57           | GPMC Address/Data Bit 9              |  |
| 6            | F24              | H_GPMC_A19       | GPIO4_116          | GPMC Address Bit 19                  |  |
| 5            | J32 H_GPMC_AD8   |                  | GPIO2_56           | GPMC Address/Data Bit 8              |  |
| 4            | 4 E24 H_GPMC_A18 |                  | GPIO4_115          | GPMC Address Bit 18                  |  |
| 3            | G24 H_GPMC_A16   |                  | GPIO4_113          | GPMC Address Bit 16                  |  |



Table 7. GPMC Expansion Connector Pin Definitions (J21) (continued)

| J21<br>Pin # | OMAP<br>Ball# | Primary Function | Secondary FUnction | Description of OMAP5432<br>EVM Usage |  |
|--------------|---------------|------------------|--------------------|--------------------------------------|--|
| 2            | H24           | H_GPMC_A17       | GPIO4_114          | GPMC Address Bit 17                  |  |
| 1            |               | GND              |                    | Signal Ground                        |  |

#### 2.15.3 Generic Expansion Connector (J17)

There is a 14-pin 0.1" pitch through-hole connector on the top side of the board that provides a small number of miscellaneous signals for expansion use. The signals provided on this connector are:

- McSPI2
- UART2
- I<sup>2</sup>C2
- Third USB host port from the USB3503A Hub IC

The placement of this connector on the OMAP5432 EVM PCB is shown in Figure 18 below. On this diagram, pin 1 of the connector is located top right, pin 2 is bottom right and odds/evens go down the top and bottom of the connector, respectively.




Figure 18. Generic Expansion Connector – J17 (Top Side of PCB)

**Table 8. Generic Expansion Connector Pin Definitions (J17)** 

| J17 Pin # | OMAP Ball # | Primary Function Secondary Function |                              | Description of OMAP5432<br>EVM Usage |
|-----------|-------------|-------------------------------------|------------------------------|--------------------------------------|
| 1         |             | VDDS_1V8_MAIN                       |                              | 1.8V I/O Power                       |
| 2         |             | VCC 3V3 MAIN                        |                              | 3.3V Power                           |
| 3         |             | H_UART2_TX l                        |                              | UART2 Transmit Data                  |
| 4         |             | H_I2C2_SCL                          |                              | I2C2 Serial Clock                    |
| 5         |             | H_UART2_RX                          | RX UART2 Rece                |                                      |
| 6         |             | H_I2C2_SDA                          | I2C2 Serial Dat              |                                      |
| 7         |             | H_MCSPI2_SIMO                       | GPIO7_198                    | SPI2 Slave In, Master Out            |
| 8         |             | DC_5V                               | C_5V 5V Pow<br>Power/VBU     |                                      |
| 9         |             | H_MCSPI2_CS0                        | GPIO7_196 SPI2 Chip Select 0 |                                      |



Table 8. Generic Expansion Connector Pin Definitions (J17) (continued)

| J17 Pin # | OMAP Ball # | Primary Function | Secondary Function                        | Description of OMAP5432<br>EVM Usage |
|-----------|-------------|------------------|-------------------------------------------|--------------------------------------|
| 10        |             | USBH_DP3 USB Hos |                                           | USB Host Port Data+                  |
| 11        |             | H_MCSPI2_SOMI    | H_MCSPI2_SOMI GPIO7_199 SPI2 Slave Out, M |                                      |
| 12        |             | USBH_DM3         | USB Host Port Data -                      |                                      |
| 13        |             | H_MCSPI2_CLK     | GPIO7_197 SPI2 Clock                      |                                      |
| 14        |             | GND              | Signal Ground                             |                                      |

#### 2.16 Camera Expansion

The OMAP5432 EVM does not provide an onboard camera sensor, but does provision for two camera expansion connectors. One of the connectors is a 30-pin camera connector (Samtec P/N TFM-115-32-SD-A) that is pin-compatible with the OMAP4 OMAP5432 EVM ES (OMAP4460) camera connector. This connector is placed on the top side of the PCB, and provides a single CSI-2 interface (CSIPORTA) as well as GPIOs for use on a plug-in camera module. See Section 2.16.1 for a description of this connector.

The second connector is a 60-pin connector (Hirose P/N FX6-60P-0.8SV2) that provides all OMAP5432 ES2.0 CSI-2 interfaces (CSIPORTA, CSIPORTB and CSIPORTC). It can also be used to provide a dual CSI-2 camera interfaces or a single parallel camera interface (with appropriate pin multiplexing done by software).

#### Single CSI Camera Expansion Connector (J2) 2.16.1

See Table 9 below for the pinout of the 30-pin camera expansion connector on the top side of the PCB.

NOTE: The GPIOs listed below don't have specific functions defined yet, as there has been no camera module designed. These GPIOs will be user-definable per the camera module implementation.

Table 9. Camera Expansion Connector Pin Definitions (J2)

| J2 Pin # | OMAP Ball # | Signal Name             | Signal Description               |
|----------|-------------|-------------------------|----------------------------------|
| 1,2      |             | GND                     | Signal Ground                    |
| 3        | U6          | H_CSIPORTA_LANE0X       | CSI Signal Lane 0 Data X         |
| 4        | N5          | H_CSIPORTA_LANE3X       | CSI Signal Lane 3 Data X         |
| 5        | U5          | H_CSIPORTA_LANE3Y       | CSI Signal Lane 0 Data Y         |
| 6        | N6          | GND                     | CSI Signal Lane 3 Data Y         |
| 7,8      |             | H_CSIPORTA_LANE1X       | Signal Ground                    |
| 9        | P6          | H_CSIPORTA_LANE4X       | CSI Signal Lane 1 Data X         |
| 10       | N7          | H_CSIPORTA_LANE1Y       | CSI Signal Lane 4 Data X         |
| 11       | P5          | H_CSIPORTA_LANE4Y       | CSI Signal Lane 1 Data Y         |
| 12       | N8          | GND                     | CSI SIgnal Lane 4 Data Y         |
| 13,14    |             | H_CSIPORTA_LANE2X       | Signal Ground                    |
| 15       | P7          | GPIO_WK13               | CSI Signal Lane 2 Data X         |
| 16       | N31         | GPIO_WK13               | OMAP_GPIO1_WK13                  |
| 17       | P8          | H_GPIO8_227             | CSI Signal Lane 2 Data Y         |
| 18       | AE7         | GND                     | OMAP GPIO8_227                   |
| 19       |             | H_CAM_ RESET/GPIO8_226  | Signal Ground                    |
| 20       | AF6         | H_I2C3_SCL              | Camera Global Reset or GPIO8_226 |
| 21       | AJ5         | H_CAM_SHUTTER/GPIO8_224 | I2C3 Serial Clock                |
| 22       | AE6         | H_I2C3_SDA              | Camera Shutter or GPIO8_224      |
| 23       | AH4         | H_CAM_STROBE/GPIO8_225  | I2C3 Serial Data                 |



| <b>Table 9. Camera Expansion Connector Pin Definitions</b> | (J2) | (continued) |
|------------------------------------------------------------|------|-------------|
|------------------------------------------------------------|------|-------------|

| J2 Pin # | OMAP Ball # | Signal Name | Signal Description                   |
|----------|-------------|-------------|--------------------------------------|
| 24       | AE5         | H_GPIO5_154 | Camera Strobe or GPIO8_225           |
| 25       | AJ24        | H_GPIO8_228 | OMAP GPIO5_154                       |
| 26       | AD5         | H_FREFCLK_0 | OMAP GPIO8_228                       |
| 27       | M31         | H_GPIO8_229 | OMAP Camera Clock In                 |
| 28       | AD6         | VSYS_BRD    | OMAP GPIO8_229                       |
| 29       |             | VSYS_BRD    | Battery Voltage In                   |
| 30       |             | VCC 2V8 CAM | Onboard LDO (U42) 2.8V input voltage |

#### 2.16.2 **Dual-CSI/Parallel Camera Expansion Connector (J18)**

See Table 10 below for the pinout of the 60-pin camera expansion connector (J18) mounted on the back side of the PCB. The signal description column also shows the alternate functionality of the ball, if applicable. Note that this connector pinout was chosen where the signals common to camera expansion connector J2 on the top side of the PCB are directly below them to optimize signal routing.

Table 10. Dual CSI/Parallel Camera Expansion Connector Pin Definitions (J18)

| J18 Pin # | OMAP Ball # | Singal Name             | Signal Description                      |
|-----------|-------------|-------------------------|-----------------------------------------|
| 1         |             | VSYS_BRD                | Battery Voltage In                      |
| 2         |             | VCC_2V8_CAM             | Onboard LDO (U42) 2.8V input voltage    |
| 3         |             | VSYS BRD                | Battery Voltage IN                      |
| 4         |             | VCC_2V8_CAM             | Onboard LDO (U42) 2.8V input voltage    |
| 5         | M31         | H_FREFCLK 0             | OMAP Camera Clock In                    |
| 6         |             | VSYS_BRD                | Battery Voltage In                      |
| 7         |             | GND                     | Signal Ground                           |
| 8         |             | VSYS_BRD                | Battery Voltage In                      |
| 9         | AJ24        | H_GPIO5_154             | OMAP GPIO5_154                          |
| 10        |             | GND                     | Signal Ground                           |
| 11        | AF5         | H_GPIO8_234             | OMAP GPIO8_234 (or CPI_VSYNC)           |
| 12        | AD6         | H_GPIO8_229             | OMAP GPIO8_229                          |
| 13        | AH4         | H_I2C3_SDA              | I2C3 Serial Data                        |
| 14        | AD5         | H_GPIO8_228             | OMAP GPIO8_228                          |
| 15        | AJ5         | H_I2C3_SCL              | I2C3 Serial Clock                       |
| 16        | AE5         | H_CAM_STROBE/GPIO8_225  | Camera Strobe or GPIO8_225              |
| 17        | AG5         | H_GPIO8_233             | OMAP GPIO8_233 (of CPI_HSYNC)           |
| 18        | AE6         | H_CAM_SHUTTER/GPIO8_224 | Camera Shutter or GPIO8_224             |
| 19        |             | GND                     | Signal Ground                           |
| 20        | AF6         | H_CAM_ RESET/GPIO8_226  | Camera Global Reset or GPIO8_226        |
| 21        | P8          | H_CSIPORTA_LANE2Y       | CSI Signal Lane 2 Data Y (or CPI_DATA2) |
| 22        | AE7         | H_GPIO8_227             | OMAP GPIO8_227                          |
| 23        | P7          | H_CSIPORTA_LANE2X       | CSI Signal Lane 2 Data X (or CPI_DATA3) |
| 24,25     |             | GND                     | Signal Ground                           |
| 26        |             | PIO_GPIO_20             | Camera Module ID 1                      |
| 27        | N31         | GPIO_WK13               | OMAP GPIO1_WK13                         |
| 28,29     |             | GND                     | Signal Ground                           |
| 30        | N8          | H_CSIPORTA_LANE4Y       | CSI SIgnal Lane 4 Data Y (or CPI_DATA7) |



Table 10. Dual CSI/Parallel Camera Expansion Connector Pin Definitions (J18) (continued)

| J18 Pin # | OMAP Ball # | Singal Name       | Signal Description                            |
|-----------|-------------|-------------------|-----------------------------------------------|
| 31        | P5          | H_CSIPORTA_LANE1Y | CSI Signal Lane 1 Data Y (or CPI_DATA0)       |
| 32        | N7          | H_CSIPORTA_LANE4X | CSI Signal Lane 4 Data X (or CPI_DATA6)       |
| 33        | P6          | H_CSIPORTA_LANE1X | CSI Signal Lane 1 Data X (or CPI_DATA1)       |
| 34,35     |             | GND               | Signal Ground                                 |
| 36        | AM32        | I2C2_SDA          | I2C2 Serial Data                              |
| 37        | AL33        | H_I2C2_SCL        | I2C2 Serial Clock                             |
| 38,39     |             | GND               | Signal Ground                                 |
| 40        | N6          | H_CSIPORTA_LANE3Y | CSI Signal Lane 3 Data Y (or CPI_DATA5)       |
| 41        | U5          | H_CSIPORTA_LANE0Y | CSI Signal Lane 0 Data Y (or CPI_WEN)         |
| 42        | N5          | H_CSIPORTA_LANE3X | CSI Signal Lane 3 Data X (or CPI_DATA4)       |
| 43        | U6          | H_CSIPORTA_LANE0X | CSI Signal Lane 0 Data X (or CPI_PCLK)        |
| 44,45     |             | GND               | Signal Ground                                 |
| 46        | Y5          | H_CPI_DATA13      | Parallel Camera Bit 13 (or CSIPORTB_LANE0Y)   |
| 47        | J6          | H_CPI_DATA8       | Parallel Camera Bit 8 (or CSIPORTC_LANE0Y)    |
| 48        | Y6          | H_CPI_DATA12      | Parallel Camera Bit 12 (or CSIPORTB_LANE0X)   |
| 49        | J7          | H_CPI_DATA9       | Parallel Camera Bit 9 (or CSIPORTC_LANE0X)    |
| 50,51     |             | GND               | Signal Ground                                 |
| 52        | Y7          | H_CPI_DATA14      | Parallel Camera Bit 14 (or CSIPORTB_LANE1Y)   |
| 53        | K6          | H_CPI_DATA10      | Parallel Camera Bit 10 (or CSIPORTC_LANE1Y)   |
| 54        | Y8          | H_CPI_DATA15      | Parallel Camera Bit 15 (or CSIPORTB_LANE1X)   |
| 55        | K5          | H_CPI_DATA11      | Parallel Camera Bit 11 (or CSIPORTC_LANE1X)   |
| 56,57     |             | GND               | Signal Ground                                 |
| 58        | AA5         | H_GPIO8_IN250     | Parallel Camera_HSYNC IN (or CSIPORTB_LANE2Y) |
| 59        |             | PIO_GPIO_17       | Camera Module ID 0                            |
| 60        | AA6         | H_GPIO8_IN251     | Parallel Camera VSYNC IN (or CSIPORTB_LANE2X) |

## 2.17 JTAG Connector (J1)

The OMAP5432 EVM provides a 14-pin 0.1" (2.54mm) pitch through-hole connector at J1 as shown in Figure 19. In Figure 19, pin 1 is the upper right pin and pin 2 is directly below it. Even numbered pins are on the bottom side of the connector, and odd numbered pins are along the top. Pin 6 is removed to comply with the keying on the JTAG pods.



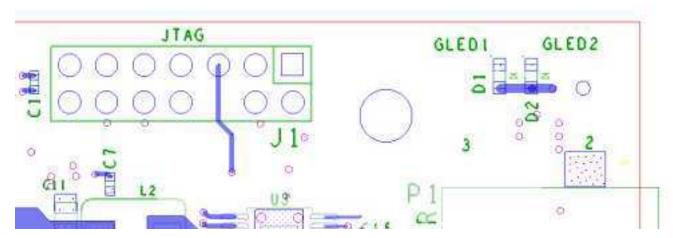



Figure 19. 14-pin JTAG Connector (J1)

See Table 11 for a description of the pins their connectivity to OMAP5432 ES2.0, and their function on this connector.

| J1 Pin #  | OMAP Ball # | Signal Name   | Signal Description           |
|-----------|-------------|---------------|------------------------------|
| 1         | B31         | J_JTAG_TMSC   | JTAG Test Mode Select        |
| 2         | B32         | H_JTAG_NTRST  | JTAG Test Reset (Active low) |
| 3         | A32         | H_JTAG_TDI    | JTAG Test Data In            |
| 4,8,10,12 |             | GND           | Signal Ground                |
| 5         |             | VDDS_1V8_MAIN | 1.8V JTAG Power              |
| 6         |             |               | N/A                          |
| 7         | A33         | H_JTAG_TDO    | JTAG Test Data Out           |
| 9         | B33         | H_JTAG_RTCK   | JTAG Return CLock Out        |
| 11        | C31         | H_JTAG_TCK    | JTAG Clock In                |
| 13        | K32         | H_DM_EMU0     | Emulator I/O 0               |
| 14        | K31         | H_DM_EMU1     | Emulator I/O 1               |

Table 11. JTAG Connector Pinout (J1)

#### 2.18 LED Indicators

The OMAP5432 EVM provides multiple LED indicators. See Figure 20 for the location of these LEDs on the OMAP5432 EVM PCB.

LEDs D1 and D2 are blue LEDs that are controlled directly via OMAP5432 ES2.0 GPIOs. D1 is controlled by GPIO5\_153 (ball AJ25), while D2 is controlled by GPIO1\_WKOUT4 (ball V32). For both of these LED indicators, writing the respective GPIO high will turn on the LED, while writing it low will turn off the LED.

LED D3 is a red LED that will be illuminated if the board is powered from a 5V wall supply, and will be dark if the board is powered from a wall supply ranging from 6V to 15V. This LED is NOT software controllable.

LEDs D4 through D8 are green LEDs that are controlled via the I/O expander connected to the OMAP I<sup>2</sup>C5 bus. The LEDs are controlled by the GPIO Expander as follows:

- D4 -> GPIO Expander Bit P06
- D5 -> GPIO Expander Bit P05
- D6 -> GPIO Expander Bit P04
- D7 -> GPIO Expander Bit P03
- D8 -> GPIO Expander Bit P02



Writing a high to the respective GPIO bit will turn on the LED, while writing it low will turn off the LED.

LED D13 is a green LED that is controlled automatically via onboard circuitry. This LED is illuminated when a USB cable is plugged into the micro-AB USB debug connector at J14. It indicates that 5V VBUS power is being received from the host, which is used to power the USART circuitry.

LED D14 is a tri-color LED that is controlled via the I/O expander connected to the OMAP I2C5 bus. The LEDs are controlled by the GPIO Expander as follows:

- Red LED -> GPIO Expander Bit P21
- Green LED -> GPIO Expander Bit P22
- Blue LED -> GPIO Expander Bit P23

Writing a high to the respective GPIO bit will turn on the particular color LED, while writing it low will turn off the LED.



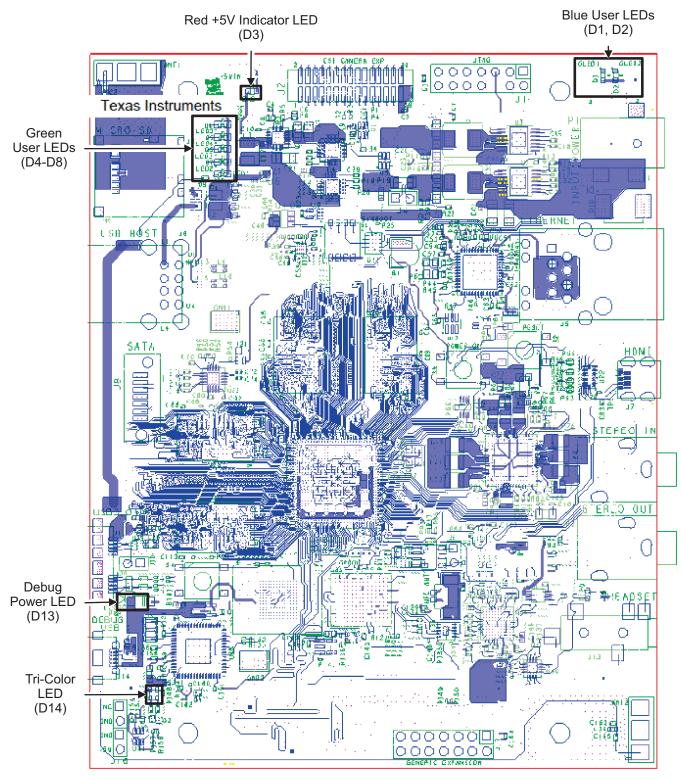



Figure 20. LED Locations

### 2.19 User Interface Features

Described below are the user features that are incorporated in the OMAP5432 EVM.



#### 2.19.1 S2 - Push Button Switch

S2 is a momentary push-button switch that whose output is tied to the warm reset signal on the OMAP5432 EVM (H\_SYS\_NRESWARM on the schematic). Depressing this switch will initiate a warm reset of the OMAP5432 ES2.0 processor.

#### 2.19.2 S3 – Push Button Switch

S3 is a momentary push-button switch that may be depressed to initiate a power-on reset of the OMAP5432 EVM. The output of this switch is connected to the PWRON input of the TWL6037 Power Companion IC. Depressing this button causes the TWL6037 to initiate its power-up sequence. In addition, depressing and holding this button for 12 seconds will cause the TWL6037 to power off.

#### 2.19.3 S4 - Push Button Switch

S4 is a momentary push-button switch that whose output is tied to GPIO3 83 on the OMAP5432 EVM. Depressing this switch will momentarily ground GPIO3\_83. For proper operation of this switch, the internal pull on this signal must be enabled, and it must be set to a pull-up NOT a pull-down.

#### 2.20 PC Device Mapping

The OMAP5432 EVM contains five different I<sup>2</sup>C busses that are provided by the OMAP5432 ES2.0 (I<sup>2</sup>C1. I<sup>2</sup>C2, I<sup>2</sup>C3, I<sup>2</sup>C4, and I<sup>2</sup>C5). The paragraphs below detail the seven bit I<sup>2</sup>C addresses for each device on the different I<sup>2</sup>C busses. The write and read addresses are derived by adding a '0' or '1' respectively, to the LSB of the address given below. (NOTE: for I<sup>2</sup>C5, the Host Port Bridge listed has resistor options to connect to the I<sup>2</sup>C5 bus, but is not connected in the default configuration).

#### 2.20.1 OMAP I<sup>2</sup>C1

Table 12. OMAP I<sup>2</sup>C1 Device Addresses

| Device        | Function           | I2C Address      |
|---------------|--------------------|------------------|
| TWL6037       | Power COmpanion IC | 0x48, 0x49, 0x4A |
| TWL6040       | Phoenix Audio IC   | 0x4B             |
| AT24C02C-MAHM | Board ID EEPROM    | 0x50             |

#### 2.20.2 OMAP I<sup>2</sup>C2

#### Table 13. OMAP I<sup>2</sup>C2 Device Addresses

| Device                                                | Function                                             | I2C Address |
|-------------------------------------------------------|------------------------------------------------------|-------------|
| Main Expansion Connector (J20)                        | External LCD Control (e.g. touchscreen or backlight) | TBD         |
| Generic Expansion Connector (J17)                     | Expansion Usage                                      | TBD         |
| Parallel/Dual-CSI Camera Expansion<br>Connector (J18) | Camera Module I/F                                    | TBD         |

#### 2.20.3 OMAP I<sup>2</sup>C3

#### Table 14. OMAP I<sup>2</sup>C3 Device Addresses

| Device                                                 | Function          | I2C Address |
|--------------------------------------------------------|-------------------|-------------|
| Single CSI (Legacy) Camera Expansion<br>Connector (J2) | Camera Module I/F | TBD         |
| Parallel/Dual-CSI Camera Expansion<br>Connector (J18)  | Camera Module I/F | TBD         |



#### 2.20.4 OMAP I<sup>2</sup>C4

#### Table 15. OMAP I<sup>2</sup>C4 Device Addresses

| Device                         | Function                   | I2C Address |
|--------------------------------|----------------------------|-------------|
| Main Expansion Connector (J20) | Display or Audio Expansion | TBD         |

### 2.20.5 OMAP I<sup>2</sup>C5

#### Table 16. OMAP I<sup>2</sup>C5 Device Addresses

| Device   | Function                | I2C Address |
|----------|-------------------------|-------------|
| TCA6424A | GPIO Expander           | 0x22        |
| USB3503A | USB Host Port Bridge IC | 0x08        |

#### 3 OMAP5432 EVM Software Interface

This chapter provides details of interest regarding the software interface of the OMAP5432 EVM implementation.

#### 3.1 Readable Board Revision

The OMAP5432 EVM provides a five-bit board revision that may be read by Software to determine what board is being used. These board ID bits are provided by the I2C5 GPIO Expander as shown in Table 17 below. The Pxx labels are the port of the GPIO expander that the respective Board ID bit comes from.

|     | Board ID(4:0) |     |     |     | Description                                                                   |  |
|-----|---------------|-----|-----|-----|-------------------------------------------------------------------------------|--|
| P13 | P12           | P11 | P10 | P07 |                                                                               |  |
| 0   | 0             | 0   | 0   | 1   | OMAP5432 EVMG/H-02-01-00<br>5432 ES2.0, TWL6037 ES2.1, WL1857 ES2.1, 4GB EMMC |  |
| 0   | 0             | 0   | 1   | 1   | OMAP5432 EVMG/H-02-02-00<br>5432 ES2.0, TWL6037 ES2.1, No WL1857, 4GB EMMC    |  |
| 0   | 0             | 1   | 0   | 1   | OMAP5432 EVMG/H-02-11-00<br>5432 ES2.0, TWL6037 ES2.2, WL1857 ES2.1, 4GB EMMC |  |
| 0   | 0             | 1   | 1   | 1   | OMAP5432 EVMG/H-02-12-00<br>5432 ES2.0, TWL6037 ES2.2, No WL1857, 4GB EMMC    |  |
| Χ   | Χ             | Х   | Х   | Х   | Reserved for future use                                                       |  |
| Χ   | Χ             | Х   | Х   | Х   | Reserved for future use                                                       |  |

**Table 17. Board ID Read Values** 

# 3.2 Pin Multiplexing

#### 3.2.1 Platform Pin Multiplexing

See Table 18 for a listing of the OMAP pin multiplexing required for the OMAP5432 processor on the OMAP5432 EVM. This table only includes the GPIOs that are connected and required for operation of the as-shipped configuration of the OMAP5432 EVM. Unused pins are not included here as well as any GPIOs that go to the onboard connectors

Table 18. OMAP5432 ES2.0 Pin Multiplexing

| GPIO   | OMAP<br>Ball # | Mux<br>Mode | Signal Name | Description of OMAP5432 EVM Usage |  |  |  |
|--------|----------------|-------------|-------------|-----------------------------------|--|--|--|
|        | GPIO Bank 1    |             |             |                                   |  |  |  |
| WKOUT0 | U31            | 5           |             | Debug/HW Visibility (hw_wkdbg1)   |  |  |  |



| GPIO        | OMAP<br>Ball # | Mux<br>Mode | Signal Name   | Description of OMAP5432 EVM Usage                    |  |  |
|-------------|----------------|-------------|---------------|------------------------------------------------------|--|--|
| WKOUT1      | U32            | 5           |               | Debug/HW Visibility (hw_wkdbg2)                      |  |  |
| WKOUT2      | U33            | 5           |               | Debug/HW Visibility (hw_wkdbg3)                      |  |  |
| WKOUT3      | V31            | 5           |               | Debug/HW Visibility (hw_wkdbg4)                      |  |  |
| WKOUT4      | V32            | 6/5         | GPIO1_WKOUT4  | Blue User LED (D2) & Debug/HW Visibility (hw_wkdbg4) |  |  |
| WK6         | K32            | 0/5         | DRM_EMU0      | EMU0 or Debug/HW Visibility (hw_wkdbg6)              |  |  |
| WK7         | K31            | 0/5         | DRM_EMU1      | EMU1 or Debug/HW Visibility (hw_wkdbg7)              |  |  |
| WK11        | P31            | 0           | FREF_CLK1_OUT | USB Host Port Bridge Clock                           |  |  |
| WK12        | M31            | 0           | FREF_CLK0_OUT | Camera Module Clock In                               |  |  |
| WK13        | N31            | 6           | GPIO1_WK13    | Camera Module GPIO                                   |  |  |
| WK14        | N28            | 6           | GPIO1_WK14    | WLAN Interrupt In                                    |  |  |
| WK15        | N29            | 5           | GPIO1_WK15    | Debug/HW Visibility (hw_wkdbg13)                     |  |  |
|             |                |             |               | GPIO Bank 2                                          |  |  |
| 32          | P32            | 4           | GPMC_NCS0     | GPMC Chip Select 0                                   |  |  |
| 33          | E25            | 4           | GPMC_nADV_ALE | GPMC Address Valid/Address Latch Enable              |  |  |
| 34          | F25            | 4           | GPMC_nBE0_CLE | GPMC Byte Enable 0/Comm. Latch Enable                |  |  |
| 35          | J29            | 4           | GPMC_nWP      | GPMC Write Protect                                   |  |  |
| 36          | J28            | 4           | GPMC_CLK      | GPMC Clock                                           |  |  |
| 37          | J27            | 4           | GPMC_AD0      | GPMC Address/Data Bit 0                              |  |  |
| 38          | H28            | 4           | GPMC_AD1      | GPMC Address/Data Bit 1                              |  |  |
| 39          | H29            | 4           | GPMC_AD2      | GPMC Address/Data Bit 2                              |  |  |
| 40          | G29            | 4           | GPMC_AD3      | GPMC Address/Data Bit 3                              |  |  |
| 41          | E29            | 4           | GPMC_AD4      | GPMC Address/Data Bit 4                              |  |  |
| 42          | E27            | 4           | GPMC_AD5      | GPMC Address/Data Bit 5                              |  |  |
| 43          | F26            | 4           | GPMC_AD6      | GPMC Address/Data Bit 6                              |  |  |
| 44          | E26            | 4           | GPMC_AD7      | GPMC Address/Data Bit 7                              |  |  |
| 45          | N27            | 4           | GPMC_WAIT0    | GPMC Wait Input                                      |  |  |
| 46          | AJ10           | 0           | EMMC_CLK      | EMMC Clock                                           |  |  |
| 47          | AH10           | 0           | EMMC_CMD      | EMMC Command                                         |  |  |
| 48          | AG10           | 0           | EMMC_DATA0    | EMMC Data Bit 0                                      |  |  |
| 49          | AF10           | 0           | EMMC_DATA1    | EMMC Data Bit 1                                      |  |  |
| 50          | AH9            | 0           | EMMC_DATA2    | EMMC Data Bit 2                                      |  |  |
| 51          | AJ9            | 0           | EMMC_DATA3    | EMMC Data Bit 3                                      |  |  |
| 52          | AG9            | 0           | EMMC_DATA4    | EMMC Data Bit 4                                      |  |  |
| 53          | AJ8            | 0           | EMMC_DATA5    | EMMC Data Bit 5                                      |  |  |
| 54          | AH8            | 0           | EMMC_DATA6    | EMMC Data Bit 6                                      |  |  |
| 55          | AJ7            | 0           | EMMC_DATA7    | EMMC Data Bit 7                                      |  |  |
| 56          | J32            | 4           | GPMC_AD8      | GPMC Address/Data Bit 8                              |  |  |
| 57          | J33            | 4           | GPMC_AD9      | GPMC Address/Data Bit 9                              |  |  |
| 58          | H32            | 4           | GPMC_AD10     | GPMC Address/Data Bit 10                             |  |  |
| 59          | J31            | 4           | GPMC_AD11     | GPMC Address/Data Bit 11                             |  |  |
| 60          | G31            | 4           | GPMC_AD12     | GPMC Address/Data Bit 12                             |  |  |
| 61          | H31            | 4           | GPMC_AD13     | GPMC Address/Data Bit 13                             |  |  |
| 62          | G32            | 4           | GPMC_AD14     | GPMC Address/Data Bit 14                             |  |  |
| 63          | G33            | 4           | GPMC_AD15     | GPMC Address/Data Bit 15                             |  |  |
| GPIO Bank 3 |                |             |               |                                                      |  |  |
| 76          | G20            | 6           | GPIO3_76      | Interrupt from GPIO Expander                         |  |  |
| 77          | F20            | 4           | GPMC_NCS1     | GPMC Chip Select 1                                   |  |  |
|             |                | 1           |               | - 1                                                  |  |  |



| GPIO | OMAP<br>Ball # | Mux<br>Mode | Signal Name       | Description of OMAP5432 EVM Usage        |  |
|------|----------------|-------------|-------------------|------------------------------------------|--|
| 78   | F17            | 4           | GPMC_A24          | GPMC Address Bit 24                      |  |
| 79   | E20            | 6           | GPIO3_79          | Ethernet Reset                           |  |
| 80   | E14            | 6           | GPIO3_80          | USB Host Reset                           |  |
| 81   | F14            | 6           | GPIO3_81          | Display Port Interrupt In                |  |
| 82   | G14            | 6           | GPIO3_82          | DSI Expansion GPIO (LCD Reset)           |  |
| 83   | E17            | 6           | GPIO3_83          | Pushbutton Input/DSI Expansion GPIO      |  |
| 84   | F13            | 4           | GPMC_NWE          | GPMC Write Enable                        |  |
| 85   | N9             | 4           | GPMC_NOE_NRE      | GPMC Output Enable                       |  |
| 86   | G13            | 0           | UART2_RX          | UART2 Receive Data or GPMC_NCS5          |  |
| 87   | E13            | 0           | UART2_TX          | UART2 Transmit Data or GPMC_NCS6         |  |
| 94   | K28            | 0           | USBB2_HSIC_STROBE | USB HS Interchip Strobe (USB Host)       |  |
| 95   | K29            | 0           | USBB2_HSIC_DATA   | USB High-Speed Interchip Data (USB Host) |  |
|      | Ш              | 1           | (                 | GPIO Bank 4                              |  |
| 96   | W32            | 0           | ABE_CLKS          | Audio Back End Reference Clock           |  |
| 97   | AF28           | 4           | ABEMCBSP3_FSX     | MCBSP3 Frame Sync (to exp. conn)         |  |
| 98   | AE29           | 4           | ABEMCBSP3_DX      | MCBSP3 Transmit Data (to exp. conn)      |  |
| 99   | AE28           | 4           | ABEMCBSP3_DR      | MCBSP3 Receive Data (from exp. conn)     |  |
| 100  | AE27           | 4           | ABEMCBSP3_CLK     | MCBSP3 Clock (to exp. conn)              |  |
| 101  | AD29           | 1           | ABEMCBSP1_FSX     | MCBSP1 Frame Sync (to WL1857 – BT)       |  |
| 102  | AD28           | 1           | ABEMCBSP1_DX      | MCBSP1 Transmit Data (to WL1857 – BT)    |  |
| 103  | AF29           | 1           | ABEMCBSP1_CLKX    | MCBSP1 Clock (to WL1857 – BT)            |  |
| 104  | AG29           | 1           | ABEMCBSP1_DR      | MCBSP1 Receive Data (from WL1857 – BT)   |  |
| 105  | AD26           | 0           | ABEMCBSP2_DR      | MCBSP2 Receive Data (from WL1857 – FM)   |  |
| 106  | AD27           | 0           | ABEMCBSP2_DX      | MCBSP2 Transmit Data (to WL1857 – FM)    |  |
| 107  | AA26           | 0           | ABEMCBSP2_FSX     | MCBSP2 Frame Sync (to WL1857 – FM)       |  |
| 108  | AA27           | 0           | ABEMCBSP2_CLK     | MCBSP2 Clock (to WL1857 - FM)            |  |
| 109  | AA28           | 0           | ABEMCPDM_UL_DATA  | MCPDM Upload Data (from TWL6040)         |  |
| 110  | AA29           | 0           | ABEMCPDM_DL_DATA  | MCPDM Download Data (to TWL6040)         |  |
| 111  | Y29            | 0           | ABEMCPDM_FRAME    | MCPDM Frame Sync (to TWL6040)            |  |
| 112  | Y28            | 0           | ABEMCPDM_LB_CLK   | MCPDM Loopback Clock (to TWL6040)        |  |
| 113  | G24            | 4           | GPMC_A16          | GPMC Address Bit 16                      |  |
| 114  | H24            | 4           | GPMC_A17          | GPMC Address Bit 17                      |  |
| 115  | E24            | 4           | GPMC_A18          | GPMC Address Bit 18                      |  |
| 116  | F24            | 4           | GPMC_A19          | GPMC Address Bit 19                      |  |
| 117  | G21            | 4           | GPMC_A20          | GPMC Address Bit 20                      |  |
| 118  | H21            | 4           | GPMC_A21          | GPMC Address Bit 21                      |  |
| 119  | E21            | 4           | GPMC_A22          | GPMC Address Bit 22                      |  |
| 120  | F21            | 4           | GPMC_A23          | GPMC Address Bit 23                      |  |
|      |                |             | (                 | GPIO Bank 5                              |  |
| 128  | AH25           | 0           | WLSDIO_CLK        | WLAN SDIO Clock (to WL1857)              |  |
| 129  | AG25           | 0           | WLSDIO_CMD        | WLAN SDIO Command (to WL1857)            |  |
| 130  | AJ26           | 0           | WLSDIO_DATA0      | WLAN SDIO Data Bit 0 (to WL1857)         |  |
| 131  | AH26           | 0           | WLSDIO_DATA1      | WLAN SDIO Data Bit 1 (to WL1857)         |  |
| 132  | AK28           | 0           | WLSDIO_DATA2      | WLAN SDIO Data Bit 2 (to WL1857)         |  |
| 133  | AJ27           | 0           | WLSDIO_DATA3      | WLAN SDIO Data Bit 3 (to WL1857)         |  |
| 134  | AL32           | 0           | UART5_RX          | BT HCI Receive Data                      |  |
| 135  | AL31           | 0           | UART5_TX          | BT HCI Transmit Data                     |  |



| GPIO       | OMAP<br>Ball # | Mux<br>Mode | Signal Name                | Description of OMAP5432 EVM Usage                          |  |
|------------|----------------|-------------|----------------------------|------------------------------------------------------------|--|
| 136        | AK31           | 0           | UART5_CTS                  | BT HCI Clear to Send                                       |  |
| 137        | AK32           | 0           | UART5_RTS                  | BT HCI Request to Send                                     |  |
| 138        | AL33           | 0           | I2C2_SCL                   | I2C2 Serial Clock                                          |  |
| 139        | AM32           | 0           | I2C2_SDA                   | I2C2 Serial Data                                           |  |
| 140        | AM30           | 6           | GPIO5_140                  | WLAN Enable                                                |  |
| 141        | AL30           | 6           | GPIO5_141                  | Audio Power On (to TWL6040)                                |  |
| 142        | AL29           | 6           | GPIO5_142                  | Bluetooth Enable                                           |  |
| 143        | AN31           | 6           | GPIO5_143                  | Bluetooth Wakeup                                           |  |
| 144        | AM31           | 6           | GPIO5_144                  | WL1857 Host Wakeup                                         |  |
| 147        | AL28           | 0           | I2C5_SCL                   | I2C5 Serial Clock                                          |  |
| 148        | AM29           | 0           | I2C5_SDA                   | I2C5 Serial Data                                           |  |
| 152        | AN29           | 6           | GPIO5_152                  | SD Card Detect                                             |  |
| 153        | AJ25           | 6           | GPIO5_153                  | Blue User LED (D1)                                         |  |
| 154        | AJ24           | 6           | GPIO5_154                  | Camera Module GPIO                                         |  |
| 155        | AG24           | 0           | UART3_TX_IRTX              | UART3 Transmit Data                                        |  |
| 156        | AH24           | 0           | UART3_RX_IRRX              | UART3 Receive Data                                         |  |
| 158        | K26            | 0           | USBB3_HSIC_STROBE          | USB HS Interchip Strobe (USB Host)                         |  |
| 159        | K27            | 0           | USBB3_HSIC_DATA            | USB High-Speed Interchip Data (USB Host)                   |  |
|            |                |             | (                          | GPIO Bank 6                                                |  |
| 160        | AN13           | 3           | DISPC_DATA17               | Parallel Display Data Bit 17                               |  |
| 161        | AM13           | 3           | DISPC_DATA16               | Parallel Display Data Bit 16                               |  |
| 162        | AL12           | 3           | DISPC_VSYNC                | Parallel Display Vertical Sync                             |  |
| 163        | AL13           | 3           | DISPC_HSYNC                | Parallel Display Horizontal Sync                           |  |
| 164        | AL18           | 3           | DISPC_PCLK                 | Parallel Display Pixel Clock                               |  |
| 165        | AM18           | 3           | DISPC_DE                   | Parallel Display Data Enable                               |  |
| 166        | AL17           | 3           | DISPC_DATA0                | Parallel Display Data Bit 0                                |  |
| 167        | AM17           | 3           | DISPC_DATA1                | Parallel Display Data Bit 1                                |  |
| 168        | AN17           | 3           | DISPC_DATA2                | Parallel Display Data Bit 2                                |  |
| 169        | AL16           | 3           | DISPC_DATA3                | Parallel Display Data Bit 3                                |  |
| 170        | AM16           | 3           | DISPC_DATA4                | Parallel Display Data Bit 4                                |  |
| 171        | AL15           | 3           | DISPC_DATA5                | Parallel Display Data Bit 5                                |  |
| 172        | AM15           | 3           | DISPC_DATA6                | Parallel Display Data Bit 6                                |  |
| 173        | AN15           | 3           | DISPC_DATA?                | Parallel Display Data Bit 7                                |  |
| 174        | AL14           | 3           | DISPC_DATA8                | Parallel Display Data Bit 8                                |  |
| 175        | AM14           | 3           | DISPC_DATA9                | Parallel Display Data Bit 9                                |  |
| 176        | AM12           | 3           | DISPC_DATA10               | Parallel Display Data Bit 10                               |  |
| 177        | AL11           | 3           | DISPC_DATA11               | Parallel Display Data Bit 11                               |  |
| 178        | AM11           | 3           | DISPC_DATA12               | Parallel Display Data Bit 12  Parallel Display Data Bit 13 |  |
| 179        | AN11           | 3           | DISPC_DATA14               | 1 7                                                        |  |
| 180        | AL10<br>AM10   | 3           | DISPC_DATA14  DISPC_DATA15 | Parallel Display Data Bit 14  Parallel Display Data Bit 15 |  |
| 181<br>182 | AN9            | 3           | DISPC_DATA18               | Parallel Display Data Bit 15  Parallel Display Data Bit 18 |  |
| 183        | AM9            | 3           | DISPC_DATA19               | Parallel Display Data Bit 19                               |  |
| 184        | Alvi9          | 3           | DISPC_DATA19               | Parallel Display Data Bit 20                               |  |
| 185        | AM8            | 3           | DISPC_DATA21               | Parallel Display Data Bit 20                               |  |
| 186        | AL8            | 3           | DISPC_DATA22               | Parallel Display Data Bit 21  Parallel Display Data Bit 22 |  |
| 187        | AN7            | 3           | DISPC_DATA23               | Parallel Display Data Bit 23                               |  |
| 101        | AINI           | J           | טוטו ט_טאואבט              | 1 drailor Display Data Dit 20                              |  |



| GPIO        | OMAP<br>Ball # | Mux<br>Mode | Signal Name     | Description of OMAP5432 EVM Usage   |  |  |  |  |
|-------------|----------------|-------------|-----------------|-------------------------------------|--|--|--|--|
| 188         | W31            | 0           | TIMER10_PWM_EVT | Display Backlight PWM               |  |  |  |  |
| 189         | W33            | 0           | DSIPORTA_TE0    | DSI Port "A" Tearing Effect Control |  |  |  |  |
| 190         | AJ33           | 0           | TIMER9_PWM_EVT  | Display Backlight PWM               |  |  |  |  |
| 191         | AK30           | 0           | DSIPORTC_TE0    | DSI Port "C" Tearing Effect Control |  |  |  |  |
| GPIO Bank 7 |                |             |                 |                                     |  |  |  |  |
| 192         | AN23           | 0           | HDMI_CEC        | HDMI Consumer Electronics Control   |  |  |  |  |
| 193         | AM23           | 0           | HDMI_HPD        | HDMI Hot Plug Detect                |  |  |  |  |
| 194         | AM22           | 0           | HDMI_DDC_SCL    | HDMI EDID Serial Clock              |  |  |  |  |
| 195         | AL23           | 0           | HDMI_DDC_SDA    | HDMI EDID Serial Data               |  |  |  |  |
| 196         | AF20           | 0           | MCSPI2_CS0      | SPI2 Chip Select                    |  |  |  |  |
| 197         | AH17           | 0           | MCS9I2_CLK      | SPI2 Clock                          |  |  |  |  |
| 198         | AG20           | 0           | MCS9I2_SIMO     | SPI2 Data (Slave In, Master Out)    |  |  |  |  |
| 199         | AH20           | 0           | MCS9I2_SOMI     | SPI2 Data (Slave Out, Master In)    |  |  |  |  |
| 200         | AJ21           | 0           | I2C4_SCL        | I2C4 Serial Clock                   |  |  |  |  |
| 201         | AJ20           | 0           | I2C4_SDA        | I2C4 Serial Data                    |  |  |  |  |
|             | +              | !!·         | -               | GPIO Bank 8                         |  |  |  |  |
| 224         | AE6            | 0           | CAM_SHUTTER     | Camera Shutter Control              |  |  |  |  |
| 225         | AE5            | 0           | CAM_STROBE      | Camera Strobe                       |  |  |  |  |
| 226         | AF6            | 0           | CAM_RESET       | Camera Reset                        |  |  |  |  |
| 227         | AE7            | 6           | GPIO8_227       | Camera Module GPIO (TBD)            |  |  |  |  |
| 228         | AD5            | 6           | GPIO8_228       | Camera Module GPIO (TBD)            |  |  |  |  |
| 229         | AD6            | 6           | GPIO8_229       | Camera Module GPIO (TBD)            |  |  |  |  |
| 230         | AD7            | 6           | GPIO8_230       | GPIO or DSI Display Expansion PWM   |  |  |  |  |
| 231         | AJ5            | 0           | I2C3_SCL        | I2C3 Serial Clock                   |  |  |  |  |
| 232         | AH4            | 0           | I2C3_SDA        | I2C3 Serial Data                    |  |  |  |  |
| 233         | AG5            | 6           | GPIO8_233       | GPIO or parallel camera HSYNC       |  |  |  |  |
| 234         | AF5            | 1           | SYS_DRM_MSECURE | System DRAM Secure (to TWL6037)     |  |  |  |  |
| IN236       | U6             | 0/3         | CSIPORTA_LANE0X | CSIA Data Lane 0X (or CPI_PCLK)     |  |  |  |  |
| IN237       | U5             | 0/3         | CSIPORTA_LANE0Y | CSIA Data Lane 0Y (or CPI_WEN)      |  |  |  |  |
| IN238       | P5             | 0/3         | CSIPORTA_LANE1Y | CSIA Data Lane 1Y (or CPI_DATA0)    |  |  |  |  |
| IN239       | P6             | 0/3         | CSIPORTA_LANE1X | CSIA Data Lane 1X (or CPI_DATA1)    |  |  |  |  |
| IN240       | P8             | 0/3         | CSIPORTA_LANE2Y | CSIA Data Lane 2Y (or CPI_DATA2)    |  |  |  |  |
| IN241       | P7             | 0/3         | CSIPORTA_LANE2X | CSIA Data Lane 2X (or CPI_DATA3)    |  |  |  |  |
| IN242       | N5             | 0/3         | CSIPORTA_LANE3X | CSIA Data Lane 3X (or CPI_DATA4)    |  |  |  |  |
| IN243       | N6             | 0/3         | CSIPORTA_LANE3Y | CSIA Data Lane 3Y (or CPI_DATA5)    |  |  |  |  |
| IN244       | N7             | 0/3         | CSIPORTA_LANE4X | CSIA Data Lane 4X (or CPI_DATA6)    |  |  |  |  |
| IN245       | N8             | 0/3         | CSIPORTA_LANE4Y | CSIA Data Lane 4Y (or CPI_DATA7)    |  |  |  |  |
| IN246       | Y6             | 0/4         | CSIPORTB_LANE0X | CSIB Data Lane 0X (or CPI_DATA12)   |  |  |  |  |
| IN247       | Y5             | 0/4         | CSIPORTB_LANE0Y | CSIB Data Lane 0Y (or CPI_DATA13)   |  |  |  |  |
| IN248       | Y7             | 0/4         | CSIPORTB_LANE1Y | CSIB Data Lane 1Y (or CPI_DATA14)   |  |  |  |  |
| IN249       | Y8             | 0/4         | CSIPORTB_LANE1X | CSIB Data Lane 1X (or CPI_DATA15)   |  |  |  |  |
| IN250       | AA6            | 0/4         | CSIPORTB_LANE2X | CSIB Data Lane 2X (or CPI_VSYNCIN)  |  |  |  |  |
| IN251       | AA5            | 0/4         | CSIPORTB_LANE2Y | CSIB Data Lane 2Y (or CPI_HSYNCIN)  |  |  |  |  |
| IN252       | J6             | 0/3         | CSIPORTB_LANE0Y | CSIC Data Lane 0Y (or CPI_DATA8)    |  |  |  |  |
| IN253       | J7             | 0/3         | CSIPORTB_LANE0X | CSIC Data Lane 0X (or CPI_DATA9)    |  |  |  |  |
| IN254       | K6             | 0/3         | CSIPORTB_LANE1Y | CSIC Data Lane 1Y (or CPI_DATA10)   |  |  |  |  |
| IN255       | K5             | 0/3         | CSIPORTB_LANE1X | CSIC Data Lane 1X (or CPI_DATA11)   |  |  |  |  |



#### 3.2.2 Camera Expansion Connector Pin Multiplexing

See Table 19 for a description of the pin multiplexing for the camera expansion board signals at connector J20. This connector may support either a parallel camera module or a dual-CSI camera module. The info shown in red is for the parallel camera module configuration. (NOTE: if H\_GPIO\_234 is required for the parallel camera module, the PCB will have to be reworked to remove R301 and add R300 and R302).

Table 19. Camera Expansion Connector (J20) Pin Multiplexing Options

| J20<br>Pin # | OMAP Ball<br># | Mux<br>Mode | Signal Name                 | Description of OMAP5432 EVM Usage         |  |
|--------------|----------------|-------------|-----------------------------|-------------------------------------------|--|
| 3            | M31            | 0           | h_FREFCLK_0                 | Input Clock                               |  |
| 4            | AD6            | 6           | h_GPIO8_229                 | GPIO                                      |  |
| 5            | AJ24           | 6           | h_GPIO5_154                 | GPIO                                      |  |
| 6            | AD5            | 6           | h_GPIO8_228                 | GPIO                                      |  |
| 7            | AH4            | 0           | h_I2C3_SDA                  | I2C3 Serial Data                          |  |
| 8            | AE5            | 0           | h_CAM_STROBE/ GPIO8_225     | Camera Strobe                             |  |
| 9            | AJ5            | 0           | h_I2C3_SCL                  | I2C3 Serial Clock                         |  |
| 10           | AE6            | 0           | h_CAM_SHUTTER/<br>GPIO8_224 | Camera Shutter Control                    |  |
| 12           | AF6            | 0           | h_CAM_RESET/ GPIO8_226      | Camera Global Reset                       |  |
| 13           | P8             | 0/3         | h_CSIPORTA_LANE2Y           | CSI-2A Lane 2Y/Parallel Cam Data bit 2    |  |
| 14           | AE7            | 6           | h_GPIO8_227                 | GPIO                                      |  |
| 15           | P7             | 0/3         | h_CSIPORTA_LANE2X           | CSI-2A Lane 2X/Parallel Cam Data bit 3    |  |
| 16           | N31            | 6           | GPIO_WK13                   | GPIO                                      |  |
| 19           | P5             | 0/3         | h_CSIPORTA_LANE1Y           | CSI-2A Lane 1Y/Parallel Cam Data bit 0    |  |
| 20           | N8             | 0/3         | h_CSIPORTA_LANE4Y           | CSI-2A Lane 4Y/Parallel Cam Data bit 7    |  |
| 21           | P6             | 0/3         | h_CSIPORTA_LANE1X           | CSI-2A Lane 1X/Parallel Cam Data bit 1    |  |
| 22           | N7             | 0/3         | h_CSIPORTA_LANE4X           | CSI-2A Lane 4X/Parallel Cam Data bit 6    |  |
| 25           | U5             | 0/3         | h_CSIPORTA_LANE0Y           | CSI-2A Lane 0Y/Parallel Cam Write Enable  |  |
| 26           | N6             | 0/3         | h_CSIPORTA_LANE3Y           | CSI-2A Lane 3Y/Parallel Cam Data bit 5    |  |
| 27           | U6             | 0/3         | h_CSIPORTA_LANE0X           | CSI-2A Lane 0X/Parallel Cam Pixel Clock   |  |
| 28           | N5             | 0/3         | h_CSIPORTA_LANE3X           | CSI-2A Lane 3X/Parallel Cam Data bit 4    |  |
| 31           | J7             | 0/3         | h_CPI_DATA9                 | CSI-2C Lane 0X/Parallel Cam Data bit 9    |  |
| 32           | Y8             | 0/4         | h_CPI_DATA15                | CSI-2B Lane 1X/Parallel Cam Data bit 15   |  |
| 33           | J6             | 0/3         | h_CPI_DATA8                 | CSI-2C Lane 0Y/Parallel Cam Data bit 8    |  |
| 34           | Y7             | 0/4         | h_CPI_DATA14                | CSI-2B Lane 1Y/Parallel Cam Data bit 14   |  |
| 36           | AM32           | 0           | h_I2C2_SDA                  | I2C2 Serial Data                          |  |
| 37           | K6             | 0/3         | h_CPI_DATA10                | CSI-2C Lane 0Y/Parallel Cam Data bit 10   |  |
| 38           | Y5             | 0/4         | h_CPI_DATA13                | CSI-2B Lane 0Y/Parallel Cam Data bit 13   |  |
| 39           | K5             | 0/3         | h_CPI_DATA11                | CSI-2C Lane 0X/Parallel Cam Data bit 11   |  |
| 40           | Y6             | 0/4         | h_CPI_DATA12                | CSI-2B Lane 0X/Parallel Cam Data bit 12   |  |
| 42           | AL33           | 0           | h_I2C2_SCL                  | I2C2 Serial Clock                         |  |
| 43           | AG5            | 6/3         | h_GPIO8_233                 | GPIO/Parallel Cam Vertical Sync           |  |
| 44           | AA5            | 0/4         | h_GPIO8_IN250               | CSI-2B Lane 2Y/Parallel Cam Horiz Sync In |  |
| 45           | AF5            | 6/3         | h_GPIO8_234                 | GPIO/Parallel Cam Horizontal Sync         |  |
| 46           | AA6            | 0/4         | h_GPIO8_IN251               | CSI-2B Lane 2X/Parallel Cam Vert. Sync In |  |

### 3.3 OMAP5432 EVM Key Components

See Table 20 for a listing of the manufacturers and manufacturer part numbers for some of the key components used on the OMAP5432 EVM.



# Table 20. Key H/W Components

|                                                                          | Table 20. Key H/W | Components                           |
|--------------------------------------------------------------------------|-------------------|--------------------------------------|
| Device / Interface                                                       | Under NDA?        | Manufacturer P/N                     |
| Application Processor                                                    |                   |                                      |
| Processor                                                                | Yes               | TI<br>OMAP5432 ES2.0                 |
| Memories/Storage                                                         |                   |                                      |
| DDR3                                                                     | Yes               | Micron<br>MT41K256M16HA-125:E        |
| eMMC                                                                     | No                | Sandisk<br>SDIN7DP2-4G               |
| Micro-SD Card Cage (Push-Push)                                           | No                | Molex<br>502570-0893                 |
| Removable card ESD protection                                            | No                | Texas Instruments TPD6E001RSER       |
| SATA Redriver (U23)                                                      | No                | Texas Instruments<br>SN75LVCP412RTJR |
| Vertical SATA connector                                                  | No                | Molex<br>67800-5002                  |
| Power                                                                    | 1                 |                                      |
| Power Management<br>(U26)                                                | Yes               | Texas Instruments<br>TWL6037         |
| DC Input Connector<br>(P1)                                               | No                | CUI, Inc.<br>PJ-002AH-SMT            |
| Switching Power Supply (U2)                                              | No                | Texas Instruments<br>TPS54320RHL     |
| Switching Power Supply<br>(U3, U7)                                       | No                | Texas Instruments<br>TPS54426PWPR    |
| Load Switches<br>(U4, U8)                                                | No                | Texas Instruments<br>TPS2590RSA      |
| Video/Display                                                            |                   |                                      |
| HDMI Transceiver + ESD protection                                        | No                | Texas Instruments<br>TPD12S016RKTR   |
| HDMI Connector (Type D)                                                  | No                | Amphenol<br>HDM-D-F191-10-2-2-TR     |
| Expansion Interfaces                                                     |                   |                                      |
| 100-pin SMT Expansion<br>Connector (DSI & Parallel Display<br>I/F, GPMC) | No                | Hirose<br>FX6-100P-0.8SV91           |
| 20-pin SMT Expansion Connector (GPMC)                                    | No                | Hirose<br>FX6-20P-0.8SV91            |
| 14-pin through-hole Expansion<br>Connector (Misc.)                       | No                | EDAC<br>151-014-420-112              |
| MCS                                                                      |                   |                                      |
| WL1857 Module                                                            | No                | TDK<br>R078B                         |
| Audio                                                                    | 1                 |                                      |
| Audio Codec                                                              | Yes               | Texas Instruments<br>TWL6040         |
| 3.5mm Audio Headset Jack                                                 | No                | CUI Inc.<br>SJ-43516-SMT             |
| 3.5mm Audio Line In/Out Jacks<br>(P3 & P4)                               | No                | CUI, Inc.<br>SJ1-3513                |
| Audio Headset Switch<br>(U34)                                            | No                | Texas Instruments<br>TS3A225ERTER    |
| Ethernet                                                                 |                   |                                      |
| Ethernet RJ-45 Connector w/<br>Integrated Magnetics                      | No                | Pulse<br>J1011F01PNL                 |
|                                                                          |                   |                                      |



Test/Debug Information www.ti.com

#### Table 20. Key H/W Components (continued)

| Device / Interface                                                        | Under NDA? | Manufacturer P/N                  |  |
|---------------------------------------------------------------------------|------------|-----------------------------------|--|
| USB HSIC Phy                                                              | No         | SMSC<br>LAN9730-ABZJ              |  |
| USB Host                                                                  |            |                                   |  |
| ESD Protection                                                            | No         | Texas Instruments<br>TPD2E001DRYR |  |
| USB HSIC Phy                                                              | No         | SMSC<br>USB3503A-1-GL-TR          |  |
| Camera Expansion                                                          |            |                                   |  |
| 30-pin CSI-2 Camera Expansion<br>Connector (top side)                     | No         | Samtec<br>TFM-115-32-S-D-A        |  |
| 50-pin dual CSI-2/Parallel Camera<br>Expansion Connector (bottom<br>side) | No         | Samtec<br>TFM-125-02-S-D-K        |  |

## 4 Test/Debug Information

This chapter contains information to allow easier debug access to signals on the OMAP5432 EVM.

## 4.1 Clock Signal Access

The following sections show where various clock signals on the OMAP5432 EVM may be accessed.

#### 4.1.1 H\_SYSCLK Probe Point

This signal is the clock from the OMAP5432 ES2.0 to the TWL6040 Audio Companion IC. It may be probed on the top side of the PCB at R86 or R87in the area at the lower right corner of the OMAP5432 device, as shown in Figure 21 below.



www.ti.com Test/Debug Information

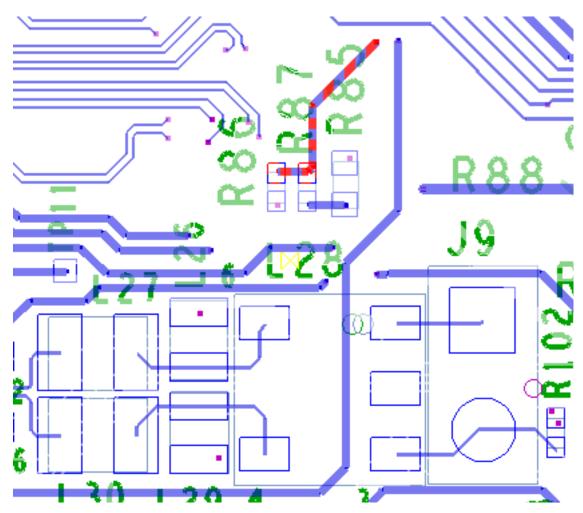



Figure 21. High-Speed Audio Clock Probe Point (h\_SYSCLK)

# 4.1.2 USB Host Reference Clock Probe Point (H\_FREFCLK\_1)

The 19.2 MHz reference input clock to the USBB2 Phy device (USB3503A-1-GL-TR) may be probed on the top side of the PCB at TP3 as shown in Figure 22.



Test/Debug Information www.ti.com

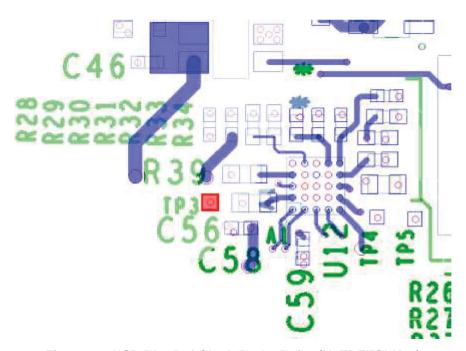



Figure 22. USB Phy Ref Clock Probe Point (H\_FREFCLK\_1)

### 4.1.3 Camera Module Input Clock Probe Point (H\_FREFCLK\_0)

The clock to the camera module connectors may be probed on the top side of the PCB at R77-1 as shown below in Figure 23. The frequency of this clock will depend on the camera module being used.

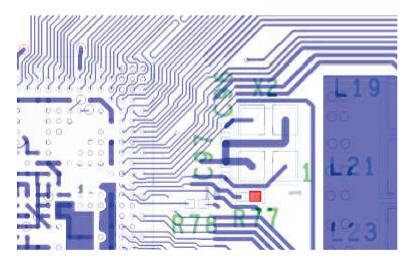



Figure 23. Camera Module Clock Probe Point (H\_FREFCLK\_0)

#### 4.1.4 CLK32K\_AUD Probe Point

The 32.768KHz input clock to the TWL6040 Audio Companion IC may be probed at R123-1 as shown in Figure 24. This testpoint may be located above the TWL6040 Audio Companion IC at U35.



Test/Debug Information www.ti.com

# CLK32K AUD

Figure 24. 32KHz Audio Clock Probe Point (CLK32K PAUD)

#### 4.2 Power Rail Signal Monitoring/Access

The OMAP5432 EVM provides the capability to perform current measurements on certain key PCB rails. See Table 21 for a description of the rails that are provisioned for measurement. on the input supplies to the VDD\_OPP\_MPU SMPS supplies (SMPS1:3), the VDD\_OPP\_MM SMPS supplies (SMPS4:5), and the VDD\_OPP\_CORE supply (SMPS8). Each of these has 30 mohm, 0.1W, 0.5% resistor on the VSYS input to the SMPS supplies. The voltage drop across each of these resistors may be measured at the testpoints on the back side of the PCB shown below in Figure 25. This voltage drop, divided by 0.03, will give the

| Dooiston | TD-          | Damas Dail                             | DADA Comm (140)  | Description                                                                           |
|----------|--------------|----------------------------------------|------------------|---------------------------------------------------------------------------------------|
| Resistor | TPs          | Power Rail                             | DARA Conn. (J19) | Description                                                                           |
| R205     | TP28<br>TP27 | VSYS_BRD (+)<br>VSYS_COBRA (-)         | 33<br>35         | Measurement of system supply current (all inputs into the TWL6037 Power companion IC) |
| R213     | TP32<br>TP31 | VSYS_COBRA (+)<br>VSYS_MPU (-)         | 1 3              | Measurement of the current into the TWL6037 MPU power supplies (SMPS1:3)              |
| R211     | TP30<br>TP34 | VSYS_COBRA (+)<br>VSYS_MM (-)          | 25<br>27         | Measurement of the current into the TWL6037 multi-media power supplies (SMPS4:5)      |
| R204     | TP26<br>TP29 | VSYS_COBRA (+)<br>VSYS_CORE (-)        | 10<br>12         | Measurement of the current into the TWL6037 core and 2.1V power supplies (SMPS8:9)    |
| R19      | N/A          | VSYS_P (+)<br>VSYS_BRD (-)             | 9<br>11          | Measurement of total board current drawn from the main 3.7V supply                    |
| R203     | N/A          | VDDS_1V2_MAIN (+)<br>VDDS_1V2_WKUP (-) | 37<br>39         | Measurement of total current drawn from the 1.2V wakeup rail (LDO6)                   |
| R234     | N/A          | VDDS_1V8_MAIN (+)<br>VDDS_1V8_OMAP (-) | 13<br>15         | Measurement of total current drawn by OMAP only from the 1.8V VIO rail (SMPS7)        |
|          |              | VDD_OPP_MPU                            | 29/31            | Measure voltage for the OMAP MPU rail <sup>(1)</sup>                                  |
|          |              | VDD OPP MM                             | 14/16            | Measure voltage for the OMAP MM rail <sup>(1)</sup>                                   |

**Table 21. Power Management Capabilities** 

The voltage is required to calculate the output current from the OMAP switcher, as the efficiency varies depending on the output voltage and current drawn.



Test/Debug Information www.ti.com

|          |     |                                        | •                | ,                                                                                    |
|----------|-----|----------------------------------------|------------------|--------------------------------------------------------------------------------------|
| Resistor | TPs | Power Rail                             | DARA Conn. (J19) | Description                                                                          |
|          |     | VDD_OPP_CORE                           | 5/7              | Measure voltage for the OMAP CORE rail <sup>(1)</sup>                                |
| R65      | N/A | VDD_2V1 (+)<br>VDDA_2V1_AUD (-)        | 17<br>19         | Measurement of total current supplied to the Audio IC from the 2.1V rail (SMPS9) (2) |
| R61      | N/A | VDD_DDR3_P (+)<br>VDD_DDR3_N (-)       | 18<br>20         | Measurement of output current supplied to the DDR3 devices/OMAP (SMPS6)              |
| R220     | N/A | VDDA_1V8_REF (+)<br>VDDA 1V8 REF O (-) | 22<br>24         | Measurement of output current from the OMAP low-noise LDO (LDOLN_OUT)                |

**Table 21. Power Management Capabilities (continued)** 

#### 4.2.1 TWL6037 MPU/MM/Core Current Measurement Points

The OMAP5432 EVM provides current measurement resistors on the input supplies to the VDD\_OPP\_MPU SMPS supplies (SMPS1:3), the VDD\_OPP\_MM SMPS supplies (SMPS4:5), and the VDD\_OPP\_CORE supply (SMPS8). Each of these has 30 mohm, 0.1W, 0.5% resistors on the VSYS input to the SMPS supplies. The voltage drop, from positive to negative, may be measured across each of these resistors at the testpoints on the back side of the PCB shown below in Figure 25. This voltage drop, divided by 0.03, will give the current going into the SMPS, which along with the voltage seen by the SMPS, and the efficiency of the TWL6037 switch-mode power supply will allow the user to calculate the current being provided by the TWL6037 supply of interest.

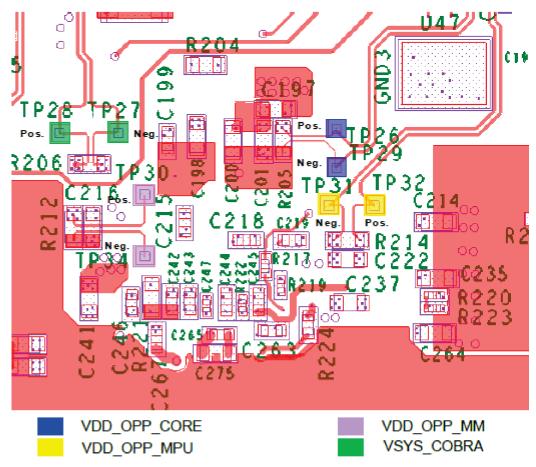



Figure 25. OMAP5432 ES2.0 Current Measurement Probe Points (Back Side of PCB)

Since the inputs to SMPS8 and 9 are shorted inside of the TWL6037 device, to get the CORE output current, you measure the inputs to SMPS8/9 through R204, and then subtract the current through the SMPS9 switcher (R65).



www.ti.com Test/Debug Information

#### 4.2.2 TWL6037 VDD\_DDR3L Current Measurement Points

The OMAP5432 EVM provides a four-terminal, 50-mohm power measurement resistor at R61 to measure the output current being provided by the DDR3 supply (SMPS6). This resistor may be found on the top of the PCB as shown in Figure 26 below.

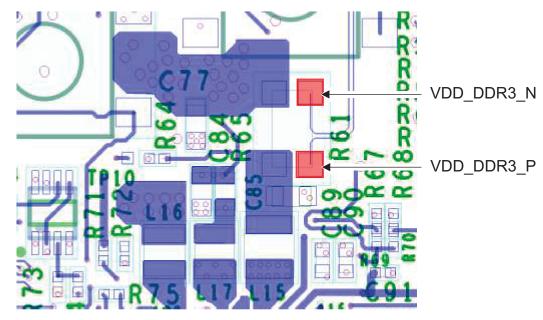



Figure 26. DDR3 Current Measurement Probe Points (Top Side of PCB)

## 4.2.3 TWL6037 SMPS Output Probe Points

The outputs of the TWL6037 SMPS output supplies may be probed around the TWL6037 IC at U25 as shown in Figure 27 below.

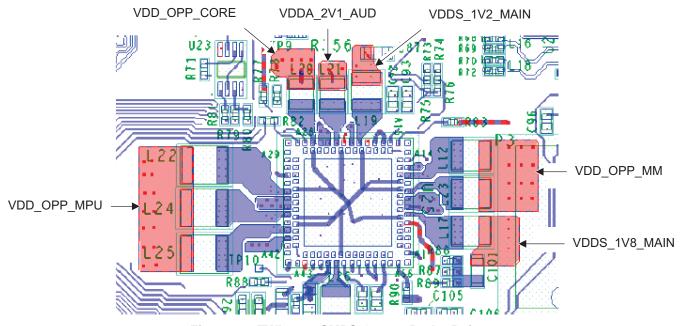



Figure 27. TWL6037 SMPS Output Probe Points



Test/Debug Information www.ti.com

#### 4.2.4 VCC\_3v3\_MAIN Output Probe Point

The output of the TPS54320 SMPS may be probed at locations U16-6, C62-2, R40-1, R43-1, C55-2, or C56-2. This is the power rail for the onboard circuitry requiring 3.3V.

#### 4.3 OMAP5432 EVM Interface Signal Access

#### 4.3.1 TWL6040 PDM Interface Probe Points

The PDM interface which is the digital audio interface between the OMAP5432 ES2.0 and the TWL6040 Audio Companion IC, may be probed at resistors above the TWL6040 IC at U35 as shown in Figure 28 below.

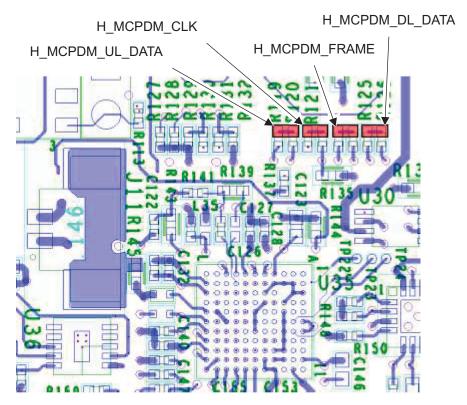



Figure 28. TWL6040 PDM Interface Probe Points

#### 4.3.2 USBB2 HSIC Interface Probe Points

The USBB2 High-Speed Interchip USB lines which are used for the USB Host Port Hub interface may be probed at test points TP4 and TP6 on the top side of the PCB as shown in Figure 29 below.



www.ti.com Test/Debug Information

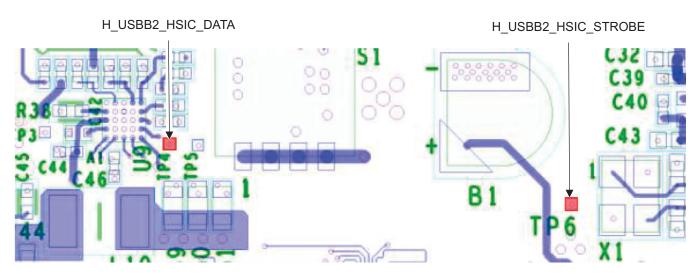



Figure 29. USBB2 HSIC Interface Probe Points

#### 4.3.3 USBB3 HSIC Interface Probe Points

The USBB3 High-Speed Interchip USB lines which are used for the Ethernet Hub interface may be probed at test points TP1 and TP2 on the top side of the PCB as shown in Figure 30 below.

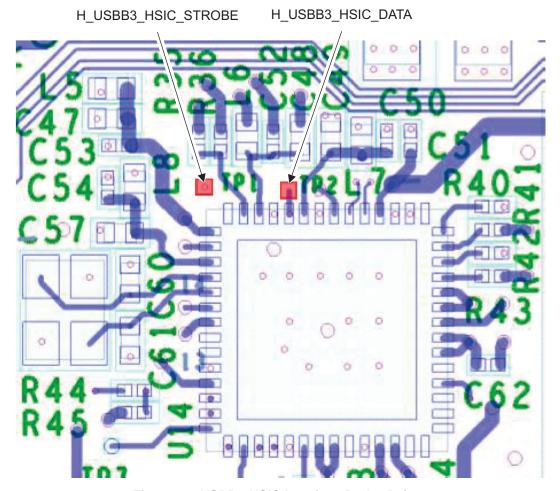



Figure 30. USBB3 HSIC Interface Probe Points

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <a href="www.ti.com/omap">www.ti.com/omap</a> TI E2E Community <a href="e2e.ti.com">e2e.ti.com</a>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>