CC2510-CC2511DK Quick Start Instructions

Opening the box an running the Packet Error Rate Test

1. Kit Contents
 - 2 x SmartRF04EB
 - 2 x CC2510EM
 - 1 x CC2511 USB Dongle
 - 2 x 2.4GHz antennas
 - 2 x USB cables
 - 1 x USB extension cable
 - Documentation

2. EB overview
 - EM connectors
 - Joystick
 - Button S1

3. Plug EM into EB
 - Insert a CC2510EM into both SmartRF04EBs. The connectors will only fit in one position, so that the EM cannot be inserted the wrong way. Do not force the EM. Remember to mount the antenna as well.

4a. Battery power
 - There are three different ways of applying power to the EB:
 - The first method involves using a battery, either a 9V or a 4xAA battery pack connected to the battery connector on the bottom side of the board.
 - The second method applies DC power using the DC input jack (right in picture, centre is +, sleeve is ground), or by connecting a 4-10V voltage source between the 4-10V and 0V terminals of the power connector (left in picture). It is also possible to connect a 3.3V voltage source between the 3.3V and 0V terminals. The on-board voltage regulators will be bypassed in this case.

4b. DC power
 - The EB can also be powered from the USB bus. Make sure that the SmartRF™ Studio software is installed before connecting the EB to the PC; otherwise you may experience problems in installing it later due to driver issues.

4c. USB power
 - If a 3.3V source is used as described in 4b above, the switch should be set to the leftmost position. For all other cases, the switch should be set to the rightmost position. This switch can be used to turn off the EB by switching it to the opposite position of that used to turn it on.

5. Set power switch
 - When power is applied to the board, the test program will start. You should see the Chipcon logo with chip name and revision number as shown above on the LCD display on both EBs. Pushing button S1 in the lower right corner of the board will show the first menu item.

6. Packet error rate test
 - Select the frequency that you want to use (2420 MHz, 2440 MHz, 2460 MHz or 2480 MHz). Move the joystick up or down to display the choices and push button S1 in the lower right corner of the board to select the displayed frequency.

7. Select Frequency
 - Note that if multiple power sources are connected, the source with the highest voltage will power the EB. This means that you should disconnect any attached battery when using a lab supply or USB power; otherwise the battery will be drained.

Web sites: www.ti.com/lprf
E2E Forum: www.ti.com/lprf-forum
Make sure to subscribe to the Low-Power RF Newsletter to receive information about updates to documentation, new product releases and more. Sign up on the TI web pages.
8. Select Data Rate

Select which data rate to use (10 kbps, 250 kbps or 500 kbps) by moving the joystick. Confirm your choice by pressing button S1.

9. EB 1: Select Receiver

Select Receiver on the first EB by moving the joystick. Confirm by pressing button S1. The Receiving node will display “Ready to receive”.

10. EB 2: Select Transmitter

Select Transmitter on the other EB by moving the joystick upward. Confirm by pressing button S1.

11. EB 2: Number of packets

On the transmitter EB, select the number of packets to send. More packets take longer, but give a better statistical result. Confirm by pressing button S1.

12. PER Test (Transmitter)

Press S1 button again to start transmitting the packet burst. The transmitter will show a running counter that shows the number of packets sent.

13. PER Test (Receiver)

The receiver will show the total accumulated packet error rate (PER) together with the average signal strength (RSSI) of the previous 32 received packets. A symbol in the upper right corner will blink for every 32nd incoming packet to indicate whether the link is maintained.

14. PER Test results

When the PER test is completed, the result will be displayed on the receiver until a new test is started. A new test can be started from the transmitter.

15. References

Please visit www.ti.com and http://focus.ti.com/docs/toolsw/folders/print/cc2510-cc2511dk.html. Download the CC2510-CC2511DK User Manual, the SmartRF™ Studio PC Tool, software examples, as well as datasheets, reference designs and application notes. Documentation and application examples written for the CC2511 USB dongle are also available for download from this site.

You will also find a lot of information on the TI E2E forum at http://e2e.ti.com. We hope that you will enjoy working with the CC2510 and CC2511 devices.

16. Troubleshooting

If you are experiencing problems with this test, please check the following:

a. The data rate affects the obtainable link range.

b. The source code for the packet error rate test application is available on the web. You may modify the source code to test at other frequencies or data rates.

c. See “DN300 ~ SmartRF04EB Troubleshooting” for general troubleshooting of your EB board.

SmartRF™ Studio

1. Download and Install

Before connecting SmartRF04EB to your PC, download SmartRF Studio from www.ti.com/smartrfstudio.

2. Launch SmartRF Studio

After installing the tool, connect the EB to the PC using the USB cable and start SmartRF Studio. Select the “2.4 GHz” tab and double click the CC2510 device icon.

3. Configure the Radio

You can now configure the radio, run tests, export register settings and run link tests with another CC2510 on a SmartRF04EB connected to the PC.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for such any statements.

TI products are neither designed nor intended for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are not authorized for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>DSP</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>Interface</td>
<td>Energy</td>
</tr>
<tr>
<td>Logic</td>
<td>Industrial</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Medical</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Space, Avionics & Defense</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Copyright © 2010, Texas Instruments Incorporated